
 1

© Copyright Philip Koopman 2019
Published by the Safety-Critical Systems Club. All Rights Reserved

Credible Autonomy Safety Argumentation

Philip Koopman, Aaron Kane, Jen Black

Carnegie Mellon University, Edge Case Research

Pittsburgh, PA, USA

Abstract A significant challenge to deploying mission- and safety-critical auton-
omous systems is the difficulty of creating a credible assurance argument. This
paper collects lessons learned from having observed both credible and faulty as-
surance argumentation attempts, with a primary emphasis on autonomous ground
vehicle safety cases. Various common argumentation approaches are described,
including conformance to a non-autonomy safety standard, proven in use, field
testing, simulation, and formal verification. Of particular note are argumentation
faults and anti-patterns that have shown up in numerous safety cases that we have
encountered. These observations can help both designers and auditors detect
common mistakes in safety argumentation for autonomous systems.

1 Introduction

Ensuring that an autonomous vehicle will behave safely on public roads comes
with a set of unique challenges. Established safety standards cover some, but not
all aspects of vehicle operation. The use of machine learning technology generally
results in aspects of the system for which there is no traditional design, making
use of traditional V-model based safety methods problematic. Moreover, brute
force testing approaches struggle to cope with ensuring the low failure rates re-
quired for critical applications.

Even though safety practices are still evolving to address the unique issues pre-
sented by autonomy, such systems are already being built and deployed on public
roads. Autonomous systems are also poised for deployment in public airspace
(e.g. drones), medical applications (e.g. robotic surgery), and other critical do-
mains (e.g. cargo ships). Because of the pervasive secrecy of the autonomous ve-
hicle market, it is difficult to say how robust the safety cases for such vehicles
actually are – or even if a credible safety case has been created at all for any par-
ticular vehicle that is being deployed.

As the technology matures it will be imperative to establish standardized ap-
proaches to ensuring the safety of such systems. This paper proposes a set of pat-
terns and anti-patterns for autonomous ground vehicle safety arguments that might

PREPRINT: 27th Safety-Critical Systems Symposium, Feb. 2019.

2 Koopman, Kane & Black

be used within an autonomous system safety case. While our emphasis is on au-
tonomous ground vehicles, we expect a useful degree of overlap with autonomous
system safety for other domains. This is intended as a starting point that should
evolve over time as experienced is gained with how autonomous systems and au-
tonomy safety arguments fail in practice.

1.1 Heterogeneous safety arguments

A safety case is “a structured argument, supported by a body of evidence that
provides a compelling, comprehensible and valid case that a system is safe for a
given application in a given operating environment” (UK Ministry of Defence
2017, page 26). For the purposes of this paper we assume that an autonomous
ground vehicle designer wishes to produce a credible safety case, and in doing so
needs to select argumentation strategies.

In practice, there are many ways to attempt to argue safety, including ap-
proaches such as: following a prescribed set of engineering practices, brute force
testing, and claiming that something has been “proven in use.” Whatever the strat-
egy, it is important to use a methodical approach to documenting the arguments
and evidence to ensure that the safety case is valid (Kelly 1998).

A common strategy is to argue that a system is sufficiently safe because an ac-
cepted applicable safety standard has been followed, implicitly adopting the un-
derlying safety argument strategy inherent in the standard. However, because both
the technology and safety strategies for autonomous systems are still evolving,
there is no one-size-fits-all safety standard currently published. Therefore, it
seems likely that a more explicit argumentation strategy will be required for these
systems.

Because autonomous vehicles are a composite of comparatively mature tech-
nology (e.g. underlying conventional vehicle control systems) and novel technolo-
gy (e.g. machine learning), it seems likely that safety arguments will be heteroge-
neous in nature. By this, we mean that different portions of the safety argument
will likely take fundamentally different argumentation approaches for different
system functions and components.

Consider an autonomy kit that has been added to a conventional consumer-
grade automobile. The safety of the underlying production ground vehicle systems
can be – and hopefully has been – argued via conformance to ISO 26262 (ISO
2011). However, some key aspects of autonomy functions are beyond the scope of
that standard. Moreover, some assumptions made in determining conformance
might be violated by the addition of autonomy, such as the availability of a human
driver to exercise vehicle control in the event of a malfunction.

Some additional functionality might be argued safe via conformance to a dif-
ferent standard, such as a draft SOTIF standard (ISO 2018). However, making a
case for the safety of higher-level autonomy functions, especially perception, is
likely to require additional argumentation beyond currently available standards,

Credible Autonomy Safety Argumentation 3

potentially encompassing approaches ranging from large testing campaigns to
formal proofs of correctness.

