
1

Large-Block Modular Addition
Checksum Algorithms

Philip Koopman
Carnegie Mellon University

Pittsburgh, PA, USA
koopman@cmu.edu

Abstract—Checksum algorithms are widely employed due to

their use of a simple algorithm with fast computational speed to
provide a basic detection capability for corrupted data. This paper
describes the benefits of adding the design parameter of increased
data block size for modular addition checksums, combined with
an empirical approach to modulus selection. A longer processing
block size with the right modulus can provide significantly better
fault detection performance with no change in the number of bytes
used to store the check value. In particular, a large-block dual-
sum approach provides Hamming Distance 3-class fault detection
performance for many times the data word length capability of
previously studied Fletcher and Adler checksums. Moduli of 253
and 65525 are identified as being particularly effective for general-
purpose checksum use.

Keywords—checksum, Fletcher checksum, Adler checksum,
Koopman checksum, error detection

I. INTRODUCTION
Modular addition checksums are ubiquitous for protecting

the integrity of data in communication and storage software.
While more capable (and complex) error detection and
correction codes have become common as computational speeds
have increased, the humble checksum is still a mainstay in many
application domains, and is likely to remain so for the indefinite
future.

The main attraction of checksums is their simplicity,
especially for low-resource embedded system applications.
Simply adding up a series of data values in a sequence to get an
integrity check value is about as simple as it gets. Even the dual-
sum approaches (described in detail below) are still just a pair of
running sums.

To be sure, more sophisticated coding approaches have their
place. But that sophistication comes at the cost of algorithmic
complexity and more demanding computational requirements.
For example, Cyclic Redundancy Checks (CRCs) are very
useful, and provide far superior fault detection capabilities to
checksums [Koopman04], but are beyond the scope of this
paper.

The search for improved checksums has extended across
many decades, with the most notable innovation being the
advent of the dual-sum approach by Fletcher circa 1982
[Fletcher82]. Other work has examined using a different
modulus for the modular sum operation, such as the Adler

checksum in the 1995 [Adler]. A more detailed discussion of
previous work in checksums can be found in [Maxino09].

In this work we introduce a new parameter for checksum
algorithms by considering larger block sizes for checksum
processing. We also revisit the basis for modulus selection and
find that an empirical approach reveals improved moduli
compared to those typically used in existing implementations.

The contributions of this paper include: identifying better
moduli to use in modular addition checksum algorithms,
extending existing checksum algorithms to provide better
performance via a large-block approach, showing that an large-
block dual-sum checksum can provide Hamming Distance 3-
class performance (i.e., detection of all two-bit faults for
practical purposes) at multiples of data word sizes beyond
current checksum algorithms, and provide an explanation for
why large-block checksum approaches are so effective.

The remainder of this paper is organized as follows. Section
II defines terminology and reviews commonly used checksum
algorithms, including single-sum and dual-sum approaches.
Section III reviews the experimental methodology for this
empirically-driven exploration of improved checksum
performance. Section IV describes improved modulus selection
results. Section V presents larger block size results for single-
sum checksums. Section VI presents the results of applying
improved modulus selection and larger block sizes to dual-sum
checksums. Section VII explains the fault detection mechanism
involved with large block size checksums. Section VIII provides
conclusions.

II. PREVIOUS CHECKSUM ALGORITHMS
Checksum computations of interest for this paper take a

collection of data (the data word), break that data into blocks of
data, perform a modular addition across the data blocks within
the data word to create a check value, and store that check value
with the data word to create a code word. That code word can
later be checked for integrity by recomputing the checksum from
the data word and comparing that result to the stored check
value. The following subsections describe this idea in more
detail.

A. Terminology
A data word is an ordered collection of data values for which

integrity protection is sought via a checksum computation. For
the purposes of this paper, a data word is a sequence of bytes of

2

data, with the entire sequence of bytes considered a single data
word. (Figure 1.)

A check value is the result of a checksum calculation. It
might be based on a single-sum algorithm that performs a single
running modular sum of all the bytes in the data word. It might
instead be a dual-sum algorithm that performs a pair of
coordinated running modular sums of all the bytes in the data
word (more detail on this later). Data words can be of any length,
whereas check values are typically comparatively smaller, often
one, two, four, or eight bytes in size. For a single-sum algorithm,
the check value is the same size as the running sum (e.g., a two-
byte running sum gives a two-byte check value for a 16-bit
single-sum checksum). For a dual-sum algorithm, each modular
sum is half the size of the check value, with two modular sums
concatenated to form a single check value (e.g., a pair of one-
byte running sums are concatenated to give a two-byte check
value for a 16-bit dual-sum checksum).

The check value is typically appended to the data word to
form a code word. For the purposes of this paper, a code word is
a sequence of bytes consisting of a data word followed by the
bytes of the check value computed from that data word. This pair
of data word plus check value is called a code word, in keeping
with terminology from the area of error coding theory. The
placement of the check value within the code word might be
important in some circumstances, but does not affect the fault
detection properties studied in this paper.

When computing a checksum, the data word is divided into
a sequence of blocks. Those blocks are sequentially fed into a
checksum algorithm to produce a check value. In the general
case, there are multiple blocks in a data word. A policy is set for
a computation involving a partial block that might be
encountered at the end of a data word. We assume the policy is
padding any missing bytes in the last data word with zeros. In
the special case that the block size is larger than the data word,
a single zero-padded block is processed.

A checksum algorithm computes a digest or hash of the
blocks composing the data word to produce a check value. For
the purpose of this paper, the computation is based on modular
addition, in which each sum is modulo some specified modulus
value, leaving a remainder after division of the sum by the
modulus. (The use of the word “digest” in this paper does not
connote any security properties. Checksum calculations are
inherently insecure, and intended for use only in mitigating non-
malicious data corruption.)

The modulus chosen must be in a range to produce the
correct sum size, which means the modulus value should be
between 2k-1+1 and 2k inclusive for a k-bit sum. (For example,
an 8-bit sum should have a modulus between 129 and 256,
inclusive.) Not all moduli perform equally well, so modulus

selection is an important design parameter for a checksum
algorithm.

A code word is said to be valid if the check value in the code
word matches a check value result computed from the data word
portion of that same code word. An invalid code word is known
to have been corrupted.

A valid code word could be uncorrupted. But a valid code
word could also, by chance, have had its bits corrupted in a
pattern that transforms it from the original valid code word to
some other different, but serendipitously valid, code word. Such
a serendipitous transformation between code words results in an
undetected fault.

In keeping with previous work, the probability of an
undetected fault Pud is the probability that any particular code
word contains an undetectable (by the checksum algorithm)
fault. This probability applies to all code words subject to
potential faults rather than just the ones that would be known to
be faulty by an omniscient observer. Note that in a typical case
there will be many more detectable faults than undetectable
faults, so system level interventions such as disregarding an
obviously fault-prone communication channel or data storage
device can be used to supplement checksums as part of a system
fault management strategy [Koopman15].

Bit Error Rate (BER) is a typical parameter used in
evaluating checksum performance. The assumption is that
binary symmetric bit value inversions (“bit flips”) will occur
with a fixed, random independent probability across the length
of the code word. Each bit in the code word is subject to an
independent probability (the BER) of suffering an inversion in
which a “0” bit is flipped to a “1” or a “1” bit is flipped to a “0”.
Note that these bit faults can occur to the entire code word,
including the check value.

We use a BER of 10-6 for evaluation, meaning that each bit
in a code word has a probability of 1 in 1,000,000 of being
inverted. For the code word lengths we study (up to 32K bits
plus the check value), the predominant fault modes will be
single-bit faults (approximately 1 in 31.5 code words), two-bit
faults (approximately 1 in 1923 code words), and three-bit faults
(approximately 1 in 175,971 code words at that maximum code
word length). Having more than 3% of messages corrupted is
excessive for many real world data use situations, so this is a
fairly pessimistic BER than emphasizes exposure to multi-bit
faults more than a lower BER would. Changes to BER and code
word length would affect the relative contribution of 1-, 2-, 3-,
and other bit faults to the overall Pud, but not the ability of a
particular checksum algorithm to detect a given number of bit
faults at a given code word length.

The important effectiveness metric for a checksum
algorithm is its ability to minimize undetected faults, meaning
that lower Pud means the checksum is more effective. Pud will
naturally become lower with a lower BER and shorter code word
lengths, because there are fewer corrupted codewords that tend
to have fewer numbers of bit faults. So in that sense the
effectiveness curves in this paper for long code words and fairly
high BERs are pessimistic. But the Pud curves do, however,
illustrate the relative performance effectiveness of different
checksum algorithms in a relative sense even if the BER were to

Figure 1. Data organization of a code word.

3

be different. In general, effectiveness differences will increase
even further with lower BER as one- and two-bit faults become
comparatively more frequent compared to larger numbers of bit
faults.

 A Hamming Distance (HD) for the purposes of this paper is
the minimum number of bits in the code word that can be
inverted to produce an undetected code word corruption. For the
checksum algorithms discussed in this paper the HD is either
two or three. A Hamming Distance of two (HD=2) means all
single bit faults will be detected by the checksum, but at least
one two-bit fault is undetectable due to conversion of the
original code word to an incorrect, but valid, faulty code word.
At HD=3, all single bit faults and all two-bit faults are detected,
but at least one three-bit fault is undetected. For faults at and
beyond the HD value, many faults are still detected, but some
are undetected. (There are other potentially relevant fault
detection properties, such as burst fault detection, that are
beyond the scope of this paper.)

