
Robustness Testing of Autonomy Software
Casidhe Hutchison

National Robotics Engineering Center

Carnegie Mellon University

fhutchin@nrec.ri.cmu.edu

Milda Zizyte

Dept. of Electrical & Computer

Engineering

Carnegie Mellon University

milda@cmu.edu

Patrick E. Lanigan

National Robotics Engineering Center

Carnegie Mellon University

planigan@nrec.ri.cmu.edu

David Guttendorf

National Robotics Engineering Center

Carnegie Mellon University

dguttendorf@nrec.ri.cmu.edu

Michael Wagner

National Robotics Engineering Center

Carnegie Mellon University

mwagner@cmu.edu

Claire Le Goues

School of Computer Science

Carnegie Mellon University

clegoues@cs.cmu.edu

Philip Koopman

Dept. of Electrical & Computer

Engineering

Carnegie Mellon University

koopman@cmu.edu

ABSTRACT
As robotic and autonomy systems become progressively more

present in industrial and human-interactive applications, it is in-

creasingly critical for them to behave safely in the presence of un-

expected inputs. While robustness testing for traditional software

systems is long-studied, robustness testing for autonomy systems

is relatively uncharted territory. In our role as engineers, testers,

and researchers we have observed that autonomy systems are im-

portantly different from traditional systems, requiring novel ap-

proaches to effectively test them.We present Automated Stress Test-

ing for Autonomy Architectures (ASTAA), a system that effectively,

automatically robustness tests autonomy systems by building on

classic principles, with important innovations to support this new

domain. Over five years, we have used ASTAA to test 17 real-world

autonomy systems, robots, and robotics-oriented libraries, across

commercial and academic applications, discovering hundreds of

bugs. We outline the ASTAA approach and analyze more than 150

bugs we found in real systems. We discuss what we discovered

about testing autonomy systems, specifically focusing on how do-

ing so differs from and is similar to traditional software robustness

testing and other high-level lessons.

KEYWORDS
dependability, robustness testing, safety-critical systems, autonomy

This document is marked with Distribution Statement A. NAVAIR Public Release-

2017-35 ’Approved for Public Release; distribution is unlimited’.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00

https://doi.org/10.1145/3183519.3183534

ACM Reference Format:
Casidhe Hutchison, Milda Zizyte, Patrick E. Lanigan, David Guttendorf,

Michael Wagner, Claire Le Goues, and Philip Koopman. 2018. Robustness

Testing of Autonomy Software. In ICSE-SEIP ’18: 40th International Confer-
ence on Software Engineering: Software Engineering in Practice Track, May
27-June 3 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3183519.3183534

1 INTRODUCTION
Autonomy and robotics systems are rapidly gaining importance in

modern times. From self-driving cars to factory and surgical robots,

autonomy systems are transforming the ways that humans travel,

manufacture, and perform their jobs. As such systems grow more

prevalent, assuring that they operate safely, with acceptable risk to

humans and the environment, becomes ever more important. As

they grow more complex, assuring safety becomes commensurately

more difficult. Such systems operate in environments marked by

inaccessibility, unexpected weather conditions, or unpredictable be-

havior by surrounding humans. One recent example is the crash of

the ExoMars Mars Lander, likely due to an implementation mistake

that failed to account for timing inconsistencies between sensors [1].

As a result, the lander “thought” it was on the ground when it was

actually several kilometers above Mars, costing $350 million in lost

equipment and time. Diagnosis was difficult because the environ-

ment (Mars) is inaccessible.

Assuring the safe operation of critical software is not a new prob-

lem, and various techniques have been proposed to both formally

verify important properties [42] and identify dangerous defects in

such software. In the latter category, robustness testing describes

a class of approaches that evaluates the degree to which a sys-

tem or component can function correctly in the presence of invalid

inputs or stressful environmental conditions. At a high level, robust-

ness testing constructs tests of systems or components, drawing

inputs from known boundary, exceptional, or invalid cases, and

then checks for failures such as aborts. It has found critical defects

https://doi.org/10.1145/3183519.3183534
https://doi.org/10.1145/3183519.3183534

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden C. Hutchison et al.

in software from operating systems [15, 24], drivers [29], the Java

API [9], and libraries [14], to safety-critical software [36].

The considerable evidence supporting the efficacy of robustness

testing across many types of software [24, 31] suggests that it may

prove a fruitful technique for testing autonomy systems. However,

there are critical differences between autonomy systems and the tra-

ditional software systems to which these types of techniques have

been applied. By contrast, autonomy systems are notably stateful,

temporal, distributed, and cyber-physical. These properties have

implications for efforts to apply traditional robustness testing ap-

proaches to autonomy systems. For example, statefulness suggests

that single function call injection on system components is unlikely

to be effective; instead, tests must scaffold the system sufficiently

before sending erroneous inputs.

We propose Automated Stress Testing for Autonomy Architec-

tures (ASTAA), a system that automatically generates and runs

tests to effectively find defects in real-world, industrial autonomy

systems. ASTAA builds on traditional robustness testing, drawing

from a dictionary of exceptional values to construct test inputs to

systems and components. However, key elements of ASTAA’s ap-

proach are driven by the above-mentioned observations about the

features of autonomy systems as compared to other systems. For ex-

ample, rather than injecting values on function interfaces, ASTAA

intercepts messages on a distributed system and injects exceptional

values into live system messages, acting as a proxy. ASTAA also

goes beyond traditional crash and hang monitoring by implement-

ing runtime monitors to check for violations of system-specific

safety invariants, addressing the safety-criticality of cyber-physical

autonomy systems.

The National Robotics Engineering Center (NREC) develops and

matures robotics technologies and solutions from concept to com-

mercialization. At NREC, our team develops methods and tools to

find safety problems in autonomy systems that are unlikely to be

discovered by other types of tests or extended field testing. This

context affords us access to large, real-world autonomy systems,

both open- and closed-source. Over the course of five years, we

applied ASTAA to 17 such systems, including humanoid robots,

industrial manipulators, and unmanned aerial, ground and sea ve-

hicles. In addition to informing our testing approach, these systems

let us quantitatively and qualitatively characterize the types of bugs

common to these diverse projects. For example, we uncovered a

defect in a mobile manipulator that could result in a collision be-

tween the robot arm and the mobile base.
1
In another instance, we

exercised the safety-critical speed limits of an Unmanned Ground

Vehicle (UGV) and identified a failure mode in which the speed

limit could be violated.
2

When describing our testing approach, we outline both the fea-

tures of autonomy systems that render them amenable to tradi-

tional robustness testing, as well as those that challenge standard

approaches. For example, perhaps unexpectedly, despite their state-

fulness and heavy reliance on control loops, bugs in autonomy

systems are often low dimensional, for some definition of “bug

dimension.” On the other hand, effective robustness testing of such

systems almost always requires more than the single function calls

1
https://www.youtube.com/watch?v=kK6iKwjKA54

2
https://www.youtube.com/watch?v=W_qBF2OjGtE

to interfaces that characterizes many previous approaches. These

observations can inform future system developers and researchers

as they seek to build and support better, safer, and more robust

autonomy systems.