There will be economic and time-to-market pressure to re-use safety arguments
from other domains that have already been set up for components incorporated
into autonomous systems. For example, industrial process equipment might be
repurposed for autonomous ground vehicles, and automotive equipment might be
repurposed for autonomous aircraft. In the end, an autonomous vehicle system-
level safety argument seems likely to be an amalgamation of different safety as-
surance approaches for various functions, encompassing multiple safety standards
as well as various techniques for areas in which mature standards are not yet
available. We call this approach a heterogeneous safety argument.

1.2 Support for assessment

While the contents of a safety case likely differs for each system being designed,
there needs to be a consistent way to evaluate the sufficiency of the argumentation
and supporting evidence. While ultimately there is no substitute for an experi-
enced and capable assessor, it can be helpful to support the assessment with a
foundation of rules of thumb, lessons learned, and sets of good as well as bad
practices to improve assessment consistency and reduce errors of omission in the
assessment process.

To that end, this paper proposes a set of safety argument approaches and anti-
patterns. A number of general approaches that we have seen used in practice or
proposed for use in autonomous ground vehicles are briefly described. More im-
portantly, we discuss the typical threats to validity we see in safety cases that have
attempted each argumentation pattern.

While the emphasis in this discussion is on supporting assessment, the material
should be beneficial to both developers (to avoid making argument mistakes in the
first place) and assessors (to detect sometimes subtle, but common fallacies in
arguments). We fully expect that this list can benefit from incorporating lessons
learned as the technology matures, and intend it as a starting point to be built up-
on. Rather than attempting to set forth a library of formalized safety argument
patterns, we concentrate on the main ideas and pitfalls behind typical argumenta-
tion strategies.

1.3 Previous work

Bishop and Bloomfield (1998) define a safety case as “a documented body of evi-
dence that provides a convincing and valid argument that a system is adequately
safe for a given application in a given environment.” They argue that a safety case
has four main elements (a claim, evidence, argument, and inference) and that each

4 Koopman, Kane & Black

element can be categorized by type. For example, the argument may be determin-
istic, probabilistic, or qualitative; and evidence may be design, process, testing, or
historic experience. They also explain that the safety case for a safety claim about
a system can be decomposed into safety cases for the supporting sub-claims, im-
plying that each sub-claim might be supported by a different type of argument.

Kelly (1998) proposed the Goal Structuring Notation (GSN) approach to doc-
umenting safety arguments. A GSN community standard defines standardized
terminology (ACWG 2018). Additionally, the Object Management Group has
published the Structured Assurance Case Metamodel (SACM) for representing
assurance cases (OMG 2018).

Rushby (2015) discusses inductive vs. deductive arguments in assurance cases
as well as the role of confidence claims. An inductive argument means that the
conjunction of sub-claims strongly suggests the claim. In contrast, a deductive
argumentation approach means that the conjunction of sub-claims implies (or
proves) the claim. A problem with inductive reasoning steps is that “there is no
effective way to estimate the size of the gap in our reasoning.” He recommends
that inductive arguments should be made deductive by explicitly stating or factor-
ing out assumptions. In other words, a claim that is merely implied can be con-
verted to a claim that is proven with the addition of an explicitly stated assumption
required for the relevant proof to hold true. This has the virtue of making explicit
all the assumptions required for a safety case to be valid.

Goodenough et al. (2015) propose using an eliminative induction argumenta-
tion approach as a way to assess confidence in an assurance case argument based
on inductive reasoning. Such an approach augments an inductive argumentation
structure with sub-claims and evidence to demonstrate that various potential ar-
gumentation flaws are not present. In particular, they propose using defeaters,
which are explicit statements of doubt regarding a particular inductive argument.
They propose specific types of defeaters to attack claims (via looking for failure
modes or possible counter-examples), undermine evidence (via looking for rea-
sons the evidence might be invalid), and undercut inference rules (via looking for
conditions under which the inference rule is not adequate). Pitfalls presented in
this paper can be considered to be defeaters for various aspects of a safety argu-
ment.

Catapult (2017) presents GSN-notation safety cases for highway and urban pi-
lot autonomous vehicle use cases that address road etiquette, operational envelope
enforcement, and other functionality. That analysis leads to a number of observa-
tions including a potential need for roadway infrastructure support and a need to
deal with residual risks after all reasonable risk mitigation approaches have been
applied.