The HD is unaffected by the BER, but the number of multi-
bit faults will increase as the BER increases given a fixed code
word length. Thus, Pud will generally increase for higher BERs
for any given checksum algorithm.

An important effectiveness consideration is that dual-sum
algorithms offer HD=3 performance at comparatively short data
word lengths, but will degrade to HD=2 performance at and
beyond an algorithm-dependent data word length that we call
the algorithm’s HD=3 capability. HD=3 is highly desirable for
a random independent bit error model due to the dramatically
lower probability of a three-bit error compared to a two-bit error
at any particular BER. Therefore, the longest possible HD=3
capability is especially desirable for general purpose checksum
applications.

B. Checksum Usage
A checksum algorithm is generally used for error detection

in data transmission or data storage performing the following
steps:

(1) The data word to be protected with an integrity check is
placed into the code word, leaving room for a check
value to be added in a later step. (Some communication
systems initiate data transmission in parallel with
computing the checksum. That difference does not
matter for our purposes.)

(2) The check value is computed on successive blocks of
data in the data word according to the checksum
algorithm, resulting in a valid code word with check
value cv0. Some specified initial value is used to start
the summing operation, which is assumed to be zero for
this analysis.

(3) The bytes of check value cv0 are placed into the
remaining bytes of the code word, completing the code
word.

(4) The entire code word is stored, transmitted, or otherwise
sent into an environment in which it might suffer one or
more corruptions in the form of bit inversions according
to a BER-driven process. (Length changes and other

fault models are relevant in the real world, but beyond
the scope of the fault model used for this analysis.)

(5) An integrity check is performed by first using the
checksum algorithm to compute a check value cv1 from
the contents of the potentially corrupted data word. Note
that cv1 might differ from cv0 due to corruption of the
data word – but the receiver of the code word has no
way to know the ground truth of what cv0 might have
been, which is the motivation for performing
subsequent steps in this procedure.

(6) The bytes in the check value field of the potentially
corrupted code word are extracted from the code word
bytes and assembled as different check value cv2. Those
bytes started holding a copy of cv0, but cv2 might not
equal cv0 if the check value field of the code word has
been corrupted.

(7) The two recovered check values are compared: cv1
(computed on the received data word), and cv2
(recovered from the check value bytes in the code
word).

(8) If cv1 does not equal cv2, the code word is invalid.
Therefore, the code word has definitely been corrupted,
even though there might not be enough information
available to determine exactly which bits were
corrupted.

(9) If cv1 equals cv2, one of two situations is true: either
there has been no corruption of the codeword, or there
has been a severe enough corruption (i.e., at least HD
bits have been inverted) that the fault is undetectable by
the checksum algorithm. In practice, the computation
using the code word as a data source will accept the data
as uncorrupted. But there will be a residual probability
of an undetected corruption, Pud, that could lead to an
eventual system failure. The lower Pud, the more
effective the checksum algorithm.

The above steps apply to all checksum algorithms discussed
in this paper. The differences among algorithms discussed have
to do with the whether the algorithm is single-sum or dual-sum,
and the algorithmic parameters of block size and modulus.

C. Single-Sum Checksums
Classical checksum algorithms involve computing a single

modular sum of block values drawn in sequence from the entire
length of the data word. A generic description of such an
algorithm is shown in Algorithm 1.

Algorithm 1: Single-sum checksum.

In Algorithm 1, M is a selected algorithm-dependent
modulus. At each iteration, Sum is updated with the next block
from the data word with a single modular addition. When all

Initialize Suminitial = 0

Iterate across each block i in data word:
 Sumnew = (Sumold + Blocki) mod M

Check Value is the final Sumnew

4

blocks have been processed, the final value of Sum is used as
the check value for the code word.

For example, a 16-bit check value with two-byte blocks (block
size the same as the check value size) would process the data
word in blocks of two bytes at a time. A 256-byte data word
would therefore be processed as 128 two-byte blocks, yielding a
two-byte modular addition summed check value. Typical single-
sum checksum parameters are below:

• Twos8: (Two’s complement addition)
 block size = 1 byte
 check value = 1 bytes
 modulus = 256

• Ones8: (One’s complement addition)
 block size = 1 bytes
 check value = 1 bytes
 modulus = 255

• Prime8: (Largest prime modulus)
 block size = 1 bytes
 check value = 1 bytes
 modulus = 251

• Twos16:
 block size = 2 byte
 check value = 2 bytes
 modulus = 65536

• Ones16:
 block size = 2 bytes
 check value = 2 bytes
 modulus = 65535

• Prime16: (Largest prime modulus)
 block size = 2 bytes
 check value = 2 bytes
 modulus = 65521

The pattern is that a two’s complement checksum uses a
modulus of 2k for a k-bit check value. A one’s complement
checksum uses a modulus of 2k-1 for a k-bit check value. A
prime modulus (an abbreviation of “largest prime”) uses the
largest prime number less than 2k for a k-bit check value. 32-bit
variants are possible with a block size of 4 bytes, check value of
4 bytes, and a modulus chosen according to the check value size.

For performance purposes, it is helpful to note that two’s
complement checksums can simply use an 8-, 16-, or 32-bit
register for the addition and ignore carry-outs (assuming use of
ubiquitous two’s complement CPU hardware). In that sense, all
additions on finite-size binary integers are modular division with
a modulus of 2k for a k-bit hardware register – even if the modulo
operation does not require an explicit division computation to be
performed.

One’s complement checksums can be implemented in practice
by incrementing the running sum if a carry-out of the addition is
detected. A lossless sum of two k-bit numbers in principle
requires k+1 bits to store, such as an 8-bit sum of example values
250+10=260, which requires 9 bits instead of 8 to represent.
One’s complement addition increments the k-bit sum if that top-
most k+1st bit would have been needed to represent the sum
(e.g., the carry-out of an 8-bit addition operation), for this

example resulting in an 8-bit sum of ((250+10) mod256 + 1) =
5. This wrapping of the carry-out bit makes one’s complement
checksums less vulnerable to bit faults on the top-most bit of a
block [Maxino09].

Prime checksums use the largest prime number that fits in a
block-size number of bits as the modulus. The general idea is
that a prime number typically has a mix of zero and one bits in
its representation, promoting mixing among bits in the sum via
the modulo operation to create a check value that is more
effective. Smaller prime numbers might be used instead, but the
thinking is that the largest prime makes the most efficient use of
the available check value range. For example, a prime modulus
of 251 supports a check value range of [0..250] whereas a prime
modulus of 239 supports a smaller check value range of [0..238],
which all things being equal would give better odds of detecting
faults. (As it turns out, all things are not equal for small numbers
of bit faults that dominate effectiveness under a BER fault
model.)

D. Dual-Sum Checksums
A more advanced class of checksums was introduced by

Fletcher’s work [Fletcher82]. In the Fletcher approach, a pair of
running modular sums is used instead of a single sum. The first
sum, which we denote SumA, is a conventional modular
checksum that accumulates a running modular sum of all blocks
in the data word.

The second sum in Fletcher’s algorithm, SumB, is a running
sum that is updated not by summing block values, but rather by
summing the old version of SumB with the new version of
SumA for each block being processed. The check value result is
the concatenation of SumA and SumB.

Algorithm 2: Dual-sum checksum.

As with Algorithm 1, for Algorithm 2 M is the modulus, with
the same modulus being used for both sums. All blocks from the
data word are processed in a running sum approach, with the pair
of sums updated as each block is processed.

The concatenation operation means that the size of the check
value is twice the size of each sum (e.g., two 16-bit sums are
paired to produce a 32-bit check value). The sizing notation for
the checksum is the check value size, so two 16-bit sums would
be designated as a 32-bit dual-sum checksum.

The two well-known existing dual-sum approaches are the
Fletcher checksum [Fletcher82] and the Adler checksum
[Adler]. The Fletcher checksum uses a one’s complement
modulus, and the Adler checksum uses a largest-prime modulus.
(Some implementations of the Fletcher checksum are said to use
a two’s complement modulus, but we disregard them to avoid
confusion. They have uniformly worse performance than the
proper one’s complement implementation.)

Initialize SumA = 0; SumB = 0

Iterate across each block i in data word:
 SumAnew = (SumAold + Blocki) mod M
 SumBnew = (SumBold + SumAnew) mod M

Check Value is final SumAnew concatenated with SumBnew

5

• Fletcher-16:
 block size = 1 byte
 check value = 2 bytes
 modulus = 255

• Adler-16:
 block size = 1 byte
 check value = 2 bytes
 modulus = 251

• Fletcher-32:
 block size = 2 bytes
 check value = 4 bytes
 modulus = 65535

• Adler-32:
 block size = 2 byte
 check value = 4 bytes
 modulus = 65521

As with single-sum checksums, dual-sum checksums can be
scaled up or down in size by selecting appropriate parameters.
Key properties of these checksums are that the check value is
twice the block size, and the modulus is chosen to fit within the
block size so that there is room for all the bits in both SumA and
SumB in the check value.

