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Abstract—Checksum algorithms are widely employed due to 

their use of a simple algorithm with fast computational speed to 
provide a basic detection capability for corrupted data. This paper 
describes the benefits of adding the design parameter of increased 
data block size for modular addition checksums, combined with 
an empirical approach to modulus selection. A longer processing 
block size with the right modulus can provide significantly better 
fault detection performance with no change in the number of bytes 
used to store the check value. In particular, a large-block dual-
sum approach provides Hamming Distance 3-class fault detection 
performance for many times the data word length capability of 
previously studied Fletcher and Adler checksums. Moduli of 253 
and 65525 are identified as being particularly effective for general-
purpose checksum use. 

Keywords—checksum, Fletcher checksum, Adler checksum, 
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I. INTRODUCTION 
Modular addition checksums are ubiquitous for protecting 

the integrity of data in communication and storage software. 
While more capable (and complex) error detection and 
correction codes have become common as computational speeds 
have increased, the humble checksum is still a mainstay in many 
application domains, and is likely to remain so for the indefinite 
future. 

The main attraction of checksums is their simplicity, 
especially for low-resource embedded system applications. 
Simply adding up a series of data values in a sequence to get an 
integrity check value is about as simple as it gets. Even the dual-
sum approaches (described in detail below) are still just a pair of 
running sums. 

To be sure, more sophisticated coding approaches have their 
place. But that sophistication comes at the cost of algorithmic 
complexity and more demanding computational requirements. 
For example, Cyclic Redundancy Checks (CRCs) are very 
useful, and provide far superior fault detection capabilities to 
checksums [Koopman04], but are beyond the scope of this 
paper. 

The search for improved checksums has extended across 
many decades, with the most notable innovation being the 
advent of the dual-sum approach by Fletcher circa 1982 
[Fletcher82]. Other work has examined using a different 
modulus for the modular sum operation, such as the Adler 

checksum in the 1995 [Adler]. A more detailed discussion of 
previous work in checksums can be found in [Maxino09]. 

In this work we introduce a new parameter for checksum 
algorithms by considering larger block sizes for checksum 
processing. We also revisit the basis for modulus selection and 
find that an empirical approach reveals improved moduli 
compared to those typically used in existing implementations. 

The contributions of this paper include: identifying better 
moduli to use in modular addition checksum algorithms, 
extending existing checksum algorithms to provide better 
performance via a large-block approach, showing that an large-
block dual-sum checksum can provide Hamming Distance 3-
class performance (i.e., detection of all two-bit faults for 
practical purposes) at multiples of data word sizes beyond 
current checksum algorithms, and provide an explanation for 
why large-block checksum approaches are so effective. 

The remainder of this paper is organized as follows. Section 
II defines terminology and reviews commonly used checksum 
algorithms, including single-sum and dual-sum approaches. 
Section III reviews the experimental methodology for this 
empirically-driven exploration of improved checksum 
performance. Section IV describes improved modulus selection 
results. Section V presents larger block size results for single-
sum checksums. Section VI presents the results of applying 
improved modulus selection and larger block sizes to dual-sum 
checksums. Section VII explains the fault detection mechanism 
involved with large block size checksums. Section VIII provides 
conclusions. 

II. PREVIOUS CHECKSUM ALGORITHMS 
Checksum computations of interest for this paper take a 

collection of data (the data word), break that data into blocks of 
data, perform a modular addition across the data blocks within 
the data word to create a check value, and store that check value 
with the data word to create a code word. That code word can 
later be checked for integrity by recomputing the checksum from 
the data word and comparing that result to the stored check 
value. The following subsections describe this idea in more 
detail. 

A. Terminology 
A data word is an ordered collection of data values for which 

integrity protection is sought via a checksum computation. For 
the purposes of this paper, a data word is a sequence of bytes of 
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data, with the entire sequence of bytes considered a single data 
word. (Figure 1.) 

A check value is the result of a checksum calculation. It 
might be based on a single-sum algorithm that performs a single 
running modular sum of all the bytes in the data word. It might 
instead be a dual-sum algorithm that performs a pair of 
coordinated running modular sums of all the bytes in the data 
word (more detail on this later). Data words can be of any length, 
whereas check values are typically comparatively smaller, often 
one, two, four, or eight bytes in size. For a single-sum algorithm, 
the check value is the same size as the running sum (e.g., a two-
byte running sum gives a two-byte check value for a 16-bit 
single-sum checksum). For a dual-sum algorithm, each modular 
sum is half the size of the check value, with two modular sums 
concatenated to form a single check value (e.g., a pair of one-
byte running sums are concatenated to give a two-byte check 
value for a 16-bit dual-sum checksum). 

The check value is typically appended to the data word to 
form a code word. For the purposes of this paper, a code word is 
a sequence of bytes consisting of a data word followed by the 
bytes of the check value computed from that data word. This pair 
of data word plus check value is called a code word, in keeping 
with terminology from the area of error coding theory. The 
placement of the check value within the code word might be 
important in some circumstances, but does not affect the fault 
detection properties studied in this paper. 

When computing a checksum, the data word is divided into 
a sequence of blocks. Those blocks are sequentially fed into a 
checksum algorithm to produce a check value. In the general 
case, there are multiple blocks in a data word. A policy is set for 
a computation involving a partial block that might be 
encountered at the end of a data word. We assume the policy is 
padding any missing bytes in the last data word with zeros. In 
the special case that the block size is larger than the data word, 
a single zero-padded block is processed. 

A checksum algorithm computes a digest or hash of the 
blocks composing the data word to produce a check value. For 
the purpose of this paper, the computation is based on modular 
addition, in which each sum is modulo some specified modulus 
value, leaving a remainder after division of the sum by the 
modulus. (The use of the word “digest” in this paper does not 
connote any security properties. Checksum calculations are 
inherently insecure, and intended for use only in mitigating non-
malicious data corruption.) 

The modulus chosen must be in a range to produce the 
correct sum size, which means the modulus value should be 
between 2k-1+1 and 2k inclusive for a k-bit sum. (For example, 
an 8-bit sum should have a modulus between 129 and 256, 
inclusive.) Not all moduli perform equally well, so modulus 

selection is an important design parameter for a checksum 
algorithm. 

A code word is said to be valid if the check value in the code 
word matches a check value result computed from the data word 
portion of that same code word. An invalid code word is known 
to have been corrupted. 

A valid code word could be uncorrupted. But a valid code 
word could also, by chance, have had its bits corrupted in a 
pattern that transforms it from the original valid code word to 
some other different, but serendipitously valid, code word. Such 
a serendipitous transformation between code words results in an 
undetected fault.  

In keeping with previous work, the probability of an 
undetected fault Pud is the probability that any particular code 
word contains an undetectable (by the checksum algorithm) 
fault. This probability applies to all code words subject to 
potential faults rather than just the ones that would be known to 
be faulty by an omniscient observer. Note that in a typical case 
there will be many more detectable faults than undetectable 
faults, so system level interventions such as disregarding an 
obviously fault-prone communication channel or data storage 
device can be used to supplement checksums as part of a system 
fault management strategy [Koopman15]. 

Bit Error Rate (BER) is a typical parameter used in 
evaluating checksum performance. The assumption is that 
binary symmetric bit value inversions (“bit flips”) will occur 
with a fixed, random independent probability across the length 
of the code word. Each bit in the code word is subject to an 
independent probability (the BER) of suffering an inversion in 
which a “0” bit is flipped to a “1” or a “1” bit is flipped to a “0”. 
Note that these bit faults can occur to the entire code word, 
including the check value. 

We use a BER of 10-6 for evaluation, meaning that each bit 
in a code word has a probability of 1 in 1,000,000 of being 
inverted. For the code word lengths we study (up to 32K bits 
plus the check value), the predominant fault modes will be 
single-bit faults (approximately 1 in 31.5 code words), two-bit 
faults (approximately 1 in 1923 code words), and three-bit faults 
(approximately 1 in 175,971 code words at that maximum code 
word length). Having more than 3% of messages corrupted is 
excessive for many real world data use situations, so this is a 
fairly pessimistic BER than emphasizes exposure to multi-bit 
faults more than a lower BER would. Changes to BER and code 
word length would affect the relative contribution of 1-, 2-, 3-, 
and other bit faults to the overall Pud, but not the ability of a 
particular checksum algorithm to detect a given number of bit 
faults at a given code word length. 

The important effectiveness metric for a checksum 
algorithm is its ability to minimize undetected faults, meaning 
that lower Pud means the checksum is more effective. Pud will 
naturally become lower with a lower BER and shorter code word 
lengths, because there are fewer corrupted codewords that tend 
to have fewer numbers of bit faults. So in that sense the 
effectiveness curves in this paper for long code words and fairly 
high BERs are pessimistic. But the Pud curves do, however, 
illustrate the relative performance effectiveness of different 
checksum algorithms in a relative sense even if the BER were to 

 

Figure 1. Data organization of a code word. 
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be different. In general, effectiveness differences will increase 
even further with lower BER as one- and two-bit faults become 
comparatively more frequent compared to larger numbers of bit 
faults. 

 A Hamming Distance (HD) for the purposes of this paper is 
the minimum number of bits in the code word that can be 
inverted to produce an undetected code word corruption. For the 
checksum algorithms discussed in this paper the HD is either 
two or three. A Hamming Distance of two (HD=2) means all 
single bit faults will be detected by the checksum, but at least 
one two-bit fault is undetectable due to conversion of the 
original code word to an incorrect, but valid, faulty code word. 
At HD=3, all single bit faults and all two-bit faults are detected, 
but at least one three-bit fault is undetected. For faults at and 
beyond the HD value, many faults are still detected, but some 
are undetected. (There are other potentially relevant fault 
detection properties, such as burst fault detection, that are 
beyond the scope of this paper.) 

