
Extended Version, June 30, 2011. Original shorter version appeared at a panel session for DSN 2011.

The Grand Challenge of
Embedded System Dependability

Philip Koopman
ECE Department

Carnegie Mellon University
Pittsburgh, PA, United States

koopman@cmu.edu

Abstract: Four significant challenges in embedded
system dependability are: embedded-specific security
approaches, unifying security with safety, dealing with
composable emergent properties, and enabling domain
experts to use advanced dependability techniques.

Embedded systems permeate our everyday lives,

including applications as diverse as cars, consumer
electronics, thermostats, and industrial process controls. We
have a surprising amount of reliance upon these systems, and
we take their dependability almost for granted. Given
extreme cost constraints, tremendous deployment scales, and
the wide range of application domains, it is amazing that
things more or less work well today. But, as application
complexity increases, more applications become safety
critical, and more embedded systems are attached to the
Internet, we cannot expect business as usual with design
approaches to maintain the level of dependability we want
and need from such systems.

In my opinion the biggest challenges facing embedded
systems lie in the areas of creating more suitable security
techniques, finding a more unified approach to
safety+security, dealing with composable emergent
properties, and deploying dependability techniques to small
product development teams.

Deeply embedded system security has significantly
different constraints and requirements than enterprise and
personal computing security. Embedded control systems
often have severe resource constraints, limited development
budgets, and stringent real time performance requirements.
But an even more pressing security problem in many
embedded systems is that the effects of a malicious fault can
cause physical damage to people and the environment. It is
less difficult to reverse or adequately insure against most
malicious financial transactions than it is to reverse the
release of toxins into the environment or “roll back” a multi-
vehicle collision. Additionally, most embedded systems to
date have been designed with near-zero security once an
attacker has access to the internal control network. IT-based
techniques for addressing that situation are unlikely to
suffice due to matters of cost, real time dynamics, and lack
of complete physical isolation from attackers.

Inevitably, embedded system safety and security will
have to merge into a unified discipline, or at least a tightly-

coordinated set of sub-disciplines. It is questionable to build
safety cases for most everyday systems upon a faulty
presumption of perfect security. At the same time, security
techniques will need to take into account the safety
implications of vulnerabilities and system outages. One
element of a safety and security unification strategy might be
to look at security faults as an attack on the assumptions of
the safety case (e.g., an attacker negates the random
independence assumption of fault arrival rates).

Due to the limitations and realities of embedded system
development, workable dependability approaches will likely
include some notion of cost-effective resilience in the face of
inevitable faults, as well as a way to balance the tension
among the often conflicting goals of safety, security,
performance, and reliability. The good news will be that
there are opportunities to exploit domain characteristics such
as physical process inertia in ways not practical in desktop
and enterprise computing.

A long-standing problem has been increasing the
composability of emergent system properties. It is desirable
to have building blocks that can be composed arbitrarily
without surprises, and by the same token have an ability to
decompose a system architecture so that predictable building
blocks can be identified in a way that minimizes cross-
coupled quality attributes. Much progress has been made on
this in the area of real time systems, but much remains to be
done in other areas such as safety and security. An additional
challenge will be ensuring the composability of massively
deployed distributed systems so that, for example, a city full
of smart thermostats doesn’t display emergent aggregate
behavior that takes down the power grid.

Finally, the serious challenges posed by creating a
dependable system are made more difficult when the
development teams are typically composed of a handful of
domain experts who may have no formal computer training
beyond an introductory programming course. The traditional
way to deploy advanced knowledge is via synthesis and
analysis tools, and this has been done with astonishing
success in IC design. More recently, model-based design has
been helping embedded system designers in some domains
perform code synthesis from relatively high level system
behavioral descriptions. But will be a long time before tools
can provide us with push-button automation that addresses
the myriad aspects of embedded system dependability.

