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Abstract 

Software testing is all too often simply a bug hunt rather than a well-
considered exercise in ensuring quality. A more methodical approach 
than a simple cycle of system-level test-fail-patch-test will be 
required to deploy safe autonomous vehicles at scale. The ISO 26262 
development V process sets up a framework that ties each type of 
testing to a corresponding design or requirement document, but 
presents challenges when adapted to deal with the sorts of novel 
testing problems that face autonomous vehicles. This paper identifies 
five major challenge areas in testing according to the V model for 
autonomous vehicles: driver out of the loop, complex requirements, 
non-deterministic algorithms, inductive learning algorithms, and fail-
operational systems. General solution approaches that seem 
promising across these different challenge areas include: phased 
deployment using successively relaxed operational scenarios, use of a 
monitor/actuator pair architecture to separate the most complex 
autonomy functions from simpler safety functions, and fault injection 
as a way to perform more efficient edge case testing. While 
significant challenges remain in safety-certifying the type of 
algorithms that provide high-level autonomy themselves, it seems 
within reach to instead architect the system and its accompanying 
design process to be able to employ existing software safety 
approaches. 

Introduction 

While self-driving cars have recently become a hot topic, the 
technology behind them has been evolving for decades, tracing back 
to the Automated Highway System project [1], and before. Since 
those early demonstrations, the technology has matured to the point 
that Advanced Driver Assistance Systems (ADAS) such as automatic 
lane keeping and smart cruise control are standard on a number of 
vehicles. Beyond that, there are numerous different fully autonomous 
vehicle projects in various stages of development, including extended 
on-road testing of multi-vehicle fleets. 

If one believes pundits, full-scale fleets of autonomous vehicles 
(often called “self-driving cars”) are just around the corner. However, 
as the traditional automotive industry knows well, there is a huge 
difference between building a few vehicles to run in reasonably 
benign conditions with professional safety drivers, and building a 
fleet of millions of vehicles that have to run in an unconstrained 
world. Some say that successful demonstrations and a few thousand 
km (or even a few hundred thousand km) of driving experience 
means that autonomous vehicle technology is essentially ready to be 
deployed at full scale. But, it is difficult to see how such testing alone 
would be enough to ensure adequate safety. Indeed, at least some 
developers seem to be doing more, but the question is how much 
more might be required, and how we can know that the resultant 
vehicles are sufficiently safe to deploy. 

In this paper we explore some of the challenges that await developers 
who are attempting to qualify fully autonomous, NHTSA Level 4 [2] 
vehicles for large-scale deployment. Thus, we skip past potential 
semi-automated approaches to address systems in which the driver is 
not responsible at all for safe vehicle operation. We further limit 
scope to consider how such vehicles might be designed and validated 
within the ISO 26262 V framework. The reason for this constraint is 
that this is an acceptable practice for ensuring safety. It is a well-
established safety principle that computer-based systems should be 
considered unsafe unless convincingly argued otherwise (i.e., safety 
must be shown, not assumed). Therefore, autonomous vehicles 
cannot be considered safe unless and until they are shown to conform 
or map to ISO 26262 or some other suitable, widely accepted 
software safety standard. 

Infeasibility of Complete Testing 

Vehicle-level testing won’t be enough to ensure safety. It has long 
been known that it is infeasible to test systems thoroughly enough to 
ensure ultra-dependable system operation.  

For example, consider a hypothetical fleet of one million vehicles 
operated one hour per day (i.e., 106 operational hours per day). If the 
safety target is to have about one catastrophic computing failure in 
this fleet every 1,000 days, then the safety goal is a mean time 
between catastrophic failures of 109 hours, which is comparable to 
aircraft permissible failure rates. [3] Note that this admits to the 
likelihood that several such catastrophic failures due to computer 
defects or malfunctions will happen during the life of the fleet of 
cars. However, such a goal might be justifiable if accompanied by a 
much larger reduction in catastrophic mishaps due to driver error 
compared to manually driven vehicles. (This is just an example 
failure rate. Arguments might be made for this rate to be higher or 
lower, but it has been selected as a defensible rate that illustrates 
some of the difficulties in achieving safety.) 

In order to validate that the catastrophic failure rate of a vehicle fleet 
is in fact one per 109 hours, one must conduct at least 109 vehicle 
operational hours of testing (a billion hours) [4], and in fact must test 
several times longer, potentially repeating such tests multiple times to 
achieve statistical significance. Even this assumes that the testing 
environment is highly representative of real-world deployment, and 
that circumstances causing mishaps arrive in a random, independent 
manner. Building a fleet of physical vehicles big enough to run 
billions of hours in representative test environments without 
endangering the public seems impractical. Thus, alternate methods of 
validation are required, potentially including approaches such as 
simulation, formal proofs, fault injection, bootstrapping based on a 
steadily increasing fleet size, gaining field experience with 
component technology in non-critical roles, and human reviews. 
(Component level testing also plays a role, but it is still impractical to 
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accumulate 109 hours of pre-deployment testing for a physical 
hardware device.) Things get even worse when one considers that 
testing is even more difficult for autonomy systems than for everyday 
software systems, as will be discussed below. 