Overall, we describe (1) a set of testing techniques that build

on classic robustness testing, with key innovations specifically tar-

geting autonomy systems, outlined through the development of

ASTAA; (2) a characterization of more than 150 bugs that ASTAA

found in real-world autonomy systems over five years, with impli-

cations for both testing and development of robust autonomous

systems; and (3) several substantiated observations about important

properties of autonomy systems, and how such properties should

influence the way both developers and researchers approach them.

The rest of this paper is organized as follows. Section 2 provides

background on robustness testing and autonomy systems. We detail

ASTAA in Section 3. Sections 4 and 5 describe the results of applying

ASTAA to many real-world systems, validating ASTAA design

principles and providing lessons for developers and researchers.

Section 7 outlines related work; Section 8 concludes.

2 BACKGROUND
This section overviews important concepts in robustness testing

(Section 2.1) and the autonomy systems ASTAA targets, with partic-

ular focus on the features that differentiate such systems from other

software (Section 2.2). We focus strictly on background necessary

to understand our contribution here; we detail additional related

work in Section 7.

2.1 Robustness Testing
Testing is rigorously defined as “the dynamic verification of the

behavior of a program on a finite set of test cases, suitably selected

from the usually infinite executions domain, against the specified

expected behavior” [4]. Test automation is beneficial because hu-

man effort is expensive [41], and human biases can lead them to

forget important off-nominal test cases [43].

Black-box testing refers to the testing of an interface without

reference to source code, by drawing inputs from the program’s

input space. A straightforward way to do this automatically is by

providing random inputs to its interfaces, sometimes referred to

as fuzz testing [30, 31]. Robustness testing is a variant of black-box

testing that evaluates system robustness, or “the degree to which

a system or component can function correctly in the presence of

invalid inputs or stressful environmental conditions” [38].

We previously developed Ballista [26], a well-known robustness

testing technique whose design principles are fundamental to the

development of ASTAA. At a high level, Ballista sends exceptional

inputs, taken from a dictionary thereof, to outward-facing software

system interfaces, such as system calls or library functions. Exam-

ple exceptional inputs include NULL pointers, MAXINT, or NaN. The
input dictionary also includes likely-valid values, such as small

positive integers. This enables the generation of tests with partially

valid parameters, such that all parameters can be tested. This input

dictionary was generated by the Ballista developers over years of

experimentation.

Ballista executes each function under test using each selected

set of parameters and categorizes anomalous test results using

https://www.youtube.com/watch?v=kK6iKwjKA54
https://www.youtube.com/watch?v=W_qBF2OjGtE

Robustness Testing of Autonomy Software ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

the CRASH scale [26], focusing in particular on Catastrophic,

Reset, and Abort errors. In total, the Ballista project tested 30

systems, including Windows 95 through XP, as well as many POSIX

systems, and found a robustness failure rate of over 10% for most of

them, along with 57 system killer functions, to which a single call

with invalid arguments would bring down the entire OS [24]. The

input dictionary approach is more scalable than truly random fuzz

testing, because exceptional values for each parameter are drawn

from a small input dictionary, rather than the entire input space

of the program. A key takeaway from the success of the effort is

that the same dictionary discovered robustness vulnerabilities in

many systems [24]. Interface testing is effective because in practice,

many errors are caused by one or a combination of at most two

inputs [35].

2.2 Autonomy systems
Broadly, robotic and autonomy systems are software systems that

interact with the physical world, usually to assist or automate some

human task. Such systems typically comprise components that com-

municate by publishing messages on a bus, where a component

is a “natural chunk of software” [23] such as an object, separately

compiled module, library, subroutine, or sensor driver. For exam-

ple, a simple autonomous robot is composed of motion planning,

mapping, and sensing/actuation components.

Because such systems control physical components, they display

several important properties that differentiate them from typical

software such as OSs, frequently the target of previous robustness

testing efforts. In particular, autonomy systems are:

Stateful. Autonomy systems typically use large amounts of in-

ternal state to track and interact with the physical world,

as well as long-term or complex user intentions, such as a

mission or plan. For example, an autonomous robot might

use a camera and/or lidar to build a model of the world that

it updates as it moves to previously unexplored areas. By

contrast, OS state is frequently incidental, involving memory

boundaries or file state, rather than deliberate [26].

Temporal. Autonomy systems frequently have temporal and se-

quential requirements, as these systems are designed to exe-

cute checklists/recipes the way a human would. For example,

a common behavior for an autonomous mobile robot is to go

to a point in the map while gathering new data, and then use

the new data to compute the next point. By contrast, much

of traditional software is transformational [6], where inputs

are received, calculations performed, and outputs emitted,

without consideration for timing.

Distributed. Autonomy systems typically comprise multiple con-

trollers/software modules that communicate over a network

interface. As a result, autonomy system execution is typically

conducted via the sending of messages over a communica-

tion channel. For example, an autonomous robot might have

controllers to command its wheels to attain a certain velocity,

a map generator, and a perception system, all communicating

over a bus. Although the specific communication protocol

can vary between systems, messages typically comprise a

header and message data. For example, messages capturing

odometry information might start with a timestamp and se-

quence number, with content composed of vectors of floats

representing pose (position and orientation) and linear and

angular velocity.

Cyber-Physical. Autonomy systems are typically Cyber-Physical

Systems (CPSs) that integrate both software and physical

components, which makes them different from traditional

software in two important ways. First, autonomy systems

are almost always safety critical. The physical components

(e.g., a vehicle, or a robot arm) that allow them to interact

with the world usually impose safety properties (e.g., “don’t

collide with obstacles”). Failure to adhere to these properties

risks injury or loss of life, as well as damage to the system

itself. Second, CPSs characteristically contain control loops

that compensate for error in the actuation of their physical

components. Loop closure, where sensor readings are used

to calculate the next actuation, makes autonomy systems

very different in behavior from classical software, which is

largely devoid of feedback [6].

3 APPROACH
ASTAA is a robustness testing framework that seeks to automat-

ically discover safety problems in autonomy systems. At a high

level, ASTAA injects exceptional values at component interfaces

to test the robustness of modules within such a system. However,

ASTAA also includes several key features necessary to effectively

target traditional robustness testing to autonomy systems:

Use of safety invariants. Because autonomy systems are typi-

cally CPSs, ASTAA goes beyond the crashes and hangs that

are traditionally checked for in robustness testing. ASTAA

also monitors safety invariants, which can express safety

properties that are more complex than those of the tradi-

tional oracles.

