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T
o most embedded develop
ers, multitasking means 
using a preemptive multi
tasker and a complex, ex
pensive (in terms of soft

ware cost, memory size, and run-time 
overhead) piece of software. While em
bedded real-time systems are best writ
ten with a multitasking approach, pre
emptive multitasking is often overkill. 
A preemptive multitasker is a very gen
eralized tool; users may not want to pay 
the costs that always accompany gener
alized solutions to their very specific 
problems. 

A less widely understood approach 
to real-time design is cooperative multi
tasking. Judicious use of cooperative 
tasking techniques can often meet an 
embedded system's multitasking re
quirements, while giving better perf or
mance and a simpler software environ
ment than a preemptive multitasker. 

In my work with stack-based proces
sors at Harris Semiconductor Inc., I've 
investigated the different approaches to 
multitasking and explored the different 
tradeoff s among complexity, cost, and 
speed. As a result, I'm convinced that 
the ease of implementation and effi
ciency of cooperative multitasking are 
widely underestimated. 

WHY MULmASKING? 

M 
ultitasking is used in embed
ded systems for a variety of 
purposes. Keeping separate 

system functions resident in separate 
tasks helps reduce the complexity of 
each portion of the system. Separate 
tasks also help modularize the work of 
writing the system by forcing the cre
ation of well-defined interfaces between 
modules and programmers. 

Cooperative 
tasking 
techniques can 
often meet an 
embedded 
system's 
multitasking 
requirements and 
give better 
performance. 

Tasks can also be used to distinguish 
different activity classes for a system. 
For example, routines that only need to 
be invoked occasionally can be included 
in a task run in response to an external 
stimulus, such as an interrupt or a timer 
pulse. Tasks that always run but are not 
time-critical can be assigned lower 
priorities than other tasks. 

On larger systems with multiple pro
cessors, breaking a software system into 
tasks provides natural boundaries for 
process migration. Setting parallelism 
granularity at the task level allows each 
processor to be assigned to one or more 
active tasks, greatly reducing the soft
ware's complexity. In the best of all pos
sible worlds, we have one processor per 
task. Unfortunately, not all systems 
have the luxury of multiple processors. 
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The problem comes when many tasks 
contend for use of a single processor. 
This processor must be shared among 
tasks, which can involve significant 
overhead. 

PREEMPTIVE TASKING 

F orth has a long tradition of pro
viding many support levels for 
multitasking. While coopera

tive multitasking is a well-known tech
nique in Forth circles, the technique 
needn't be limited to that language. In
deed, with the recent appearance of C 
compilers for stack processors like the 
RTX, the approach becomes particu
larly attractive for C programmers as 
well. However, stack processors do alter 
some of the design tradeoffs. 

Table 1 

The preemptive method is usually 
what is meant by "multitasking" in con
ventional computing terminology. In a 
preemptive multitasker, some prede
fined event, such as a timer pulse, peri
odically halts the executing program 
and transfers control to an executive 
program or kernel. The kernel saves the 
complete state of the processor (all reg
isters and status bits), including the pro
gram counter and stack contents. Once 
the old task state is saved, the kernel 
uses some scheme to select another task 
for execution. The newly selected task 
has its state loaded into the processor 
and execution is resumed on the new 
task. 

The advantage to full preemptive 
multitasking is that it is almost trans-

Pause subroutine code for a lightweight multltasller 
written for the RTX 2000 

RTX 2000 Instruction Comment 
R> Transfer return address of calling task (task restart 

address) to data stack. 

O UI Store that restart address to task area word 0. 

1 UO Fetch link value from task area word I. 

UBR I Store that link value as the new value of the user base 
register. 

ouo 

>R EXIT 

felbns 

Fetch the restart address of the new task from the new 
task area. 

Transfer the restart address from the data stack to the 
return stack, then perform a subroutine return 
(equivalent to a jump to the restar t address). 

I. Each task uses the user base register to point to a 32-word task area used for scratch storage. 

2. The pause subroutine code takes six words of memory shared among all tasks. 

3. Each invocation of pause code takes I 0 clock cycles, including the subroutine call instruc

tion from the calling task. 
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parent to the programmer, and it is a 
powerful and automatic way to ensure 
that no problems occur during the tran
sitions between tasks. Unfortunately, 
the oost for this transparency and power 
is very high. The machine's entire state 
must be saved to guarantee a correct 
restart when the task is resumed. 

In contrast to RISC and most ClSC 
processors, however, most stack ma
chines automatically track the number 
of active elements on the stack. T n prac
tice, the stacks tend to be fairly shallow. 
However, whatever processor architec
ture you ' re using, the oost for a preemp
tive multitasker context switch is high. 