As discussed in Fletcher’s original paper [Fletcher82], dual-
sum checksums have the property that they are inherently HD=3
through the number of data word bytes equal to the modulus
minus one, which in the case of Fletcher16 is 255-1=254 bytes.
This is because the SumB is effectively multiplying each SumA

value by its position in the data word. For example, for a 255-
byte data word the value of Sum B is:

255*SumA0 + 254*SumA1 + 253*SumA2 + … + 1*SumA254 (1)

Because the SumB addition is modulo 255, the contribution
from 255*SumA0 is zero, causing it to have no effect on SumB.
Contributions from all blocks before the most recent 255 blocks
to be lost from SumB (we call this the rollover length for a dual-
sum checksum computation). That leaves the code word
vulnerable to two-bit faults in the data word exactly 255 bytes
apart that cancel each other out, since at that point SumA is all
that is protecting against that type of fault, and is vulnerable two
such faults the same as an 8-bit single-sum checksum would be.

All dual-sum checksums have a rollover length equal to the
value of the modulus due to this mechanism. Nonetheless,
having a guarantee of HD=3 up to a length of Modulus-1 is
valuable, and this is something that we shall enhance with a
large-block approach later in this paper.

E. Baseline Checksum Performance
Maxino and Koopman [Maxino09] previously evaluated the

performance of checksum algorithms. Figure 2 shows
simulation results from the study reported in this current paper
in a format to facilitate comparison with fig. 6 of that previous
publication, using a BER of 10-5. (That BER was suitable for the
shorter messages previously studied.) That previous work found
that one’s and two’s complement single-sum checksums
differed in vulnerabilities to two-bit faults in the topmost block
position for two’s complement checksums, but otherwise had

Figure 2. Legacy checksum performance at BER of 10-5. Note that this is different than the BER of 10-6 used in other figures.

6

the same performance. The difference is difficult to discern on a
semi-log plot.

That previous work also found that Fletcher and Adler
checksums had roughly comparable effectiveness. Both
achieved HD=3 up to one byte data word lengths shorter than
the modulus value, then transitioned to effectiveness dominated
by 2-bit faults at longer data word lengths. This corresponds to
the behavior predicted by the analysis of their rollover behavior.

Our figure 2 adds three lines for idealized checksum
performance. The “Idealized HD=1” assumes a fictitious 16-bit
checksum algorithm that detects all faults with a probability of
precisely 1/65536, which assumes completely uniform
distribution of check values across the space of all possible
check values. In other words, every faulty code word is assumed
to be detected with probability of 1/65536 regardless of how
many bit faults it has. One might expect this sort of performance
with, for example, a 16-bit hash value generated from a
cryptographically secure hash function.

“Idealized HD=2” assumes all one-bit faults are detected,
but there is a uniform distribution of check values for all other
faults with a probability of undetected faults of 1/65536. (This
idealized HD=2 curve corresponds to the curve denoted “1/2^k”
in [Maxino09].) “Idealized HD=3” assumes all one- and two-bit
faults are detected, again with a probability of undetected faults
of 1/65536. The point of these lines is to provide a reference for
idealized fault detection effectiveness, and not to imply that such
checksums might actually be implemented in a simple and
efficient way.

In figure 2 we can see that single sum checksums do worse
due to the poor mixing of bits via an addition function for all but
the shortest data word lengths. Dual-sum checksums (Fletcher
and Adler) do somewhat worse than idealized HD=3
effectiveness up to their HD=3 capability, then operate above
the idealized HD=2 curve.

The findings in this paper have reproduced the previous
checksum findings from [Maxino09] from scratch using a
different simulation approach and all-new code base, validating
both that previous work and helping to validate the code base
used for this newer work. [Maxino09] contains a much more
extensive treatment of previous work and analysis of existing
checksums which is not repeated here in the interest of space.

III. METHODOLOGY
Figure 2 and other fault detection performance results were

created with a purpose-built Monte Carlo simulation framework
written in the C programming language. Simulations were run
as single-threaded applications batched across 24 physical
processor cores. The framework operates on the following
principles, staying within the context of the overall steps in the
use of checksums from section IIB described above:

(1) A 32-bit PCG generator is used to generate the
random byte stream [PCG]. The PCG generator is
seeded differently for each run, based on time of
day. (This suffices to produce dramatically
diverging simulation runs. Cryptographic
security of the pseudo-random number stream is
not of concern for this purpose, so time of day is

as good a practical source of different seeds as any.)
Regression testing of the framework is done using a
constant initialization seed value for repeatability.

(2) For each experimental simulation step (an experiment in our
terminology), a data word of a specified length is created
using pseudo-randomly generated data bytes.

(3) The check value using the checksum algorithm being
investigated is computed to create a code word.

(4) A pseudo-randomly selected bit is inverted within the code
word.

(5) The checksum algorithm is run to determine if the known-
corrupted codeword is valid. If it is valid, it must be an
undetected fault because the codeword has been explicitly
subjected to a known fault injection, so the fault counter for
that number of bit inversions is incremented.

(6) Steps (4)-(5) are repeated for additional, increasing numbers
of bit faults with that same code word. At least one- through
five-bit faults are evaluated for each experiment.

(7) New pseudo-randomly generated data words are created and
tested via fault injection, repeating steps (2)-(6) to run a set
of many experiments. A set of experiments (typically tens
to hundreds of millions of experiments at a single data word
length) results in a single data point of undetected faults for
a range of number of inverted bits at a specific data word
length for a specific checksum algorithm.

(8) A spreadsheet is used to accumulate multiple data points and
convert the ratio of undetected faults to number of
accumulated experiments into a Pud, taking into account
data word length and BER.

(9) A curve is plotted based on the total number of undetected
faults across the collected data points. If the curve is not
reasonable smooth, additional data points are collected
using the above procedural steps.

The data points are not a direct Pud simulation result, but
rather a tuple of undetected tallies for a number of experiments
with different fixed numbers of pseudo-randomly injected bit
faults at a specific data word length for a specific checksum
algorithm. This produces results that can yield better insights
than a simulation based primarily on a probability-based bit
inversion strategy, because it identifies the contribution of
different numbers of bit errors to the checksum performance.
For example, the HD=3 capability can be determined explicitly
by looking for the shortest length with even a single non-zero
undetected two-bit fault in simulation results. That permits
increased understanding and confidence rather than having to try
to infer the inflection point from comparatively small changes in
a direct simulation of Pud via random fault injection using the
per-bit BER probability.

Figure 3. Approximate Pud calculation from [Koopman15].

7

Pud is computed via a spreadsheet that uses Equations (1)
and (2) of [Koopman15] (see figure 3), extended to encompass
the available undetected bit fault information (one-bit to at least
five-bit faults). Substantive contributions to Pud are for practical
purposes only made by up to the first two or three non-zero
undetected fault weights.

The spacing of data points along the data word is adjusted
for each checksum algorithm to improve fidelity when there are
large changes in curvature. At short data word lengths and near
the HD=3 capability for dual-sum checksums, data points are
taken for every consecutive byte length.

The number of experiments in a data point varies depending
on the checksum algorithm. Lower Pud results demand more
experiments to collect enough examples of undetected faults to
create smooth Pud curves. Regardless of the algorithm, however,
the number of experiments per data point ranges from the tens
of millions to several billion, and each curve has in excess of
100 data points at various data word lengths.

In terms of raw experimental results, it is desirable to have
at least several hundred undetected faults for the first non-zero
number of undetected bit faults to achieve smooth Pud curves.
The number of undetected 2-bit faults is quite small at the HD=3
capability, so more experiments are run in that vicinity to ensure
that 2-bit faults are consistently identified at all data points
above the HD=3 capability (and no surprise 2-bit faults are
undetected just below that data word length).

In practice, achieving a smooth Pud line is a more demanding
measure of statistical significance than more typical
experimental evaluation approaches. This happens because each
data point on the line is computed independently, but the data
points are relatively dense on a line. This results in a visual

measure of fluctuation from point to point that appears smooth
if the fluctuations of data point values due to stochastic noise is
less than about 1-2% on the semi-log scales being used. (To be
clear, all plots shown in this paper are drawn with point-to-point
line segments and are not fitted curves. Under these conditions,
visual analysis of curve smoothness is a surprisingly sensitive
technique.)

An additional observation is that even very bumpy curves
closely approximate final curves obtained via accumulation of
data points. In other words, as data points accumulate the curve
smooths out rather than changing its basic shape. Visual
observation of decline in curve bumpiness turns out to be an
excellent measure of simulation progress as additional data
points are collected from experimental batches.

Limitations of available computer time dictate that
experiments be run until the plot is smooth without re-running
in evenly-sized distinct data sets, so statistical measures beyond
data plot smoothness were impractical. That having been said,
curve smoothness and the dramatic differences in effectiveness
between algorithms, confirmed by analysis, make it clear that
the results in this paper indicate real effects and not statistically
ambiguous findings.

The remaining effectiveness plots use a BER of 10-6 as
described previously. For consistency, figure 4 shows legacy
checksum effectiveness at this BER.

IV. ALTERNATE MODULI
Our results show that a more empirically-based selection of

modulus for the modular addition operation can improve fault
detection effectiveness. As noted previously, moduli are
traditionally selected based on corresponding to two’s

Figure 4. Curves from figure 1 replotted with BER=10-6.