Messages as the injection interface. ASTAA manipulates val-

ues in system messages sent over the internal network. That

is, test definitions in ASTAA are runs of the system, often

spanningmultiple messages, rather than single function calls.

This leverages the typically distributed nature of autonomy

systems.

Interception testing. A key conclusion of the development of

ASTAA is the necessity of interception testing, which mutates

live message values. This both reduces ASTAA’s reliance

on user-provided sequences to test stateful and temporal

properties, and is critically important for closure of CPS

control loops.

Figure 1 illustrates the three main phases of the ASTAA testing

process. The process begins by using existing documentation from

the System Under Test (SUT) to manually produce an ASTAA Test

Specification (Section 3.1). The test specification is then combined

with information from an Exceptions Database to generate a set

of test cases (Section 3.2). The ASTAA Test Runner automatically

executes the test cases on the SUT, monitors for invariant viola-

tions, and logs results (Section 3.3). The section concludes with a

discussion of properties of certain systems that ASTAA exploits

when possible (Section 3.4).

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden C. Hutchison et al.

Message Dictionary

System Requirements

Safety Requirements

Interface Definition

Startup Sequence

Invariants Definition

Shutdown Sequence

Exceptions

Database

Message

Types

Type Value

Exceptions

Invariants Definition

Startup Sequence

Shutdown Sequence

Interface Definition

Test Sequence

Invariant

Monitors

Test

Injectors

O
rc

h
e

s
tr

a
to

r

L
o

g
g

e
r

G
U

I

Protocol Modules

Define Test Specification

(guided manual process)

Generate Test Cases

(automated process)

Execute Test Cases

(automated process)

System Under Test

Figure 1: ASTAA architecture diagram.

3.1 Define Test Specification
The user performs several guided steps to tell ASTAA what a new

system looks like and how it is exercised. This information is stored

in the ASTAA Test Specification. It describes the distributed sys-

tem interfaces (including message definitions describing how the

system modules communicate over the network), necessary startup

and shutdown sequences, and the system safety invariants. This

information is typically found in the system documentation, includ-

ing the safety requirements which can in many cases be translated

directly from English to formal language invariants using a tem-

plate [13, 19].

“Operating safely” in the autonomy system context not only

includes avoiding crashes or hangs, but also maintaining safety-

critical properties of the SUT. Indeed, safety property violations can

be more dangerous than traditional software failures, like crashes.

An autonomous vehicle that violates its speed limit around human

operators can cause a lot more harm than one that aborts and stops

moving. Safety invariants in ASTAA are encapsulated in evaluable

expressions, such as a state machine or a formal language clause

(such as bMTL[20]). System safety invariants must always be valid

for the system to be considered safe (e.g., “No matter what the

input, the system should not move if the E-stop is engaged”). We

hypothesize that important autonomy bugs would remain uncaught

if ASTAA only identified crashes or hangs.

3.2 Generate Test Cases
Given a Test Specification, ASTAA automatically generates Test

Case descriptions, following the Ballista approach of injecting spu-

rious data from an exceptions database (Section 3.2.2). However,

autonomy systems are typically distributed software/hardware com-

ponents communicating via message passing over a network. As

such, a more natural approach for this class of systems is to treat

system messages as the injection interface. That is, rather than

providing invalid function call arguments, ASTAA injects invalid

Figure 2: Interception in the ASTAA architecture

values into the system message fields. Moreover, rather than gener-

ating entire messages, ASTAA manipulates the fields of messages

during live system execution (what we call interception testing).

3.2.1 Interception testing. Injecting exceptional values at the

message level does not intrinsically preclude the use of traditional

approaches. However, autonomy systems are ill-suited to such ap-

proaches. First, highly stateful systems respond poorly to direct

injection testing and fuzzing because they typically require substan-

tial setup/handshaking to reach a responsive state [18, 24]. While

providing constructors can address autonomy system setup [3, 34]

in some cases, they do not suitably address autonomous control

loops, which require ongoing feedback from the environment. This

need for ongoing interaction means that simply getting the system

into a responsive state is necessary, but not sufficient.

Robustness Testing of Autonomy Software ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

To address this challenge, ASTAA implements interception test-
ing, which “intercepts” (changes) specific messages or fields in

a running system, leaving other fields in a message unchanged.

This process is displayed pictorially in Figure 2. Interception test-

ing applies principles of mutational fuzzing [46] and man-in-the-

middle [18] attacks. This allows ASTAA to perform a variety of

tests that would otherwise be impossible in the presence of control

loops. For example, ASTAA can test whether a given control loop

is stable in the presence of the occasional spurious data point, im-

portant for systems operating in noisy environments. Traditional

injection testing is unable to conduct such a test because doing so

requires loop closure.

3.2.2 ASTAA Test Cases. Test generation produces ASTAA Test

Cases, which are XML files that describe how to test the system. A

test case consists of a list of interception policies describing how

to modify a stream of messages on a running system. The policies

take the form:

for all messages of type A on channel X
between time ti and tj , set field f to value v .

Channels (X), message types (A), and fields (f) come from in-

terface definitions; timestamps (ti , tj) are randomly generated. To

produce invalid field values (v), ASTAA uses a dictionary of type-

dependent exceptional values, consistent with previous robustness

testing approaches (see Section 2.1). The values in the dictionary

come from previous work, augmented over the course of ASTAA

development and deployment.

Note that ASTAA does not manipulate every message in ev-

ery test execution, and instead passes some unmodified messages

through to the system. This approach has two important benefits.

First, it addresses setup/scaffolding automatically, by forwarding

unaltered system behavior. As such, ASTAA can manipulate a SUT

past startup/initialization and into a more interesting testable state

without the need for user defined constructor/startup sequences.

Second, ASTAA can test the effects of exceptional values in differ-

ent states of the autonomous system, without needing to explicitly

architect that state. Moreover, other unaffected messages can cause

injected exceptional values to be pulled frommemory and exercised.

We hypothesize that nominal messages, unaffected by interception,

allow ASTAA to find deeper bugs than could be discovered by tra-

ditional injection, which would be unlikely to generate nominally

correct messages, and could thus only activate shallow faults.

3.3 Execute Test Cases
Given a running SUT, the ASTAA Test Runner uses the Test Case

descriptions to modify communication between components of the

SUT, mediated by the Protocol Modules. The rest of this section de-

tails runtime message manipulation and monitoring (Section 3.3.1)

and test logging and minimization (Section 3.3.2).

3.3.1 Messagemanipulation andmonitoring. ASTAA is designed

to be universal, interacting with the SUT through an extensible

test interface. This interface uses Protocol Modules to translate the

messages generated by the test case to networkmessages in the SUT,

and vice versa for analysis. These modules simply pack and unpack

data at the network message layer, and are thus reusable across

systems; We have written several for general use, including ROS

(Robot Operating System) and CAN modules. Given appropriate

Protocol Modules, ASTAA requires no additional user involvement

beyond initial setup.

