
BY PHILIP KOOPMAN JR .

T
o most embedded develop
ers, multitasking means
using a preemptive multi
tasker and a complex, ex
pensive (in terms of soft

ware cost, memory size, and run-time
overhead) piece of software. While em
bedded real-time systems are best writ
ten with a multitasking approach, pre
emptive multitasking is often overkill.
A preemptive multitasker is a very gen
eralized tool; users may not want to pay
the costs that always accompany gener
alized solutions to their very specific
problems.

A less widely understood approach
to real-time design is cooperative multi
tasking. Judicious use of cooperative
tasking techniques can often meet an
embedded system's multitasking re
quirements, while giving better perf or
mance and a simpler software environ
ment than a preemptive multitasker.

In my work with stack-based proces
sors at Harris Semiconductor Inc., I've
investigated the different approaches to
multitasking and explored the different
tradeoff s among complexity, cost, and
speed. As a result, I'm convinced that
the ease of implementation and effi
ciency of cooperative multitasking are
widely underestimated.

WHY MULmASKING?

M
ultitasking is used in embed
ded systems for a variety of
purposes. Keeping separate

system functions resident in separate
tasks helps reduce the complexity of
each portion of the system. Separate
tasks also help modularize the work of
writing the system by forcing the cre
ation of well-defined interfaces between
modules and programmers.

Cooperative
tasking
techniques can
often meet an
embedded
system's
multitasking
requirements and
give better
performance.

Tasks can also be used to distinguish
different activity classes for a system.
For example, routines that only need to
be invoked occasionally can be included
in a task run in response to an external
stimulus, such as an interrupt or a timer
pulse. Tasks that always run but are not
time-critical can be assigned lower
priorities than other tasks.

On larger systems with multiple pro
cessors, breaking a software system into
tasks provides natural boundaries for
process migration. Setting parallelism
granularity at the task level allows each
processor to be assigned to one or more
active tasks, greatly reducing the soft
ware's complexity. In the best of all pos
sible worlds, we have one processor per
task. Unfortunately, not all systems
have the luxury of multiple processors.

APRIL 1990 EMBEDDED SYSTEMS PROGRAMMING 43

Hemyweight
Tasking

The problem comes when many tasks
contend for use of a single processor.
This processor must be shared among
tasks, which can involve significant
overhead.

PREEMPTIVE TASKING

F orth has a long tradition of pro
viding many support levels for
multitasking. While coopera

tive multitasking is a well-known tech
nique in Forth circles, the technique
needn't be limited to that language. In
deed, with the recent appearance of C
compilers for stack processors like the
RTX, the approach becomes particu
larly attractive for C programmers as
well. However, stack processors do alter
some of the design tradeoffs.

Table 1

The preemptive method is usually
what is meant by "multitasking" in con
ventional computing terminology. In a
preemptive multitasker, some prede
fined event, such as a timer pulse, peri
odically halts the executing program
and transfers control to an executive
program or kernel. The kernel saves the
complete state of the processor (all reg
isters and status bits), including the pro
gram counter and stack contents. Once
the old task state is saved, the kernel
uses some scheme to select another task
for execution. The newly selected task
has its state loaded into the processor
and execution is resumed on the new
task.

The advantage to full preemptive
multitasking is that it is almost trans-

Pause subroutine code for a lightweight multltasller
written for the RTX 2000

RTX 2000 Instruction Comment
R> Transfer return address of calling task (task restart

address) to data stack.

O UI Store that restart address to task area word 0.

1 UO Fetch link value from task area word I.

UBR I Store that link value as the new value of the user base
register.

ouo

>R EXIT

felbns

Fetch the restart address of the new task from the new
task area.

Transfer the restart address from the data stack to the
return stack, then perform a subroutine return
(equivalent to a jump to the restar t address).

I. Each task uses the user base register to point to a 32-word task area used for scratch storage.

2. The pause subroutine code takes six words of memory shared among all tasks.

3. Each invocation of pause code takes I 0 clock cycles, including the subroutine call instruc

tion from the calling task.