An additional problem with preemp
tive multitasking is that certain code se
quences, known as critical regions, must 
not be interrupted by a task switch. 
Typically, these sequences deal with ac
cess to resources shared among tasks or 
time-critical code. 

To prevent a preemptive multitasker 
from interrupting these sequences, a 
flag must be used to notify the executive 
that the task is in a critical region. Be
cause task switches are forbidden with
in these regions, task-switching latency 
increases dramatically. Alternatively, 
semaphores or other synchronization 
methods may be used to notify other 
tasks when a data structure is in use in 
case the task is interrupted. Either way, 
a considerable run-time overhead and 
programming effort is involved in pre
venting a preemption from causing 
problems. 

HEAVYWEIGHT COOPERATION 

I 
n some systems, the number of 
shared data references and critical 
regions executed will have a much 

greater impact on efficiency than the 
number of task switches made. Or, you 
may be dealing with a relatively simple 
system where it 's hard to justify the 
generality and complexity of a preemp
tive multitasker. In these cases, it may 
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In cooperative 
tasking, the task 
decides when it is 
completed and 
ready to give up 
control of the 
processor to other 
tasks. 

Figure 1 
Characteristics of tasking models. 

... 
Low High 

Preemptive 
multitasker 

actually be desirable to do away with 
the preemptive tasker and implement 
cooperative tasking. 

In cooperative tasking, the task de
cides when it is ready to give up control 
of the processor. This decision is typical
ly made by each task. The task periodi
cally invokes a routine that queries a 
timer to see whether the system desires 
a task switch. This technique is called 
"pausing." 

In a simplified but oft-used case, a 
task switch is performed on every pause. 
When it is time for a task switch, the full 
processor state is saved in a manner 
similar to that used for preemptive task
ing. The term "heavyweight" is used be
cause the complete machine state must 
be saved to guarantee correct operation. 
The term "cooperative" is used because 
the task relinquishes control of the sys
tem by executing pause statements 
sprinkled throughout its code rather 
than relying on an external preemption 
mechanism. 

The advantage to using the coopera-

• No pauses used, timer-driven 
scheduler preempts programs 
anywhere 

• Critical regions and 
synchronization required for 
correct operation 

Heavyweight • Pause anywhere 
• Same context switching cost 

cooperative as preemptive multitasker 
multitasker • Cooperative model reduces 

need for synchronization 

System Transparency Medium-weight • Pause at module boundaries, 
efficiency to programmer when stacks are small 

cooperative • Programmer schedules pauses 
muJtitasker for reduced context switching 

costs 
• Cooperative model reduces 

need for synchronization 

Lightweight • Pause only at highest level 
• Stacks must be empty when 

cooperative pausing 
multitasker • Almost no context switching 

cost 
• Task switch on every pause 

(no scheduling overhead) in 
most implementations 

High Low • Cooperative model reduces 
need for synchronization 
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tive tasking method is that neither syn
chronization variables nor critical-re
gion flags are necessary. Since task 
switching only occurs when the pro
grammer requires it, a task cannot be 
shut down by the kernel at an inoppor
tune moment. This fact can substantial
ly reduce your run-time overhead and 
code complexity. Further, much of the 
code in the kernel used for synchroniza
tion and data-structure sharing can be 
eliminated, reducing memory costs. 

The disadvantage of using the coop
erative tasking method is that it places 
more of a burden on the programmer 
for correct operation. Programmers are 
responsible for ensuring that periodic 
checks for task switching are placed in 
appropriate sections of the code. If they 
place these checks wisely, the result will 
be good performance with small task
switcbing latencies. If programmers are 
not so wise, some task-switching laten
cies may be undesirably long. 

DEALING WITH LATENCY 

T 
he issue of task-switching laten
cy can be addressed in three 
ways. First, we can use coopera

tive tasking in applications where task
switcbing latency is not extremely criti
cal or the tasks are quite simple and rely 
on the programmer's skills. Obviously 
this approach has limited applicability. 

The second way to reduce this prob
lem is to move all time-critical code to 
interrupt-service routines. For example, 
a task that is activated to read data from 
an input port before the data is overrun 
can be replaced by an interrupt-service 
routine that places the data into a first
in-first-out buffer and a task that pro
cesses data from that buffer. This strat
egy has the effect of desensitizing the 
system to task-switching latency. Simi
lar methods must often be used with 
preemptive tasking models as well be
cause of their problems with latency 
caused by the critical regions. 

Finally, you can treat an unaccepta
bly long latency as a soft error. This so
lution can be accomplished by using a 
watchdog timer on either the develop
ment system or target system. When 
the maximum permissible task-switch
ing latency is exceeded, a warm start of 
the task can be performed, along with a 
suitable message to the programmer if 
he or she is in a development mode. 
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HEAVYWEIGHT COSTS? 