Wang et al. (2017) present a confidence assessment framework for safety ar-
guments. They assume that the argument is valid and deal primarily with manag-
ing the confidence in evidence.

Burton et al. (2017) proposed a top level GSN-based safety case structure for
autonomous vehicles, with follow up work that examines pedestrian detection
(Gauerhof et al. 2018).

Credible Autonomy Safety Argumentation 5

Graydon et al. (2012) propose publishing a catalogue of acceptable argumenta-
tion patterns. We extend this idea by proposing publishing a catalogue of com-
monly attempted but invalid argumentation patterns.

2 Safety argumentation strategies

We envision that safety cases for autonomous vehicles will be based upon a heter-
ogeneous collection of safety arguments using different strategies. Assessing such
safety cases could use an approach that initially consults a catalogue of strategies
and accompanying argumentation patterns. That catalogue would capture previ-
ously analysed argument patterns, types of evidence that are acceptable for each
argument pattern, and argumentation pitfalls observed in previous assessments.

Over time, such a catalogue could capture experience from lessons learned in
assessments and field experience. The assessment process could then mature or-
ganically to one in which established and accepted patterns are well understood
and documented, so there is a relatively stable baseline of expectations and as-
sessment criteria for common patterns. New technological advances and architec-
ture concepts would still require additions to the catalogue, and so continual
growth and revision of the catalogue would need to be a part of any such ap-
proach. It is expected that any single system will require a combination of argu-
mentation approaches. It is understood that standards can evolve slowly. Setting
up such a catalogue might be done via a periodically updated assessment work aid
that does not require a new parent standard document version to incorporate les-
sons learned.

We provide a starting point for such a process by listing argument strategies
and pitfalls that we have observed in our work with autonomous ground vehicles.
In analysing these patterns, we assume a common architectural approach of taking
an existing production vehicle and adding an autonomy kit as an overlay. Such an
overlay could completely replace a human vehicle driver (autonomous system), or
require some aspects of human participation in vehicle operation (semi-
autonomous system). Other approaches, such as bespoke design of complete au-
tonomous vehicles, are likely to have many similarities, but also some differences
that are beyond the scope of this paper.

The following sections describe general argumentation strategies as well as a
number of anti-patterns, pitfalls, or other faults that we have observed in practice.
A later section summarizes a collection of special cases and other observations
beyond the primary set of strategies discussed.

6 Koopman, Kane & Black

2.1 Conformance to an existing standard

In this argumentation approach, a system component is constructed in accordance
with a recognized, public safety standard, such as ISO 26262. Ideally, that com-
ponent is independently assessed for conformance to the safety standard. Based on
conformance, an argument can be made that the component safely carries out its
intended function to an appropriate degree (e.g. to a specific Automotive Safety
Integrity Level, or ASIL). Ensuring that conformance actually results in the de-
sired system safety properties might require specific safety argumentation, and is
subject to a number of additional pitfalls beyond those discussed herein (see
Graydon et al. 2012).

This pattern can (and for the most part probably should) be used for the con-
ventional software portions of the autonomy system. Moreover, this argumenta-
tion pattern can be used with a Doer/Checker pair (also called a monitor/actuator
pair or a safety bag) to create a safety envelope around some types of autonomy
functions (Koopman and Wagner 2016). The general idea is that a capable “Doer”
satisfies the functional requirements of a system, potentially using difficult-to-
validate technology such as machine learning. For example, the Doer might be a
path planner that uses non-deterministic algorithms, heuristics or even machine-
learning based approaches to find an optimal path. A “Checker” is designed with
more conventional software techniques and used to enforce safety requirements.
The Checker generally only checks for violations of safe operating envelopes and
violations of assumptions made in the safety argument at run time. For a path
planner example, the Checker simply needs to make sure that whatever plan has
been selected does not intersect known obstacles. (We assume for this example
that obstacle detection is a separate function that is dealt with outside the scope of
the path planner safety argumentation.) Ideally the Checker has been designed to a
high ASIL and is entirely responsible for ensuring safe operation of the function.

Assuming that the Checker can completely enforce safety, an appropriate safety
argument could be that the Doer is not safety-relevant because the Checker (1) has
a complete ability to ensure safety, and (2) has been developed to an appropriate
integrity level in conformance with a functional safety standard. There are a num-
ber of variations to this approach that ultimately result in a “safety relevant” por-
tion of the system being verified, and the remainder of the system not being veri-
fied with the same level of rigour. We use the Doer/Checker approach to illustrate
issues that apply more generally to other types of systems with identified safety
relevant portions.