The HD is unaffected by the BER, but the number of multi-
bit faults will increase as the BER increases given a fixed code 
word length. Thus, Pud will generally increase for higher BERs 
for any given checksum algorithm.  

An important effectiveness consideration is that dual-sum 
algorithms offer HD=3 performance at comparatively short data 
word lengths, but will degrade to HD=2 performance at and 
beyond an algorithm-dependent data word length that we call 
the algorithm’s HD=3 capability. HD=3 is highly desirable for 
a random independent bit error model due to the dramatically 
lower probability of a three-bit error compared to a two-bit error 
at any particular BER. Therefore, the longest possible HD=3 
capability is especially desirable for general purpose checksum 
applications. 

B. Checksum Usage 
A checksum algorithm is generally used for error detection 

in data transmission or data storage performing the following 
steps: 

(1) The data word to be protected with an integrity check is 
placed into the code word, leaving room for a check 
value to be added in a later step. (Some communication 
systems initiate data transmission in parallel with 
computing the checksum. That difference does not 
matter for our purposes.) 

(2) The check value is computed on successive blocks of 
data in the data word according to the checksum 
algorithm, resulting in a valid code word with check 
value cv0. Some specified initial value is used to start 
the summing operation, which is assumed to be zero for 
this analysis. 

(3) The bytes of check value cv0 are placed into the 
remaining bytes of the code word, completing the code 
word.  

(4) The entire code word is stored, transmitted, or otherwise 
sent into an environment in which it might suffer one or 
more corruptions in the form of bit inversions according 
to a BER-driven process. (Length changes and other 

fault models are relevant in the real world, but beyond 
the scope of the fault model used for this analysis.) 

(5) An integrity check is performed by first using the 
checksum algorithm to compute a check value cv1 from 
the contents of the potentially corrupted data word. Note 
that cv1 might differ from cv0 due to corruption of the 
data word – but the receiver of the code word has no 
way to know the ground truth of what cv0 might have 
been, which is the motivation for performing 
subsequent steps in this procedure. 

(6) The bytes in the check value field of the potentially 
corrupted code word are extracted from the code word 
bytes and assembled as different check value cv2. Those 
bytes started holding a copy of cv0, but cv2 might not 
equal cv0 if the check value field of the code word has 
been corrupted. 

(7) The two recovered check values are compared: cv1 
(computed on the received data word), and cv2 
(recovered from the check value bytes in the code 
word). 

(8) If cv1 does not equal cv2, the code word is invalid. 
Therefore, the code word has definitely been corrupted, 
even though there might not be enough information 
available to determine exactly which bits were 
corrupted. 

(9) If cv1 equals cv2, one of two situations is true: either 
there has been no corruption of the codeword, or there 
has been a severe enough corruption (i.e., at least HD 
bits have been inverted) that the fault is undetectable by 
the checksum algorithm. In practice, the computation 
using the code word as a data source will accept the data 
as uncorrupted. But there will be a residual probability 
of an undetected corruption, Pud, that could lead to an 
eventual system failure. The lower Pud, the more 
effective the checksum algorithm. 

The above steps apply to all checksum algorithms discussed 
in this paper. The differences among algorithms discussed have 
to do with the whether the algorithm is single-sum or dual-sum, 
and the algorithmic parameters of block size and modulus. 

C. Single-Sum Checksums 
Classical checksum algorithms involve computing a single 

modular sum of block values drawn in sequence from the entire 
length of the data word. A generic description of such an 
algorithm is shown in Algorithm 1. 

 
Algorithm 1: Single-sum checksum. 

In Algorithm 1, M is a selected algorithm-dependent 
modulus. At each iteration, Sum is updated with the next block 
from the data word with a single modular addition. When all 

Initialize Suminitial = 0 
 
Iterate across each block i in data word: 
     Sumnew = ( Sumold + Blocki ) mod M 
 
Check Value is the final Sumnew 
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blocks have been processed, the final value of Sum is used as 
the check value for the code word. 

For example, a 16-bit check value with two-byte blocks (block 
size the same as the check value size) would process the data 
word in blocks of two bytes at a time. A 256-byte data word 
would therefore be processed as 128 two-byte blocks, yielding a 
two-byte modular addition summed check value. Typical single-
sum checksum parameters are below: 

• Twos8: (Two’s complement addition)  
   block size = 1 byte  
   check value = 1 bytes  
   modulus = 256 

• Ones8: (One’s complement addition)  
   block size = 1 bytes  
   check value = 1 bytes  
   modulus = 255 

• Prime8: (Largest prime modulus)  
   block size = 1 bytes  
   check value = 1 bytes  
   modulus = 251 

• Twos16:   
   block size = 2 byte  
   check value = 2 bytes  
   modulus = 65536 

• Ones16:  
   block size = 2 bytes  
   check value = 2 bytes  
   modulus = 65535 

• Prime16: (Largest prime modulus)  
   block size = 2 bytes  
   check value = 2 bytes  
   modulus = 65521 

The pattern is that a two’s complement checksum uses a 
modulus of 2k for a k-bit check value. A one’s complement 
checksum uses a modulus of 2k-1 for a k-bit check value. A 
prime modulus (an abbreviation of “largest prime”) uses the 
largest prime number less than 2k for a k-bit check value. 32-bit 
variants are possible with a block size of 4 bytes, check value of 
4 bytes, and a modulus chosen according to the check value size.  

For performance purposes, it is helpful to note that two’s 
complement checksums can simply use an 8-, 16-, or 32-bit 
register for the addition and ignore carry-outs (assuming use of 
ubiquitous two’s complement CPU hardware). In that sense, all 
additions on finite-size binary integers are modular division with 
a modulus of 2k for a k-bit hardware register – even if the modulo 
operation does not require an explicit division computation to be 
performed. 

One’s complement checksums can be implemented in practice 
by incrementing the running sum if a carry-out of the addition is 
detected. A lossless sum of two k-bit numbers in principle 
requires k+1 bits to store, such as an 8-bit sum of example values 
250+10=260, which requires 9 bits instead of 8 to represent. 
One’s complement addition increments the k-bit sum if that top-
most k+1st bit would have been needed to represent the sum 
(e.g., the carry-out of an 8-bit addition operation), for this 

example resulting in an 8-bit sum of ((250+10) mod256 + 1) = 
5.  This wrapping of the carry-out bit makes one’s complement 
checksums less vulnerable to bit faults on the top-most bit of a 
block [Maxino09].  

Prime checksums use the largest prime number that fits in a 
block-size number of bits as the modulus. The general idea is 
that a prime number typically has a mix of zero and one bits in 
its representation, promoting mixing among bits in the sum via 
the modulo operation to create a check value that is more 
effective. Smaller prime numbers might be used instead, but the 
thinking is that the largest prime makes the most efficient use of 
the available check value range. For example, a prime modulus 
of 251 supports a check value range of [0..250] whereas a prime 
modulus of 239 supports a smaller check value range of [0..238], 
which all things being equal would give better odds of detecting 
faults. (As it turns out, all things are not equal for small numbers 
of bit faults that dominate effectiveness under a BER fault 
model.) 

D. Dual-Sum Checksums 
A more advanced class of checksums was introduced by 

Fletcher’s work [Fletcher82]. In the Fletcher approach, a pair of 
running modular sums is used instead of a single sum. The first 
sum, which we denote SumA, is a conventional modular 
checksum that accumulates a running modular sum of all blocks 
in the data word. 

The second sum in Fletcher’s algorithm, SumB, is a running 
sum that is updated not by summing block values, but rather by 
summing the old version of SumB with the new version of 
SumA for each block being processed. The check value result is 
the concatenation of SumA and SumB. 

 
Algorithm 2: Dual-sum checksum. 

As with Algorithm 1, for Algorithm 2 M is the modulus, with 
the same modulus being used for both sums. All blocks from the 
data word are processed in a running sum approach, with the pair 
of sums updated as each block is processed. 

The concatenation operation means that the size of the check 
value is twice the size of each sum (e.g., two 16-bit sums are 
paired to produce a 32-bit check value). The sizing notation for 
the checksum is the check value size, so two 16-bit sums would 
be designated as a 32-bit dual-sum checksum. 

The two well-known existing dual-sum approaches are the 
Fletcher checksum [Fletcher82] and the Adler checksum 
[Adler]. The Fletcher checksum uses a one’s complement 
modulus, and the Adler checksum uses a largest-prime modulus. 
(Some implementations of the Fletcher checksum are said to use 
a two’s complement modulus, but we disregard them to avoid 
confusion. They have uniformly worse performance than the 
proper one’s complement implementation.) 

Initialize SumA = 0; SumB = 0 
 
Iterate across each block i in data word: 
 SumAnew = (SumAold + Blocki) mod M  
 SumBnew = (SumBold + SumAnew) mod M 
 
Check Value is final SumAnew concatenated with SumBnew 
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• Fletcher-16:  
   block size = 1 byte  
   check value = 2 bytes  
   modulus = 255 

• Adler-16:  
   block size = 1 byte  
   check value = 2 bytes  
   modulus = 251 

• Fletcher-32:  
   block size = 2 bytes  
   check value = 4 bytes  
   modulus = 65535 

• Adler-32:  
   block size = 2 byte  
   check value = 4 bytes  
   modulus = 65521 

As with single-sum checksums, dual-sum checksums can be 
scaled up or down in size by selecting appropriate parameters. 
Key properties of these checksums are that the check value is 
twice the block size, and the modulus is chosen to fit within the 
block size so that there is room for all the bits in both SumA and 
SumB in the check value. 

