
Lessons Learned in Teaching a Complex
Distributed Embedded System Project Course

Philip Koopman
Carnegie Mellon University, ECE Dept.

Pittsburgh, PA, USA
Koopman@cmu.edu

Abstract— Teaching Cyber-Physical System (CPS) design
requires covering significant breadth while ensuring students
experience how all the pieces fit together. This paper describes a
distributed elevator control system design project that addresses
many of the areas required in a CPS project experience.
Mapping project aspects to ABET accreditation areas frames a
discussion of the course’s treatment of CPS issues. The most
important lesson learned is that students benefit from being
immersed in and reflecting upon a carefully curated experience
with a CPS engineering process rather than being turned loose to
invent their own ad hoc approach to building complex systems.

Keywords— Cyber-Physical System (CPS) education;
distributed embedded system course project.

I. INTRODUCTION

Teaching Cyber-Physical System (CPS) design requires
covering a broad range of topics in the areas of computer
hardware design, software design, mechanical system design,
and control design, as well as potentially covering related
disciplines such as system safety, user interface design, and
dependability. While it is unrealistic to expect a single college
course to teach everything needed, it is likely that a significant
unified project experience can be instrumental in helping
students integrate the aspects of CPS design. An important
question is how to do this in a scalable way while ensuring that
students learn the right lessons.

This paper describes a semester-long project in a
distributed embedded system course that has been taught at
Carnegie Mellon University since 1999 [1] with class sizes of
up to 70 students. While it is not intended to be a perfectly
balanced CPS experience, it addresses many of the required
points, especially in the area of methodical engineering
processes. This paper describes the project in terms of how it
addresses ABET accreditation goal areas [2] in the context of
CPS education. A “lessons learned” section reflects upon
problems that are likely to face significant CPS project courses.

II. PROJECT SUMMARY

The project is the design of a distributed elevator control
system that runs entirely in simulation on a discrete event
simulator. The elevator is designed as a fine-grain distributed
system, with a separate (simulated) CPU allocated to every
instance of every button, light, door, and so on. While real
elevators are distributed systems, this project elevator

intentionally exaggerates the number of processors to expose
students to the issues that arise in complex distributed systems.

The project is not intended to be an open-ended capstone
design exercise in which students determine their own project
goals and concentrate on achieving an aggressive technical
result. Rather, it is designed to be a carefully curated design
experience in which students more or less follow the same
process, demonstrate a certain set of technical skills, and
experience a core set of design process challenges.

A. The Elevator Project

The elevator is based on the author’s experience as part of
an industry elevator architecture team, and includes sufficient
detail to be a design experience that captures (often in
simplified form) a wide range of industry-relevant CPS design
considerations. A key part of the project is that simulated
passengers ride the elevator, providing a self-contained way to
exercise and evaluate the system’s behavior. Examples of the
details involved include door reversal triggering that varies
based on passenger size, sounding a buzzer to get some
passengers to exit an overweight elevator, randomized time
constants on passengers behaviors such as button presses, and
passengers who only enter and exit when car lanterns and floor
indicators display correct information.

Elevator kinematics models include door motion and a
multi-speed main motor with a specified acceleration profile.
The elevator must serve floors in response to hall call and car
call buttons, re-level as necessary due to weight-induced cable
stretch, and attempt to maximize passenger satisfaction as a
function of waiting time and other factors. A simulated
electromechanical safety system asserts an emergency stop if
the elevator moves out of the leveling zone with doors open.

Some parts are already done to ensure the project presents a
reasonable student workload, such as pre-made passengers, a
main drive kinematics model, test scaffolding, a graphical user
interface, and starting points for some complex functions. A
significant simplification is avoiding the implementation of
elevator modal behaviors (e.g., firefighter service). But,
overall, the simulation is complex enough to force students to
think things through – and to discover behaviors of real
elevators they’d never noticed before. Most importantly, the
behaviors are complex enough that it is virtually impossible for
a non-elevator expert to implement the nuances required for
successful operation without following a methodical design
process rather than just diving in to write code.

pk1g
Typewritten Text
Preprint: CPS-Ed 2013, April 8, 2013

pk1g
Typewritten Text

pk1g
Typewritten Text
1

The goal of the course is a 12-hour weekly total student
workload including a pair of two-hour lectures per week.
Lectures cover material most students have not encountered
before this course, primarily in the areas of system engineering
process, embedded networking, and critical system design.