2.1.1 Command override anti-pattern

A common pitfall when identifying safety relevant portions of a system is over-
looking the safety relevance of sensors, actuators, software, or some other portion
of a system. A common example is creating a system that permits the Doer to per-

Credible Autonomy Safety Argumentation 7

form a command override of the Checker. (In other words, the designers think
they are building a Doer/Checker pattern in which only the Checker is safety rele-
vant, but in fact the Doer is safety relevant due to its ability to override the Check-
er’s functionality.)

The usual claim being made is that a safety layer will prevent any malfunction
of an autonomy layer from creating a mishap. This claim generally involves argu-
ing that an autonomy failure will activate a safing function in the safety layer, and
that an attempt by the autonomy to do something unsafe will be prevented. A typi-
cal (deficient) scheme is to have autonomy failure detected via some sort of self-
test combined with the safety layer monitoring an autonomy layer heartbeat sig-
nal. It is further argued that the safety layer is designed in conformance with a
suitable functional safety standard, and therefore acts as a safety-rated Checker as
part of a Doer/Checker pair.

The flaw in that safety argumentation approach is that the autonomy layer has
been presumed to fail silent via a combination of self-diagnosed fault detection
and lack of heartbeat. However, self-diagnosis and heartbeat detection methods
provide only partial fault detection (Hammett 2001). For example, there is always
the possibility that the checking function itself has been compromised by a fault
that leads to false negatives of checks for incorrect functionality. As a simple ex-
ample, a heartbeat signal might be generated by a timer interrupt in the autonomy
computer that continues to function even if significant portions of the autonomy
software have crashed or are generating incorrect results. In general, such an ar-
chitectural pattern is unsafe because it permits a non-silent failure in the autonomy
layer to issue an unsafe vehicle trajectory command that overrides the safety layer.
Fixing this fault requires making the autonomy layer safety-critical, which defeats
a primary purpose of using a Doer/Checker architecture.

In practice, safety layer logic is usually less permissive than the autonomy lay-
er. By less permissive, we mean that it under-approximates the safe state space of
the system in exchange for simplifying computation (Machin et al. 2018). As a
practical example, the safety layer might leave a larger spatial buffer area around
obstacles to simplify computations, resulting in a longer total path length for the
vehicle or even denying the vehicle entry into situations such as a tight alleyway
that is only slightly larger than the vehicle.

A significant safety compromise can occur when vehicle designers attempt to
increase permissiveness by enabling a non-safety-rated autonomy layer to say
“trust me, this is OK” to override the safety layer. This creates a way for a mal-
functioning autonomy layer to override the safety layer, again subverting the safe-
ty of the Doer/Checker pair architecture.

Eliminating this command override anti-pattern requires that the designers ac-
cept that there is an inherent trade-off between permissiveness and simplicity. A
simple Checker tends to have limited permissiveness. Increasing permissiveness
makes the Checker more complex, increasing the fraction of the system design
work that must be done with high integrity. Permitting a lower integrity Doer to
override the safety-relevant behaviour of a high integrity Checker in an attempt to
avoid Checker complexity is unsafe.

8 Koopman, Kane & Black

Related pitfalls are first a system in which the Checker only covers a subset of
the safety properties of the system. This implicitly trusts the Doer to not have cer-
tain classes of defects, including potentially requirements defects. If the Checker
does not actually check some aspects of safety, then the Doer is in fact safety rele-
vant. A second pitfall is having the Checker supervise a diagnosis operation for a
Doer health check. Even if the Doer passes a health check, that does not mean its
calculations are correct. At best it means that the Doer is operating as designed –
which might be unsafe since the Doer has not been verified with the level of rig-
our required to assure safety.

We have found it productive to conduct the following thought experiment
when evaluating Doer/Checker architectural patterns and other systems that rely
upon assuring the integrity of only a subset of safety-related functions. Ask this
question: “Assume the Doer (a portion of the system, including software, sensors,
and actuators, that are not ‘safety related’) maliciously attempts to compromise
safety in the worst way possible, with full and complete knowledge of every as-
pect of the design. Could it compromise safety?” If the answer is yes, then the
Doer is in fact safety relevant, and must be designed to a sufficiently high level of
integrity. Attempts to argue that such an outcome is unlikely in practice must be
supported by strong evidence.

2.1.2 The implicit controllability pitfall

A safety case must account for not only failures within the autonomy system, but
also failures within the vehicle.