8

complement or one’s complement addition, or a prime modulus.
However, other alternatives not dependent upon the
factorization of the modulus can provide better performance.

A. Modulus Selection Criteria
As previously discussed, a two’s complement modular

addition simply ignores any carry-out bits larger than the integer
size being used. A one’s complement is in principle a mod 255
operation, but in practice amounts to “wrapping” the carry-out
bit out and back into the sum as an additional post-sum
increment of the result if the carry-out bit was a “1”.

The only mixing promoted by either a two’s or one’s
complement addition checksum is the normal inter-bit-position
carries inherent to addition. The effect of that bit mixing is
indeed helpful, and can be seen in the performance difference
between an XOR checksum, which has no inter-bit carries,
compared to a two’s complement addition. However, even with
inter-bit carries, sums are still vulnerable to two-bit faults that
occur in the same bit position for block values that do not happen
to involve a carry operation affecting those bit positions.

A way to improve mixing among non-adjacent bit positions
is to use a different modulus that involves a more substantive
division operation, mixing bits beyond the addition carry effects.
This can be done by selecting a modulus that has a mix of 0 and
1 bit values in its representation while yielding an output value
that provides the same number of bits as the running sum.

An intuitive candidate for an alternate modulus is using a
prime number. A typical justification is that a prime number has
no common factors with two’s complement modulus, since all
two’s complement moduli are even powers of two.

A further tradeoff is that a larger modulus makes better use
of the available representation space of the check value as
discussed earlier. However, the largest odd modulus (255 for 8-
bit checksums) turns out to be a poor choice, so additional care
is required in modulus selection.

B. Experimental Modulus Selection
Simulations for 8-bit and 16-bit single-sum checksums

showed that even moduli values were a uniformly poor choice.
Odd moduli were much better, with the choice of odd modulus
value making little difference, with a few exceptions.

For 8-bit moduli, the values 201 and 129 are significantly
worse than other moduli, even ones very close to them, for no
readily discernable reason. The modulus 255 is slightly worse
than other moduli for small, odd numbers of bit faults, but about
the same for even numbers of bit faults. The largest prime
modulus 251 is slightly better than 255, but not dramatically so,
and not substantively better than other odd moduli. Smaller
prime numbers used as moduli similarly show no substantive
performance difference (227, 229, 233, 239, and 241). Table 1
shows representative effectiveness, with prime moduli bolded.

For 16-bit moduli there are similarly some poor candidates,
but they are few. Prime moduli of either size do not have any
distinct advantage. They perform about the same as most other
odd moduli.

We will discuss in the next section that there are compelling
reasons to select specific moduli for large-block checksums. For

traditional single-sum checksums a largest-prime modulus is as
good a choice as most, but not distinctly better than many non-
prime moduli. A one’s complement modulus loses effectiveness
slightly for odd numbers of bit faults, but if it can be
implemented without using a division instruction, modulus 255
might still be advantageous due to improved computational
speed.

Modulus selection tradeoffs change dramatically for large-
block checksums. The moduli recommended for large-block
checksums will be comparable in performance to prime modulus
checksums for small blocks, but have added flexibility for large-
block application. For example, we shall see that 253 is a better
modulus choice than either 251 or 255 for large block
checksums.

V. SINGLE-SUM LARGE-BLOCK CHECKSUM PROCESSING
Beyond the modulus, another parameter that can be varied in

defining a checksum algorithm is the block size. Modular
addition can do more than gracefully handle addition overflow
bits. It can also perform a range reduction operation on a block
size much larger than the sum. This does not redefine the
checksum algorithmic description, but does re-envision what the
operations in that algorithm are doing.

A. Large-Block Modular Addition
As stated earlier, the heart of a checksum operation is the

modular sum:

Sumnew = (Sumold + Blocki) mod M (2)

The presumption in previous checksum operations is that
each block and the running sum are the same size. But what if
the block is significantly larger, such as a one-byte check value
with a 4-byte or even 8-byte block size? It turns out this can
dramatically improve error detection effectiveness.

Table 1. Undetected faults for single-sum checksum
with varied moduli. 90 million data points per modulus.
128 byte data word; 1 byte check value; 1 byte block.

 Fraction of undetected faults
Modulus 1-bit 2-bit 3-bit 4-bit 5-bit
 255 0% 6.21% 1.17% 1.38% 0.72%
 253 0% 6.20% 1.02% 1.38% 0.66%
 251 0% 6.21% 1.02% 1.34% 0.66%
 249 0% 6.20% 1.02% 1.34% 0.66%
 247 0% 6.21% 1.02% 1.34% 0.65%
 245 0% 6.20% 1.02% 1.30% 0.64%
 243 0% 6.21% 1.02% 1.31% 0.64%
 241 0% 6.20% 1.02% 1.34% 0.67%
 239 0% 6.20% 1.02% 1.34% 0.67%
 237 0% 6.20% 1.02% 1.30% 0.63%
 235 0% 6.20% 1.02% 1.31% 0.62%
 233 0% 6.20% 1.02% 1.30% 0.65%
 231 0% 6.20% 1.02% 1.30% 0.65%
 229 0% 6.20% 1.02% 1.30% 0.64%
 227 0% 6.20% 1.02% 1.30% 0.67%

9

The modular checksum operation can be rewritten,
exploiting the commutativity of modular addition, to:

Sumnew = (Sumold + (Blocki mod M)) mod M (3)

Adding the additional mod M operation to Blocki does not
change the mathematical result. But it does call attention to the
fact that the mod operation in modular checksum is actually
performing two functions concurrently if block size is increased:

(1) Range reduction of the block to the integer size of the
running sum (the inner “mod M” reduces the block to be the
same number of bits as the running sum, assuming the
modulus is sized to do this).

(2) Wrapping any overflow from the addition beyond the
modulus size back into the running sum (the outer “mod
M”).

The range reduction step (1) can become a potent bit mixing
operation using a natively supported division instruction. This is
because remainder after division is a convolution operation,
resulting in bits of the divisor in essence being used to stir the
bits of the dividend. The larger the block size, the more effective
this bit mixing will be.

Increasing the block size provides improved effectiveness
for single-sum checksums, and dramatic improvements for dual-
sum checksums.

B. Large-Block 8-Bit Single Sum
A large-block checksum has a block size larger in terms of

number of bits than the size of the addition being used in the
checksum addition. More precisely, it has a block size larger
than the next power of two larger than the modulus.

As a concrete example, a single-sum checksum with a check
value of 1 byte traditionally has a block size of 1 byte. In a large-
block checksum, the block size might be 2 bytes, 3 bytes, 4
bytes, or larger. A block size of 8 bytes would be readily
supported on a processor with 64-bit architected data registers,
and support is routinely available for 128-bit values on some
computing platforms. Similarly, a large-block dual-sum
checksum processes the data work in blocks larger than the size
of each individual sum.

This paper explores the effects of blocks in size up to 16-
byte blocks (128 bits), which is the largest convenient integer
size on commonly available current computers. We expect 4-
byte and 8-byte blocks to be especially common in practical
implementations, so we present results for an assortment of
block sizes. From a programming point of view, this is done by
using large integer variables for computing the checksum,
processing a set of multiple bytes at a time from the data word.
The algorithms are the same as previously described Algorithms
1 and 2. It is simply that the blocks are larger. Multiple bytes
from the data word are processed for each sum, and some care
must be exercised to avoid integer overflow on intermediate sum
results if they completely fill the bits of a declared variable of a
given size.

Modulus selection for large-block modular sums is much
more critical than for normal-block modular sums. Some moduli
have a dramatic reduction in performance at larger block sizes,

while others do not. Perhaps surprisingly, a prime modulus is
not necessarily the best choice.

Table 2 shows modulus performance for single-sum addition
checksum at a data word length of 128 bytes and block size of 8
bytes.

From table 2 we can see that, at the longer block length of 8,
fault detection can vary dramatically compared to block size 1
effectiveness shown in table 1. We consider undetected 2-bit
faults since those will dominate the Pud results. Modulus 255 has
effectiveness at a block size of 8 that is essentially unchanged
compared to a block size of 1 (modulus 255 @ 6.20%). The
largest prime modulus has somewhat better performance
(modulus 251 @ 2.03%). But modulus 253, which has not
previously been considered as an attractive checksum modulus
candidate, has dramatically better performance (modulus 253 @
0.73%, more than a factor of 8 improvement compared to block
size 1 performance).

Visualizing the performance of different moduli at
increasing block sizes reveals an interesting pattern.

Figure 5 shows the results of simulating single-sum
checksum effectiveness for different moduli at a data word size
of 128 bytes. (Other data word sizes sampled have substantially
similar results.) The top line for 1-byte blocks shows essentially
the same effectiveness on two-bit faults for all moduli.
Subsequently lower charted lines show the fraction of
undetected faults decreasing for moduli other than 255 – up to a
point. At some modulus-dependent block size, effectiveness
improvement stalls, increasing only marginally with increasing
block size past that point.

Modulus 255 does not improve past block size 1. Modulus
251 gets stuck at block size of 3, yielding only marginal
improvements past that point. On the other hand, modulus 253
and a few others keep providing improved performance up to a
block size of 8 (and, as we shall see in a later figure, even longer
than that).

Table 2. Undetected faults for single-sum checksum
with varied moduli with large block size.