The project is organized as a set of weekly deliverables of
increasing complexity that follow a defined process flow.
Students work in teams of 3 or 4, and must have a very simple
elevator operational by the middle of the course which just
stops at every floor. After students understand basic elevator
operation and the simulator framework, they spend the second
half of the course designing a relatively sophisticated
dispatching and control system to optimize passenger
satisfaction without violating stated high level design
requirements. Some of these high level requirements are
obvious (e.g., don’t cause an emergency stop). But some
requirements are passenger preferences that are somewhat
arbitrary from a purely technical point of view (e.g., once a car
lantern has announced an elevator is “going up” it is not
allowed to travel down without first going up to a higher floor).

Students must demonstrate that they meet the requirements
by building in run-time monitors to ensure none of ten high
level requirements is violated at any time during simulated
workloads involving dozens or hundreds of randomly
generated passengers. Final projects grades are based largely
on the quality of the design package per grading rubrics,
emphasizing completeness and end-to-end traceability from
requirements through acceptance tests (and every step in
between), with performance weighted less than design quality.

III. MAPPING TO OUTCOMES

The call for papers for this workshop proposed an
adaptation of the ABET accreditation standards [2] to more
specifically address CPS education, discussed below.

A. Applying mathematical models

We teach an evolutionary improvement of common
embedded industry practices. To do this, we have pieced
together relatively well known techniques from embedded
system design and software engineering rather than attempting
a unified CPS mathematical modeling framework.

Our most important mathematical model is deadline
monotonic scheduling theory applied to network performance.
We additionally require students to use physics knowledge to
predict the “commit point” at which a moving elevator has to
decide whether to initiate deceleration to stop at a floor vs.
bypass that floor. There are interactions between the jittery
periodic message delivery of the real time communication
system and the possibility of overshooting a floor due to
communication latency or randomized message corruption that
expose students to the need to build in design margins to
account for timing variations.

We mandate a purely time triggered design with some jitter
due to the use of deadline monotonic scheduling. The addition
of a combined event-based and time triggered model might
expose additional design issues to students. We have found that
most students naturally think in terms of event-triggered

systems, so we intentionally push them to a purely periodically
run system to teach that way of thinking about time.

Beyond purely mathematical models, students use a
lightweight Unified Modeling Language approach to model
and refine elevator requirements, architecture, and design. We
use a Use Case Diagram, Sequence Diagrams, and Statecharts.
We use a modified class diagram notation that includes
hardware/software allocation to document the architecture.

It is surprisingly difficult to know whether a CPS is
completely working rather than almost working. This is
especially true when some requirements involve how overall
goals are accomplished rather than whether they are
accomplished. We use a runtime monitoring approach in which
students add state-machine based monitors to their elevator to
ensure that no elevator requirements are violated during
simulations. Our experience is that without such monitors
almost every elevator violates requirements without students
realizing it. Left to their own devices, students tend look at
whether passengers are delivered rather than whether specified
functional requirements are violated in an otherwise “working”
elevator. Having a rigorous model of correct system behavior
that can be used for acceptance testing is just as important as
having a model from which to build the system itself.

B. Design and conduct simulations

A customized discrete event simulator is used to implement
the elevator. Real hardware is not used in part because of the
complexity and expense of providing dozens of CPUs to
students, and in part to expose students to simulation as a
technique for understanding system behavior. CPU speed and
memory are not simulated, but network bandwidth and latency
are. In this particular design, as in many embedded systems,
almost all modules have very simple software that could easily
be handled by a 16-bit processor running at a few MHz. The
complexity of this system is in the interaction of the distributed
components, so that is where the simulation fidelity is highest.

All interactions between computing elements occur via a
CAN [3] network simulation. Sensors, actuators, and people
also communicate via the same messaging facilities, except
they bypass the CAN performance model. The simulator has a
test framework that supports injecting messages to objects, and
a way to record output messages to monitor test results.
Students are required to run unit tests and integration tests with
these test facilities. Acceptance tests are performed via
delivering simulated passengers. Carefully designing their own
tests at all levels is an essential part of students getting their
elevators to pass the staff-created acceptance tests.

C. Good engineering practices and quality attributes

A core goal of the course is to have students experience
using a very well defined engineering process rather than
winging it as they might in a typical student project demo.
Thus, the emphasis is on solid engineering rather than novelty,
and the project experience is carefully curated by using a well-
debugged, standardized project assignment. Some ambiguities
and gaps in the materials are intentional and strategically
included as part of a realistic experience. Keeping the project
substantially the same every year minimizes gratuitous bugs.

pk1g
Typewritten Text
2

Other aspects of creating a realistic system include:
meeting explicit safety goals, dealing with user interaction
issues (the passenger time constants are more representative of
a retirement home and than a student dormitory), and fault
tolerance to dropped network messages.

Lectures cover other important engineering aspects such as
economics, ethics, and security, because they are not explicitly
included in the project.