That having been said, for relatively non-critical computing systems 
it may be possible to use testing as a primary basis for validating an 
appropriate level of safety. This is because failures involving low 
severity and low exposure may be permissible at a higher occurrence 
rate than catastrophic failures. For example, if a failure of a particular 
type once every 1,000 hours is acceptable (because such failures 
result in a minimal-cost incident or slight disruption), then validation 
of that failure rate could be credibly achievable by testing for several 
thousand hours. This is not to say that all software quality process 
can be abandoned for such systems, but rather that a suitable testing 
and failure-monitoring strategy might make it possible to validate 
that a component with suitable quality has actually attained an 
acceptably low failure rate if the mean-time-between-failure 
requirement is relatively lenient. 

The V Model as a Starting Point 

Because system-level testing can’t do the job, more is required. And 
that is precisely the point of having a more robust development 
framework for creating safety critical software. 

The “V” software development model has been applicable to vehicles 
for a long time. It was one of the development reference models 
incorporated into the MISRA Guidelines more than 20 years ago [5, 
6]. More recently, it has been promoted to be the reference model that 
forms the basis of ISO 26262 [7]. 

Figure 1. A generic V model. 

In general, the V model (Figure 1) represents a methodical process of 
creation followed by verification and validation. The left side of the 
V works its way from requirements through design to 
implementation. At each step it is typical for the system to be broken 
into subsystems that are treated in parallel (e.g., there is one set of 
system requirements, but separate designs for each subsystem). The 
right side of the V iteratively verifies and validates larger and larger 
chunks of the system as it climbs back up from small components to 
a system-level assessment. While ISO 26262 has a detailed 
elaboration of this model, and much more, we keep things generic so 
as to discuss the high level ideas. 

Although ISO 26262 and its V framework generally reflect accepted 
practices for ensuring automotive safety, fully autonomous vehicles 
present unique challenges in mapping the technical aspects of the 
vehicle to the V approach. 

Driver Out of the Loop  

Perhaps the most obvious challenge in a fully autonomous vehicle is 
that the whole point is for the driver to no longer be actually driving 
the vehicle. That means that, by definition, the driver can no longer 
be counted on to provide control inputs to the vehicle during 
operation. [2] 

Controllability Challenges 

Typical automotive safety arguments for low-integrity devices can 
hinge upon the ability of a human driver to exert control. For 
example, with an Advanced Driver Assistance System (ADAS), if a 
software fault causes a potentially dangerous situation, the driver 
might be expected to over-ride that software function and recover to a 
safe state. Drivers are also expected to recover from significant 
vehicle mechanical failures such as tire blow-outs. In other words, in 
human-driven vehicles the driver is responsible for taking the right 
corrective action. Situations in which the driver does not have an 
ability to take corrective action are said to lack controllability, and 
thus must be designed to a higher Automotive Safety Integrity Level, 
or ASIL. [8] 

With a fully autonomous vehicle, the driver can’t be counted on to 
handle exceptional situations. Rather, the computer system must 
assume that role as the primary exception handler for faults, 
malfunctions, and beyond-specified operating conditions. Putting the 
computer in charge of exception handling seems likely to 
dramatically increase automation complexity compared to ADAS 
systems. Combinations of ADAS systems such as lane-keeping and 
smart cruise control seem tantalizingly close to fully autonomous 
operation. However, a fully autonomous vehicle must have 
significant additional complexity to deal with all the ways things 
might go wrong because there is no driver to grab the wheel and hit 
the brakes when something goes awry. 

Autonomy Architecture Approaches 

In the context of ISO 26262, putting the computer in charge suggests 
one of two strategies for assessing risk. One strategy is that the 
controllability portion of risk evaluation [8] should be set to “C3 
Difficult to control or uncontrollable.” This might be a viable option 
if the severity and exposure are very low, and thus a low ASIL can be 
assigned. However, in cases that have moderate or high severity and 
exposure, the system must be designed to a high Automotive Safety 
Integrity Level (ASIL). (Some might argue that there should be an 
even higher controllability classification C4 because of the potential 
of an automation system to take proactively dangerous positive 
actions rather than simply failing to deliver a safety function. But we 
assume here that the existing C3 suffices.) 

Another way to handle a potentially high-ASIL autonomy function is 
to use ASIL decomposition [9] via a combination of a 
monitor/actuator architecture and redundancy. A monitor/actuator 
architecture is one in which the primary functions are performed by 
one module (the actuator), and a paired module (the monitor) 
performs an acceptance test [5, 10] or other behavioral validation. If 
the actuator misbehaves, the monitor shuts the entire function down 
(both modules), resulting in a fail-silent system (i.e., any failure 
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results in a silent component, sometimes also known as fail-stop, or 
fail-safe).  

 

Figure 2. Monitor/actuator pair conceptual diagram. 

If the monitor/actuator pair (Figure 2) is designed properly, the 
actuator can be designed to a low ASIL so long as the monitor has a 
sufficiently high ASIL and detects all possible faults in the monitor. 
(There is also a requirement to detect latent faults in the monitor to 
avoid a broken monitor failing to detect an actuator fault.) This 
architectural pattern can be especially advantageous if the monitor 
can be made substantially simpler than the actuator, reducing the size 
of the high-ASIL monitor, and permitting the majority of the 
functional complexity to be placed into a lower-ASIL actuator. 

