
Reprint: Embedded Systems Conference Silicon Valley, May 2, 2011

Koopman 1 Top 43 Embedded Software Risks

Avoiding the Top 43 Embedded Software Risks

Philip Koopman
Carnegie Mellon University

ECE Dept., HH A-308
Pittsburgh, PA 15213 USA

http://BetterEmbSW.BlogSpot.com/

ABSTRACT
This paper briefly distills the lessons learned from
almost 100 reviews of industry embedded software
projects. What I found was that even developers
without formal training tend to get the basics right if
they have spent time working their way through intro
to embedded books and a few hands-on learning
projects. There are a number of more advanced
technical problems that tend to surface in embedded
projects (for example, concurrency management).
But, more of the risks stem from having a poor
engineering process, cutting corners on quality
assurance, or believing all you need is source code to
succeed. As design engineers we might like to dwell
on nitty-gritty technical aspects. But there is more to
success than that. Embedded developers need to deal
with the higher level risk areas I identify, and can
benefit from the concrete best practices described.

1. INTRODUCTION
This paper identifies 43 risk areas for real products in
a variety of embedded system application areas. The
items were identified over the course of almost 100
design reviews conducted by the author over more
than a decade.

Application areas covered by the reviews include:
transportation, chemical processing, building infra-
structure, telecommunication systems, manufacturing,
and a few cross-cutting underlying technologies such
as embedded system safety and security. Systems
were about evenly divided between small micro-
controllers and bigger CPUs that ran some sort of
RTOS. Team sizes ranged from one part time
developer to teams of up to 25 developers, with most
programs being small or medium in size and written
in assembly language, C, or C++. Most reviews
included a day of on-site discussions with the
developers. Many developers were domain experts
with mechanical or electrical engineering background,

although some had formal computer software
education. A more detailed description of the study,
including more detailed description of each risk area,
can be found in [1].

2. RISK AREAS
Each review engagement produced a set of
recommendations, including “red flag” issues that
present significant and immediate risks to the success
of the project or product. In other words, a red flag
area is one that should be fixed before sending the
product to market (or, if the product is already on the
market, needs to be fixed as soon as possible to limit
the extent of the risk). The table on the next page lists
all the areas in which one or more reviews identified a
red flag risk.

It’s important to point out that not every project needs
to be perfect. Rather, it’s important to mitigate or
avoid risks that are significant in the context of a
particular product and application area. This list of
red flag risks takes that context into account. In
particular, each identified risk area was a significant
problem for a particular project being reviewed, not
simply just a best practice that had been skipped.
Several high level patterns can be seen in the list of
risks, both in terms of what is there and that is not
there.

2.1 THE BASICS
Overall teams tended to get the basics right. No team
had serious problems getting an A/D converter
working, getting a serial port working, or with other
intro-level embedded skills. (This is not to say that
problems of this sort never happen. Rather, this sort
of problem tends to be caught and fixed by developers
before external reviewers are brought in.) In part this
is because information about those topics is readily
available through a variety of sources. But, just as
importantly, it is relatively obvious when something

Reprint: Embedded Systems Conference Silicon Valley, May 2, 2011

Koopman 2 Top 43 Embedded Software Risks

like that isn’t working in a product. You don’t need
an outside expert to tell you that you’re A/D converter
isn’t collecting data!

43 Embedded Software Risk Areas
#1. Informal development process
#2. Not enough paper
#3. No written requirements
#4. Requirements omit extra-functional aspects
#5. Requirements with poor measurability
#6. No defined software architecture
#7. Poor code modularity
#8. Too many global variables
#9. No message dictionary for embedded network
#10. Design skipped or is created after code is written
#11. Flowcharts are used in place of statecharts
#12. Inconsistent coding style
#13. Ignoring compiler warnings
#14. No peer reviews
#15. No real time schedule analysis
#16. Use of home-made RTOS
#17. Inadequate concurrency management
#18. No methodical approach to user interface design
#19. No test plan
#20. No stress testing
#21. No defect tracking
#22. No run-time fault instrumentation nor error logs
#23. Defect resolution for 3rd party software
#24. Disaster recovery not tested
#25. Insufficient consideration of reliability/availability
#26. Insufficient consideration of safety
#27. Insufficient consideration of security
#28. No IP protection plan
#29. No or incorrect use of watchdog timers
#30. Inadequate system reset approach
#31. High requirements churn
#32. No version control
#33. No backward compatibility plan
#34. No software update plan
#35. Lessons learned not being recorded
#36. Acting as if software is free
#37. Use of cheap tools instead of good ones
#38. High turnover and developer overload
#39. No training for managing outsource relationships
#40. Resources too full
#41. Too much assembly language
#42. Project schedule not taken seriously
#43. No Software Quality Assurance (SQA) function

2.2 ADVANCED TECHNICAL RISKS
A number of the risks are advanced technical areas
specific to embedded systems, and are the types of
things that most experienced developers would expect
to be risk areas. Inadequate concurrency management,
incorrect use of watchdog timers, poor modularity,
and other similar topics are the sorts of things that
developers often get wrong. They are also the types of
things I thought would be the most prevalent risks.
An important reason why these problem areas are
common is that it is difficult to tell there is a problem
via ordinary system testing. If a system is working
fine in normal use, you can’t really tell whether the
watchdog timer has been set up properly. Nor are you
likely to find bugs caused by subtle and infrequent
race conditions. But that doesn’t mean such problems
aren’t there, especially if you didn’t think to look for
them.