As discussed in Fletcher’s original paper [Fletcher82], dual-
sum checksums have the property that they are inherently HD=3 
through the number of data word bytes equal to the modulus 
minus one, which in the case of Fletcher16 is 255-1=254 bytes. 
This is because the SumB is effectively multiplying each SumA 

value by its position in the data word. For example, for a 255-
byte data word the value of Sum B is: 

255*SumA0 + 254*SumA1 + 253*SumA2 + … + 1*SumA254  (1)  

Because the SumB addition is modulo 255, the contribution 
from 255*SumA0 is zero, causing it to have no effect on SumB. 
Contributions from all blocks before the most recent 255 blocks 
to be lost from SumB (we call this the rollover length for a dual-
sum checksum computation). That leaves the code word 
vulnerable to two-bit faults in the data word exactly 255 bytes 
apart that cancel each other out, since at that point SumA is all 
that is protecting against that type of fault, and is vulnerable two 
such faults the same as an 8-bit single-sum checksum would be. 

All dual-sum checksums have a rollover length equal to the 
value of the modulus due to this mechanism. Nonetheless, 
having a guarantee of HD=3 up to a length of Modulus-1 is 
valuable, and this is something that we shall enhance with a 
large-block approach later in this paper. 

E. Baseline Checksum Performance 
Maxino and Koopman [Maxino09] previously evaluated the 

performance of checksum algorithms. Figure 2 shows 
simulation results from the study reported in this current paper 
in a format to facilitate comparison with fig. 6 of that previous 
publication, using a BER of 10-5. (That BER was suitable for the 
shorter messages previously studied.) That previous work found 
that one’s and two’s complement single-sum checksums 
differed in vulnerabilities to two-bit faults in the topmost block 
position for two’s complement checksums, but otherwise had 

 

Figure 2. Legacy checksum performance at BER of 10-5. Note that this is different than the BER of 10-6 used in other figures. 
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the same performance. The difference is difficult to discern on a 
semi-log plot. 

That previous work also found that Fletcher and Adler 
checksums had roughly comparable effectiveness. Both 
achieved HD=3 up to one byte data word lengths shorter than 
the modulus value, then transitioned to effectiveness dominated 
by 2-bit faults at longer data word lengths. This corresponds to 
the behavior predicted by the analysis of their rollover behavior. 

Our figure 2 adds three lines for idealized checksum 
performance. The “Idealized HD=1” assumes a fictitious 16-bit 
checksum algorithm that detects all faults with a probability of 
precisely 1/65536, which assumes completely uniform 
distribution of check values across the space of all possible 
check values. In other words, every faulty code word is assumed 
to be detected with probability of 1/65536 regardless of how 
many bit faults it has. One might expect this sort of performance 
with, for example, a 16-bit hash value generated from a 
cryptographically secure hash function. 

“Idealized HD=2” assumes all one-bit faults are detected, 
but there is a uniform distribution of check values for all other 
faults with a probability of undetected faults of 1/65536. (This 
idealized HD=2 curve corresponds to the curve denoted “1/2^k” 
in [Maxino09].) “Idealized HD=3” assumes all one- and two-bit 
faults are detected, again with a probability of undetected faults 
of 1/65536. The point of these lines is to provide a reference for 
idealized fault detection effectiveness, and not to imply that such 
checksums might actually be implemented in a simple and 
efficient way.  

In figure 2 we can see that single sum checksums do worse 
due to the poor mixing of bits via an addition function for all but 
the shortest data word lengths. Dual-sum checksums (Fletcher 
and Adler) do somewhat worse than idealized HD=3 
effectiveness up to their HD=3 capability, then operate above 
the idealized HD=2 curve. 

The findings in this paper have reproduced the previous 
checksum findings from [Maxino09] from scratch using a 
different simulation approach and all-new code base, validating 
both that previous work and helping to validate the code base 
used for this newer work. [Maxino09] contains a much more 
extensive treatment of previous work and analysis of existing 
checksums which is not repeated here in the interest of space. 

III. METHODOLOGY 
Figure 2 and other fault detection performance results were 

created with a purpose-built Monte Carlo simulation framework 
written in the C programming language. Simulations were run 
as single-threaded applications batched across 24 physical 
processor cores. The framework operates on the following 
principles, staying within the context of the overall steps in the 
use of checksums from section IIB described above: 

(1) A 32-bit PCG generator is used to generate the 
random byte stream [PCG]. The PCG generator is 
seeded differently for each run, based on time of 
day. (This suffices to produce dramatically 
diverging simulation runs. Cryptographic 
security of the pseudo-random number stream is 
not of concern for this purpose, so time of day is 

as good a practical source of different seeds as any.) 
Regression testing of the framework is done using a 
constant initialization seed value for repeatability. 

(2) For each experimental simulation step (an experiment in our 
terminology), a data word of a specified length is created 
using pseudo-randomly generated data bytes. 

(3) The check value using the checksum algorithm being 
investigated is computed to create a code word. 

(4) A pseudo-randomly selected bit is inverted within the code 
word. 

(5) The checksum algorithm is run to determine if the known-
corrupted codeword is valid. If it is valid, it must be an 
undetected fault because the codeword has been explicitly 
subjected to a known fault injection, so the fault counter for 
that number of bit inversions is incremented. 

(6) Steps (4)-(5) are repeated for additional, increasing numbers 
of bit faults with that same code word. At least one- through 
five-bit faults are evaluated for each experiment. 

(7) New pseudo-randomly generated data words are created and 
tested via fault injection, repeating steps (2)-(6) to run a set 
of many experiments. A set of experiments (typically tens 
to hundreds of millions of experiments at a single data word 
length) results in a single data point of undetected faults for 
a range of number of inverted bits at a specific data word 
length for a specific checksum algorithm. 

(8) A spreadsheet is used to accumulate multiple data points and 
convert the ratio of undetected faults to number of 
accumulated experiments into a Pud, taking into account 
data word length and BER. 

(9) A curve is plotted based on the total number of undetected 
faults across the collected data points. If the curve is not 
reasonable smooth, additional data points are collected 
using the above procedural steps. 

The data points are not a direct Pud simulation result, but 
rather a tuple of undetected tallies for a number of experiments 
with different fixed numbers of pseudo-randomly injected bit 
faults at a specific data word length for a specific checksum 
algorithm. This produces results that can yield better insights 
than a simulation based primarily on a probability-based bit 
inversion strategy, because it identifies the contribution of 
different numbers of bit errors to the checksum performance. 
For example, the HD=3 capability can be determined explicitly 
by looking for the shortest length with even a single non-zero 
undetected two-bit fault in simulation results. That permits 
increased understanding and confidence rather than having to try 
to infer the inflection point from comparatively small changes in 
a direct simulation of Pud via random fault injection using the 
per-bit BER probability. 

 

Figure 3. Approximate Pud calculation from [Koopman15]. 
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Pud is computed via a spreadsheet that uses Equations (1) 
and (2) of [Koopman15] (see figure 3), extended to encompass 
the available undetected bit fault information (one-bit to at least 
five-bit faults). Substantive contributions to Pud are for practical 
purposes only made by up to the first two or three non-zero 
undetected fault weights. 

The spacing of data points along the data word is adjusted 
for each checksum algorithm to improve fidelity when there are 
large changes in curvature. At short data word lengths and near 
the HD=3 capability for dual-sum checksums, data points are 
taken for every consecutive byte length. 

The number of experiments in a data point varies depending 
on the checksum algorithm. Lower Pud results demand more 
experiments to collect enough examples of undetected faults to 
create smooth Pud curves. Regardless of the algorithm, however, 
the number of experiments per data point ranges from the tens 
of millions to several billion, and each curve has in excess of 
100 data points at various data word lengths. 

In terms of raw experimental results, it is desirable to have 
at least several hundred undetected faults for the first non-zero 
number of undetected bit faults to achieve smooth Pud curves. 
The number of undetected 2-bit faults is quite small at the HD=3 
capability, so more experiments are run in that vicinity to ensure 
that 2-bit faults are consistently identified at all data points 
above the HD=3 capability (and no surprise 2-bit faults are 
undetected just below that data word length). 

In practice, achieving a smooth Pud line is a more demanding 
measure of statistical significance than more typical 
experimental evaluation approaches. This happens because each 
data point on the line is computed independently, but the data 
points are relatively dense on a line. This results in a visual 

measure of fluctuation from point to point that appears smooth 
if the fluctuations of data point values due to stochastic noise is 
less than about 1-2% on the semi-log scales being used. (To be 
clear, all plots shown in this paper are drawn with point-to-point 
line segments and are not fitted curves. Under these conditions, 
visual analysis of curve smoothness is a surprisingly sensitive 
technique.) 

An additional observation is that even very bumpy curves 
closely approximate final curves obtained via accumulation of 
data points. In other words, as data points accumulate the curve 
smooths out rather than changing its basic shape. Visual 
observation of decline in curve bumpiness turns out to be an 
excellent measure of simulation progress as additional data 
points are collected from experimental batches. 