Both the strength and weakness of a monitor/actuator pair is that it 
creates a fail-silent building block (i.e., one that shuts down if there is 
a fault). The use of heterogeneous redundancy (two modules: the 
monitor and the actuator) is intended to prevent a malfunctioning 
actuator from issuing dangerous commands. However, it also causes 
loss of the actuator function if something goes wrong, which is a 
problem for a function that must fail operational, such as steering in a 
moving vehicle.  

At the very least, providing fail operational behavior requires even 
more redundancy (more than one monitor/actuator pair), and very 
likely design diversity so that common-mode software design failures 
do not cause a systemic failure. This is important to avoid situations 
such as the loss of Arianne 5 Flight 501, which was caused by both a 
primary and a backup system that failed the same way due to 
experiencing the same un-handled exceptional (unanticipated by the 
component design) operating condition. [11] 

It should be noted that achieving diversity is not necessarily simple, 
due to issues such as vulnerability to defects in the same set of high-
level requirements used to implement the diverse components (e.g., 
[12]). However this is a situation that is also true for non-autonomous 
software. It should also be noted that a monitor/actuator pair’s fail-
silent requirement is based on an assumption of failure independence, 
but again this is also true of non-autonomous systems. 

A key high level point is that regardless of the approach, it seems 
likely that there will need to be a way to detect when autonomy 
functions are not working properly (whether due to hardware faults, 
software faults, or requirements defects), and to somehow bring the 
system to a safe state when such faults are detected via a fail-
operational degraded mode autonomy capability. 

Complex Requirements 

An essential characteristic of the V model of development is that the 
right side of the V provides a traceable way to check how the left side 
turned out (verification and validation). However, this notion of 
checking is predicated on an assumption that the requirements are 
actually known, are correct, complete, and unambiguously specified. 
That assumption presents challenges for autonomous vehicles. 

Requirements Challenges 

As mentioned earlier, removing the driver from the control system 
means that software has to handle exceptions, including weather, 
environmental hazards, and equipment failures. There are likely to be 
very many different types of these, from bad weather (flooding, fog, 
snow, smoke, tornados), to traffic rule violations (wrong-direction 
cars on a divided highway, other drivers running red lights, stolen 
traffic signs), to local driving conventions (parking chairs, the 
“Pittsburgh Left” [13]), to animal hazards (deer, armadillos, and the 
occasional plague of locusts). 

Anyone who has driven for a long time is likely to have stories to tell 
of freak events they’ve seen on the road. A large fleet of vehicles 
will, in aggregate, be likely to experience all such types of events, 
and perhaps more. Worse still is that combinations of adverse events 
and driving conditions can occur that are simply too numerous to 
enumerate in a classical written requirements specification. Perhaps 
not all such extremely rare combinations need to be covered if results 
are likely to be innocuous, but the requirements should be clear about 
what is within the scope of system design, as well as what is not. 
Thus, it seems unlikely that a classical V process that starts with a 
document that enumerates all system requirements will be scalable to 
autonomous vehicle exception handling in a rigorous way, at least in 
the immediate future. 

Operational Concept Approaches 

One way to manage the complexity of requirements is to constrain 
operational concepts and engage in a phased expansion of 
requirements. This is already being done by developers who might 
concentrate on-road testing in particular geographic regions (for 
example only performing daytime driving on divided highways in 
Silicon Valley, which has limited precipitation and little freezing 
weather). However, the idea of employing an operational concept can 
be scaled in many directions. 

Examples of axes that can be exploited for limiting operational 
concepts include: 

 Road access: limited access highways, HOV lanes, rural 
roads, suburbs, closed campuses, urban streets, etc. 

 Visibility: day, night, fog, haze, smoke, rain, snow, etc. 
 Vehicular environment: self-parking in a closed garage 

with no other cars moving, autonomous-only lanes, marker 
transponders on non-autonomous vehicles, etc. 

 External environment: infrastructure support, pre-mapped 
roads, convoying with human-driven cars 

 Speed: lower speeds potentially lead to lower consequences 
of a failure and larger recovery margins 

While there are still a great many combinations of the above degrees 
of freedom (and more that can no doubt be imagined), the purpose of 
selecting from possible operational concepts is not to increase 
complexity, but rather to reduce it. Mitigation of requirement 
complexity can be achieved via only enabling autonomy in a certain 
limited set of situations for which requirements are fully understood 
(and ensuring that the recognition of those valid operational 
conditions is correct). 

Limiting operational concepts therefore becomes a bootstrapping 
strategy for deploying successively more sophisticated technical 
capabilities in a progressively more complex operational context. 
(e.g., [14, 15]) Once confidence is gained that requirements for a 
particular operational concept are well understood, additional similar 



 

operational concepts can be added over time to expand the envelope 
of allowable automation scenarios. This will not entirely eliminate 
the issue of complex requirements, but it can help mitigate the 
combinatorial explosion of requirements and exceptions that would 
otherwise occur. 

Safety Requirements and Invariants 

Even with the use of restricted operational concepts, it seems likely 
that it will be impractical to use a traditional safety-related 
requirements approach. Such an approach more or less proceeds as 
follows. First the functional requirements are created. Then the 
requirements that are safety-relevant are annotated after some risk 
assessment process has been performed. Then, these safety-relevant 
requirements are allocated to safety critical subsystems. Then, safety 
critical subsystems are designed to satisfy allocated requirements. 
Finally, unanticipated emergent subsystem interactions are identified 
and mitigated via repeating the cycle. 