ASTAA detects safety violations and crashes/hangs in the SUT

and its subsystems by monitoring system behavior while exercising

it. Crashes or hangs can usually be detected through the middle-

ware layer (e.g., ROS) or operating system (e.g., by polling active

processes). ASTAA evaluates safety invariants from the Test Spec-

ification using runtime monitoring, and interface monitoring in

particular, to examine the values passed on the bus. Interface moni-

toring can effectively detect system faults without requiring source

modification [21, 37]. Such monitoring can be done online, on a

live system, or offline, on a collected log file [17]. Both online and

offline monitoring were used in testing systems over the course of

the ASTAA project, depending on which was more suitable for a

given SUT.

3.3.2 Test logging and minimization. Because test cases are lists
of rules formodifying a run of a system influenced by non-deterministic

noise (e.g., environmental, timing noise), test cases themselves are

not deterministic; different runs can produce different results. Thus,

ASTAA provides test logs to describe the totality of system runs that

lead to error. This log includes both the modified and unmodified

system messages. Unlike the test cases, a test log contains all the

information needed to replicate a failure and can be replayed.

However, developers may benefit from knowing more precisely

which message conditions are necessary for a violation. Thus, when

possible, ASTAA attempts to find a minimal failure-generating test

case. It first uses delta debugging [47] to produce a minimal set of

log messages necessary to trigger the failure during replay. It then

uses Hierarchical Product Set Learning (HPSL) to identify the fields

in those messages relevant to the bug, and what values they must

assume [45].

Initial test logs can be very high dimensional, containing many

messages, each with many fields. A key question in ASTAA develop-

ment is the degree to which bugs in autonomy systems are similarly

high-dimensional, particularly with respect to their activation dis-

tance from nominal behavior. The definition of dimensionality is

nuanced in this context, as we discuss further in Section 4.2.1.

Test case minimization is extremely informative when possi-

ble; however, not all systems can be replayed. When minimization

is impossible, the ASTAA Test Log can still provide useful infor-

mation, giving a specific instance of a system failure, which can

substantially aid diagnosis.

3.4 Testing Shortcuts
The techniques discussed above allow ASTAA to test systems that

exhibit characteristics that are common to autonomy systems. How-

ever, not every system or module within a system exhibits all of

these characteristics, and in many cases simpler testing methods

can be used to great benefit. For example, when SUTs don’t have

control loops, log replay is possible, aiding in bug finding through

minimization, as mentioned in Section 3.3.2.

3.4.1 Replay and subsystem testing. Certain subsystems lack the

feedback/control loops that motivate live interception testing. Some

are simple transformational systems that take input and produce

output without feedback (e.g., coordinate transform libraries or

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden C. Hutchison et al.

planners). Such subsystems can be tested without a full simulation

by starting them up in isolation and replaying logs, as without

feedback or control loops, changing the log does not cause data

consistency problems.

This can be substantially simpler, as many SUTs have existing

facilities for log replay, whereas interception of live system mes-

sages can be difficult. For example, to intercept between n nodes on

a bus, ASTAA must replace the bus with a star topology of n nodes,

intercepting at the gateway. This applies to both hardware, where

physical buses must be modified, and to simulations, where network

channels need to be rerouted, increasing network load. Log modifi-

cation and replay precludes a need for rerouting, simplifying testing.

More than half of the bugs found by the ASTAA project were

found via subsystem testing, with many of them traced to system-

level activation, such as the bug detailed in [45].

3.4.2 Injection with constructors and interleaving. Two addi-

tional techniques allow ASTAA to function effectively even when

live interception is difficult. First, injection with constructors [3, 34]

supports effective testing of transformative subsystems without

control loops. This is similar to how log replay interacts with the

system, but it allows a tester more control over the states of the

system being tested at the cost of automation.

Another simplified approach is to interleave fully generated mes-

sages in between live system messages, which splits the difference

between interception and traditional injection. This allows some

live system messages to pass through (e.g., those relevant to a con-

trol loop), while still injecting spurious data. Since interleaving only

involves adding messages to the bus, not modifying or removing

them, it can be substantially easier to implement than interception.

While it does provide some of the benefits of interception, it is

also more limited in its ability to test various interface aspects (e.g.,

fields in the same message as the control loop feedback cannot be

altered). Interception is more powerful, but we found interleaving

useful when interception was impracticable.

3.4.3 Brittle fields. Over the course of system testing, we iden-

tified several special fields that have meaning to the middleware

layer (e.g., timestamps and sequence numbers), rather than just the

SUT itself. We found that testing on these fields seldom uncovered

meaningful bugs, and usually instead resulted in simple message

rejection or shallow assertion failures. We therefore frequently

achieved deeper system testing by not intercepting on the follow-

ing types of fields: timestamps and sequence numbers, meta-values

(e.g., values indicating how to parse message content), and string

signatures (e.g., version numbers). While testing these fields can

find bugs, we found it generally more productive to bypass them,

as spurious data in these fields often cause early failures that mask

other, more-critical faults.

4 TESTING EXPERIENCES
From autonomous land, sea, and air vehicles, to legged robots

and mobile manipulators, ASTAA has tested a diverse range of

robotic systems. We tested both open-source and proprietary sys-

tems across commercial, defense, and academic domains. For ex-

ample, we applied both module and system-level testing to the

motion planning software developed for an autonomous helicopter

program. We also tested the planning system developed for an un-

manned naval vessel, testing strictly at the system-level. We tested

an autonomy kit that can be applied to UGVs, as well as a soft-

ware system that enables teleoperation of such vehicles across long

distances.

Many of the robots we tested are based on ROS, an open-source

collection of libraries and tools that provides a framework for ro-

bot software. We tested a variety of functional components in a

variety of systems, including perception, planning, and control

modules. The Technology Readiness Level (TRL) [2] of the SUTs

generally ranged from 4 (“component validation in a laboratory

environment”) to 6 (“system/subsystem prototype demonstration

in a relevant environment”).

Although we cannot disclose the actual testing results for any

specific SUT, we can analyze and describe in broad terms the kinds

of bugs that were found throughout the course of the ASTAA

project. The bug reports included in this analysis cover four years of

ASTAA testing and contain over 150 bugs from 11 distinct projects.
3

The reports include varying levels of detail for diagnosing and repli-

cating the bugs. To characterize the kinds of problems that ASTAA

uncovered, we reviewed each bug report and assessed the issue

across several dimensions. Three of the authors took part in the

review, independently evaluating the reported bugs using the same

set of definitions. We then compared and merged the individual

assessments, resolving any disagreements through discussion and

consensus. Note that some bug reports did not include enough

information to make a determination in certain dimensions, so

categories do not always sum to 100%.