Limitations of available computer time dictate that 
experiments be run until the plot is smooth without re-running 
in evenly-sized distinct data sets, so statistical measures beyond 
data plot smoothness were impractical. That having been said, 
curve smoothness and the dramatic differences in effectiveness 
between algorithms, confirmed by analysis, make it clear that 
the results in this paper indicate real effects and not statistically 
ambiguous findings. 

The remaining effectiveness plots use a BER of 10-6 as 
described previously. For consistency, figure 4 shows legacy 
checksum effectiveness at this BER. 

IV. ALTERNATE MODULI 
Our results show that a more empirically-based selection of 

modulus for the modular addition operation can improve fault 
detection effectiveness. As noted previously, moduli are 
traditionally selected based on corresponding to two’s 

 

Figure 4. Curves from figure 1 replotted with BER=10-6. 
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complement or one’s complement addition, or a prime modulus. 
However, other alternatives not dependent upon the 
factorization of the modulus can provide better performance. 

A. Modulus Selection Criteria 
As previously discussed, a two’s complement modular 

addition simply ignores any carry-out bits larger than the integer 
size being used. A one’s complement is in principle a mod 255 
operation, but in practice amounts to “wrapping” the carry-out 
bit out and back into the sum as an additional post-sum 
increment of the result if the carry-out bit was a “1”. 

The only mixing promoted by either a two’s or one’s 
complement addition checksum is the normal inter-bit-position 
carries inherent to addition. The effect of that bit mixing is 
indeed helpful, and can be seen in the performance difference 
between an XOR checksum, which has no inter-bit carries, 
compared to a two’s complement addition. However, even with 
inter-bit carries, sums are still vulnerable to two-bit faults that 
occur in the same bit position for block values that do not happen 
to involve a carry operation affecting those bit positions. 

A way to improve mixing among non-adjacent bit positions 
is to use a different modulus that involves a more substantive 
division operation, mixing bits beyond the addition carry effects. 
This can be done by selecting a modulus that has a mix of 0 and 
1 bit values in its representation while yielding an output value 
that provides the same number of bits as the running sum. 

An intuitive candidate for an alternate modulus is using a 
prime number. A typical justification is that a prime number has 
no common factors with two’s complement modulus, since all 
two’s complement moduli are even powers of two. 

A further tradeoff is that a larger modulus makes better use 
of the available representation space of the check value as 
discussed earlier. However, the largest odd modulus (255 for 8-
bit checksums) turns out to be a poor choice, so additional care 
is required in modulus selection. 

B. Experimental Modulus Selection 
Simulations for 8-bit and 16-bit single-sum checksums 

showed that even moduli values were a uniformly poor choice. 
Odd moduli were much better, with the choice of odd modulus 
value making little difference, with a few exceptions. 

For 8-bit moduli, the values 201 and 129 are significantly 
worse than other moduli, even ones very close to them, for no 
readily discernable reason. The modulus 255 is slightly worse 
than other moduli for small, odd numbers of bit faults, but about 
the same for even numbers of bit faults. The largest prime 
modulus 251 is slightly better than 255, but not dramatically so, 
and not substantively better than other odd moduli. Smaller 
prime numbers used as moduli similarly show no substantive 
performance difference (227, 229, 233, 239, and 241). Table 1 
shows representative effectiveness, with prime moduli bolded. 

For 16-bit moduli there are similarly some poor candidates, 
but they are few. Prime moduli of either size do not have any 
distinct advantage. They perform about the same as most other 
odd moduli.  

We will discuss in the next section that there are compelling 
reasons to select specific moduli for large-block checksums. For 

traditional single-sum checksums a largest-prime modulus is as 
good a choice as most, but not distinctly better than many non-
prime moduli. A one’s complement modulus loses effectiveness 
slightly for odd numbers of bit faults, but if it can be 
implemented without using a division instruction, modulus 255 
might still be advantageous due to improved computational 
speed. 

Modulus selection tradeoffs change dramatically for large-
block checksums. The moduli recommended for large-block 
checksums will be comparable in performance to prime modulus 
checksums for small blocks, but have added flexibility for large-
block application. For example, we shall see that 253 is a better 
modulus choice than either 251 or 255 for large block 
checksums. 

V. SINGLE-SUM LARGE-BLOCK CHECKSUM PROCESSING 
Beyond the modulus, another parameter that can be varied in 

defining a checksum algorithm is the block size. Modular 
addition can do more than gracefully handle addition overflow 
bits. It can also perform a range reduction operation on a block 
size much larger than the sum. This does not redefine the 
checksum algorithmic description, but does re-envision what the 
operations in that algorithm are doing. 

A. Large-Block Modular Addition 
As stated earlier, the heart of a checksum operation is the 

modular sum: 

Sumnew = ( Sumold + Blocki ) mod M (2) 

The presumption in previous checksum operations is that 
each block and the running sum are the same size. But what if 
the block is significantly larger, such as a one-byte check value 
with a 4-byte or even 8-byte block size? It turns out this can 
dramatically improve error detection effectiveness. 

Table 1. Undetected faults for single-sum checksum 
with varied moduli. 90 million data points per modulus. 
128 byte data word; 1 byte check value; 1 byte block. 

  Fraction of undetected faults 
Modulus 1-bit 2-bit 3-bit 4-bit 5-bit 
 255 0% 6.21% 1.17% 1.38% 0.72% 
 253 0% 6.20% 1.02% 1.38% 0.66% 
 251 0% 6.21% 1.02% 1.34% 0.66% 
 249 0% 6.20% 1.02% 1.34% 0.66% 
 247 0% 6.21% 1.02% 1.34% 0.65% 
 245 0% 6.20% 1.02% 1.30% 0.64% 
 243 0% 6.21% 1.02% 1.31% 0.64% 
 241 0% 6.20% 1.02% 1.34% 0.67% 
 239 0% 6.20% 1.02% 1.34% 0.67% 
 237 0% 6.20% 1.02% 1.30% 0.63% 
 235 0% 6.20% 1.02% 1.31% 0.62% 
 233 0% 6.20% 1.02% 1.30% 0.65% 
 231 0% 6.20% 1.02% 1.30% 0.65% 
 229 0% 6.20% 1.02% 1.30% 0.64% 
 227 0% 6.20% 1.02% 1.30% 0.67% 
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The modular checksum operation can be rewritten, 
exploiting the commutativity of modular addition, to: 

Sumnew = ( Sumold +   (Blocki mod M)   ) mod M (3) 

Adding the additional mod M operation to Blocki does not 
change the mathematical result. But it does call attention to the 
fact that the mod operation in modular checksum is actually 
performing two functions concurrently if block size is increased: 

(1) Range reduction of the block to the integer size of the 
running sum (the inner “mod M” reduces the block to be the 
same number of bits as the running sum, assuming the 
modulus is sized to do this). 

(2) Wrapping any overflow from the addition beyond the 
modulus size back into the running sum (the outer “mod 
M”). 

The range reduction step (1) can become a potent bit mixing 
operation using a natively supported division instruction. This is 
because remainder after division is a convolution operation, 
resulting in bits of the divisor in essence being used to stir the 
bits of the dividend. The larger the block size, the more effective 
this bit mixing will be. 

Increasing the block size provides improved effectiveness 
for single-sum checksums, and dramatic improvements for dual-
sum checksums. 

B. Large-Block 8-Bit Single Sum 
A large-block checksum has a block size larger in terms of 

number of bits than the size of the addition being used in the 
checksum addition. More precisely, it has a block size larger 
than the next power of two larger than the modulus. 

As a concrete example, a single-sum checksum with a check 
value of 1 byte traditionally has a block size of 1 byte. In a large-
block checksum, the block size might be 2 bytes, 3 bytes, 4 
bytes, or larger. A block size of 8 bytes would be readily 
supported on a processor with 64-bit architected data registers, 
and support is routinely available for 128-bit values on some 
computing platforms. Similarly, a large-block dual-sum 
checksum processes the data work in blocks larger than the size 
of each individual sum. 

This paper explores the effects of blocks in size up to 16-
byte blocks (128 bits), which is the largest convenient integer 
size on commonly available current computers. We expect 4-
byte and 8-byte blocks to be especially common in practical 
implementations, so we present results for an assortment of 
block sizes. From a programming point of view, this is done by 
using large integer variables for computing the checksum, 
processing a set of multiple bytes at a time from the data word. 
The algorithms are the same as previously described Algorithms 
1 and 2. It is simply that the blocks are larger. Multiple bytes 
from the data word are processed for each sum, and some care 
must be exercised to avoid integer overflow on intermediate sum 
results if they completely fill the bits of a declared variable of a 
given size. 

Modulus selection for large-block modular sums is much 
more critical than for normal-block modular sums. Some moduli 
have a dramatic reduction in performance at larger block sizes, 

while others do not. Perhaps surprisingly, a prime modulus is 
not necessarily the best choice.  

Table 2 shows modulus performance for single-sum addition 
checksum at a data word length of 128 bytes and block size of 8 
bytes. 

From table 2 we can see that, at the longer block length of 8, 
fault detection can vary dramatically compared to block size 1 
effectiveness shown in table 1. We consider undetected 2-bit 
faults since those will dominate the Pud results. Modulus 255 has 
effectiveness at a block size of 8 that is essentially unchanged 
compared to a block size of 1 (modulus 255 @ 6.20%). The 
largest prime modulus has somewhat better performance 
(modulus 251 @ 2.03%). But modulus 253, which has not 
previously been considered as an attractive checksum modulus 
candidate, has dramatically better performance (modulus 253 @ 
0.73%, more than a factor of 8 improvement compared to block 
size 1 performance). 