44EMBEDDEDSYSTEMSPllOGRAMMIN6 APRIL 1990

parent to the programmer, and it is a
powerful and automatic way to ensure
that no problems occur during the tran
sitions between tasks. Unfortunately,
the oost for this transparency and power
is very high. The machine's entire state
must be saved to guarantee a correct
restart when the task is resumed.

In contrast to RISC and most ClSC
processors, however, most stack ma
chines automatically track the number
of active elements on the stack. T n prac
tice, the stacks tend to be fairly shallow.
However, whatever processor architec
ture you ' re using, the oost for a preemp
tive multitasker context switch is high.

An additional problem with preemp
tive multitasking is that certain code se
quences, known as critical regions, must
not be interrupted by a task switch.
Typically, these sequences deal with ac
cess to resources shared among tasks or
time-critical code.

To prevent a preemptive multitasker
from interrupting these sequences, a
flag must be used to notify the executive
that the task is in a critical region. Be
cause task switches are forbidden with
in these regions, task-switching latency
increases dramatically. Alternatively,
semaphores or other synchronization
methods may be used to notify other
tasks when a data structure is in use in
case the task is interrupted. Either way,
a considerable run-time overhead and
programming effort is involved in pre
venting a preemption from causing
problems.

HEAVYWEIGHT COOPERATION

I
n some systems, the number of
shared data references and critical
regions executed will have a much

greater impact on efficiency than the
number of task switches made. Or, you
may be dealing with a relatively simple
system where it 's hard to justify the
generality and complexity of a preemp
tive multitasker. In these cases, it may

APR LL L990 EMBEDDED SYSTEMS PROGRAMMING 45

Hearyweight
Tasking

In cooperative
tasking, the task
decides when it is
completed and
ready to give up
control of the
processor to other
tasks.

Figure 1
Characteristics of tasking models.

...
Low High

Preemptive
multitasker

actually be desirable to do away with
the preemptive tasker and implement
cooperative tasking.

In cooperative tasking, the task de
cides when it is ready to give up control
of the processor. This decision is typical
ly made by each task. The task periodi
cally invokes a routine that queries a
timer to see whether the system desires
a task switch. This technique is called
"pausing."

In a simplified but oft-used case, a
task switch is performed on every pause.
When it is time for a task switch, the full
processor state is saved in a manner
similar to that used for preemptive task
ing. The term "heavyweight" is used be
cause the complete machine state must
be saved to guarantee correct operation.
The term "cooperative" is used because
the task relinquishes control of the sys
tem by executing pause statements
sprinkled throughout its code rather
than relying on an external preemption
mechanism.

The advantage to using the coopera-

• No pauses used, timer-driven
scheduler preempts programs
anywhere

• Critical regions and
synchronization required for
correct operation

Heavyweight • Pause anywhere
• Same context switching cost

cooperative as preemptive multitasker
multitasker • Cooperative model reduces

need for synchronization

System Transparency Medium-weight • Pause at module boundaries,
efficiency to programmer when stacks are small

cooperative • Programmer schedules pauses
muJtitasker for reduced context switching

costs
• Cooperative model reduces

need for synchronization

Lightweight • Pause only at highest level
• Stacks must be empty when

cooperative pausing
multitasker • Almost no context switching

cost
• Task switch on every pause

(no scheduling overhead) in
most implementations

High Low • Cooperative model reduces
need for synchronization

46 EMBEDDED SYSnMS PROGRAMMING APRIL 1990

tive tasking method is that neither syn
chronization variables nor critical-re
gion flags are necessary. Since task
switching only occurs when the pro
grammer requires it, a task cannot be
shut down by the kernel at an inoppor
tune moment. This fact can substantial
ly reduce your run-time overhead and
code complexity. Further, much of the
code in the kernel used for synchroniza
tion and data-structure sharing can be
eliminated, reducing memory costs.

The disadvantage of using the coop
erative tasking method is that it places
more of a burden on the programmer
for correct operation. Programmers are
responsible for ensuring that periodic
checks for task switching are placed in
appropriate sections of the code. If they
place these checks wisely, the result will
be good performance with small task
switcbing latencies. If programmers are
not so wise, some task-switching laten
cies may be undesirably long.