128 byte data word; 1 byte check value; 8 byte block.

 Fraction of undetected faults
Modulus 1-bit 2-bit 3-bit 4-bit 5-bit
 255 0% 6.20% 1.17% 1.38% 0.72%
 253 0% 0.73% 0.39% 0.40% 0.39%
 251 0% 2.03% 0.37% 0.45% 0.40%
 249 0% 1.30% 0.33% 0.46% 0.38%
 247 0% 1.42% 0.42% 0.42% 0.41%
 245 0% 0.73% 0.37% 0.42% 0.41%
 243 0% 0.73% 0.31% 0.46% 0.38%
 241 0% 4.16% 0.87% 0.84% 0.53%
 239 0% 0.73% 0.41% 0.42% 0.42%
 237 0% 0.73% 0.32% 0.47% 0.40%
 235 0% 0.73% 0.40% 0.43% 0.42%
 233 0% 1.73% 0.27% 0.47% 0.42%
 231 0% 1.66% 0.42% 0.56% 0.42%
 229 0% 1.37% 0.46% 0.45% 0.44%
 227 0% 0.73% 0.44% 0.44% 0.44%

10

From this graph, it is clear that modulus 253 is a better choice
than 251 (the largest prime) for moderate to large block sizes.
But the question is, why? The answer to why some moduli do

better than others is related to the two-bit fault sensitivity of
modular sums.

Figure 5. Undetected fault fraction for odd moduli with increasing block size. Two-bit faults; 128-byte data words.

Figure 6. Largest block size in bytes with no undetected two-bit faults from single-block modular division.
(Considers faults in the data block and not check value faults.)

11

C. Two-Bit Fault Sensitivity of Modular Sums
There are two ways that a two-bit fault can be undetected in

a single-sum checksum. The first mechanism is two bit faults in
the same position in two data blocks. Those two faults can
compensate for each other and result in the same checksum
value. As an 8-bit example:

Uncorrupted: Data word: 0x00 00 Check Value: 0x00
Corrupted: Data word: 0x01 01 Check Value: 0x00
 There is a different but similar undetected fault mechanism

in which one fault occurs to a data block, and a second fault
occurs in the same bit position of the check value. As an 8-bit
example:

Uncorrupted: Data word: 0x00 00 Check Value: 0x00
Corrupted: Data word: 0x01 00 Check Value: 0x01
Again, the faults result in a valid code word and undetected

two-bit fault. These fault mechanisms apply to all single-sum
checksums.

Increasing the block size introduces a third possible
mechanism to create undetectable two-bit faults. If two bits in
the same block are inverted, it might be the case that the result
of the “mod M” operation has the same value with and without
the two-bit fault injection. If there is no difference in the output
of the modulus range reduction into the running sum, there is no
way for the checksum to detect that such a fault has occurred.

This means faults will be undetectable for block sizes larger
than the running sum size if they satisfy this equality:

Block mod M = (Block xor Fault) mod M (4)

where in the case of interest, the Fault value has exactly two “1”
bits (i.e., exactly two bits are inverted in the Block value by the
xor operation).

A different Monte Carlo simulation program was created to
inject faults in pseudo-randomly generated integers from 1 to 16
bytes in size and determine if the remainder after division was
the same. (This simulation did not compute a checksum value
and did not attempt to corrupt bits in any check value – it was
solely to look for pairs of bits that would be undetectable if
corrupted as an input to a mod M operation for a particular
modulus.)

In figure 6 each bar represents the maximum number of
bytes in a block that could be used while avoiding two-bit faults
within that same block that cancel each other out as just
described. (To be sure, single faults in the block could result in
changes to the remainder used in the sum. The only case of
concern for this graph is one in which exactly two bit faults in
the block result in an unchanged remainder value after applying
the modulus.)

The height of the bars in figure 6 explains the patterns in
figure 5 in which different moduli stopped performing well
beyond a particular block length. Two bit faults via the first and
second mechanism described above will still result in an
undetected fault rate at all block lengths, driven by the ability of
faults in the block to generate a one-bit result after the modulus
is applied. But once the modulus being used is vulnerable to
undetectable two-bit faults within the same block, that permits
those faults to escape without the summing operation ever
getting a chance to detect them, resulting in very little further
effectiveness improvement with increased block size.

Figure 7. 8-bit single-sum effectiveness with prime modulus 251.

12

These results predict that effectiveness of modulus 255 will
degrade with block size 2. They also predict that the prime
modulus 251 will degrade at block size 4. On the other hand,
they predict that modulus 253 will have excellent effectiveness

up to a block size of 13 bytes, and modulus 239 will be good up
to 14 byte blocks.

As a sanity check on these results, the following specific
undetectable two-bit patterns were identified via the simulation

Figure 8. 8-bit single-sum effectiveness with modulus 253.

Figure 9. 16-bit single-sum effectiveness with moduli 65521, 65525, and 65535.

13

used to create figure 6. Again, the property being looked for is
two block values that give the same answer (not necessarily
zero) under range reduction by the modulus that differ in exactly
two bit positions:

Mod 251: undetected fault at 4 byte block size

0x80000040 mod 251 = 0x00000000 mod 251 = 0
Mod 253: undetected fault at 14 byte block size

0x0000000000000000000000000002 mod 253 =
0x8000000000000000000000000000 mod 253 = 2
Offering a proof that there are no two-bit undetected faults

for modulus 253 up to block sizes of 13 is beyond the scope of
this paper. However, a very large number of experiments (see
Section VII) failed to find a single counter-example, so we
consider modulus 253 to provide resistance to two-bit faults in
this manner up to a block size of 13 bytes for practical
engineering purposes.

To determine the effect of this property on single-sum
checksums, we examine the effectiveness of different block
lengths on 8-bit checksum performance.

Figure 7 shows the significant error detection effectiveness
improvement of moderately larger block sizes for modulus 251.
For interpreting the legend of figure 7 and subsequent figures
the notation “ADD8-251-b3” means an 8-bit single-sum
checksum with modulus 251, and block size of 3 bytes.

In figure 7, a block size of 1 byte is slightly better than a
one’s complement checksum, as expected. However, a block
size of 2 is significantly better, and a block size of 3 is better
still. However, as predicted, block sizes of 4 and 16 plot on top
of the block size 3 curve.

In contrast, figure 8 shows that modulus 253 provides
increased effectiveness for even large block sizes. The
performance of moduli 251 and 253 would be indistinguishable
if the curves on figures 7 and 8 were superimposed for block
sizes of 1, 2 and 3 bytes. However, modulus 253 continues to
improve up to a block size of 13, stalling there with the same
performance at block sizes of 14 bytes and higher. For a 128
byte data word, modulus 253 provides 14.2 times better Pud for
13 byte blocks than 1 byte blocks.

The wavy and horizontal portions of curves for small block
sizes on figures 7 and 8 for block lengths below 32 byte data
word lengths are not simulation artifacts. Those graphical
features remained stable in shape while increasing the number
of simulations by an order of magnitude. We believe they are
caused by quantization effects for block lengths that are about
the same size as, or larger than, the data word length.

Based on these results, we select modulus 253 as a promising
candidate. Modulus 239 has a one-byte better range on large
blocks, but has other properties for dual-sum checksums that
might make it less attractive. This topic will be revisited in the
context of large-block dual-sum checksums.

The error detection advantage of modulus 253 at high block
lengths is maintained for all data word lengths considered (up to
4096-byte data words for this work), and there is every
expectation that would continue at higher data word lengths.

D. Large-Block 16-Bit Single Sum
A similar situation exists for 16-bit single sums block sizes

of two bytes and above. Some moduli exhibit two-bit fault
vulnerabilities at increased block lengths, but a significant
majority of moduli examined retain two-bit fault detection
capabilities at, and likely above, 16 byte blocks.

Table 3 shows the performance of large, odd moduli for 16-
bit single-sum checksums for a block size of 16 bytes and a data
word size of 128 bytes. Two-bit fault detection is essentially
identical except for modulus 65535, which has quite poor
performance at almost nine times worse than other moduli.

At three-bit faults our preferred modulus of 65525 is three
times better than the largest prime modulus of 65521, which
becomes important at large data word sizes in which 3-bit faults
are more likely to occur. 65525 is better than 65521 for 3-, 5-,
7-, and 9-bit faults for two data word lengths studied: 128 bytes
as well as 1024 bytes.

It should be noted that the modulus matters less as the block
size is reduced, with very little difference between moduli other
than the one’s complement modulus 65535 being a uniformly
poor performer. Nonetheless, using a modulus of 253 or 65525
is always better than one’s complement or prime moduli.

Figure 9 shows the comparative performance of single-sum
checksums with moduli of 65521, 65525, and 65535 (one’s
complement). Increasing block size has no effect for modulus
65535, with block size of 2 bytes and 16 bytes both plotted on
top of each other as well as the other moduli at block size 2 on
the top curve. Both 65521 and 65525 have indistinguishable

Table 3. Undetected faults for single-sum checksum
with varied moduli with large block size.

128 byte data word; 2 byte check value; 16 byte block.