Annotation of safety-critical requirements can be impractical for 
autonomy applications for at least two reasons. One reason is that 
many requirements might be only partially safety related, and are 
inextricably entwined with functional performance. For example, the 
many conditions for operating a parking brake when the car is 
moving could be a starting set of requirements. However, only some 
aspects of those requirements are actually safety critical, and those 
aspects are largely emergent effects of the interaction of the other 
functions. In the case of the parking brake, a deceleration profile 
when the parking brake is applied at speed is one of the desired 
functions, and is likely to be described by numerous functional 
requirements. But, simplifying, the only safety critical aspect in the 
deceleration mode might be that the emergent interaction of the other 
requirements must avoid locking up the wheels during the 
deceleration process. 

The second reason that annotation of requirements to identify safety-
relevant requirements may fail is that this may not even be possible 
when machine learning techniques are used. That is because the 
requirements, such as they are, take the form of a set of training data 
that enumerates a set of input values and correct system outputs. 
These tend not to be in the form of traditional requirements, and 
therefore require a different approach to requirements management 
and validation. (See the section on machine learning later in this 
paper). 

Rather than attempting to allocate functional requirements among 
safety and non-safety subsystems, it can be helpful to create a 
separate, parallel set of requirements that are strictly safety related. 
[16] These requirements tend to be in the form of invariants that 
specify system states that are required for safety (both things that 
must be true to be safe, and things that must be false to be safe). This 
approach can disentangle issues of performance and optimization 
(“What is the shortest traveling path?” or “What is the speed for 
optimal fuel consumption?”) from those of safety (“Are we going to 
hit anything?”). 

Using this approach would divide the set of requirements into two 
parts for the V model. The first set of requirements would be a set of 
non-safety-related functional requirements, which might be in 
traditional format or an untraditional format such as a machine 
learning training set. However, by definition those potentially non-
traditional requirements are not safety-related, so it might be 
acceptable if traceability and validation have ample but imperfect 
coverage. 

The second set of requirements would be a set of purely safety 
requirements that completely and unambiguously define what “safe” 
means for the system, relatively independent of the details of optimal 
system behavior. Such requirements can take the form of safe 
operating envelopes for different operational modes, with the system 
free to optimize its performance within the operating envelope. [17] 
It is clear that such envelopes can be used in at least some situations 
(e.g., enforcing a speed limit or a setting a minimum following 
distance). This concept promises to be rather general, but proving that 
remains future work. 

A compelling reason to adopt a set of safety requirements that is 
orthogonal to functional requirements is that such an approach 
cleanly maps onto monitor/actuator architectures. Functional 
requirements can be allocated to a low-ASIL actuator functional 
block, while safety requirements can be allocated to a high-ASIL 
monitor. This idea has been used informally for many years as part of 
the monitor/actuator design pattern. We are proposing that this 
approach be elevated to a primary strategy for architecting 
autonomous vehicle designs, requirements, and safety cases rather 
than being relegated to a detailed implementation redundancy 
strategy. 

Non-Deterministic and Statistical Algorithms 

Some of the technologies used in autonomous vehicles are inherently 
statistical in nature. In general, they tend to be non-deterministic 
(non-repeatable), and may give answers that are only correct to some 
probability – if a probability can be assigned at all. Validating such 
systems presents challenges not typically found in more 
deterministic, conventional automotive control systems. 

Challenges of Stochastic Systems 

Non-deterministic computations include algorithms such as planners 
that might work by ranking the results of numerous randomly 
selected candidates (e.g., probabilistic roadmap planners [18]). 
Because the core operation of the algorithm is based on random 
generation of candidates, it is difficult to reproduce. While techniques 
such as using a reproducible pseudo-random number stream in unit 
test can be helpful, it may be impractical to create completely 
deterministic behavior in an integrated system, especially if small 
changes in initial conditions lead to diverging system behaviors. This 
means that every vehicle-level test could potentially result in a 
different outcome despite attempts to exercise nominally identical 
test cases. 

Successful perception algorithms also tend to be probabilistic. For 
example, the evidence grid framework [19] accumulates diffuse 
evidence from individual, uncertain sensor readings into increasingly 
confident and detailed maps of a robot's surroundings. This approach 
yields a probability that an object is present, but never complete 
confidence. Furthermore, these algorithms are based on prior models 
of sensor physics (e.g., multipath returns) and noise (e.g., Gaussian 
noise on LIDAR-reported ranges) which are themselves probabilistic 
and sensitive to small changes in environmental conditions. 

Beyond modeling the geometry of surroundings, other algorithms 
extract labels from perceived data. Prominent examples of these 
include pedestrian detection. [20] Such systems can exhibit 
potentially unpredicted failure modes even with largely noise-free 
data. For example, vision systems might have trouble disambiguating 
color variations due to shadows, and experience difficulties 
determining object positions in the presences of large reflective 
surfaces. (In all fairness, these present challenges for humans as 



 

well.) Moreover, any classification process exhibits a tradeoff 
between false negatives and false positives, with fewer of one 
necessarily incurring more of the other. The testing implications of 
this are that such algorithms won’t “work” 100% of the time, and that 
depending on construction they might report a particular situation as 
being “true” when it is only a moderately high probability of that 
situation actually being true. 