While the available data does not support a comparative study

contrasting bugs found by traditional testing techniques with those

found by ASTAA, we can make still broad qualitative assessments

about the types of robustness bugs that manifest in autonomy

systems and how to find them, with a focus on understanding what

differentiates—and doesn’t—autonomy systems from traditional

software. Such an analysis helps assess our design decisions, and

provides lessons for practitioners and researchers moving forward.

4.1 Autonomy system-specific features
Some ASTAA design choices were necessarily set in stone, dic-

tated by features of the systems in question. For example, testing

at interfaces is necessary for the majority of systems in this do-

main (Section 3.2). However, other design decisions were informed

by shortcomings we encountered in adapting general software ro-

bustness testing to autonomy systems over the course of ASTAA

development. This section discusses patterns of robustness bugs

that corroborate many of ASTAA’s autonomy-specific features.

4.1.1 Scaffolding Messages are Necessary. ASTAA’s design re-

flects our hypothesis that many bugs in robotic systems can only be

activated and thus discovered with sufficient scaffolding messages.

For such systems to reach an interestingly testable state, they

typically need to be initialized via startup messages. Additionally,
certain bugs only manifest when a system is in a certain mode,

3
While the ASTAA project tested 17 systems, for some systems we are not permitted

to disclose the results of testing, even in aggregate. While we did not perform an

analysis of bug reports for these systems, we have no reason to believe the results

would be any different.

Robustness Testing of Autonomy Software ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

requiring further messages to bring them to that mode. For example,

ASTAA triggered a bug in a robotic vehicle that only manifested

when the vehicle was in reverse (the absolute value of the speed was

not taken before comparing it to the desired speed limit). Finally,

because these systems are temporal, some bugs arise due to a bad

value propagating through a system (e.g., bad values accumulating

in a filter). In this case, turnover messages are needed to keep the
system running after the faulty value is injected to render the effect

visible.

We were able to classify 133 bugs in our dataset according to the

scaffolding messages required to trigger them. While 59 bugs did
not require any scaffolding messages, 74 bugs did require some com-

bination of startup and/or turnover messages to manifest. Startup

messages are were required in more cases than turnover messages:

36 bugs required startup messages alone, while 14 bugs required

turnover messages alone. An additional 24 bugs required both

startup messages and turnover messages. This corroborates our

hypothesis that bugs in autonomy systems often require scaffolding,

and testing techniques should operate accordingly.

4.1.2 Deeper Invariant Monitoring is Valuable. Not all tested
systemswere associatedwith safety specifications; for such systems,

the only bugs found were those violating the traditional crash/hang

invariants. Crash invariants detect problems that cause a process

to terminate with an error code or core dump. Hang invariants
identify bugs that cause a process to cease communications or

become unresponsive. The majority (100, or roughly 69%) of bugs

in our dataset were detected with crash/hang invariants.

However, in systems for which we did have a safety specifica-

tion, the majority of bugs found are violations of that specification.

For one such system, 64% of the bugs are violations of the sys-

tem’s safety specification, found via simple or complex invariants,

and are not detectable via a hang or crash. Simple invariants are
univariate inequalities, such as bounds checks, checks for simple

missed deadlines, and output validity checks (e.g., array shape or

size). Complex invariants are multivariate temporal or algebraic

relations of two or more quantities, (e.g., “when motors are on, fans

should never be off for more than 10 seconds.”) Complex invari-

ants cover safety bounds, as well as checks for inconsistent modes,

erroneous (but in bounds) output values, or ignored inputs.

In many cases where invariants were not explicit, our testers

inferred invariants from documentation. Our database contains

11 bugs that violated inferred simple invariants, and 8 bugs that

violated inferred complex invariants, the majority of which were

indeed fixed when reported.

4.2 Autonomy systems as software systems
Although autonomy systems behave differently than traditional

software, and need additional testing infrastructure such as startup

messages and control loop closure, we still found that they share

important properties with traditional software for the purposes of

robustness testing. This section discusses bug patterns corroborat-

ing these observations.

4.2.1 Autonomy Bugs are Low Dimensionality. ASTAA is built

to accommodate long sequences of messages and find complex

sequence failures. However, perhaps surprisingly, many bugs in

field message multiple

multiple instances
single instance

P
er

ce
nt

 o
f b

ug
s

n=5

n=61

n=6

n=32

n=1 n=0
0%

10%

20%

30%

40%

50%

60%
Dimensionality

Figure 3:Most bugs found exhibit low interface and instance
dimensionality.

autonomy systems are low in dimensionality. In traditional sys-

tems, this refers to the number of function parameters that must

be manipulated to trigger a defect; many bugs can be found by

manipulating only one or two such parameters. Because ASTAA

constructs tests by manipulating messages, defining “dimension”

is less straightforward. We define mutation dimensionality across

both injection interfaces and manipulation instances. Injection in-

terfaces refer to the number of fields or message types that must

be manipulated to activate a bug:

field The bug is activated by injection on a single field in a single

message type.

message The bug is activated by injection on multiple fields in a

single message type.

multiple The bug is activated by injection on multiple message

types (implying injection on multiple fields).

Manipulation instances refer to the number of times a value must

be injected into a field or message to activate a bug:

single The bug requires only a single manipulation of the injection

interfaces.

multiple The bug requires multiple manipulations of an equiva-

lent injection interface. (e.g., multiple mutations of the same

single field in a single message type)

Note that approximately 5% of the bugs were triggered without

manipulation at any interface, typically corresponding to configu-

ration errors (e.g., using the wrong format in a library call due to

version changes). We were surprised by the number of such bugs,

but speculate that ASTAA’s edge case testing may exercise other-

wise unused code outside the usual functional/regression testing

envelope that would normally detect such bugs after Application

Programming Interface (API) changes.

Figure 3 shows results for the bugs we could classify. The bugs ex-

hibit low mutation dimensionality in both interfaces and instances.

42% of the bugs can be activated by sending a single faulty value

to a single field. Another 22% of the bugs were related to multiple

fields in the same message, yet still only required a single bad mes-

sage. Only 12 bugs, or 8% of those we examined, required multiple

instances of faulty data. Only one bug needed multiple instances

across multiple message types to activate.

We conclude that, for this definition, the bugs we found in au-

tonomy systems are low in dimensionality. That said, these bugs

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden C. Hutchison et al.

are specifically low in “mutation dimensionality”. Practically, this

means that the distance between a fault activating input pattern

and a pattern that appears in normal operation is low, and therefore

this input pattern is likely to appear during the operation of the

system [28].

However, a traditional software testing definition of bug dimen-

sionality is the “number of conditions required to trigger a fail-

ure” [27]. In this sense, many of the bugs in autonomy systems are

high dimensionality. Test case minimization often finds that a bug

requires many constraints on message fields [45]; The bugs ASTAA

found often contained as many 10 to 14 constrained fields.