A subtle pitfall when arguing based on conformance to a safety standard is ne-
glecting that the assumptions made when assessing the subsystem that have poten-
tially been violated or changed by the use of autonomy. Of particular concern for
ground vehicles is the “controllability” aspect of an ISO 26262 ASIL analysis.
(Severity and exposure might also change for an autonomous vehicle due to dif-
ferent usage patterns and should also be considered, but are beyond the scope of
this discussion.)

The risk analysis of an underlying conventional vehicle according to ISO
26262 requires taking into account the severity, exposure, and controllability of
each hazard (ISO 2011). The controllability aspect assumes a competent human
driver is available to react to and mitigate equipment malfunctions. Taking credit
for some degree of controllability generally reduces the integrity requirements of a
component. This idea is especially relevant for Advanced Driver-Assistance Sys-
tems (ADAS) safety arguments, in which it is assumed that the driver will inter-
vene in a timely manner to correct any vehicle misbehaviour, including potential
ADAS malfunctions.

With a fully autonomous vehicle, responsibility for managing potentially un-
safe equipment malfunctions that were previously mitigated by a human driver
falls to the autonomy. That means that all the assumed capabilities of a human

Credible Autonomy Safety Argumentation 9

driver that have been built in to the safety arguments regarding underlying vehicle
malfunctions are now imposed upon the autonomy system.

If the autonomy design team does not have access to the analysis behind under-
lying equipment safety arguments, there might be no practical way to know what
all the controllability assumptions are. In other words, the makers of an autonomy
kit might be left guessing what failure response capabilities they must provide to
preserve the correctness of the safety argumentation for the underlying vehicle.

The need to mitigate some malfunctions is likely obvious, but we have found
that “obvious” is in the eye of the beholder. Some examples of assumed human
driver interventions we have noted, or even experienced first-hand include:

• Pressing hard on the brake pedal to compensate for loss of power assist
• Controlling the vehicle in the event of a tire blowout
• Path planning after catastrophic windshield damage from debris impact
• Manually pumping brakes when anti-lock brake mechanisms time out due to

excessive activation
• Navigating by ambient light after a lighting system electrical failure at speed
• Attempting to mitigate the effects of uncommanded propulsion power

To the degree that the integrity level requirements of the vehicle were reduced
by the assumption that a human driver could mitigate the risk inherent in such
malfunction scenarios, the safety case is insufficient if an autonomy kit does not
have comparable capabilities.

Creating a thorough safety argument will require either obtaining or reverse
engineering all the controllability assumptions made in the design of the underly-
ing vehicle. Then, the autonomy must be assessed to have an adequate ability to
provide the safety relevant controllability assumed in the vehicle design, or an
alternate safety argument must be made.

For cases in which the controllability assumptions are not available, there are at
least two approaches that should both be used by a prudent design team. First,
FMEA, HAZOP, and other appropriate analyses should be performed on vehicle
components and safety relevant functions to ensure that the autonomy can react in
a safe way to malfunctions. Such an analysis will likely struggle with whether or
not it is safe to assume that the worst types of malfunctions will be adequately
mitigated by the vehicle without autonomy intervention.

Second, defects reported on comparable production vehicles should be consid-
ered as credible malfunctions of the non-autonomous portions of any vehicle con-
trol system since they have already happened in production systems. Such mal-
functions include issues such as the drivetrain reporting the opposite of the current
direction of motion, uncommanded acceleration, significant braking lag, loss of
headlights, and so on (Koopman 2018a).

10 Koopman, Kane & Black

2.1.3 Arguing compliance with an inadequate safety standard

Historically some car makers have used internal, proprietary software safety
guidelines as their way of attempting to assure an appropriate level of safety
(Koopman 2018b). If a safety argument is based in part upon conformance to a
safety standard, it is essential that the comprehensiveness of the safety standard
itself be supported by evidence. For public standards that argument can involve
group consensus by experts, public scrutiny, assessments of historical effective-
ness, improvement in response to loss events, and general industry acceptance.

On the other hand, proprietary standards lack at least public scrutiny, and often
lack other aspects such as general industry acceptance as well as falling short of
accepted practices in technically substantive ways. One potential approach to ar-
gue that a proprietary safety standard is adequate is to map it to a publicly availa-
ble standard, although there might be other viable argumentation approaches.