T
he heavyweight cooperative 
tasking model is the model tra
ditionally included in Forth 

programming environments. lt is pre
ferred to the preemptive tasking model 
because of its simplicity and the direct 
control it gives programmers. 

Heavyweight tasking is very inex
pensive when executing Forth on a con
ventional processor, because a Forth 
virtual machine running on a register
based CPU typically uses only two or 

Medium-weight 
cooperative 
tasking is an cost
reducing 
embellishment of 
heavyweight 
tasking. 

three registers and leaves the other re
sources idle. (Forth requires two stack 
pointers and, in some implementations, 
will keep the top data stack element in a 
register.) Machine code sequences in a 
Forth program may use any number of 
registers for efficiency, but they are not 
preserved across subroutine boundaries 
and need not be saved when pausing. 

Thus, Forth kernels on conventional 
machines trade off a little bit of run
time speed (by not making optimal use 
of registers) in return for very fast con
text-switching times. Since the cost of 
context switching is quite low, most 
Forth systems running on conventional 
processors use heavyweight cooperative 
multitasking. 

Slack-based processors usually con
tain some sort of stack-buffer hardware 
on-chip. The use of this stack buffer sig
nificantJy increases the execution speed 
of Forth programs over that possible 
with conventional processors. Unfortu-

nately, its use by Forth and other lan
guages also increases the state that 
must be saved from the CPU on a con
text switch. The amount of state that 
must be saved is typically equal to a 
small register file on a conventional 
CPU. 

Of course, techniques such as parti
tioning the hardware slack buffer into 
multiple areas for high priority tasks 
can eliminate saving stack contents to 
memory in a significant number of ap
plications. Still, the general case of a 
very large number of low priority tasks 
on a single processor does require sever
al words of data to be saved from the 
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CPU on many context switches. There
fore, methods other than heavyweight 
tasking that have reduced context
switching costs can be attractive in 
some situations. 

MEDIUM-WEIGHT TASKING 

H 
eavyweight cooperative task
ing eliminates the overhead 
and complexity of dealing 

with synchronization and critical re
gions by restricting the times at which 
switching can occur. However, it still 
pays a reasonably high overhead for 
saving and restoring context on a task 
switch. Therefore, medium-weight co
operative tasking is an embellishment 
of heavyweight tasking that reduces the 
cost of context switching. 

Stack-based programs, especially 
those programs written in Forth, tend to 
bequite modular. This modularity often 
results in routines that run in less time 
than the desired interval between task 
switches. Further, the amount of infor
mation transferred on the stack be
tween independent modules is often 
very small. 

Since context switching on stack ma
chines primarily consists of saving the 
active stack elements, the cost of coop
erative multitasking can be significant
ly reduced by simply choosing to place 
pauses at module boundaries. This 
method reduces the average number of 
stack elements that need to be saved on 
pauses and task-switching overhead. 

No compiler analysis is required, 
since the user chooses where the pauses 
go. The user cannot make a serious mis
take, because the stack hardware auto
matically tracks the depth of the stacks 
and saves all the required elements. 
Medium-weight cooperative tasking 
modifies a program that uses the 
heavyweight tasking model so that on 
the average it has fewer elements on the 
stack to save on context switches. 

A LIGHTWEIGHT EXAMPLE 

W 
hat if pauses are placed 
only where the stacks are 
guaranteed (by the pro

grammer) to be empty? In this case, the 
cost of a context switch can be much 
longer, since only the program counter 
a nd perhaps one or two other registers 
need be saved. This method is called 
lightweight cooperative tasking. 
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An even further refinement of 
lightweight cooperative tasking is possi
ble. If the size of the routines invoked 
between pauses is chosen appropriately, 
no timer is needed to decide when to 
change tasks. A task change can be per
formed on every pause. Since the cost of 
task changing is so low in a lightweight 
tasking model, the last piece of tasking 
overhead is removed and overall tasking 
costs are reduced even further. Further, 
the code required to implement the 
tasker is drastically reduced, resulting 
in a greatly simplified system software 
environment. 

Table I shows PAUSE code for a 
lightweight multitasker implemented 
on the Harris RTX 2000 stack proces-

sor. This multitasker assumes a round
robin scheduling policy with equally 
weighted task priorities. It traverses a 
circular linked list for task scheduling 
and switches tasks on every PAUSE com
mand. Each task has a 32-word control 
area and scratchpad space in memory 
accessed through the user base register. 