This result demonstrates why interception is more effective that

traditional injection in this context. Because interception testing

mutates existing messages, the likelihood of discovering a bug

relates to its mutation dimensionality, which is generally low. Tra-

ditional injection testing would have to construct these messages

from scratch, and is unlikely to randomly generate a given 14-field-

constrained message.

4.2.2 Sanitization and wrappers are highly effective. Testing tra-

ditional software has shown that, when possible, developers should

sanitize and validate system input, including configuration files

and network traffic. While this can incur some small overhead, it

substantially impacts system robustness [11].

Sanitization wrappers are univariate expressions that remove

exceptional values (e.g., Inf, NaN, empty objects, etc.), check bounds,

enforce limits, etc. This may include sanitizing non-application
specific values, such as array shape/size, non-negative values, and

invalid enums. Consistency wrappers are typically expressed as

multivariate relationships that enforce consistency between values,

such as index vs. array length,width ∗ heiдht vs. array size, etc.

The effectiveness of wrappers is visible in the ASTAA testing re-

sults, where 58 bugs were preventable using sanitization wrappers

and 40 bugs were preventable using consistency wrappers. Only

14 of the identified bugs would not have been preventable using

wrappers. In these autonomy systems, the majority of the prob-

lems could be avoided via sanitization and consistency checking to

protect against invalid inputs, as in traditional systems.

5 RECOMMENDATIONS
There are several additional recurring lessons that the ASTAA team

observed over the course of testing real systems that can help

developers build more robust autonomous systems and researchers

build better tools to support them in doing so.While ASTAA is not a

code analysis tool, in some cases we were able to trace bugs to code,

or system developers provided insight when a bug was reported.

While such snippets are by necessity anecdotal, the lessons, along

with other best practices for distributed embedded systems, have

been previously observed [23, 25]. Our experience suggests that

they remain underappreciated, and under-supported in practice.

Protect your robots from data assumptions. Developers of-
ten need to make assumptions about the data fed to their systems,

and problems arise when those assumptions are flawed. For exam-

ple, developers often trust that configuration files are valid, which

can lead to difficult-to-diagnose startup and consistency problems

(e.g., initialization values for sin_x and cos_x that are both 0).

Data assumptions can also cause problems in dynamic data or

messages. For example, fields can be semantically redundant but

inconsistent within a message (e.g., the ‘size’ of 2d array may be

inconsistent with its ‘height’ and ‘width’). Message timestamps

are often incorrectly assumed to be monotonic, safe from over-

flow [25, 32]. We see the impact of flawed assumptions both in the

degree to which autonomy bugs can be mitigated with sanitization

(Section 4.2.2) and broadly over our experience.

Floats and NaNs are useful but dangerous. Floating point

numbers are a frequent source of unexpected software errors [16].

They are a source of particular concern in autonomy systems, be-

cause they are often used in CPS-specific contexts. For example,

wrapping angles to between−π and π radians is a common function,

but it must be carefully implemented. If the wrapping is computed

within a subtractive loop, the lack of float precision can lead to an

infinite loop. In one of the systems we tested, such a bug led to a

hang when given a sufficiently large input angle. In general, floats

should not be used as iterators.

Furthermore, NaN values propagate dangerously [16] by causing

problems with control flow structures (all comparisons with a NaN
return False) and data flow (any operation with a NaN becomes a

NaN). For example, one robot ASTAA tested compared the current

speed to a desired limit. When the current speed was NaN, this
comparison always returned False, and so the system was never

determined to be above the limit; it sped up indefinitely. Defensive

checks (if guards with error handling branches on the False con-

dition) can protect against NaNs and prevent dangerous actuation

in autonomy systems.

Plan for the system to fail. No code is ever bug free, but the
best way to eliminate bugs is to find them when activated. Nodes

should have means to report errors to the rest of the system, and

should not fail or automatically restart silently. Finally, logging

that is consistent, parsable, and replayable is invaluable for error

detection, diagnosis, and debugging. This suggestion comes both

from our experience, and from the developers whose systems we

tested (and to whom we reported bugs). Many system developers

were enamored of ASTAA’s monitoring and logging capabilities.

6 THREATS AND LIMITATIONS
There are several threats to the validity of our results. First, we

categorized bugs manually, and thus human biases may influence

our results. We mitigate this risk by aggregating results across

three expert human raters, who reached consensus conservatively.

Implementation errors in ASTAA are a related threat, as spurious

bug reports could influence our results. Overall, however, the bugs

ASTAA finds are identified by well-established monitoring tech-

niques from the robustness testing literature or via safety invariants

defined or verified by the SUT creators/maintainers, external to the

ASTAA development team. ASTAA has been successfully applied

to a number of real-world systems, and its reported bugs validated

by those independent systems’ developers, suggesting the risk of

relevant implementation error is low. Additionally, although AS-

TAA must remain closed-source, we note that it is the result of

active development over several years by a team of experienced

developers.

Robustness Testing of Autonomy Software ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

Our evaluation is observational rather than controlled:We do not

compare ASTAA to other traditional techniques to assess particular

elements of our claims. This risk to our claims is mitigated by

the fact that we applied ASTAA to large, real-world, industrial

autonomy systems over the course of several years. Note also that

we do not make strong statistical claims. Instead, characterization of

bugs along several axes of interest produces evidence to corroborate

ASTAA’s design principles and informs observations about how to

test autonomy systems. The size, variety, complexity, and reality

of the SUTs we study also mitigates the risk that our evaluation

may not generalize, despite having been performed on a particular

finite set of systems to which we were given access.

Finally, our evaluation is mostly of systems at TRL 4–6. It is pos-

sible that systems at higher TRLs would be free of such robustness

bugs. However, the bugs found in mature libraries and more ma-

ture research systems indicate that a lot of these problems persist.

Additionally our results valuably indicate the kinds of robustness

mistakes that should be tested for prior to full deployment.

7 RELATEDWORK
For brevity, we restrict our attention to work in robustness testing

and autonomy system robustness. We direct the interested reader

to Bertolino [4] for a thorough survey of software testing practice

history and an overview of the meaning of software test selection,

execution, and analysis.

While robustness testing for autonomy systems is relatively

novel, testing techniques for traditional software systems have

existed for decades. The naive approach of generating arbitrary

random input to a function to test it is known as fuzz testing. Fuzz

testing efficiency can been improved by constraining the input

space or by introducing statefulness [40]. Statefulness has been

introduced using model-based testing [10, 39], which attempts to

generate tests based on a model of the functional requirements.

Models of requirements make it easier to generate test cases

that wouldn’t otherwise be created. However, Dalal et al. note that

model selection is open-ended and has a large impact on test effec-

tiveness, hindering automation [10]. Further work confirms these

tradeoffs [12, 42]. Some tools, such as AutoFuzz [18], mitigate user

involvement by automatically learning models from historical data.