 Fraction of undetected faults
Modulus 1-bit 2-bit 3-bit 4-bit 5-bit
65535 0% 3.080% 0.2890% 0.3124% 0.08906%
65533 0% 0.343% 0.0268% 0.0090% 0.00317%
65531 0% 0.344% 0.0119% 0.0067% 0.00199%
65529 0% 0.343% 0.0119% 0.0062% 0.00188%
65527 0% 0.343% 0.0119% 0.0058% 0.00191%
65525 0% 0.343% 0.0040% 0.0063% 0.00177%
65523 0% 0.343% 0.0115% 0.0085% 0.00261%
65521 0% 0.343% 0.0120% 0.0069% 0.00220%
65519 0% 0.343% 0.0120% 0.0059% 0.00196%
65517 0% 0.344% 0.0040% 0.0061% 0.00157%
65515 0% 0.343% 0.0089% 0.0055% 0.00180%
65513 0% 0.344% 0.0041% 0.0049% 0.00159%
65511 0% 0.344% 0.0040% 0.0062% 0.00155%
65509 0% 0.344% 0.0040% 0.0055% 0.00166%
65507 0% 0.343% 0.0043% 0.0053% 0.00163%
65505 0% 0.344% 0.0186% 0.0126% 0.00465%
65503 0% 0.343% 0.0134% 0.0125% 0.00485%
65501 0% 0.344% 0.0040% 0.0050% 0.00160%

14

curves with improved effectiveness for block sizes of 4, 8, and
16 bytes.

An analogous screening process suggests the modulus
4294967283 as a good selection for 32-bit checksum addition.

Figure 10. Fletcher16 compared with Dual255-b2.

Figure 11. Adler16 compared with longer block modulus 251 dual-sum checksums.

15

VI. DUAL-SUM LARGE-BLOCK CHECKSUM PROCESSING
Having found improvements in using a well-chosen modulus

and large block sizes on single-sum checksums, we turn our
attention to dual-sum checksums in the style of Fletcher and
Adler checksums. (We refer to the extended block versions as
one’s complement and largest prime dual-sum checksums since
large-block performance was not a design objective of those
earlier works. Any comparative lack of effectiveness at large
block sizes was beyond the scope of the designers who created
those checksum algorithms, and should not be considered
criticism of their work.)

A. One’s Complement Dual-Sum Modulus
As was the case for single-sum checksums, using a one’s

complement modulus provides no benefit with increased block
size for a dual-sum checksum algorithm. Indeed, the poor
performance of modulus 255 becomes apparent at a block length
of 2, just as was seen with modulus 255 for single-sum
checksums. Figure 10 shows a Fletcher16 checksum (dual 8-bit
sums with modulus 255) with block length of one and block
length of two (“Dual255-b2”). At a block length of 1, the HD=3
capability is 254 data word bytes. At block length of 2, it reduces
to 1 byte.

Figure 10 also reveals a more subtle feature of dual-sum
checksum performance, which is that there are multiple
effectiveness inflection points. The first inflection point is the
obvious HD=3 capability at data word length 254 bytes for a
Fletcher16 checksum. The second is at 508 bytes, which is
double the rollover length of the SumB variable. The 2-byte
block effectiveness converges with the 1-byte block curve in the
vicinity of this second inflection point.

B. Largest Prime Dual-Sum Modulus
A largest-prime modulus creates a striking effect with

increased block sizes by doubling or tripling the length of the
HD=3 capability.

Figure 11 shows that a largest-prime modulus of 251 has
HD=3 capability of 250 bytes as expected. Moreover, increasing
the block length increases that capability to 500 bytes (2 byte
blocks), and 750 bytes (3 byte blocks). A block size of 4 bytes
“breaks” the dual-sum approach with this modulus, with an
HD=3 capability of 3 data word bytes.

To be clear about the implications of this graph: computing
an Adler16 checksum using two bytes of the data word at a time
(block size of 2 bytes) increases the HD=3 capability from 250
bytes to 500 bytes, with no other change to the checksum
algorithm beyond increased block size. A block size of 3 bytes
extends the HD=3 capability to 750 bytes. Beyond that, larger
block sizes degrade effectiveness severely to be HD=2 at all but
the very shortest data word lengths. As with modulus 255, the
high-block-length curves merge with the highest good HD block
size at about one rollover length beyond the HD=3 capability of
the largest good block length.

C. A Better Dual-Sum Modulus
To be sure, tripling the HD=3 capability of an Adler

checksum by increasing the block size (checksum algorithm
Dual251-b3) is impressive. But this immediately raises two
questions: why did Dual251-b4 fail so dramatically? And, is
there a way to do even better?

Figure 12. Modulus 251 vs. Modulus 253 for dual-sum checksums. Portions of k16-b3 and k16-b4 curves omitted for clarity.

16

The reason that Dual251-b4 failed so dramatically can be
seen in Figure 6 in the discussion on single-sum checksums. A

modulus of 251 is vulnerable to two-bit undetected errors at a
block size of 4, and we saw Dual251-b4 fail.

Figure 13. Koopman16 dual-sum checksum performance. Modulus 253; block sizes range from 1 to 13 bytes.

Figure 14. Modulus 253 vs. Modulus 239 long-block dual-sum checksum performance comparison.

17

Still referring to Figure 6, modulus 253 looks much better.
And it turns out it is also better for dual-sum checksum use,
providing excellent results through Dual253-b13.

Figure 12 compares Dual253 checksums to Dual255
checksums. (We immodestly call Dual253 checksums Koopman
checksums. We use the notation k16-bX representing a 16 bit
check value and block size of X bytes with an implicit modulus
of 253 for Koopman16 dual-sum checksums.)

Figure 12 shows that Koopman checksums perform almost
identically to Dual251 checksums for a block size 1 byte. At a
block size of 2 bytes, Dual251-b2 has a slightly better
effectiveness, but a slightly shorter HD=3 capability due to the
modulus being different. The difference increases at a block
length of 3. (Portions of k16-b3 and k16-b4 curves have been
omitted from the graph to be able to see Dual251-b2 and
Dual251-b3 curves clearly.)

However at a block size of 4, Dual251-b4 switches to HD=2
behavior for any but the smallest block sizes, while k16-b4
moves the HD=3 capability by yet another multiple of its
rollover length.

It is also interesting to note that both dual-sum checksums
get closer to the Simple HD=3 trend line as block size increases.
This appears to be due to improved bit mixing of the modulus
operation on larger blocks, with the modulus operation
increasingly approximating a randomized check value at HD=3.

This improved block size capability for modulus 253 is not
a fluke, but related to the vulnerability to two-bit faults in the
modulo operation previously discussed. Exactly as predicted,
figure 13 shows that Koopman checksums provide improved
HD=3 performance up to block sizes of 13 bytes, with the HD=3
capability increases by 252 data word bytes for each one-byte
increase in block size. Modulus 253 reverts to HD=2 behavior
at 14 bytes (figure 14).

Pud degrades quickly above the HD=3 capability as with
other dual-sum checksums. However, in an echo of performance
with single-sum checksums, longer block lengths maintain
better HD=2 performance past their HD=3 capability due to
improved large-block bit mixing.

Even a single two-bit undetected fault makes a bigger
contribution to Pud at a modest BER due to the much higher
probability of two-bit faults compared to three-bit faults. This
accounts for the steep slope of the Pud curve at the HD=3
capability. After that, the initially small fraction of undetected
two-bit faults increases to the point that contributions from
undetected three-bit faults no longer dominate the Pud result.

As expected, k16-b14 has poor effectiveness, with an HD=3
capability of 13 bytes. (This behavior of still being good up to
13-byte data words helps confirms the analysis discussed in the
next section.)

D. What About Modulus 239?
Figure 6 showed that modulus 239 had even better long-

block capability than modulus 253, by one byte of block length.
However, the HD=3 capability of any given block length
happens at shorter lengths (multiples of 238 bytes, rather than
multiples of 252 bytes).

Figure 14 shows a comparison of 13 and 14 byte data word
lengths for moduli 239 and 253. The expected behavior of a
HD=3 capability up to 14 byte block length for modulus 239 is
confirmed. But due to the shorter rollover length, the difference
between 252*13 and 239*14 maximum HD=3 capabilities is so
small that there is only a very narrow window of data word size
that favors modulus 239. (Omitted from the graph for clarity is
confirmation that indeed modulus 239 degrades to HD=2
behavior for a block size of 15 bytes as expected.)

Based on these results, we recommend that modulus 253
with the largest block size reasonably supported by the
implementation platform be used as a general-purpose dual-sum
checksum.

VII. FAULT DETECTION PERFORMANCE

A. Maximum effective block size
The HD=3 capabilities of large-block dual-sum checksums

provide a pattern that helps understand how they work. Each
modulus provides HD=3 at increasing data word lengths with
increased block size – up to a point. Beyond that point
effectiveness degrades to HD=2 at very short data word lengths.

Table 4 summarizes data for the four moduli studied for
dual-sum checksums. The observed data reveals the pattern:

HD3Capability = BlockSize * (Modulus-1) (5)

Intuitively the size of the sum might seem like it would have
an effect for moduli larger than one byte. However, this is
negated by the need to divide the block into larger pieces to feed
the sum. So a 16-byte block provides a 16:1 digest size
compression for 1-byte sums, but only an 8:1 digest size
compression when converting 16-byte blocks into 2-byte sum
inputs. Thus, the size of the sum cancels out and is not included
in the formula.