2.3 BEYOND TECHNICAL RISKS
To my continuing surprise (I am, after all, a techie),
by far most of the red flag risk areas weren’t really
technical; they were in the areas of process, quality,
management and other softer areas. In other words,
just looking at the code itself doesn’t reveal where
most of the risks are. You have to take a broader look
at the bigger development picture.

Also, most of the risks weren’t caused by developers
slacking on things they were trying to do. By and
large, the developers I encountered were smart, hard-
working, well-intentioned designers. They were
trying to do the right thing, and usually did well at
whatever they set out to do.

The most prevalent problem was developers not
realizing there were additional things they should be
doing, and not realizing the huge risk that omitting
those extra activities were placing on their success.

Some examples of risks caused by missing pieces of
development process include:

• Design was skipped, leading to spaghetti code
that seemed to (mostly) work, but was almost
impossible to understand or maintain

• Peer reviews were skipped, leaving far too many
bugs to be found (and missed) by testing

• No formal test plan was used, leaving gaps in
testing that let bugs slip through to product

Reprint: Embedded Systems Conference Silicon Valley, May 2, 2011

Koopman 3 Top 43 Embedded Software Risks

3. AVOIDING THE RISKS
In an ideal world, every product development team
would get a senior developer from outside the project
to do a review to identify risks, using the risk areas in
this paper as a starting point. (And, you should do that
if you can!)
But the world is not ideal. Even if you can get such a
review, not all risks are created equal for every
project. So, some common sense and prioritization
has to be done to make sure the risks that matter most
are the ones that are mitigated.
Nonetheless, there are some general guidelines that
are likely to help keep development teams on the path
to avoiding big risks. These guidelines summarize the
major points of [2], which was created as a way to
help developers deal with these same 43 risk areas.
Think of these as guidelines that will get things
moving in the right direction so that risk-hunting is
likely to come up with few, if any, killer risks for a
project.
1. Define your development process. If the process

goes out the window in a time crunch, you’ll
likely pay for it later. Use the right amount of
formality for your situation. (Zero paperwork
isn’t the right answer.)

2. Define requirements in a measurable, traceable
way. If you can’t measure a requirement you
don’t know if you met it.

3. Document your software architecture. Make your
code modular, and avoid global variables.

4. Create a concrete software design before you
write code. If you don’t use any statecharts,
something is wrong.

5. Follow a defined, consistent coding style. Use
static checking tools to keep your code clean.

6. Do methodical peer reviews of everything
(requirements, code, test plans – everything!).

7. Do real time scheduling analysis, and use a 3rd
party RTOS if you are doing preemptive task
switching.

8. Pay attention to concurrency to avoid tricky
timing bugs. Home-brew methods are risky.

9. Follow good user interface design principles. Do
user testing (engineers don’t count as “users”).

10. Have a formalized, traceable test plan. Test until
you reach a defined level of coverage.

11. Ensure that problems found both in test and run-
time are identified and tracked.

12. Explicitly specify and plan for performance,
dependability, security, and safety up-front. Most
embedded systems involve all these, and it is
painful to try to add them at the end of the
project.

13. Ensure that the watchdog timer will trip if any
task in the system hangs, and that system resets
are safe.

14. Manage change (requirements, versions, patches,
people, process).

15. All software is expensive. Don’t act like it’s free.
16. Leave plenty of slack resources. Use as little

assembly language as possible (zero assembly
code is a good amount).

17. Find a way to make sure all of the above practices
are actually being done. Paying lip service just
gives the illusion of risk mitigation

4. CONCLUSIONS
Red flag risk areas in industry embedded software
projects included advanced technical topics, but also
go well beyond just code. Mitigating these risks
requires following a well-defined development
process that ensures appropriate formality and effort
is applied to the spectrum of development activities
from requirements through test.
No project has infinite time and resources for
development. The art is in making sure that all the
areas that matter for your project are covered to an
appropriate degree. It is almost never that case that
entirely skipping one of the practices identified is a
good idea. And while there are plenty of potential
risks and development mistakes, the 43 identified in
this paper are worth checking for based on what I’ve
seen in industry design reviews.

5. REFERENCES
[1] Koopman, P., "Risk Areas In Embedded Software

Industry Projects", Workshop on Embedded
System Education, October, 2010.

[2] Koopman, P., Better Embedded Software,
Drumnadrochit Education, 2010.

http://www.ece.cmu.edu/~koopman/pubs/koopman10_risk_areas_embedded_projects.pdf
http://koopman.us/book.html