DEALING WITH LATENCY

T
he issue of task-switching laten
cy can be addressed in three
ways. First, we can use coopera

tive tasking in applications where task
switcbing latency is not extremely criti
cal or the tasks are quite simple and rely
on the programmer's skills. Obviously
this approach has limited applicability.

The second way to reduce this prob
lem is to move all time-critical code to
interrupt-service routines. For example,
a task that is activated to read data from
an input port before the data is overrun
can be replaced by an interrupt-service
routine that places the data into a first
in-first-out buffer and a task that pro
cesses data from that buffer. This strat
egy has the effect of desensitizing the
system to task-switching latency. Simi
lar methods must often be used with
preemptive tasking models as well be
cause of their problems with latency
caused by the critical regions.

Finally, you can treat an unaccepta
bly long latency as a soft error. This so
lution can be accomplished by using a
watchdog timer on either the develop
ment system or target system. When
the maximum permissible task-switch
ing latency is exceeded, a warm start of
the task can be performed, along with a
suitable message to the programmer if
he or she is in a development mode.

Hemyweight
Tasking

HEAVYWEIGHT COSTS?

T
he heavyweight cooperative
tasking model is the model tra
ditionally included in Forth

programming environments. lt is pre
ferred to the preemptive tasking model
because of its simplicity and the direct
control it gives programmers.

Heavyweight tasking is very inex
pensive when executing Forth on a con
ventional processor, because a Forth
virtual machine running on a register
based CPU typically uses only two or

Medium-weight
cooperative
tasking is an cost
reducing
embellishment of
heavyweight
tasking.

three registers and leaves the other re
sources idle. (Forth requires two stack
pointers and, in some implementations,
will keep the top data stack element in a
register.) Machine code sequences in a
Forth program may use any number of
registers for efficiency, but they are not
preserved across subroutine boundaries
and need not be saved when pausing.

Thus, Forth kernels on conventional
machines trade off a little bit of run
time speed (by not making optimal use
of registers) in return for very fast con
text-switching times. Since the cost of
context switching is quite low, most
Forth systems running on conventional
processors use heavyweight cooperative
multitasking.

Slack-based processors usually con
tain some sort of stack-buffer hardware
on-chip. The use of this stack buffer sig
nificantJy increases the execution speed
of Forth programs over that possible
with conventional processors. Unfortu-

nately, its use by Forth and other lan
guages also increases the state that
must be saved from the CPU on a con
text switch. The amount of state that
must be saved is typically equal to a
small register file on a conventional
CPU.

Of course, techniques such as parti
tioning the hardware slack buffer into
multiple areas for high priority tasks
can eliminate saving stack contents to
memory in a significant number of ap
plications. Still, the general case of a
very large number of low priority tasks
on a single processor does require sever
al words of data to be saved from the

48 EMBEDDED SYSTEMS PROGRAMMING A PR IL 1990

CPU on many context switches. There
fore, methods other than heavyweight
tasking that have reduced context
switching costs can be attractive in
some situations.

MEDIUM-WEIGHT TASKING

H
eavyweight cooperative task
ing eliminates the overhead
and complexity of dealing

with synchronization and critical re
gions by restricting the times at which
switching can occur. However, it still
pays a reasonably high overhead for
saving and restoring context on a task
switch. Therefore, medium-weight co
operative tasking is an embellishment
of heavyweight tasking that reduces the
cost of context switching.

Stack-based programs, especially
those programs written in Forth, tend to
bequite modular. This modularity often
results in routines that run in less time
than the desired interval between task
switches. Further, the amount of infor
mation transferred on the stack be
tween independent modules is often
very small.

Since context switching on stack ma
chines primarily consists of saving the
active stack elements, the cost of coop
erative multitasking can be significant
ly reduced by simply choosing to place
pauses at module boundaries. This
method reduces the average number of
stack elements that need to be saved on
pauses and task-switching overhead.

No compiler analysis is required,
since the user chooses where the pauses
go. The user cannot make a serious mis
take, because the stack hardware auto
matically tracks the depth of the stacks
and saves all the required elements.
Medium-weight cooperative tasking
modifies a program that uses the
heavyweight tasking model so that on
the average it has fewer elements on the
stack to save on context switches.