Table 4. Observed HD=3 capability for different dual-sum
checksum moduli.

Modulus Block Size HD=3 capability
 255 1 254
 255 2 1

 251 1 250
 251 2 500
 251 3 750
 251 4+ 3

 253 1 252
 253 2 504
 253 3 756
 253 … block size * 252
 253 12 3024 = 12*252
 253 13 3276 = 13*252
 253 14+ 13

 239 13 3094 = 13*238
 239 14 3332 = 13*238
 239 15+ 14

18

This empirical relationship of HD=3 capability to block size
and modulus permits us to assemble an explanation of the large
block error detection mechanism for dual-sum checksums.

B. Large Block Error Detection Mechanism
Before relying on the effectiveness of large block

checksums, it is reasonable to want to understand the
mechanism that provides their advantages. It involves a
combination of the dual-fault resistance properties of the chosen
modulus, plus the dual-sum checksum rollover length, both of
which have been previously described.

Similar to our earlier discussion of undetected fault
mechanisms for single-sum checksums, there are three ways for
a two-bit fault to be undetected in a dual-sum checksum:

1. A one bit fault in the check value that compensates for
a one-bit fault in a data word. However, for split sum
checksums these can only occur in data words larger
than the rollover length of the modulus.

2. Two separate bit faults that are separated in the data
word by at least the rollover length.

3. Two separate bit faults within a single block that result
in an unchanged modulus operation result, presenting an
unchanged input to the summing operation.

The third mechanism becomes problematic for large-block
checksums, as was seen for single-sum checksums.

These fault mechanisms account for long-block dual-sum
checksum fault behavior if the range reduction function of the
modulus is considered as computing a sequence of digest values
that are then fed into the dual-sum checksum.

Figure 15 shows a conceptual diagram of how a long-block
checksum works. The concept is general to both single-sum and
dual-sum checksums, but a specific example has been chosen
for illustrative purposes of a modulus 253, block size 8 byte, and

a 2-byte check value for a dual-sum checksum, which will
achieve an HD=3 capability for a 2016 byte data word.

In figure 15, the data word of 2016 bytes is broken down into
252 blocks for processing, with each block being 8 bytes in size
(a k16-b8 checksum algorithm in this example). Each block of
8 bytes undergoes a range reduction via a mod 253 operation,
resulting in a one byte remainder value that is, for practical
purposes a digest (or hash value) of the corresponding 8-byte
block. This results in a sequence of 252 digest bytes. Those
digest bytes are then processed by a dual-sum checksum that
also uses mod 253 to produce a check value.

Because the modulus 253 is resistant to undetectable two-bit
faults as a digest function at and below 13-byte blocks, we know
that any 1- or 2-bit fault in a single block will produce at least a
one-bit change in its digest compared to the fault-free digest
value. In other words, if the block has a 1- or 2-bit fault, the
digest will also have some fault.

We also exploit a property of dual-sum checksums not
previously discussed. Dual-sum checksums do better than
providing HD=3 up to one less than the modulus size in bytes.
They provided detection of any two corrupted inputs to the dual-
sum process even if more than two bits have been corrupted
within those two inputs – so long as those two inputs are
separated by less than the HD=3 capability of the checksum.
(This property is a consequence of the dual-sum approach;
resistance to two-bit faults with one bit inverted in each of two
data words is simply a special case of this property.) Thus,
regardless of the number of bits changed in the digest of two
blocks, as long as only two digest bytes are corrupted, a dual-
sum checksum addition scheme will detect them.

The same analysis applies to dual-sum checksums of other
sizes. For example, a 32-bit dual-sum checksum using a
modulus of 65525 is expected to have the same properties for
the same reasons up to at least a block size of 16 bytes (8 times

the sum-size of 2 bytes).

C. Approximately HD=3
Because this is an empirical, simulation-based

approach, we cannot quite claim that large block
checksums absolutely give HD=3 for longer data
word lengths than checksums with a block size the
same as the modulus size. Rather, they appear to give
HD=3 per the mechanisms described in the
preceding subsection.

The missing link for a true guarantee is proving
that there is no undetectable two-bit fault that will
slip past the modulus operation being used as a digest
function. In other words, equality (4) should be
proven to have no solution for the maximum block
size and modulus being used.

In practice, the Pud graphs make it clear that large-
block checksums have the properties found for each
modulus identified as far as we know. Moreover, the
number of simulations run shows that even if some
undetectable two-bit faults were to exist in principle
in a single block, they are so rare that they make no

Figure 15. Conceptual diagram of operation of a large-block dual-sum
checksum with block size 8 bytes and modulus 253.

19

practical difference under a random independent bit inversion
fault model.

To increase informal confidence, we ran the fault injection
simulation used to create figure 6 for additional experiments.
Trillions of random trials failed to find an undetected two-bit
corruption of random data words missed by moduli 253 at a 13-
byte block length, or 65525 at a block length of 16 bytes. So we
consider these moduli to be close enough for practical purposes
to supporting a digest function that provides HD=3-class
performance at the stated block lengths.

D. Implementation Considerations
The large-block checksum algorithm’s effectiveness does

not depend on byte ordering or endian-ness of the data word for
error detection effectiveness. Similarly, byte ordering in the
check value does not matter for effectiveness. All that matters is
that the software constructing the initial code word has
compatible ordering with the software checking the code word
integrity.

There is a potential accuracy issue if the block size is the
same size as an architected register size. Adding a new block to
a running sum can result in a carry-out of the sum, which might
be lost on computers that do not have an architected carry bit
visible to the programmer.

One solution to avoiding a lost carry-out is to use a higher
precision intermediate sum if that is conveniently available in
the programming language being used. For example for an 8-
byte block, a modular addition might be carried out as a 128-bit
addition, followed by a modulo operation that takes a 128-bit
input and produces a smaller output appropriate for the sum size.
Using C type-casting notation with a 32-bit running sum and a
128-bit variable holding a full block, that looks like

sum32 = (uint32_t) ((((uint128_t) sum32) + block128) %
 modulus32);

This creates a 128-bit unsigned sum and produces a 32-bit
result of a modulo reduction. We note that “uint128_t” is non-
standard notation, but is intended to represent a casting to a 128
unsigned integer in the manner of “cstdint” notation which
defines uint32_t as the type of an unsigned 32-bit integer [C++].

Another approach is to perform range reduction before the
sum, which might be faster on some computers. That option
looks like this:

block32 = (uint32_t) (block128 % modulus32);
sum32 = (sum32 + block32) % modulus32;

This option requires two modulo operations, but the second
modulo operation can be faster since it only operates on 32 bits
instead of a larger block size. There is still the possibility of a
carry-out from the addition, so this approach only works if the
modulus is at least one bit smaller than the sum size (e.g., a
modulus less than 2**31 for 32-bit unsigned integers). A 32-bit
register approach with this technique will work well for an 8-bit
or 16-bit sized modulus for example (moduli 253 or 65525).

See Appendix A for some example variations to make this
discussion more concrete. The examples in Appendix sections
D & E additionally show variations that delay applying the
modulus operation until the end of the checksum for speed,
although care must be taken to ensure the data word is short
enough to avoid sum overflows. These techniques can
dramatically reduce the cost of applying the modulus.

It is important to ensure that all variables are declared as
“unsigned” to avoid inadvertent sign extension while
assembling blocks from the data word and performing the
modulo operation properly with maximum-size sums. Using
appropriate type casting is both tricky and critical to achieving
correct results.

The net speed of a large block checksum depends on the
implementation, but can potentially be faster than for small-
block checksums when run on architectures that have large
register sizes. While a modulus must be computed for each
summed block, those blocks are processed in larger chunks, with
only one division operation per block regardless of the block
size. Those divisions can run comparatively fast compared to
memory access overhead if the block fits within a single
hardware register. Even with less capable machines, the cost of
division is linear with the size of the dividend, so fewer large
divisions can take no more net time than a larger number of
small divisions operating on the same data word size.

Other speed-up tricks can also be used, such as delaying the
modulo operations until after several additions have been
performed, especially on SumB, so long as integer registers are
not overflowed.

VIII. CONCLUSIONS
This paper makes the following contributions:

1. An exploration of modular addition operations for
checksums reveals that the best modulus might not be
any of the two’s complement, one’s complement, or
largest prime moduli – but rather an empirically
validated odd modulus that just happens to give good
error detection performance. The key to this approach is
finding a modulus that does not let two-bit faults
become undetectable in a remainder-from-division
digest computation. The moduli 253 and 65525 are
identified as having good single-sum checksum
performance for 8- and 16-bit checksums respectively.

2. Increasing the block size processed by a modular
checksum operation is identified as significantly
improving error detection capabilities in both single-
sum and dual-sum checksum algorithms, so long as a
suitable modulus is used. Again, moduli 253 and 65525
are recommended.

3. A carefully selected modulus can provide significantly
higher HD=3 capability for dual-sum checksum
algorithms. The modulus 253 is identified as providing
HD=3 performance for a large-block version of the
Fletcher/Adler dual 8-bit checksum algorithm using a
modulus of 253 up to a data word size of 504 for 2-byte
blocks, 1208 for 4-byte blocks, and a maximum 3276
bytes for 13-byte blocks. We dub this 16-bit dual-sum

20

long-block approach a Koopman16 checksum. A
Koopman32 checksum using modulus 65525 looks
good, but was only partially validated due to limited
computational resources, with apparent HD=3
capability up to at least 16*65524 data word bytes,
which is just under a one megabyte data word size.
(HD=3 might be maintained at longer data word lengths
for a Koopman32 checksum, but that is beyond the
ability of the experimental framework available for this
work to validate.)