D. Multi-disciplinary teams

The student body is fairly homogeneous, consisting
primarily of students with computer science and computer
engineering backgrounds. Team members are encouraged to do
at least some of every aspect of the project, although some
specialization does occur within teams (e.g., test scripts, system
builds, hand-in audits). Moving to a CPS hardware-based lab
instead of a simulator-based lab would increase the opportunity
for multi-disciplinary interaction, but would present scalability
issues and add substantial hardware debug workload.

Student demographics make it challenging to create cross-
disciplinary teams of 3 or 4 for the large class sizes we
encounter (the most recent class had 68 students). Larger and
more flexible projects would simplify attaining a good skills
mix even if only a few students from a particular discipline
enrolled in the class, but would require significant modification
to the project and might not scale as well to large classes.

E. Formulate and solve engineering problems

The first half of the course presents a very restrictive
project assignment and a rigorously enforced design process
flow, including a defined architecture, high level requirements,
requirements allocation to subsystems, detailed requirements,
design, implementation, design reviews, unit test, integration
test, acceptance test, and process quality monitoring. The main
point of this part of the project is to get the students up to speed
on process, technology, and domain knowledge. Therefore, the
required elevator behavior is extremely simplistic.

The second half of the semester is still highly structured,
but is much less constrained. Students are free to use any
technical approach to meet ten specified behavioral
requirements, with bonus points given both for passenger
delivery performance and having a high quality design
package. A change of maximum main drive speed is made
about three quarters of the way through the semester, which
requires students to use a more sophisticated dispatcher to
determine the elevator speed ramp-down point multiple floors
ahead of the desired stop. This lets students experience three
generations of changing requirements.

F. Life- and safety-critical systems

The elevator has a simulated electro-mechanical safety
brake typical of one found in real elevators. Elevators must
function in complex and heavy passenger workloads without
tripping the safety shutdown monitor. Significant lecture
content covers the topics of dependability, safety, and security,
including safety-critical design standards. Including a stronger
safety critical design experience would be appealing, but is
beyond the time available in the current course.

G. Effective communication

Each student group presents a mid-semester and end of
semester status report, highlighting design choices and lessons
learned. These tend to focus mostly on software engineering
concerns and simple metrics such as productivity and review
effectiveness. Students often touch upon cyber-physical
interactions in the form of physical performance optimization
in the final project. If physical project aspects were
strengthened, more time could be spent on cyber-meets-
physical aspects. Every project team must also provide a
comprehensive design package with complete traceability from
requirements through design, implementation, and test.

H. Cyber vs. physical design decisions

The tradeoffs in this dimension are twofold. Students adjust
the real time system schedule to ensure that control loops are
tuned to the time constants of the physical portion of the
system (primarily main motor speed, door speed, and user
interface speed). A second potential tradeoff would be having
safety performed by a physical system rather than a cyber
system. Creating a credible software safety system has been
explored on an individual basis by several students who use the
elevator as a pilot system for PhD thesis work.

Opening up the main motor model to permit optimization
of acceleration/deceleration profiles and energy use (including
energy recovery from passenger/counterweight imbalances)
would be a good CPS-oriented extension for this project.

I. Life-long learning

Gaps in textbook coverage, such as embedded networks,
are covered by using practitioner-oriented articles rather than
academic articles to acclimate students to using such
publications to keep their skills up to date after graduation.

J. Contemporary issues

The course text [4] (and, indirectly, the course organization
itself) is based on extensive field experience with design
reviews. Additionally, “war stories” told in each class based on
instructor experience serve to illustrate and motivate the
material and issues that students need to be aware of. A more
formal way of capturing and communicating such issues from
a variety of sources would aid scalability in this area to other
courses, but would be a significant undertaking.

K. Cyber-physical techniques, skills, and tools

The course uses an end-to-end design process that is
representative of (or, in many cases, more rigorous than), a
typical small-system industrial control project. Tools are quite
lightweight, including drawing UML diagrams with whatever
tools the students are comfortable, and using spreadsheets for
traceability. Therefore, the emphasis is more on understanding
how pieces fit together and learning basic representations of
ideas rather than on tool proficiency. Students are encouraged
to use auxiliary tools such as a version control tool and
customized scripts to manage project portfolio assembly and
hand-in. In large part this philosophy is driven by an
observation that end-to-end tool chains are generally not in use
in smaller industry projects for a variety of reasons.

pk1g
Typewritten Text
3

IV. LESSONS LEARNED AND PRACTICALITIES

While the current project is remarkably similar to the first
time the course was taught at a high level, just about
everything in it has been overhauled over the years in response
to an evolving understanding of what works, what doesn’t
work, and what benefits students the most given limited time
and resources for both faculty and students.