Offset 0 from the user base register 
contains the restart address for the task, 
whfoh was set the last time the task was 
paused. Word offset I from the user 
base register contains a pointer to the 
control area for the next task. To start a 
new task, the program suspending ex-
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ecution performs a subroutine call to 
the pause code, the user base register is 
set to the value for the next task in the 
linked list, and the program counter is 
set to the saved restart address for that 
next task. In this example, the total time 
to process a task switch is 10 clock cy
cles, and the process uses seven instruc
tions, including the subroutine call to 
the pause code. 

It should be noted that even if an ap
plication does not appear to be suitable 
for lightweight tasking at first, it may be 
simple to adapt the technique to the sit
uation. For example, if one task takes 



too long between pauses, that task 
might be broken into several subtasks 
that do fit within the time constraints. 

EXPLORING THE TRADEOFFS 

0 
ne method to break up a task is 
to implement a finite state ma
chine and execute a pause on 

every state change. r once used this 
technique on a proprietary microcoded 
graphics adapter that used a bit-sliced 
architecture. The system requirements 
were to sample a host interface every 50 
microseconds; sample a bit tablet, joy
stick, and button box every few millisec
onds; draw vectors, arcs, and shaded 
polygons on a storage tube display; and 
refresh several hundred dynamic vec
tors without flicker-all without any 
timers available. I accomplished this 
feat in about 2,000 words of microcode, 
using the various lightweight tasking 
techniques. 

Now that we've looked at the differ-

One method that 
can be used to 

break up a task is 
to implement a 

finite state 

machine and then 
execute a pause on 

every single state 
change. 
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ent tasking models and their character
istics, it's time to consider a selection 
process. How do you pick the model 
that's right for your application? Figure 
I summarizes the characteristics of the 
various tasking models. 

The driving force for the different 
types of tasking is the placement of 
pause statements. Preemptive tasking 
models do not use pauses. Heavyweight 
tasking models allow pauses anywhere 
in a program. Medium-weight and 
lightweight tasking models place re
strictions on pause statements to sim-

Lightweight 
tasking is simple, 
small, and fast, but 
may not be ideal for 
every application. 

plify the tasker. 
As tasking models progress from f ul

ly preemptive to lightweight coopera
tive tasking, transparency of the tasking 
model decreases, because programmers 
must spend more effort explicitly man
aging tasks. On the other band, as tran
sparency decreases, system efficiency 
increases because of reduced overhead 
and complexity for task synchroniza
tion and context switching. 

The choice between preemptive and 
cooperative models should be made 
based on the run-time overhead and 
programming effort required to support 
synchronization for the preemptive 
model versus the effort required to in
sert appropriate pauses into the code for 
the cooperative model. For those appli
cations where the costs of a preemptive 
rnultitasker or heavyweight cooperative 
multitasker can be supported, they 
should be used, since they reduce over
all programmer effort. 

In general, the more frequent syn
chronizations and critical regions be
come and the more tightly constrained 
target system's resouces become, the 
more attractive cooperative tasking be
comes. For applications where task 
switching must be extremely fast, medi
um- and lightweight multitaskers are 
appropriate. While they require invest
ment in terms of program organization 
and placement of pause statements, 
they can reward the programmer with 
superior performance over other 
methods. 
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SUMMING IT ALL UP 

T 
his discussion has been restrict
ed to the costs of task synchro
nization and context switching. 

The method used to select the next task 
to be executed also involves a variety of 
tradeoffs between speed and providing 
such features as priority-based schedul
ing. Most scheduling methods can be 
combined with any tasking method, al
though in practice, the simpler schedul
ing methods are more often associated 
with the simpler tasking methods. 

The fact that lightweight tasking is 
simple, small, and fast does not make it 
ideal for every application. As we move 
down the hierarchy from preemptive 
multitasking to lightweight cooperative 
tasking, we find a tradeoff at every step 
between the burden placed on the pro
grammer for correct system operation 
and a resulting increase in system speed 
and simplicity. The weight of this bur
den depends on system requirements, 
type of program, and language used for 
implementation. Many Forth program
mers using stack-based architectures 
find that a medium- or lightweight task
ing model meet most of their needs. Ob
viously, you should choose the model 
that best meets yours. 

These methods for stack machines 
and Forth programs on conventional 
machines can be adapted for use by 
CISC and RISC machines executing 
programs in any language. However, in 
some cases the adaptation may prove 
awkward, because it is much more diffi
cult to analyze whether registers have 
active values than whether a stack is 
empty. Compilers could be adapted to 
provide this information, but such tech
niques are generally not available to ap
plication developers. 
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neering from Rensselaer Polytechnic 
Institute, Troy, N.Y., and a Ph.D. in 
computer engineering from Carnegie 
Mellon University, Pittsburgh, Pa. He 
may be reached via usenet at koopman 
@greyhound.ece.cmu.edu. 
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