Non-Determinism in Testing 

Handling non-determinism in testing is difficult for at least two 
reasons. The first is that it can be difficult to exercise a particular 
specific edge-case situation. This is because the system might behave 
in a way that activates that edge case only if it receives a very 
specific sequence of inputs from the world. Due to factors discussed 
earlier, such as the potentially dramatic differences in planner 
response to small changes of inputs, it can be difficult to contrive a 
situation in which the world will reliably offer up just the right 
conditions to run a particular desired test case. 

As a simple example, a vehicle might prefer to drive a more 
circuitous route on a wide roadway rather than a shortcut through a 
narrow alley. To evaluate the performance navigating the narrow 
alley, testers would need to contrive a situation that makes the wide 
roadway unappealing to the planner. But, doing this requires 
additional attention to test planning, and perhaps (manually) moving 
the vehicle into a situation it would not normally enter to force the 
desired response. Testing the vehicle’s ability to consistently choose 
the better of two almost equally unattractive paths without vacillating 
might be even more difficult. 

A second difficulty with non-determinism in testing is that it can be 
difficult to evaluate whether test results are correct or not, because 
there is no unique correct system behavior for a given test case. Thus, 
correctness criteria are likely to have to take a form similar to the 
safety envelopes previously discussed, in which a test passes if the 
end system state is within an acceptable “test pass” envelope. In 
general, multiple tests might be required to build confidence that the 
system will always end up in the test pass envelope. 

Probabilistic system behaviors present a similar challenge to 
validation, because passing a test once does not mean that the test 
will be passed every time. In fact, with a probabilistic behavior it 
might be expected that at least some types of tests will fail some 
fraction of the time. Therefore, testing might not be oriented toward 
determining if behaviors are correct, but rather to validating that the 
statistical characteristics of the behavior are accurately specified 
(e.g., that the false-negative detection rate is no greater than the rate 
assumed in an accompanying safety argument). This is likely to take 
a great many more tests than simple functional validation, especially 
if the behavior in question is safety critical and expected to have an 
extremely low failure rate.  

Achieving extremely high performance from a probabilistic system is 
likely to require multiple subsystems that in composite are assumed 
to provide a low aggregate failure rate due to having completely 
independent failures. For example, a composite radar and vision 
system might be combined to assure no missed obstacles to within 
some extremely low probability. This approach applies not only to 
sensing modalities, but also to other diverse algorithmic schemes in 
planning and execution. If such an approach is successful, it might 
well be that the resulting probability of failure is so low that testing to 
verify the composite performance is infeasible. For example, if 
obstacles must be missed by both systems once in a billion 
detections, then billions of representative tests must be run to validate 
this performance.  

Validating very low failure rates for composite diverse algorithms 
might be attempted by separately validating the more frequent 
permissible failure rates of each algorithm in isolation. But that is 
insufficient. One must also validate the assumption of independence 
between failures, which might well have to be based on analysis in 
addition to testing.  

Machine Learning Systems 

Proper behavior for autonomous vehicles is only possible if a 
complex series of perception and control decisions are made 
correctly. Achieving this usually requires proper tuning of 
parameters, including everything from a calibrated model of each 
camera lens to the well-tuned weighting of the risks of swerving 
versus stopping to avoid obstacles on a highway. The challenge here 
is to find the calibration model or the ratio of weights such that some 
error function is minimized. In recent years, most robotics 
applications have turned to machine learning to do this [21, 22], 
because the complexities of the multi-dimensional optimization are 
such that manual effort is unlikely to yield desired levels of 
performance.  

The details of approaches to machine learning are many, e.g., the use 
of learning from demonstration, active learning, and supervised vs. 
unsupervised approaches. However, all such approaches involve 
inductive learning, in which training examples are used to derive a 
model.  

For example, consider the case of detecting pedestrians in monocular 
images. Using a large training set of images, a classifier can learn a 
decision rule that minimizes the probability that pedestrians are 
detected in a separate validation set of images. For our purposes, an 
essential element is that the training set is effectively the set of 
requirements for the system, and the rules are the resultant system 
design. (The machine learning algorithm itself and the classifier 
algorithm are both more amendable to traditional validation 
techniques. However, these are general-purpose software “engines” 
and the ultimate system behaviors are determined by what training 
data is used for learning.)  

One could attempt to skirt the issue of training set data forming de 
facto requirements by instead creating a set of requirements for 
collecting the training data. But this ends up simply pushing the same 
challenge up one level of abstraction. The requirements are not in the 
typical V format of a set of functional requirements for the system 
itself, but rather in the form of a set of training data or a plan for 
collecting the set of training data. How to validate training data is an 
open question that might be addressed by some combination of 
characterizing the data as well as the data generation or data 
collection processes. 

Challenges of Validating Inductive Learning 

The performance of inductive learning methods can be tested by 
holding back some samples from the overall data set that has been 
collected and using those samples for validation. The presumption is 
that if the training set is used as the system requirements (the left-
hand side of the V) an independent set of validation data can be used 
to ensure that the requirements have been met (forming the 
corresponding right-hand side of the V). Training data must not have 
accidental correlations unrelated to the desired behavior, or else the 
system will become “over-fitted.” Similarly, the validation data must 
be independent and diverse from the training data in every way 
except the desired features, or else overfitting will not be detected 



 

during validation. It is unclear how to argue that a machine learning 
system has not been over-fitted as part of a safety argument. 