4. The mechanism for why large-block checksum
algorithms are effective is explained. In short, the
modular addition computes a digest of a large block
before combining it with a running sum. This preserves
the HD=3 capability of a dual-sum checksum for a
multiple of the normal size determined by the ratio of
the block size to the sum size. (E.g., a 12-byte block
with a 32-bit dual-sum checksum breaks each 12-byte
block into six two-byte values for the rolling sum,
giving a factor of 6 increase in performance of the
HD=3 fault detection capability.)

It is important to remember that Cyclic Redundancy Checks
(CRCs) can provide far superior fault detection mechanisms to
even these improved checksum approaches. Nonetheless, using
better moduli and longer block sizes can dramatically improve
error detection effectiveness with the same check value size and
comparable computational cost compared to previously known
checksum approaches.

This preprint has preliminary data, especially for Figures 12
and 13. Simulation runs continue for a final version of this
paper, although that will likely take months of additional
simulation time. It is fully expected that graphs will become
smoother with more data, but there is no reason to believe any
of the findings reported will change.

IX. ACKNOWLEDGEMENTS
The author wishes to thank Theresa Maxino for her

collaboration on an earlier generation of this research.

X. REFERENCES
[Adler] Wikipedia, Adler-32, http://en.wikipedia.org/wiki/Adler-32, Dec.
2005.
[C++] “<cstdint> (stdint.h),” https://cplusplus.com/reference/cstdint/ accessed
Feb 25, 2023.
[Fletcher82] Fletcher, J. G. (January 1982). "An Arithmetic Checksum for
Serial Transmissions". IEEE Transactions on Communications. COM-30 (1):
247–252. https://doi.org/10.1109/TCOM.1982.1095369
[Koopman04] Koopman, P. & Chakravarty, T., "Cyclic Redundancy Code
(CRC) Polynomial Selection For Embedded Networks," DSN04, June 2004.
https://doi.org/10.1109/DSN.2004.1311885
[Koopman15] Koopman, Driscoll, Hall, "Selection of Cyclic Redundancy Code
and Checksum Algorithms to Ensure Critical Data Integrity," DOT/FAA/TC-
14/49, March 2015. http://www.tc.faa.gov/its/worldpac/techrpt/tc14-49.pdf
, accessed Feb. 25, 2023.
[Maxino09] Theresa C. Maxino, Philip J. Koopman (January 2009). "The
Effectiveness of Checksums for Embedded Control Networks," IEEE
Transactions on Dependable and Secure Computing.
https://doi.org/10.1109/TDSC.2007.70216
[PCG] PCG, a Family of Better Random Number Generators, https://www.pcg-
random.org/, accessed Feb. 14, 2023.

http://en.wikipedia.org/wiki/Adler-32
https://cplusplus.com/reference/cstdint/
https://doi.org/10.1109/TCOM.1982.1095369
https://doi.org/10.1109/DSN.2004.1311885
http://www.tc.faa.gov/its/worldpac/techrpt/tc14-49.pdf
https://doi.org/10.1109/TDSC.2007.70216
https://www.pcg-random.org/
https://www.pcg-random.org/

21

APPENDIX A: EXAMPLE INNER LOOP CODE
The below C code fragments are intended to illustrate the

key idea behind the use of large-block checksums. They are
written in a way to make the key ideas obvious. They are not
intended as an illustration of portability or otherwise-desirable
code structure.

Code fragments assume without checking that the data word
is evenly divisible by the block size, or has been zero-padded to
be so to keep the example simple. Variable typing is per
<cstdint>, <stdint.h>, or a similar definition approach.

A data word organized as a sequence of bytes is assumed to
be in dataWord8 as a uint8_t data array, whereas dataWord32 is
a uint32_t data array that holds 32 bits of the data word in each
array element. The endian-ness of assembling bytes into a block
in the byte-organized example will not affect checksum
effectiveness. The variable dwSize is assumed to be the number
of relevant elements in the data word array.

All code examples will provide HD=3 capability up to a data
word size of 252 data elements of 4-byte blocks = 252*4 
1008 bytes. Note that examples D and E defer the modulus
operation for speed. Example E makes an assumption that the
data word size is small enough to avoid sumA overflow.

A. Dual-Sum, Block Size 4, byte-organized data word
uint32_t Koopman16b4_A(uint8_t dataWord8[],
 uint32_t dwSize)
{ uint32_t sumA = 0;
 uint32_t sumB = 0;
 for(uint32_t index = 0; index < dwSize; index += 4)
 { uint32_t block = (dataWord8[index])
 | (dataWord8[index+1] << 8)
 | (dataWord8[index+2] << 16)
 | (dataWord8[index+3] << 24);
 uint32_t digest = block % 253;
 sumA = (sumA + digest) % 253;
 sumB = (sumB + sumA) % 253;
 }
 return(sumA | (sumB << 8));
}

B. Dual-Sum, Block Size 4, 32-bit-organized data word
uint32_t Koopman16b4_B(uint32_t dataWord32[],
 uint32_t dwSize)
{ uint32_t sumA = 0;
 uint32_t sumB = 0;
 for(uint32_t index = 0; index < dwSize; index += 1)
 { uint32_t digest = dataWord32[index] % 253;
 sumA = (sumA + digest) % 253;
 sumB = (sumB + sumA) % 253;
 }
 return(sumA | (sumB << 8));
}

C. Alternate Dual-Sum, Block Size 4, 8-bit-organized data
word

uint32_t Koopman16b4_C(uint8_t dataWord8[],
 uint32_t dwSize)
{ uint64_t sumA = 0;
 uint64_t sumB = 0;
 for(uint32_t index = 0; index < dwSize; index += 4)
 { uint64_t block = ((uint64_t)dataWord8[index])
 | ((uint64_t)dataWord8[index+1] << 8)
 | ((uint64_t)dataWord8[index+2] << 16)
 | ((uint64_t)dataWord8[index+3] << 24);
 sumA = (uint32_t)((((uint64_t) sumA) + block) % 253);
 sumB = (sumB + sumA) % 253;
 }
 return((uint32_t)sumA | ((uint32_t)sumB << 8));
}

D. Alternate Dual-Sum, Block Size 4, 32-bit-organized data
word, delayed modulo sumB for speed

uint32_t Koopman16b4_D(uint32_t dataWord32[],
 uint32_t dwSize)
{ // Beware overflow of sumB for dwSize > 2**24
 uint32_t sumA = 0;
 uint32_t sumB = 0;
 for(uint32_t index = 0; index < dwSize; index += 1)
 { sumA = (uint32_t) (((uint64_t)sumA
 + (uint64_t) dataWord32[index]) % 253);
 sumB = (sumB + sumA);
 }
 sumB = sumB % 253;
 return(sumA | (sumB << 8));
}

E. Alternate Dual-Sum, Block Size 4, 32-bit-organized data
word, delayed modulo sumA and sumB for speed

uint32_t Koopman16b4_E(uint32_t dataWord32[],
 uint32_t dwSize)
{ // Beware overflow of sums for large dwSize
 uint64_t sumA = 0;
 uint64_t sumB = 0;
 for(uint32_t index = 0; index < dwSize; index += 1)
 { sumA = sumA + (uint64_t) dataWord32[index];
 sumB = sumB + sumA;
 }
 sumA = sumA % 253;
 sumB = sumB % 253;
 return((uint32_t)sumA | ((uint32_t)sumB << 8));
}

	I. Introduction
	II. Previous Checksum Algorithms
	A. Terminology
	B. Checksum Usage
	C. Single-Sum Checksums
	D. Dual-Sum Checksums
	E. Baseline Checksum Performance

	III. Methodology
	IV. Alternate Moduli
	A. Modulus Selection Criteria
	B. Experimental Modulus Selection

	V. Single-Sum Large-Block Checksum Processing
	A. Large-Block Modular Addition
	B. Large-Block 8-Bit Single Sum
	C. Two-Bit Fault Sensitivity of Modular Sums
	D. Large-Block 16-Bit Single Sum

	VI. Dual-Sum Large-Block Checksum Processing
	A. One’s Complement Dual-Sum Modulus
	B. Largest Prime Dual-Sum Modulus
	C. A Better Dual-Sum Modulus
	D. What About Modulus 239?

	VII. Fault Detection Performance
	A. Maximum effective block size
	B. Large Block Error Detection Mechanism
	C. Approximately HD=3
	D. Implementation Considerations

	VIII. Conclusions
	IX. Acknowledgements
	X. References
	Appendix A: Example Inner Loop Code
	A. Dual-Sum, Block Size 4, byte-organized data word
	B. Dual-Sum, Block Size 4, 32-bit-organized data word
	C. Alternate Dual-Sum, Block Size 4, 8-bit-organized data word
	D. Alternate Dual-Sum, Block Size 4, 32-bit-organized data word, delayed modulo sumB for speed
	E. Alternate Dual-Sum, Block Size 4, 32-bit-organized data word, delayed modulo sumA and sumB for speed