A. Tools

We have our own simple discrete event simulator written in
Java and a custom GUI that are reasonably platform
independent, and require no proprietary tools. While this has
cost us time to write and rewrite things, it also minimizes tool
learning curves, license hassles, tool/project mismatch, version
incompatibilities, and tool obsolescence problems that would
have otherwise occurred. Adoption of a newer simulation tool
is a possibility, but there is some virtue in having the simplest
simulation framework necessary even if it is limited.

Making students perform all the steps more or less by hand
helps them to see what goes on “under the hood.” With a more
multi-disciplinary student body one might have every student
use an integrated CPS toolset while getting more in-depth
exposure to what goes on behind the curtain in selected
specialty areas. If we were to adopt an integrated CPS-specific
design tool, it would have to be adapted to support the
distributed system nature of our project, including test
frameworks, precompiled opaque solution/scaffolding
modules, detailed network simulation, support for complex
non-CPS objects such as human passengers, and so on.

B. Design process vs. technology

Over the years we have found via student and employer
feedback that our most valuable contribution is giving students
an experience in which they come to realize, on their own, that
sound methodical engineering practices are worth doing
regardless of how smart the student may be. We’ve achieved
this by intentionally creating a project that is too complex and
subtle for most students to get right without using a methodical
design process. Students who try to brute force things by
writing code first and documenting later usually have a
catastrophic experience (we help them recover before the end
of the project). Many students list “skipping design steps bites
you later” as one of the things they learned in the end-of-course
retrospective presentations, often with compelling stories from
their course experience to illustrate the point.

We also have increasingly had success by requiring the
students to monitor and comment upon a few simple process
metrics. For example, using a simple spreadsheet to
standardize peer review reports and requiring a tally of defects
found in each peer review has had dramatic effect. Student
effort has shifted to earlier weeks (to fix bugs earlier) and the
ratio of bugs found in peer reviews increased from 10% to
about 50%. Most groups now have a light hourly load the last
week of the project because the big bugs are being found early.
After that change, students started listing one of the big things
they learned in the course as being “peer reviews really work.”

One of the open challenges with this course is individual
assessment. We have tried many approaches to measuring

individual performance within teams, and have found that most
students game any grade-related metrics heavily. We now just
concentrate on detecting dysfunctional teams via meetings and
a weekly effort report. An essential ingredient in team success
is a weekly 30-minute project management meeting for each
group with a Teaching Assistant (TA). We have found that it is
essential for each TA to have taken the course previously to
appreciate the project issues that arise.

V. CONCLUSIONS

After more than a dozen years teaching distributed
embedded systems, we’ve created a project that scales to large
class sizes and provides a robust design experience without
being a “killer project” course. It is strong in engineering
process, but is somewhat software-centric, with other non-
software aspects present as second-class citizens. The complete
set of project materials, including the simulation framework,
are publicly available on the course web site [1].

Based on our experiences, it is essential to teach not just
“good CPS design” but rather “good engineering design” as
applied to a CPS project that is complex enough that students
must to follow a good process to succeed.

We have opted for a do-it-yourself tool set that has served
us well, but as off-the-shelf CPS tool chains mature and are
adopted by industry this approach will need to be reconsidered.
We think it is essential that students understand the underlying
principle of each step in the design process so as not to treat the
tool chain (or the steps in using that tool chain) as a magic box
that just makes CPS designs happen without careful
engineering consideration. Some students will need to
understand the details so they can become future tool builders.

Other approaches to a CPS project experience have been
and no doubt will be devised with different strengths and
weaknesses (for example as summarized in [5]), especially as
CPS skills infuse the undergraduate curriculum so that more
diverse students are ready to undertake projects of this depth
and scope. Hopefully the description of this course and some of
the lessons learned will help others down that path.

ACKNOWLEDGMENTS

Developing this course has involved the support and efforts
of dozens of teaching assistants, many of whom have made
significant technical and organization contributions. They all
have my deep and continuing appreciation for their support.
Many of the contributors to this course have additionally been
supported in their research by the General Motors
Collaborative Research Lab at Carnegie Mellon University.

REFERENCES
[1] 18-649 Distributed Embedded Systems, Carnegie Mellon University,

http://www.ece.cmu.edu/~ece649

[2] ABET, Criteria for Accrediting Engineering Technology Programs
(2012-2013), Oct 29, 2011, pp. 2-3.

[3] Bosch, CAN Specification version 2.0, 1991.

[4] Koopman, P., Better Embedded System Software, Drumnadrochit, 2010.

[5] Koopman, P., "Risk Areas In Embedded Software Industry Projects",
Workshop on Embedded System Education, October, 2010.

pk1g
Typewritten Text
4