A significant limitation of machine learning in practice is that if 
labelled data is used, each data point can be expensive. (Creating 
labels has to be done by someone or something. Unsupervised 
learning techniques are also possible, but require a clever mapping to 
solving a particular problem.) Moreover, if a problem with the 
training set (i.e., a requirements defect) or the learned rules (i.e., a 
design defect) is found and corrected, then more validation data has 
to be collected and used to validate the updated system. This is 
necessary because even a small change to the training data could 
produce a dramatically different learned rule set. Thus, complete 
revalidation would normally be required for any training set “bug 
fix,” no matter how small.  

Because of the complexity of requirements for an autonomous 
system, it seems likely that rare, edge cases will be where learning 
problems would be expected to occur. However, because of their 
rarity, collecting data depicting such unusual circumstances can be 
expensive and difficult to scale. (Simulation and synthetic data can 
help with this, but come with the risk of bias in simulated data, as 
well as overfitting to simulation artifacts.) 

Another issue with validating machine learning is that, in general, 
humans cannot intuitively understand the results of the process. For 
example, the internal structure of a convolutional neural network [23] 
may not tell a human observer much intuitive about the decision rules 
that have been learned. While there might be some special cases, in 
general the problem of “legibility” [24, 25] of machine learning in 
terms of being able to explain in human terms how the system 
behaves is unsolved. This makes it difficult to predict how techniques 
other than expensive brute force testing can be applied for validation 
of machine learning systems. (Perhaps some organizations do have 
the resources to do extensive brute force testing. But even in this case 
the accuracy, validity, and representativeness of the training data 
must be demonstrated as part of any safety argument based on the 
correctness of a machine learning system.) 

Because legibility for machine learning systems is generally poor, 
and because the danger of overfitting is real, there are failure modes 
in such a system that can significantly affect safety. Of particular 
concern are accidental correlations that are present in training set data 
but not noticed by human reviewers. For example, consider the 
method of detecting pedestrians in imagery using trained deformable-
part models, which has been shown to be quite effective in real-world 
data sets. [26] If no (or few) images of pedestrians in wheelchairs 
were present in the training data set, it is likely that such a system 
would incorrectly correlate the label of “pedestrian” with “people 
who walk on two legs.” 

Solutions to Inductive learning 

Validating inductive learning is notoriously difficult due to the “black 
swan” problem [27], which is in general the susceptibility of a person 
(or system) to believe that common observations are true, and draw 
potentially incorrect conclusions due to an abundance of confirming 
data points. The story goes as follows. Before the late 1700s, all 
observed swans in Europe were white, and thus an observer using 
inductive logic would have concluded that all swans are white. 
However, this observer would experience a brittle failure of this 
belief when visiting Australia, where there are plenty of black swans. 
In other words, if there is a special case the system has not seen, it 
cannot learn that case. This is an essential limitation to inductive 
learning approaches that is not readily cured. [28] Moreover, with 
machine learning this problem is compounded by the lack of 

legibility, so it can be difficult or impossible for human reviewers to 
imagine what form a black swan-like bias in such a system might 
take. 

Validating an inductive learning system seems to be an extremely 
challenging problem. Extensive testing might be used, but would 
require validating an assumption of random independent arrival rates 
of “black swan” data and testing on data sets sized accordingly. This 
might be feasible given enough resources, but there will always be 
new black swans, so a probabilistic assessment of huge numbers of 
operational scenarios and input values would have to be made to 
ensure an acceptably low level of system failures. (If resources were 
available to do this in a defensible way, this might suffice to form the 
right-hand-side of a V process.) 

An alternative to validating inductive learning systems to high ASIL 
levels would be to pair a low-ASIL inductively-based algorithm that 
sends commands to an actuator with a high-ASIL deductively-based 
monitor. This would sidestep the majority of the validation problem 
for the actuation algorithm, since failures of the inductive algorithm 
controlling the actuator would be caught by a non-inductive monitor 
based on a concept such as a deductively-generated safety envelope. 
Thus, actuator algorithm failures would be an availability problem 
(the system safety shuts down, assuming an adequate failover 
capability) rather than a safety problem. 

Mission Critical Operational Requirements 

As a final technical area, we return to the previously discussed point 
that the computer is ultimately in control of the vehicle rather than 
the person being in control. That means that at least some portion of 
the vehicle has to be fail-operational rather than fail-stop. 

Challenges of Fail-Operational System Design 

Fail operational system design has been done successfully in 
aerospace and other contexts for decades, but is still difficult for 
several reasons. The first reason is the obvious one that redundancy 
has to be provided so that when one component fails another one can 
take over. Achieving this requires at least two independent, redundant 
subsystems for fail-stop behavior. 

Achieving a fail-operation system in turn requires at least three 
redundant fail-arbitrary components so that it can be determined 
which of the three failed in the event that it issues incorrect outputs 
rather than failing silent at the component level. [29] For systems that 
have to tolerate arbitrarily bad faults, a Byzantine fault tolerant 
system with four redundant components might be required [30], 
depending on the relevant fault model.  