To the best of our knowledge, little previous work tackles stress

testing robotic or autonomy systems. Researchers have primarily

focused on either identifying sources of possible faults during de-

sign [22] or during live system execution [44], typically with a

focus on hardware failures. A historical analysis of robotic system

failures indicates that while attention to hardware is warranted,

software remains one of the major sources of error [5].

Chu [8] performed practical robustness testing of a middleware

layer for autonomy systems. Among other observations, they noted

the difficulty of testing large hierarchical multi-component systems,

and the necessity of safety invariants. However, the experience was

limited by the necessary simplicity of the fault model: insertions,

deletions, and swaps of messages in prerecorded data. They were

unable to consider component crashes/aborts as part of their ro-

bustness metric.

Comparatively, our testing framework is designed explicitly for

autonomy systems, accounting for their various properties. Unlike

model-based fuzz testing tools, it does not suffer from mischarac-

terization of the input, since it does not rely on models, and instead

intercepts live data. Our fault model is also much more expansive

than that in Chu’s work, and the closure of the control loop allows

for crashes (aborts) to be measured as part of the system robustness.

In addendum, it should be noted that the focus of ASTAA is

adapting the existing Ballista tool to the unique testing domain

of robotics and autonomy software. While ASTAA does not take

advantage of many of the recent developments in robustness testing,

such as combinatorial testing [33] or the testing ecosystem that

has sprung up around Android testing [7], it’s possible that these

techniques could be used in the robotic systems domain by making

similar modifications to them as those presented in this paper.

8 CONCLUSION
Robustness in the face of unexpected inputs is particularly impor-

tant in autonomy systems. However, there are many ways auton-

omy systems are both similar to and distinct from classic software

systems that have important implications for how to robustness

test them. To meet these needs, we designed ASTAA, a tool that

builds on classical techniques, but incorporates novelties that allow

it to address the specific challenges of testing autonomy systems.

We used ASTAA to test 17 systems across a variety of domains for

robustness weaknesses. Qualitatively and quantitatively analyzing

the bugs discovered in a subset of these systems supports many of

the design decisions behind ASTAA, including certain principles

that it takes from prior robustness testing approaches.

Much of the discussion in this paper is meant to serve as a

practical guide for researching, developing, and testing autonomy

systems, backed by an analysis of information gained over the

course of testing many such systems across a variety of domains.

However, one broader lesson to take away from our work is that

it is not only possible to robustness test autonomy systems, but

doing so can find easy-to-activate bugs that seriously threaten real

systems. In one case, ASTAA discovered a critical flaw that could

lead the angle of robotic manipulator to be set to an unbounded

negative angle. This would allow the manipulator to collide with—

and damage—the robot base. Developers initially ignored our bug

report, dismissing the input case as implausible. They fixed the bug

a few weeks later, after they accidentally triggered it on their actual

robot, leading the manipulator to seriously damage an expensive

end effector. ASTAA provides a scalable approach for testing such

systems and finding real, important faults before they happen in the

field, where they could damage far more than just an end effector.

ACKNOWLEDGMENTS
This material is based upon work supported by the Test Resource

Management Center (TRMC) Test and Evaluation/Science & Tech-

nology (T&E/S&T) Program through the U.S. Army Program Ex-

ecutive Office for Simulation, Training and Instrumentation (PEO

STRI) under Contract No. W900KK-11-C-0025, “Stress Testing for

Autonomy Architectures (ASTAA)”. Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the TRMC T&E/S&T Program and/or the U.S. Army PEO STRI.

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden C. Hutchison et al.

REFERENCES
[1] European Space Agency. 2016. Schiaparelli Landing Investigation

Makes Progress. (23 Nov. 2016). Retrieved January 17, 2017 from

http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_

landing_investigation_makes_progress

[2] Assistant Secretary of Defense for Research and Engineering (ASD(R&E)). 2011.

Technology Readiness Assessment (TRA) Guidance. Technical Report. U.S. Depart-
ment of Defense. http://www.acq.osd.mil/chieftechnologist/publications/docs/

TRA2011.pdf

[3] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard Kem-

merer, and Giovanni Vigna. 2006. SNOOZE: Toward a Stateful NetwOrk prOtocol

fuzZEr". In Proceedings of the 9th International Conference on Information Security
(ISC ’06). 343–358. https://doi.org/10.1007/11836810_25

[4] Antonia Bertolino. 2003. Software testing research and practice. In International
Workshop on Abstract State Machines. Springer, 1–21.

[5] J. Carlson and R. R. Murphy. 2005. How UGVs physically fail in the field. IEEE
Transactions on Robotics 21, 3 (June 2005), 423–437.

[6] Paul Caspi and Alain Girault. 1995. Execution of distributed reactive systems. In

European Conference on Parallel Processing. Springer, 13–26.
[7] S. R. Choudhary, A. Gorla, andA. Orso. 2015. Automated Test Input Generation for

Android: Are We There Yet? (E). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 429–440. https://doi.org/10.1109/ASE.

2015.89

[8] Hoang-Nam Chu. 2011. Test and evaluation of the robustness of the functional
layer of an autonomous robot. Ph.D. Dissertation. Institut National Polytechnique
de Toulouse - INPT. https://tel.archives-ouvertes.fr/tel-00627225

[9] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic robust-

ness tester for Java. Software: Practice and Experience 34, 11 (2004), 1025–1050.
[10] Siddhartha R Dalal, Ashish Jain, Nachimuthu Karunanithi, JM Leaton, Christo-

pher M Lott, Gardner C Patton, and Bruce M Horowitz. 1999. Model-based

testing in practice. In International Conference on Software Engineering (ICSE ’99).
285–294.

[11] John DeVale and Philip J. Koopman, Jr. 2002. Robust Software - No More Excuses.

In International Conference on Dependable Systems and Networks (DSN ’02). IEEE,
145–154.

[12] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travas-

sos. 2007. A survey on model-based testing approaches: a systematic review. In

1st ACM international workshop on Empirical assessment of software engineering
languages and technologies: held in conjunction with ASE 2007. 31–36.

[13] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns

in Property Specifications for Finite-state Verification. In Proceedings of the 21st
International Conference on Software Engineering (ICSE ’99). 411–420. https:

//doi.org/10.1145/302405.302672

[14] Christof Fetzer and Zhen Xiao. 2002. An automated approach to increasing the

robustness of C libraries. In International Conference on Dependable Systems and
Networks (DSN ’02). IEEE, 155–164.

[15] Anup KGhosh andMatthew Schmid. 1999. An approach to testing COTS software

for robustness to operating system exceptions and errors. In Proceedings of the
10th International Symposium on Software Reliability Engineering. 166–174.

[16] David Goldberg. 1991. What every computer scientist should know about floating-

point arithmetic. ACM Computing Surveys (CSUR) 23, 1 (1991), 5–48.
[17] Alwyn Goodloe and Lee Pike. 2010. Monitoring Distributed Real-Time Systems: A

Survey and Future Directions. Technical Report NASA/CR-2010-216724. NASA
Langley Research Center.

