
Software Quality, Dependability and Safety in

Embedded Systems (Invited Talk)

Philip Koopman

Carnegie Mellon University,
Pittsburgh, PA, USA

koopman@cmu.edu

We often trust embedded systems with mission-critical functions, and even our
own lives. But the designers of such systems (and especially their managers)
are often domain experts who have not been formally trained in software de-
velopment. While many embedded systems work well, in my design reviews I
frequently see problems ranging from the subtle to the catastrophic. I have iden-
tified commonly occurring technical, process, and quality assurance issues based
on my experience performing more than 135 industry design reviews. Common
problems include a lack of embedded-specific software engineering skills, soft-
ware process gaps, and a failure to appreciate that more than just product-level
testing is required to create high quality software. Most of these problems cannot
simply be fixed by adopting a tool, but rather require a change of culture and
perspective in engineering organizations. All too often, the developers and their
management simply don’t realize they have gotten in over their heads as their
product’s software has escalated from performing a simple supporting function
to providing make-or-break product functionality.

The Toyota Electronic Throttle Control System (ETCS) is a system deployed
in almost a decade of vehicle production that exhibits many of the common
problems I have seen in design reviews. It has numerous lapses in following good
software practices in general, and safety-critical software practices in particular.

Briefly, the ETCS takes inputs from the driver (for example the accelerator
pedal position and brake pedal activation), and has complete control over the
throttle position as well as fuel and spark. There are practical scenarios in which
a fully open throttle can overpower the brakes in Toyota vehicles. This makes
the ETCS a safety-critical throttle-by-wire system.

Mishaps involving the Toyota ETCS have resulted in billions of dollars of
costs in the US, including an economic loss class action settlement, a criminal
cover-up case, and undisclosed settlements in hundreds of individual death and
injury cases. Recalls have been issued – but for mechanical issues rather than
for software defects. A redacted NASA report has been made public, as well as
some transcripts from the one public trial that featured software safety testimony
(including testimony by this author). The jury in that one trial found Toyota
liable for a fatal crash based on testimony that alleged software defects were
responsible. Toyota has denied that software defects have resulted in this or any
other mishap.

koopman
Typewritten Text
SAFECOMP 2014 PREPRINT



XVIII P. Koopman

While the question as to whether software defects caused the hundreds of
other loss events involved in lawsuits remains open, the following observations
about the ETCS are for practical purposes uncontested: Applying brakes will
not necessarily stop the car if the throttle is commanded wide open (whether
by floor mat entrapment or a possible software defect). Toyota did not follow an
applicable set of safety guidelines (e.g., the MISRA Development Guidelines),
and has not made an argument that their development processes are compara-
bly rigorous to any established safety guideline. A significant amount of testing
was performed both at the module and vehicle level but, as one would expect,
this testing effort pales in comparison to the exposure of a fleet of millions of
deployed vehicles. While there are dual redundant analog signals from the accel-
erator pedal to the ETCS, they both go through the same A/D converter on the
same chip. While the ETCS has two CPU chips, they do not form a proper dual
path system. While Toyota did have some coding rules, developers did not always
follow their own coding rules, and did not have a formalized (written) waiver pro-
cess. Static analysis of the ETCS software reveals global variables declared with
different types, casts that alter values, condition evaluations with side effects,
and uninitialized variables. The ETCS main CPU software has approximately
10,000 global variables, most of which could have been declared ”local static”
or ”file static” to reduce their scope – but weren’t. Shared global variables are
not all declared ”volatile,” and shared global variables are not always accessed
under the protection of interrupt masks. Moreover, NASA identified a specific
concurrency hazard situation with the ETCS. Many ETCS software functions
are quite long, and modularity is poor in general. There is no mitigation for stack
overflow, and NASA did not find it possible to establish a maximum stack depth
due to the presence of recursion. The main CPU can be more than 80% loaded,
but beyond that NASA found that timing analysis was too difficult to complete
due to, for example, the presence of busy-wait loops and indirect recursion. A
watchdog timer is used to monitor average CPU load, but is not able to detect
some task deaths. Much of the ”paperwork” that is typically associated with a
rigorous software development process does not seem to exist, including: defect
logs, peer review records, comprehensive test plans, recorded test results, and
process quality audit records.