Visualizing the performance of different moduli at 
increasing block sizes reveals an interesting pattern. 

Figure 5 shows the results of simulating single-sum 
checksum effectiveness for different moduli at a data word size 
of 128 bytes. (Other data word sizes sampled have substantially 
similar results.) The top line for 1-byte blocks shows essentially 
the same effectiveness on two-bit faults for all moduli. 
Subsequently lower charted lines show the fraction of 
undetected faults decreasing for moduli other than 255 – up to a 
point. At some modulus-dependent block size, effectiveness 
improvement stalls, increasing only marginally with increasing 
block size past that point. 

Modulus 255 does not improve past block size 1. Modulus 
251 gets stuck at block size of 3, yielding only marginal 
improvements past that point. On the other hand, modulus 253 
and a few others keep providing improved performance up to a 
block size of 8 (and, as we shall see in a later figure, even longer 
than that). 

Table 2. Undetected faults for single-sum checksum 
with varied moduli with large block size. 

128 byte data word; 1 byte check value; 8 byte block. 

  Fraction of undetected faults 
Modulus 1-bit 2-bit 3-bit 4-bit 5-bit 
 255 0% 6.20% 1.17% 1.38% 0.72% 
 253 0% 0.73% 0.39% 0.40% 0.39% 
 251 0% 2.03% 0.37% 0.45% 0.40% 
 249 0% 1.30% 0.33% 0.46% 0.38% 
 247 0% 1.42% 0.42% 0.42% 0.41% 
 245 0% 0.73% 0.37% 0.42% 0.41% 
 243 0% 0.73% 0.31% 0.46% 0.38% 
 241 0% 4.16% 0.87% 0.84% 0.53% 
 239 0% 0.73% 0.41% 0.42% 0.42% 
 237 0% 0.73% 0.32% 0.47% 0.40% 
 235 0% 0.73% 0.40% 0.43% 0.42% 
 233 0% 1.73% 0.27% 0.47% 0.42% 
 231 0% 1.66% 0.42% 0.56% 0.42% 
 229 0% 1.37% 0.46% 0.45% 0.44% 
 227 0% 0.73% 0.44% 0.44% 0.44% 
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From this graph, it is clear that modulus 253 is a better choice 
than 251 (the largest prime) for moderate to large block sizes. 
But the question is, why? The answer to why some moduli do 

better than others is related to the two-bit fault sensitivity of 
modular sums. 

 

Figure 5. Undetected fault fraction for odd moduli with increasing block size. Two-bit faults; 128-byte data words. 

 

Figure 6. Largest block size in bytes with no undetected two-bit faults from single-block modular division. 
(Considers faults in the data block and not check value faults.) 
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C. Two-Bit Fault Sensitivity of Modular Sums 
There are two ways that a two-bit fault can be undetected in 

a single-sum checksum. The first mechanism is two bit faults in 
the same position in two data blocks. Those two faults can 
compensate for each other and result in the same checksum 
value. As an 8-bit example: 

Uncorrupted:   Data word: 0x00 00    Check Value: 0x00 
Corrupted: Data word: 0x01 01    Check Value: 0x00 
 There is a different but similar undetected fault mechanism 

in which one fault occurs to a data block, and a second fault 
occurs in the same bit position of the check value.  As an 8-bit 
example: 

Uncorrupted:   Data word: 0x00 00    Check Value: 0x00 
Corrupted: Data word: 0x01 00    Check Value: 0x01 
Again, the faults result in a valid code word and undetected 

two-bit fault. These fault mechanisms apply to all single-sum 
checksums. 

Increasing the block size introduces a third possible 
mechanism to create undetectable two-bit faults. If two bits in 
the same block are inverted, it might be the case that the result 
of the “mod M” operation has the same value with and without 
the two-bit fault injection. If there is no difference in the output 
of the modulus range reduction into the running sum, there is no 
way for the checksum to detect that such a fault has occurred. 

This means faults will be undetectable for block sizes larger 
than the running sum size if they satisfy this equality: 

Block mod M = (Block xor Fault) mod M (4) 

where in the case of interest, the Fault value has exactly two “1” 
bits (i.e., exactly two bits are inverted in the Block value by the 
xor operation). 

A different Monte Carlo simulation program was created to 
inject faults in pseudo-randomly generated integers from 1 to 16 
bytes in size and determine if the remainder after division was 
the same. (This simulation did not compute a checksum value 
and did not attempt to corrupt bits in any check value – it was 
solely to look for pairs of bits that would be undetectable if 
corrupted as an input to a mod M operation for a particular 
modulus.) 

In figure 6 each bar represents the maximum number of 
bytes in a block that could be used while avoiding two-bit faults 
within that same block that cancel each other out as just 
described. (To be sure, single faults in the block could result in 
changes to the remainder used in the sum. The only case of 
concern for this graph is one in which exactly two bit faults in 
the block result in an unchanged remainder value after applying 
the modulus.) 

The height of the bars in figure 6 explains the patterns in 
figure 5 in which different moduli stopped performing well 
beyond a particular block length. Two bit faults via the first and 
second mechanism described above will still result in an 
undetected fault rate at all block lengths, driven by the ability of 
faults in the block to generate a one-bit result after the modulus 
is applied. But once the modulus being used is vulnerable to 
undetectable two-bit faults within the same block, that permits 
those faults to escape without the summing operation ever 
getting a chance to detect them, resulting in very little further 
effectiveness improvement with increased block size. 

 

Figure 7. 8-bit single-sum effectiveness with prime modulus 251. 
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These results predict that effectiveness of modulus 255 will 
degrade with block size 2. They also predict that the prime 
modulus 251 will degrade at block size 4. On the other hand, 
they predict that modulus 253 will have excellent effectiveness 

up to a block size of 13 bytes, and modulus 239 will be good up 
to 14 byte blocks. 

As a sanity check on these results, the following specific 
undetectable two-bit patterns were identified via the simulation 

 

Figure 8. 8-bit single-sum effectiveness with modulus 253. 

 

 

Figure 9. 16-bit single-sum effectiveness with moduli 65521, 65525, and 65535. 
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used to create figure 6. Again, the property being looked for is 
two block values that give the same answer (not necessarily 
zero) under range reduction by the modulus that differ in exactly 
two bit positions: 

Mod 251: undetected fault at 4 byte block size 

0x80000040 mod 251 = 0x00000000 mod 251 = 0 
Mod 253: undetected fault at 14 byte block size 

0x0000000000000000000000000002 mod 253 =  
0x8000000000000000000000000000 mod 253 = 2 
Offering a proof that there are no two-bit undetected faults 

for modulus 253 up to block sizes of 13 is beyond the scope of 
this paper. However, a very large number of experiments (see 
Section VII) failed to find a single counter-example, so we 
consider modulus 253 to provide resistance to two-bit faults in 
this manner up to a block size of 13 bytes for practical 
engineering purposes. 

To determine the effect of this property on single-sum 
checksums, we examine the effectiveness of different block 
lengths on 8-bit checksum performance. 

Figure 7 shows the significant error detection effectiveness 
improvement of moderately larger block sizes for modulus 251. 
For interpreting the legend of figure 7 and subsequent figures 
the notation “ADD8-251-b3” means an 8-bit single-sum 
checksum with modulus 251, and block size of 3 bytes.  

In figure 7, a block size of 1 byte is slightly better than a 
one’s complement checksum, as expected. However, a block 
size of 2 is significantly better, and a block size of 3 is better 
still. However, as predicted, block sizes of 4 and 16 plot on top 
of the block size 3 curve. 

In contrast, figure 8 shows that modulus 253 provides 
increased effectiveness for even large block sizes. The 
performance of moduli 251 and 253  would be indistinguishable 
if the curves on figures 7 and 8 were superimposed for block 
sizes of 1, 2 and 3 bytes. However, modulus 253 continues to 
improve up to a block size of 13, stalling there with the same 
performance at block sizes of 14 bytes and higher. For a 128 
byte data word, modulus 253 provides 14.2 times better Pud for 
13 byte blocks than 1 byte blocks. 

The wavy and horizontal portions of curves for small block 
sizes on figures 7 and 8 for block lengths below 32 byte data 
word lengths are not simulation artifacts. Those graphical 
features remained stable in shape while increasing the number 
of simulations by an order of magnitude. We believe they are 
caused by quantization effects for block lengths that are about 
the same size as, or larger than, the data word length. 

Based on these results, we select modulus 253 as a promising 
candidate. Modulus 239 has a one-byte better range on large 
blocks, but has other properties for dual-sum checksums that 
might make it less attractive. This topic will be revisited in the 
context of large-block dual-sum checksums. 

The error detection advantage of modulus 253 at high block 
lengths is maintained for all data word lengths considered (up to 
4096-byte data words for this work), and there is every 
expectation that would continue at higher data word lengths. 

D. Large-Block 16-Bit Single Sum 
A similar situation exists for 16-bit single sums block sizes 

of two bytes and above. Some moduli exhibit two-bit fault 
vulnerabilities at increased block lengths, but a significant 
majority of moduli examined retain two-bit fault detection 
capabilities at, and likely above, 16 byte blocks. 

Table 3 shows the performance of large, odd moduli for 16-
bit single-sum checksums for a block size of 16 bytes and a data 
word size of 128 bytes. Two-bit fault detection is essentially 
identical except for modulus 65535, which has quite poor 
performance at almost nine times worse than other moduli. 