The structure of the redundancy varies depending on the design 
approach, and might include configurations such as a triplex 
redundant system with a voter (in which case the voter must be 
ensured not to be a single point of failure), or a dual two-of-two 
system that uses four computers in fail-silent pairs. [29] Beyond the 
obvious expense such approaches introduce, there is also an issue of 
testing to make sure that failure detection and recovery works, 
assuring independence of failure, and ensuring that all redundant 
components are fault-free at the start of a driving mission. It seems 
unlikely that redundancy can be avoided, but it may be possible to 
reduce the complexity and expense of providing sufficient 
redundancy to ensure safety. 



 

Failover Missions 

In typical fail-operational system such as aircraft, all the redundant 
components are essentially identical and capable of performing an 
extended mission. For example, commercial aircraft are commonly 
configured with two jet engines, and each jet engine has at least a 
dual-redundant computer control. If the pair of computers on one 
engine shuts down due to a fault detected via continual cross-
checking, there is a second independent engine to keep the aircraft 
flying. Even so, the requirements on engine dependability are very 
stringent, because aircraft might potentially have to fly several hours 
after a first engine failure to reach the nearest airport without having 
the second engine fail. This puts significant reliability requirements 
on each engine, and therefore increased component costs. 

While cars are notoriously cost-sensitive, they do have an advantage 
in that failover missions can be short (e.g., pull over to the side of the 
road, or if necessary come to a stop in a travel lane), with failover 
mission durations measured in seconds rather than hours. 
Additionally, a failover mission to stop the vehicle might be able to 
operate with significantly less functionality than fully autonomous 
operation. This can simplify requirements complexity, computational 
redundancy, sensor requirements, and validation requirements. (As a 
simple example, a failover mission control system might not support 
lane changes, greatly simplifying sensor requirements and control 
algorithms. More sophisticated approaches that are still simpler than 
full autonomy might be possible.) Therefore, designing an 
autonomous vehicle with a fail-stop primary controller and a simpler 
fail-operational failover controller might be attractive both in terms 
of hardware cost and in terms of design/validation cost.  

It might also be that a safety argument can be created not based on 
the full autonomy system being perfect, but rather on the full 
autonomy system having a detector that realizes when it is 
malfunctioning or has encountered a gap in its requirements. This 
would make the fault detector itself high-ASIL, but might permit 
normal autonomy functions to be low-ASIL. Such an approach would 
map well onto a monitor/actuator architecture for the primary 
autonomy system. The failover autonomy would also have to be 
designed in a safe manner, with an appropriate architectural approach 
depending on its complexity and calculated reliability requirements. 
It might even be possible to use a single-channel failover system if 
the probably of failure during a short failover mission lasting only 
seconds is sufficiently low. 

Non-Technical Factors 

Some challenges in deploying autonomy are non-technical, such as 
the frequently mentioned liability problem (who pays when there is a 
mishap?) and how laws generally treat the ownership, operation, 
maintenance, and other aspects such vehicles. 

A deep dive into this topic is beyond the scope of this paper. 
However, resolutions to non-technical challenges will very likely 
have an impact on technical solutions. For example, there may be 
forensic requirements imposed on autonomy systems for accident 
reconstruction data. Careful analysis of the provenance of such data 
will need to be performed to ensure that the data is used properly. As 
a simple example, if a radar has a hypothetical detection probability 
of 95%, its output might still be recorded in the system in terms of 
whether an obstacle was or was not detected, superficially implying 
detection certainty. It is important to ensure that forensic analysis 
takes into account that just because the radar didn’t detect a 
pedestrian does not mean the pedestrian was not there (e.g., a 95% 

detection probably implies that 1 out of 20 pedestrians will not 
actually be detected). 

It seems likely that with the inherent complexity of an autonomous 
vehicle and the clear inability to demonstrate anything close to 
perfection via testing, it will be important for developers to create a 
safety assurance argument in the form of an assurance case (e.g., 
according to [31]). Such an assurance argument will be necessary to 
defend and explain the integrity of their system and be able to 
credibly explain the system’s responses to events surrounding the 
inevitable mishaps that will occur. A particular point that should be 
addressed is ensuring the integrity of evidence to establish whether a 
mishap was reasonably unavoidable due to its circumstances. Other 
important points will be whether or not a mishap was arguably 
caused by a defect in system requirements (e.g., a gap in training 
data), a reasonably foreseeable and avoidable design defect, an 
implementation defect, or other cause attributable to the vehicle 
manufacturer. 