[18] Serge Gorbunov and Arnold Rosenbloom. 2010. Autofuzz: Automated network

protocol fuzzing framework. IJCSNS 10, 8 (2010), 239.
[19] Aaron Kane. 2015. Runtime Monitoring for Safety-Critical Embedded Systems.

Ph.D. Dissertation. Carnegie Mellon University.

[20] Aaron Kane, Omar Chowdhury, Anupam Datta, and Philip Koopman. 2015. A

Case Study on Runtime Monitoring of an Autonomous Research Vehicle (ARV)

System. In Proceedings of the 6th International Conference on Runtime Verification
(RV ’15), Ezio Bartocci and Rupak Majumdar (Eds.). 102–117.

[21] Aaron Kane, Thomas Fuhrman, and Philip Koopman. 2014. Monitor based oracles

for cyber-physical system testing: Practical experience report. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE,
148–155.

[22] Koorosh Khodabandehloo. 1996. Analyses of robot systems using fault and event

trees: case studies. Reliability Engineering & System Safety 53, 3 (1996), 247–264.

[23] Philip Koopman. 2010. Better embedded system software. Drumnadrochit Educa-

tion.

[24] Philip Koopman, Kobey DeVale, and John DeVale. 2008. Interface Robustness
Testing: Experience and Lessons Learned from the Ballista Project. Wiley-IEEE

Press, Chapter 11, 201–226. https://doi.org/10.1002/9780470370506.ch11

[25] Hermann Kopetz. 2011. Real-time systems: design principles for distributed embed-
ded applications. Springer Science & Business Media.

[26] Nathan P Kropp, Philip J Koopman, and Daniel P Siewiorek. 1998. Automated

robustness testing of off-the-shelf software components. In Proceedings of the 28th

Annual International Symposium on Fault-Tolerant Computing. IEEE, 230–239.
[27] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr. 2004. Software Fault Interactions

and Implications for Software Testing. IEEE Transactions on Software Engineering
30, 6 (2004), 418–421.

[28] S. Kumar, T. W. S. Chow, and M. Pecht. 2010. Approach to Fault Identifi-

cation for Electronic Products Using Mahalanobis Distance. IEEE Transac-
tions on Instrumentation and Measurement 59, 8 (Aug 2010), 2055–2064. https:

//doi.org/10.1109/TIM.2009.2032884

[29] Manuel Mendonca and Nuno Neves. 2007. Robustness testing of the Windows

DDK. In 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07). IEEE, 554–564.

[30] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the

reliability of UNIX utilities. Commun. ACM 33, 12 (1990), 32–44.

[31] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty, Ravi

Murthy, Ajitkumar Natarajan, and Jeff Steidl. 1995. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and services. Technical Report

1268. University of Wisconsin. http://digital.library.wisc.edu/1793/59964

[32] Erik Naggum. 1999. The Long, Painful History of Time. (Oct 1999). http:

//naggum.no/lugm-time.html Presented at Lisp User Group Meeting 1991.

[33] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.

ACM Comput. Surv. 43, 2, Article 11 (Feb. 2011), 29 pages. https://doi.org/10.

1145/1883612.1883618

[34] Jiantao Pan, Philip Koopman, Yennun Huang, Robert Gruber, andMimi Ling Jiang.

2001. Robustness testing and hardening of CORBA ORB implementations. In

International Conference on Dependable Systems and Networks (DSN ’01). 141–150.
[35] Jiantao Pan, Philip Koopman, and Daniel Siewiorek. 1999. A dimensionality

model approach to testing and improving software robustness. In IEEE Systems
Readiness Technology Conference (AUTOTESTCON’99). IEEE, 493–501.

[36] David Lorge Parnas, GJK Asmis, and Jan Madey. 1991. Assessment of safety-

critical software in nuclear power plants. Nuclear safety 32, 2 (1991), 189–198.

[37] Rodolfo Pellizzoni, Patrick Meredith, Marco Caccamo, and Grigore Rosu. 2008.

Hardware Runtime Monitoring for Dependable COTS-based Real-Time Em-

bedded Systems. In Proceedings of the 29th IEEE Real-Time System Symposium
(RTSS’08). 481–491.

[38] Jane Radatz, Anne Geraci, and Freny Katki. 1990. IEEE standard glossary of

software engineering terminology. IEEE Std 610121990, 121990 (1990), 3.

[39] Fares Saad-Khorchef, Antoine Rollet, and Richard Castanet. 2007. A framework

and a tool for robustness testing of communicating software. In Proceedings of
the 2007 ACM symposium on Applied computing. ACM, 1461–1466.

[40] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force
vulnerability discovery. Pearson Education.

[41] Ossi Taipale, Jussi Kasurinen, Katja Karhu, and Kari Smolander. 2011. Trade-off

between automated and manual software testing. International Journal of System
Assurance Engineering and Management 2, 2 (2011), 114–125.

[42] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of

model-based testing approaches. Software Testing, Verification and Reliability 22,

5 (2012), 297–312.

[43] Peter Varhol and Gerie Owen. 2013. How Did I Miss That Bug? Pacific North-West
Software Quality Conference, Proceedings of 31 (2013).

[44] V. Verma, G. Gordon, R. Simmons, and S. Thrun. 2004. Real-time fault diagnosis

[robot fault diagnosis]. IEEE Robotics Automation Magazine 11, 2 (June 2004),
56–66.

[45] Paul Vernaza, David Guttendorf, Michael Wagner, and Philip Koopman. 2015.

Learning product set models of fault triggers in high-dimensional software in-

terfaces. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’15). 3506–3511. https://doi.org/10.1109/IROS.2015.7353866

[46] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.

Scheduling black-box mutational fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 511–522.

[47] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?.

In Software Engineering-ESEC/FSE’99. Springer, 253–267.

http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress
http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress
http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf
http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf
https://doi.org/10.1007/11836810_25
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ASE.2015.89
https://tel.archives-ouvertes.fr/tel-00627225
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1002/9780470370506.ch11
https://doi.org/10.1109/TIM.2009.2032884
https://doi.org/10.1109/TIM.2009.2032884
http://digital.library.wisc.edu/1793/59964
http://naggum.no/lugm-time.html
http://naggum.no/lugm-time.html
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1109/IROS.2015.7353866

	Abstract
	1 Introduction
	2 Background
	2.1 Robustness Testing
	2.2 Autonomy systems

	3 Approach
	3.1 Define Test Specification
	3.2 Generate Test Cases
	3.3 Execute Test Cases
	3.4 Testing Shortcuts

	4 Testing Experiences
	4.1 Autonomy system-specific features
	4.2 Autonomy systems as software systems

	5 Recommendations
	6 Threats and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