At three-bit faults our preferred modulus of 65525 is three 
times better than the largest prime modulus of 65521, which 
becomes important at large data word sizes in which 3-bit faults 
are more likely to occur. 65525 is better than 65521 for 3-, 5-, 
7-, and 9-bit faults for two data word lengths studied: 128 bytes 
as well as 1024 bytes. 

It should be noted that the modulus matters less as the block 
size is reduced, with very little difference between moduli other 
than the one’s complement modulus 65535 being a uniformly 
poor performer. Nonetheless, using a modulus of 253 or 65525 
is always better than one’s complement or prime moduli. 

Figure 9 shows the comparative performance of single-sum 
checksums with moduli of 65521, 65525, and 65535 (one’s 
complement). Increasing block size has no effect for modulus 
65535, with block size of 2 bytes and 16 bytes both plotted on 
top of each other as well as the other moduli at block size 2 on 
the top curve. Both 65521 and 65525 have indistinguishable 

Table 3. Undetected faults for single-sum checksum 
with varied moduli with large block size. 

128 byte data word; 2 byte check value; 16 byte block. 

  Fraction of undetected faults 
Modulus 1-bit 2-bit 3-bit 4-bit 5-bit 
65535 0% 3.080% 0.2890% 0.3124% 0.08906% 
65533 0% 0.343% 0.0268% 0.0090% 0.00317% 
65531 0% 0.344% 0.0119% 0.0067% 0.00199% 
65529 0% 0.343% 0.0119% 0.0062% 0.00188% 
65527 0% 0.343% 0.0119% 0.0058% 0.00191% 
65525 0% 0.343% 0.0040% 0.0063% 0.00177% 
65523 0% 0.343% 0.0115% 0.0085% 0.00261% 
65521 0% 0.343% 0.0120% 0.0069% 0.00220% 
65519 0% 0.343% 0.0120% 0.0059% 0.00196% 
65517 0% 0.344% 0.0040% 0.0061% 0.00157% 
65515 0% 0.343% 0.0089% 0.0055% 0.00180% 
65513 0% 0.344% 0.0041% 0.0049% 0.00159% 
65511 0% 0.344% 0.0040% 0.0062% 0.00155% 
65509 0% 0.344% 0.0040% 0.0055% 0.00166% 
65507 0% 0.343% 0.0043% 0.0053% 0.00163% 
65505 0% 0.344% 0.0186% 0.0126% 0.00465% 
65503 0% 0.343% 0.0134% 0.0125% 0.00485% 
65501 0% 0.344% 0.0040% 0.0050% 0.00160% 
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curves with improved effectiveness for block sizes of 4, 8, and 
16 bytes. 

An analogous screening process suggests the modulus 
4294967283 as a good selection for 32-bit checksum addition. 

 

Figure 10. Fletcher16 compared with Dual255-b2. 

 

Figure 11. Adler16 compared with longer block modulus 251 dual-sum checksums. 
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VI. DUAL-SUM LARGE-BLOCK CHECKSUM PROCESSING 
Having found improvements in using a well-chosen modulus 

and large block sizes on single-sum checksums, we turn our 
attention to dual-sum checksums in the style of Fletcher and 
Adler checksums. (We refer to the extended block versions as 
one’s complement and largest prime dual-sum checksums since 
large-block performance was not a design objective of those 
earlier works. Any comparative lack of effectiveness at large 
block sizes was beyond the scope of the designers who created 
those checksum algorithms, and should not be considered 
criticism of their work.) 

A. One’s Complement Dual-Sum Modulus 
As was the case for single-sum checksums, using a one’s 

complement modulus provides no benefit with increased block 
size for a dual-sum checksum algorithm. Indeed, the poor 
performance of modulus 255 becomes apparent at a block length 
of 2, just as was seen with modulus 255 for single-sum 
checksums. Figure 10 shows a Fletcher16 checksum (dual 8-bit 
sums with modulus 255) with block length of one and block 
length of two (“Dual255-b2”). At a block length of 1, the HD=3 
capability is 254 data word bytes. At block length of 2, it reduces 
to 1 byte. 

Figure 10 also reveals a more subtle feature of dual-sum 
checksum performance, which is that there are multiple 
effectiveness inflection points. The first inflection point is the 
obvious HD=3 capability at data word length 254 bytes for a 
Fletcher16 checksum. The second is at 508 bytes, which is 
double the rollover length of the SumB variable. The 2-byte 
block effectiveness converges with the 1-byte block curve in the 
vicinity of this second inflection point. 

B. Largest Prime Dual-Sum Modulus 
A largest-prime modulus creates a striking effect with 

increased block sizes by doubling or tripling the length of the 
HD=3 capability. 

Figure 11 shows that a largest-prime modulus of 251 has 
HD=3 capability of 250 bytes as expected. Moreover, increasing 
the block length increases that capability to 500 bytes (2 byte 
blocks), and 750 bytes (3 byte blocks). A block size of 4 bytes 
“breaks” the dual-sum approach with this modulus, with an 
HD=3 capability of 3 data word bytes. 

To be clear about the implications of this graph: computing 
an Adler16 checksum using two bytes of the data word at a time 
(block size of 2 bytes) increases the HD=3 capability from 250 
bytes to 500 bytes, with no other change to the checksum 
algorithm beyond increased block size. A block size of 3 bytes 
extends the HD=3 capability to 750 bytes. Beyond that, larger 
block sizes degrade effectiveness severely to be HD=2 at all but 
the very shortest data word lengths. As with modulus 255, the 
high-block-length curves merge with the highest good HD block 
size at about one rollover length beyond the HD=3 capability of 
the largest good block length. 

C. A Better Dual-Sum Modulus 
To be sure, tripling the HD=3 capability of an Adler 

checksum by increasing the block size (checksum algorithm 
Dual251-b3) is impressive. But this immediately raises two 
questions: why did Dual251-b4 fail so dramatically? And, is 
there a way to do even better? 

 

Figure 12. Modulus 251 vs. Modulus 253 for dual-sum checksums. Portions of k16-b3 and k16-b4 curves omitted for clarity. 
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The reason that Dual251-b4 failed so dramatically can be 
seen in Figure 6 in the discussion on single-sum checksums. A 

modulus of 251 is vulnerable to two-bit undetected errors at a 
block size of 4, and we saw Dual251-b4 fail. 

 

Figure 13. Koopman16 dual-sum checksum performance. Modulus 253; block sizes range from 1 to 13 bytes. 

 

Figure 14. Modulus 253 vs. Modulus 239 long-block dual-sum checksum performance comparison. 
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Still referring to Figure 6, modulus 253 looks much better. 
And it turns out it is also better for dual-sum checksum use, 
providing excellent results through Dual253-b13. 

Figure 12 compares Dual253 checksums to Dual255 
checksums. (We immodestly call Dual253 checksums Koopman 
checksums. We use the notation k16-bX representing a 16 bit 
check value and block size of X bytes with an implicit modulus 
of 253 for Koopman16 dual-sum checksums.) 

Figure 12 shows that Koopman checksums perform almost 
identically to Dual251 checksums for a block size 1 byte. At a 
block size of 2 bytes, Dual251-b2 has a slightly better 
effectiveness, but a slightly shorter HD=3 capability due to the 
modulus being different. The difference increases at a block 
length of 3. (Portions of k16-b3 and k16-b4 curves have been 
omitted from the graph to be able to see Dual251-b2 and 
Dual251-b3 curves clearly.)  

However at a block size of 4, Dual251-b4 switches to HD=2 
behavior for any but the smallest block sizes, while k16-b4 
moves the HD=3 capability by yet another multiple of its 
rollover length. 

It is also interesting to note that both dual-sum checksums 
get closer to the Simple HD=3 trend line as block size increases. 
This appears to be due to improved bit mixing of the modulus 
operation on larger blocks, with the modulus operation 
increasingly approximating a randomized check value at HD=3. 

This improved block size capability for modulus 253 is not 
a fluke, but related to the vulnerability to two-bit faults in the 
modulo operation previously discussed. Exactly as predicted, 
figure 13 shows that Koopman checksums provide improved 
HD=3 performance up to block sizes of 13 bytes, with the HD=3 
capability increases by 252 data word bytes for each one-byte 
increase in block size. Modulus 253 reverts to HD=2 behavior 
at 14 bytes (figure 14). 

 

Pud degrades quickly above the HD=3 capability as with 
other dual-sum checksums. However, in an echo of performance 
with single-sum checksums, longer block lengths maintain 
better HD=2 performance past their HD=3 capability due to 
improved large-block bit mixing. 

Even a single two-bit undetected fault makes a bigger 
contribution to Pud at a modest BER due to the much higher 
probability of two-bit faults compared to three-bit faults. This 
accounts for the steep slope of the Pud curve at the HD=3 
capability. After that, the initially small fraction of undetected 
two-bit faults increases to the point that contributions from 
undetected three-bit faults no longer dominate the Pud result.  

As expected, k16-b14 has poor effectiveness, with an HD=3 
capability of 13 bytes. (This behavior of still being good up to 
13-byte data words helps confirms the analysis discussed in the 
next section.) 

D. What About Modulus 239? 
Figure 6 showed that modulus 239 had even better long-

block capability than modulus 253, by one byte of block length. 
However, the HD=3 capability of any given block length 
happens at shorter lengths (multiples of 238 bytes, rather than 
multiples of 252 bytes).  