A LIGHTWEIGHT EXAMPLE

W
hat if pauses are placed
only where the stacks are
guaranteed (by the pro

grammer) to be empty? In this case, the
cost of a context switch can be much
longer, since only the program counter
a nd perhaps one or two other registers
need be saved. This method is called
lightweight cooperative tasking.

Hemyweight
Tasking

An even further refinement of
lightweight cooperative tasking is possi
ble. If the size of the routines invoked
between pauses is chosen appropriately,
no timer is needed to decide when to
change tasks. A task change can be per
formed on every pause. Since the cost of
task changing is so low in a lightweight
tasking model, the last piece of tasking
overhead is removed and overall tasking
costs are reduced even further. Further,
the code required to implement the
tasker is drastically reduced, resulting
in a greatly simplified system software
environment.

Table I shows PAUSE code for a
lightweight multitasker implemented
on the Harris RTX 2000 stack proces-

sor. This multitasker assumes a round
robin scheduling policy with equally
weighted task priorities. It traverses a
circular linked list for task scheduling
and switches tasks on every PAUSE com
mand. Each task has a 32-word control
area and scratchpad space in memory
accessed through the user base register.

Offset 0 from the user base register
contains the restart address for the task,
whfoh was set the last time the task was
paused. Word offset I from the user
base register contains a pointer to the
control area for the next task. To start a
new task, the program suspending ex-

50 EMBEDDED SYSTEMS PROGRAMMING A PR IL t 990

ecution performs a subroutine call to
the pause code, the user base register is
set to the value for the next task in the
linked list, and the program counter is
set to the saved restart address for that
next task. In this example, the total time
to process a task switch is 10 clock cy
cles, and the process uses seven instruc
tions, including the subroutine call to
the pause code.

It should be noted that even if an ap
plication does not appear to be suitable
for lightweight tasking at first, it may be
simple to adapt the technique to the sit
uation. For example, if one task takes

too long between pauses, that task
might be broken into several subtasks
that do fit within the time constraints.

EXPLORING THE TRADEOFFS

0
ne method to break up a task is
to implement a finite state ma
chine and execute a pause on

every state change. r once used this
technique on a proprietary microcoded
graphics adapter that used a bit-sliced
architecture. The system requirements
were to sample a host interface every 50
microseconds; sample a bit tablet, joy
stick, and button box every few millisec
onds; draw vectors, arcs, and shaded
polygons on a storage tube display; and
refresh several hundred dynamic vec
tors without flicker-all without any
timers available. I accomplished this
feat in about 2,000 words of microcode,
using the various lightweight tasking
techniques.

Now that we've looked at the differ-

One method that
can be used to

break up a task is
to implement a

finite state

machine and then
execute a pause on

every single state
change.

A PR IL 1990 EMBEDDED SYSTEMS PROGRAMMING 51

Heavyweight
Tasking

ent tasking models and their character
istics, it's time to consider a selection
process. How do you pick the model
that's right for your application? Figure
I summarizes the characteristics of the
various tasking models.

The driving force for the different
types of tasking is the placement of
pause statements. Preemptive tasking
models do not use pauses. Heavyweight
tasking models allow pauses anywhere
in a program. Medium-weight and
lightweight tasking models place re
strictions on pause statements to sim-

Lightweight
tasking is simple,
small, and fast, but
may not be ideal for
every application.

plify the tasker.
As tasking models progress from f ul

ly preemptive to lightweight coopera
tive tasking, transparency of the tasking
model decreases, because programmers
must spend more effort explicitly man
aging tasks. On the other band, as tran
sparency decreases, system efficiency
increases because of reduced overhead
and complexity for task synchroniza
tion and context switching.

The choice between preemptive and
cooperative models should be made
based on the run-time overhead and
programming effort required to support
synchronization for the preemptive
model versus the effort required to in
sert appropriate pauses into the code for
the cooperative model. For those appli
cations where the costs of a preemptive
rnultitasker or heavyweight cooperative
multitasker can be supported, they
should be used, since they reduce over
all programmer effort.

In general, the more frequent syn
chronizations and critical regions be
come and the more tightly constrained
target system's resouces become, the
more attractive cooperative tasking be
comes. For applications where task
switching must be extremely fast, medi
um- and lightweight multitaskers are
appropriate. While they require invest
ment in terms of program organization
and placement of pause statements,
they can reward the programmer with
superior performance over other
methods.