Fault Injection 

As is apparent from the preceding discussion, traditional functional 
testing will have trouble exercising a complete system, and especially 
will find it difficult to exercise combinations of exceptions occurring 
during unusual operational conditions. While testers can define some 
off-nominal test cases, scalability of that testing is questionable due 
to the combinatorial explosion of exceptions, operational scenarios, 
and other factors involved. Additionally, it has been shown that even 
very good designers often have blind spots and miss exceptional 
situations in comparatively simple software systems. [32]  

Fault injection and robustness testing are relatively mature 
technologies for assessing the performance of a system under 
exceptional conditions [33], and can help avoid designer and tester 
blind spots when testing exceptional condition responses. Traditional 
fault injection involves inserting bit flips into memory and 
communication networks. More recent techniques have increased the 
level of abstraction to include data-type-based fault dictionaries [32], 
and ensuring fault representativeness [33]. Such techniques have 
already been used successfully to find and characterize defects on 
autonomous vehicles. [35] 

A promising approach to helping validate autonomy features is to 
perform fault injection at the level of abstraction of the component, as 
part of a strategy of attempting to falsify claims of safety. [36] This 
involves not only simulating objects for primary sensor inputs, but 
also inserting exceptional conditions to test the robustness of the 
system (e.g., inserting invalid data into maps). The point of doing 
such fault injection is not to validate functionality, but rather to probe 
for weak spots that might be activated via unforeseen circumstances. 
Such fault injection can be performed across the range of layers in the 
ISO 26262 V process. [37] 

Conclusions 

The challenges of developing safe autonomous vehicles according to 
the V process are significant. However, ensuring that vehicles are 
safe nonetheless requires following the ISO 26262 V process, or 
demonstrating that a set of process and technology practices equally 
rigorous has been applied. Assuming that the V process is applied, 
there are three general approaches that seem promising. 



 

Phased Deployment 

It appears impractical to develop and deploy an autonomous vehicle 
that will handle every possible combination of scenarios in an 
unrestricted real-world environment, including exceptional situations, 
all at once. Rather, as is common in automotive systems, a phased 
deployment approach building on current developer practice seems 
likely to be a reasonable approach. 

Tying phased deployment to the V process can be done by 
identifying well-specified operational concepts to limit the scope of 
operations and therefore the necessary scope of requirements. This 
would include limitations in environment, system health, and 
operational constraints that must be satisfied to enable autonomous 
operation. Validating that such operational constraints are enforced 
will be an essential part of ensuring safety, and will have to show up 
in the V process as a set of operational requirements, validation, and 
potentially run-time enforcement mechanisms. For example, run-time 
monitoring might be required to monitor not only whether system 
state is in a permissible autonomy regime, but also that assumptions 
made about the operational scenario in the safety argument are 
actually being satisfied, and whether the system is actually in the 
operational scenario it thinks it is in. 

An aspect of restricted operational concepts that will require 
particular attention is ensuring that safety is maintained when an 
operational scenario suddenly becomes invalidated, due to for 
example an unexpected weather event or an infrastructure failure. 
Such exceptional transitions out of an acceptable operational concept 
regime will require that system recovery or a failover mission be 
executed successfully even when there is a system excursion outside 
the assumptions of permissible autonomy operational scenarios. 

It is unclear whether a phased deployment approach will provide a 
path all the way to complete autonomy. But at least such an approach 
provides a way to make progress and gain some benefits of autonomy 
while gaining greater understanding of the difficult edge cases and 
unanticipated scenarios that will arise as systems see more exposure 
to real world conditions. 

Monitor/Actuator Architecture 

A common approach that might help mitigate many of the challenges 
of autonomous vehicle safety is the use of a monitor/actuator 
architecture. As discussed, this architectural style can help with 
requirements complexity (only the monitor needs to be essentially 
perfect), and deployment of inductive algorithms (by limiting use of 
induction to the actuator, and using a deductively-based monitor). 

Additionally, the use of a failover mission strategy can allow a 
primary autonomy system monitor to detect a primary system failure 
without having to ensure fail-operational behavior. A simpler, high-
integrity failover autonomy system can bring the vehicle to a safe 
state. Such a system might have a failover mission short enough that 
minimal redundancy for failover operation is required, so long as it 
can be assured that the system is fault-free when it is time to start a 
failover mission. 

Fault Injection 

Testing alone is infeasible to ensure ultra-dependable systems. 
Autonomous vehicles only make this problem harder by automating 
responses to highly complex environmental situations, and 
introducing technology such as machine learning that is difficult and 
expensive to test. Moreover, because much of the autonomy 

capability must have a high ASIL due to the lack of human driving 
oversight, it seems difficult to do enough ordinary system testing to 
gain even a reasonable level of assurance. 

Fault injection can play a useful role as part of a validation strategy 
that also includes traditional testing and non-test-based validation. 
This is especially true if fault injection is applied at multiple levels of 
abstraction rather than just at the level of stuck-at electrical 
connectors.  

Future Work 

This paper discusses ways to fit autonomous vehicle safety assurance 
within an ISO 26262-based V framework. However, it is expected 
that using architectural patterns such as the monitor/actuator 
approach and the practical limits of validation possible via fault 
injection will place constraints on operational performance. In other 
words, the functionality of autonomous vehicles might need to be 
limited to fit the constraints of feasible validation techniques. 
Relaxing those constraints will require advances in areas such as 
characterizing the coverage of machine learning training data 
compared to the expected operational environment, gaining 
confidence in safety requirements with regard to exceptional driving 
conditions, and being able to validate the independence of failures in 
redundant inductive-based systems. 
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Definitions/Abbreviations 

ADAS Advanced Driver Assistance 
System 

ASIL Automotive Safety Integrity 
Level 

HOV High Occupancy Vehicle 



 

LIDAR Light Detection and Ranging 

V model A software development 
model that includes 
requirements and design on 
the left side of a “V” with 

verification and validation 
on the right side of the “V” 

 