Figure 14 shows a comparison of 13 and 14 byte data word 
lengths for moduli 239 and 253. The expected behavior of a 
HD=3 capability up to 14 byte block length for modulus 239 is 
confirmed. But due to the shorter rollover length, the difference 
between 252*13 and 239*14 maximum HD=3 capabilities is so 
small that there is only a very narrow window of data word size 
that favors modulus 239. (Omitted from the graph for clarity is 
confirmation that indeed modulus 239 degrades to HD=2 
behavior for a block size of 15 bytes as expected.) 

Based on these results, we recommend that modulus 253 
with the largest block size reasonably supported by the 
implementation platform be used as a general-purpose dual-sum 
checksum. 

VII. FAULT DETECTION PERFORMANCE 

A. Maximum effective block size 
The HD=3 capabilities of large-block dual-sum checksums 

provide a pattern that helps understand how they work. Each 
modulus provides HD=3 at increasing data word lengths with 
increased block size – up to a point. Beyond that point 
effectiveness degrades to HD=2 at very short data word lengths. 

Table 4 summarizes data for the four moduli studied for 
dual-sum checksums. The observed data reveals the pattern: 

HD3Capability = BlockSize * (Modulus-1) (5) 

Intuitively the size of the sum might seem like it would have 
an effect for moduli larger than one byte. However, this is 
negated by the need to divide the block into larger pieces to feed 
the sum. So a 16-byte block provides a 16:1 digest size 
compression for 1-byte sums, but only an 8:1 digest size 
compression when converting 16-byte blocks into 2-byte sum 
inputs. Thus, the size of the sum cancels out and is not included 
in the formula. 

Table 4. Observed HD=3 capability for different dual-sum 
checksum moduli. 

Modulus Block Size HD=3 capability 
 255       1  254 
 255       2  1 
 
 251       1  250 
 251       2  500 
 251       3  750 
 251       4+  3 
  
 253       1  252 
 253       2  504 
 253       3  756 
 253       …   block size * 252 
 253       12  3024 = 12*252 
 253       13  3276 = 13*252 
 253       14+  13 
  
 239       13  3094 = 13*238 
 239       14  3332 = 13*238 
 239       15+  14 
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This empirical relationship of HD=3 capability to block size 
and modulus permits us to assemble an explanation of the large 
block error detection mechanism for dual-sum checksums. 

B. Large Block Error Detection Mechanism 
Before relying on the effectiveness of large block 

checksums, it is reasonable to want to understand the 
mechanism that provides their advantages. It involves a 
combination of the dual-fault resistance properties of the chosen 
modulus, plus the dual-sum checksum rollover length, both of 
which have been previously described. 

Similar to our earlier discussion of undetected fault 
mechanisms for single-sum checksums, there are three ways for 
a two-bit fault to be undetected in a dual-sum checksum: 

1. A one bit fault in the check value that compensates for 
a one-bit fault in a data word. However, for split sum 
checksums these can only occur in data words larger 
than the rollover length of the modulus. 

2. Two separate bit faults that are separated in the data 
word by at least the rollover length. 

3. Two separate bit faults within a single block that result 
in an unchanged modulus operation result, presenting an 
unchanged input to the summing operation. 

The third mechanism becomes problematic for large-block 
checksums, as was seen for single-sum checksums. 

These fault mechanisms account for long-block dual-sum 
checksum fault behavior if the range reduction function of the 
modulus is considered as computing a sequence of digest values 
that are then fed into the dual-sum checksum. 

Figure 15 shows a conceptual diagram of how a long-block 
checksum works. The concept is general to both single-sum and 
dual-sum checksums, but a specific example has been chosen 
for illustrative purposes of a modulus 253, block size 8 byte, and 

a 2-byte check value for a dual-sum checksum, which will 
achieve an HD=3 capability for a 2016 byte data word. 

In figure 15, the data word of 2016 bytes is broken down into 
252 blocks for processing, with each block being 8 bytes in size 
(a k16-b8 checksum algorithm in this example). Each block of 
8 bytes undergoes a range reduction via a mod 253 operation, 
resulting in a one byte remainder value that is, for practical 
purposes a digest (or hash value) of the corresponding 8-byte 
block. This results in a sequence of 252 digest bytes. Those 
digest bytes are then processed by a dual-sum checksum that 
also uses mod 253 to produce a check value. 

Because the modulus 253 is resistant to undetectable two-bit 
faults as a digest function at and below 13-byte blocks, we know 
that any 1- or 2-bit fault in a single block will produce at least a 
one-bit change in its digest compared to the fault-free digest 
value. In other words, if the block has a 1- or 2-bit fault, the 
digest will also have some fault. 

We also exploit a property of dual-sum checksums not 
previously discussed. Dual-sum checksums do better than 
providing HD=3 up to one less than the modulus size in bytes. 
They provided detection of any two corrupted inputs to the dual-
sum process even if more than two bits have been corrupted 
within those two inputs – so long as those two inputs are 
separated by less than the HD=3 capability of the checksum. 
(This property is a consequence of the dual-sum approach; 
resistance to two-bit faults with one bit inverted in each of two 
data words is simply a special case of this property.) Thus, 
regardless of the number of bits changed in the digest of two 
blocks, as long as only two digest bytes are corrupted, a dual-
sum checksum addition scheme will detect them. 

The same analysis applies to dual-sum checksums of other 
sizes. For example, a 32-bit dual-sum checksum using a 
modulus of 65525 is expected to have the same properties for 
the same reasons up to at least a block size of 16 bytes (8 times 

the sum-size of 2 bytes). 

C. Approximately HD=3 
Because this is an empirical, simulation-based 

approach, we cannot quite claim that large block 
checksums absolutely give HD=3 for longer data 
word lengths than checksums with a block size the 
same as the modulus size. Rather, they appear to give 
HD=3 per the mechanisms described in the 
preceding subsection. 

The missing link for a true guarantee is proving 
that there is no undetectable two-bit fault that will 
slip past the modulus operation being used as a digest 
function. In other words, equality (4) should be 
proven to have no solution for the maximum block 
size and modulus being used. 

In practice, the Pud graphs make it clear that large-
block checksums have the properties found for each 
modulus identified as far as we know. Moreover, the 
number of simulations run shows that even if some 
undetectable two-bit faults were to exist in principle 
in a single block, they are so rare that they make no 

 

Figure 15. Conceptual diagram of operation of a large-block dual-sum 
checksum with block size 8 bytes and modulus 253. 
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practical difference under a random independent bit inversion 
fault model. 

To increase informal confidence, we ran the fault injection 
simulation used to create figure 6 for additional experiments. 
Trillions of random trials failed to find an undetected two-bit 
corruption of random data words missed by moduli 253 at a 13-
byte block length, or 65525 at a block length of 16 bytes. So we 
consider these moduli to be close enough for practical purposes 
to supporting a digest function that provides HD=3-class 
performance at the stated block lengths.  

D. Implementation Considerations 
The large-block checksum algorithm’s effectiveness does 

not depend on byte ordering or endian-ness of the data word for 
error detection effectiveness. Similarly, byte ordering in the 
check value does not matter for effectiveness. All that matters is 
that the software constructing the initial code word has 
compatible ordering with the software checking the code word 
integrity. 

There is a potential accuracy issue if the block size is the 
same size as an architected register size. Adding a new block to 
a running sum can result in a carry-out of the sum, which might 
be lost on computers that do not have an architected carry bit 
visible to the programmer. 

One solution to avoiding a lost carry-out is to use a higher 
precision intermediate sum if that is conveniently available in 
the programming language being used. For example for an 8-
byte block, a modular addition might be carried out as a 128-bit 
addition, followed by a modulo operation that takes a 128-bit 
input and produces a smaller output appropriate for the sum size. 
Using C type-casting notation with a 32-bit running sum and a 
128-bit variable holding a full block, that looks like 

sum32 = (uint32_t) ( ( ((uint128_t) sum32) + block128) % 
                                                                              modulus32 ); 

This creates a 128-bit unsigned sum and produces a 32-bit 
result of a modulo reduction. We note that “uint128_t” is non-
standard notation, but is intended to represent a casting to a 128 
unsigned integer in the manner of “cstdint” notation which 
defines uint32_t as the type of an unsigned 32-bit integer [C++]. 

Another approach is to perform range reduction before the 
sum, which might be faster on some computers. That option 
looks like this: 

block32 = (uint32_t) (block128 % modulus32); 
sum32  = (sum32 + block32) % modulus32; 

This option requires two modulo operations, but the second 
modulo operation can be faster since it only operates on 32 bits 
instead of a larger block size. There is still the possibility of a 
carry-out from the addition, so this approach only works if the 
modulus is at least one bit smaller than the sum size (e.g., a 
modulus less than 2**31 for 32-bit unsigned integers). A 32-bit 
register approach with this technique will work well for an 8-bit 
or 16-bit sized modulus for example (moduli 253 or 65525).  

See Appendix A for some example variations to make this 
discussion more concrete. The examples in Appendix sections 
D & E additionally show variations that delay applying the 
modulus operation until the end of the checksum for speed, 
although care must be taken to ensure the data word is short 
enough to avoid sum overflows. These techniques can 
dramatically reduce the cost of applying the modulus. 

It is important to ensure that all variables are declared as 
“unsigned” to avoid inadvertent sign extension while 
assembling blocks from the data word and performing the 
modulo operation properly with maximum-size sums. Using 
appropriate type casting is both tricky and critical to achieving 
correct results. 