52 EMBEDDED SYSTU1S PROGRAMMING APRIL 1990

SUMMING IT ALL UP

T
his discussion has been restrict
ed to the costs of task synchro
nization and context switching.

The method used to select the next task
to be executed also involves a variety of
tradeoffs between speed and providing
such features as priority-based schedul
ing. Most scheduling methods can be
combined with any tasking method, al
though in practice, the simpler schedul
ing methods are more often associated
with the simpler tasking methods.

The fact that lightweight tasking is
simple, small, and fast does not make it
ideal for every application. As we move
down the hierarchy from preemptive
multitasking to lightweight cooperative
tasking, we find a tradeoff at every step
between the burden placed on the pro
grammer for correct system operation
and a resulting increase in system speed
and simplicity. The weight of this bur
den depends on system requirements,
type of program, and language used for
implementation. Many Forth program
mers using stack-based architectures
find that a medium- or lightweight task
ing model meet most of their needs. Ob
viously, you should choose the model
that best meets yours.

These methods for stack machines
and Forth programs on conventional
machines can be adapted for use by
CISC and RISC machines executing
programs in any language. However, in
some cases the adaptation may prove
awkward, because it is much more diffi
cult to analyze whether registers have
active values than whether a stack is
empty. Compilers could be adapted to
provide this information, but such tech
niques are generally not available to ap
plication developers.

Philip Koopman Jr. is a senior scientist
at Harris Semiconductor Inc. and the
author of Stack Computers: The New
Wave (Chichester, W Sussex, U.K.: El
lis Horwood ltd., 1989) He received his
Masters in computer and systems engi
neering from Rensselaer Polytechnic
Institute, Troy, N.Y., and a Ph.D. in
computer engineering from Carnegie
Mellon University, Pittsburgh, Pa. He
may be reached via usenet at koopman
@greyhound.ece.cmu.edu.

VOL.3 NO. 4 · APRIL 1990

EMBEDDED
SYSTEMS
PROGRAMMING On the

cover:

Table of Contents
.. hokl this truth
lo be self4Vldent,
that not al tasks
S'8c:reated
equally.
Photop aph by
David Bishop.

FEATURES

28> Multitasking on
the 386
BY JIM BETZ. Embedded PCs may be
popular now, but MS-DOS and real
mode are still bad news for multitasking
and real-time. Here's a look at how the
advanced features of the 80386 can be
used to advantage in multitasking- and
what design hazards)Qu'll have to face.

42> Heavyweight
Tasking
BY PHILIP KOOPMAN JR. Preemp
tive multitasking isn't)Qur only design
option. For some applications, coopera
tive multitasking offers significantly im
proved efficiency. Koopman offers a tax
onomy of cooperative methods, along
with some hints on multitasking with
stack machines.

HEAVYWEIGHT TASK ING PAGE 42

54 > Cooperative
Multitasking
BY JACK WOEH R. Virtually every
commercial Forth system has support for
multitasking. Making the most of back
ground tasks and PAUSEs isn't always
child's play, though. Woehr, one of our
more frequent contributors, shares his ex
perience with daemolilS and other cooper
ative monsters.

62> Reentrant
Floating
BY RICK NARO. It's no big secret that
Microsoft Corp. and Borland Interna
tional don't design their C compilers to
make life easy for embedded system de
velopers. Sometimes, though, we luck out
because they haven't gone out of their
way to make life difficult for us. Here's
the inside story on ROMing Turbo C's
floating-point emulation routines.

COLUMNS+
DEPARTMENTS
7 > #1nclude
Good News and Bad

11 > Real-Time
Estranged Bedfellows

1 7 > Parity Bit

23> 'S Sourcebo'*
Ants Climbing Trees

8 2 > Embedded Gallery

8 6 > Embedded Marketplace

90> Advertiser Index

9 5 > State of the Art
Structuring Data

REVIEW
7 3 > An 8051 SlnUator Update

REENTRANT FLOATING PAGE62

APRI L 1990 EMBEDDED SYSTEMS PROGRAMMING 3