The net speed of a large block checksum depends on the 
implementation, but can potentially be faster than for small-
block checksums when run on architectures that have large 
register sizes. While a modulus must be computed for each 
summed block, those blocks are processed in larger chunks, with 
only one division operation per block regardless of the block 
size. Those divisions can run comparatively fast compared to 
memory access overhead if the block fits within a single 
hardware register. Even with less capable machines, the cost of 
division is linear with the size of the dividend, so fewer large 
divisions can take no more net time than a larger number of 
small divisions operating on the same data word size.  

Other speed-up tricks can also be used, such as delaying the 
modulo operations until after several additions have been 
performed, especially on SumB, so long as integer registers are 
not overflowed. 

VIII. CONCLUSIONS 
This paper makes the following contributions: 

1. An exploration of modular addition operations for 
checksums reveals that the best modulus might not be 
any of the two’s complement, one’s complement, or 
largest prime moduli – but rather an empirically 
validated odd modulus that just happens to give good 
error detection performance. The key to this approach is 
finding a modulus that does not let two-bit faults 
become undetectable in a remainder-from-division 
digest computation. The moduli 253 and 65525 are 
identified as having good single-sum checksum 
performance for 8- and 16-bit checksums respectively. 

2. Increasing the block size processed by a modular 
checksum operation is identified as significantly 
improving error detection capabilities in both single-
sum and dual-sum checksum algorithms, so long as a 
suitable modulus is used. Again, moduli 253 and 65525 
are recommended. 

3. A carefully selected modulus can provide significantly 
higher HD=3 capability for dual-sum checksum 
algorithms. The modulus 253 is identified as providing 
HD=3 performance for a large-block version of the 
Fletcher/Adler dual 8-bit checksum algorithm using a 
modulus of 253 up to a data word size of 504 for 2-byte 
blocks, 1208 for 4-byte blocks, and a maximum 3276 
bytes for 13-byte blocks. We dub this 16-bit dual-sum 
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long-block approach a Koopman16 checksum. A 
Koopman32 checksum using modulus 65525 looks 
good, but was only partially validated due to limited 
computational resources, with apparent HD=3 
capability up to at least 16*65524 data word bytes, 
which is just under a one megabyte data word size. 
(HD=3 might be maintained at longer data word lengths 
for a Koopman32 checksum, but that is beyond the 
ability of the experimental framework available for this 
work to validate.) 

4. The mechanism for why large-block checksum 
algorithms are effective is explained. In short, the 
modular addition computes a digest of a large block 
before combining it with a running sum. This preserves 
the HD=3 capability of a dual-sum checksum for a 
multiple of the normal size determined by the ratio of 
the block size to the sum size. (E.g., a 12-byte block 
with a 32-bit dual-sum checksum breaks each 12-byte 
block into six two-byte values for the rolling sum, 
giving a factor of 6 increase in performance of the 
HD=3 fault detection capability.) 

It is important to remember that Cyclic Redundancy Checks 
(CRCs) can provide far superior fault detection mechanisms to 
even these improved checksum approaches. Nonetheless, using 
better moduli and longer block sizes can dramatically improve 
error detection effectiveness with the same check value size and 
comparable computational cost compared to previously known 
checksum approaches.  

This preprint has preliminary data, especially for Figures 12 
and 13. Simulation runs continue for a final version of this 
paper, although that will likely take months of additional 
simulation time. It is fully expected that graphs will become 
smoother with more data, but there is no reason to believe any 
of the findings reported will change. 
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APPENDIX A: EXAMPLE INNER LOOP CODE 
The below C code fragments are intended to illustrate the 

key idea behind the use of large-block checksums. They are 
written in a way to make the key ideas obvious. They are not 
intended as an illustration of portability or otherwise-desirable 
code structure. 

Code fragments assume without checking that the data word 
is evenly divisible by the block size, or has been zero-padded to 
be so to keep the example simple. Variable typing is per 
<cstdint>, <stdint.h>, or a similar definition approach. 

A data word organized as a sequence of bytes is assumed to 
be in dataWord8 as a uint8_t data array, whereas dataWord32 is 
a uint32_t data array that holds 32 bits of the data word in each 
array element. The endian-ness of assembling bytes into a block 
in the byte-organized example will not affect checksum 
effectiveness. The variable dwSize is assumed to be the number 
of relevant elements in the data word array. 

All code examples will provide HD=3 capability up to a data 
word size of 252 data elements of 4-byte blocks = 252*4   
1008 bytes. Note that examples D and E defer the modulus 
operation for speed. Example E makes an assumption that the 
data word size is small enough to avoid sumA overflow. 

A. Dual-Sum, Block Size 4, byte-organized data word 
uint32_t Koopman16b4_A(uint8_t dataWord8[],   
                                                               uint32_t dwSize) 
{ uint32_t sumA = 0;  
  uint32_t sumB = 0; 
  for( uint32_t index = 0; index < dwSize; index += 4 ) 
  { uint32_t block =   (dataWord8[index]) 
                     | (dataWord8[index+1] << 8) 
                     | (dataWord8[index+2] << 16) 
                     | (dataWord8[index+3] << 24); 
    uint32_t digest = block % 253; 
    sumA = (sumA + digest) % 253; 
    sumB = (sumB + sumA) % 253; 
  } 
  return(sumA | (sumB << 8)); 
} 

B. Dual-Sum, Block Size 4, 32-bit-organized data word 
uint32_t Koopman16b4_B(uint32_t dataWord32[],
      uint32_t dwSize) 
{ uint32_t sumA = 0;  
  uint32_t sumB = 0; 
  for( uint32_t index = 0; index < dwSize; index += 1) 
  { uint32_t digest =  dataWord32[index] % 253; 
    sumA = (sumA + digest) % 253; 
    sumB = (sumB + sumA) % 253; 
  } 
  return(sumA | (sumB << 8)); 
} 

C. Alternate Dual-Sum, Block Size 4, 8-bit-organized data 
word 

uint32_t Koopman16b4_C(uint8_t dataWord8[], 
     uint32_t dwSize) 
{ uint64_t sumA = 0;  
  uint64_t sumB = 0; 
  for( uint32_t index = 0; index < dwSize; index += 4 ) 
  { uint64_t block =   ((uint64_t)dataWord8[index]) 
                     | ((uint64_t)dataWord8[index+1] << 8) 
                     | ((uint64_t)dataWord8[index+2] << 16) 
                     | ((uint64_t)dataWord8[index+3] << 24); 
    sumA = (uint32_t)((((uint64_t) sumA) + block) % 253); 
    sumB = (sumB + sumA) % 253; 
  } 
  return((uint32_t)sumA | ((uint32_t)sumB << 8)); 
} 

D. Alternate Dual-Sum, Block Size 4, 32-bit-organized data 
word, delayed modulo sumB for speed 

uint32_t Koopman16b4_D(uint32_t dataWord32[],
     uint32_t dwSize) 
{ // Beware overflow of sumB for dwSize > 2**24  
  uint32_t sumA = 0;  
  uint32_t sumB = 0; 
  for(uint32_t index = 0; index < dwSize; index += 1) 
  { sumA = (uint32_t) (((uint64_t)sumA   
    + (uint64_t) dataWord32[index]) % 253); 
    sumB = (sumB + sumA); 
  } 
  sumB = sumB % 253; 
  return(sumA | (sumB << 8)); 
} 

E. Alternate Dual-Sum, Block Size 4, 32-bit-organized data 
word, delayed modulo sumA and sumB for speed 

uint32_t Koopman16b4_E(uint32_t dataWord32[],
      uint32_t dwSize) 
{ // Beware overflow of sums for large dwSize 
  uint64_t sumA = 0;  
  uint64_t sumB = 0; 
  for(uint32_t index = 0; index < dwSize; index += 1) 
  { sumA = sumA + (uint64_t) dataWord32[index]; 
    sumB = sumB + sumA;   
  } 
  sumA = sumA % 253; 
  sumB = sumB % 253; 
  return((uint32_t)sumA | ((uint32_t)sumB << 8)); 
} 

 


	I. Introduction
	II. Previous Checksum Algorithms
	A. Terminology
	B. Checksum Usage
	C. Single-Sum Checksums
	D. Dual-Sum Checksums
	E. Baseline Checksum Performance

	III. Methodology
	IV. Alternate Moduli
	A. Modulus Selection Criteria
	B. Experimental Modulus Selection

	V. Single-Sum Large-Block Checksum Processing
	A. Large-Block Modular Addition
	B. Large-Block 8-Bit Single Sum
	C. Two-Bit Fault Sensitivity of Modular Sums
	D. Large-Block 16-Bit Single Sum

	VI. Dual-Sum Large-Block Checksum Processing
	A. One’s Complement Dual-Sum Modulus
	B. Largest Prime Dual-Sum Modulus
	C. A Better Dual-Sum Modulus
	D. What About Modulus 239?

	VII. Fault Detection Performance
	A. Maximum effective block size
	B. Large Block Error Detection Mechanism
	C. Approximately HD=3
	D. Implementation Considerations

	VIII. Conclusions
	IX. Acknowledgements
	X. References
	Appendix A: Example Inner Loop Code
	A. Dual-Sum, Block Size 4, byte-organized data word
	B. Dual-Sum, Block Size 4, 32-bit-organized data word
	C. Alternate Dual-Sum, Block Size 4, 8-bit-organized data word
	D. Alternate Dual-Sum, Block Size 4, 32-bit-organized data word, delayed modulo sumB for speed
	E. Alternate Dual-Sum, Block Size 4, 32-bit-organized data word, delayed modulo sumA and sumB for speed