Sometimes arguing compliance with a well-known and documented industry
safety standard may be inadequate for a particular safety case. Although all pas-
senger vehicle subsystems in the United States must comply with the Federal Mo-
tor Vehicle Safety Standards (FMVSS) issued by the National Highway Transpor-
tation Safety Administration (NHTSA), compliance with these standards alone
concentrates on mechanical and electrical issues, and only high level electronics
functionality. FMVSS compliance is insufficient for a safety case that must en-
compass software (Koopman 2018b).

Similarly, use of particular standards might be an accepted or recommended
practice, but not a means of ensuring safety. For example, the use of AUTOSAR
(Autosar.org 2018) and Model Based Design techniques are sometimes proposed
as indicators of safe software, but use of these technologies has essentially no pre-
dictive power with respect to system safety.

 For automotive systems with safety-critical software, ISO 26262 is typically
an appropriate standard, although other standards such as IEC 61508 (IEC 1998)
can be relevant as well. For some autonomous system functions, conformance to
ISO PAS 21448 (ISO 2018) might well be appropriate.

Arguments of the form "technology X, standard Y, or methodology Z is ade-
quate because it has historically produced safe systems in that past" should ad-
dress the potential issues with "proven in use" argumentation considered in the
following section.

2.2 Proven in use

The proven in use argumentation pattern uses field experience of a component (or,
potentially, an engineering process) to argue that field failure rates have been suf-
ficiently low to assure a necessary level of integrity.

Historically this has been used as a way to grandfather existing components in-
to new safety standards (for example, in the process industry under IEC 61508).

Credible Autonomy Safety Argumentation 11

The basis of the argument is generally that if a huge number of operational hours
of experience in the actual application have been accumulated with a sufficiently
low number of safety-relevant failures, then there is compelling experimental data
supporting the integrity claim for a component. We assume in this section that
sufficient field experience has actually been obtained to make a credible argu-
ment. A subsequent section on field testing addresses the issue of how much expe-
rience is required to make a statistically valid claim.

A plausible variant could be that a component is initially deployed with tempo-
rary additional level of redundancy or other safety backup mechanism such as
using a Doer/Checker pair. (By analogy, the Checker is a set of training wheels for
a child learning to ride a bicycle.) When sufficient field experience has been ac-
cumulated to attain confidence regarding the safety of the main system, the addi-
tional safety mechanism might be removed to reduce cost.

For autonomous vehicles, the safety backup mechanism frequently manifests as
a human safety driver, and the argument being made is that a sufficient amount of
safe operation with a human safety driver enables removal of that safety driver for
future deployments. The ability of a human safety driver to adequately supervise
autonomy is itself a difficult topic (Koopman and Latronico 2019, Gao 2016), but
is beyond the scope of this paper.

2.2.1 The violated assumptions pitfall

A significant threat to validity for proven in use argumentation is that the system
will be used in an operational environment that differs in a safety-relevant way
from its field history. In other words, a proven in use argument is invalidated if the
component in question is exposed to operational conditions substantively different
than the historical experience.

Diverging from historical usage can happen in subtle ways, especially for soft-
ware components. Issues of data value limits, timing, and resource exhaustion can
be relevant and might be caused by functionally unrelated components within a
system. Differences in fault modes, sensor input values, or the occurrence of ex-
ceptional situations can also cause problems.

A proven in use safety argument must address how the risk of the system being
deployed outside this operational profile is mitigated (e.g. by detecting distribu-
tional shifts in the environment, by external limitations on the environment, or by
procedural mitigations). It is important to realize that an operational profile for a
safety critical system must include not only typical cases, but also rare but ex-
pected edge cases as well. An even more challenging issue is that there might be
operational environment assumptions that designers do not realize are being made,
resulting in a residual risk of violated assumptions even after a thorough engineer-
ing review of the component reuse plan.

A classic example of this pitfall is the failure of Ariane 5 flight 501. That mis-
hap involved reusing an inertial navigation system from the Ariane 4 design em-
ploying a proven in use argument (Lyons 1996). A contributing factor was that

12 Koopman, Kane & Black

software functionality used by Ariane 4 but not required for Ariane 5 flight was
left in place to avoid having to requalify the component.

2.2.2 Depending upon COTS components

It is common to repurpose Commercial Off-The-Shelf (COTS) software or com-
ponents for use in critical autonomous vehicle applications. These include compo-
nents originally developed for other domains such as mine safety, low volume
research components such as LIDAR units, and automotive components such as
radars previously used in non-critical or less critical ADAS applications.

Generally such COTS components are being used in a somewhat different way
than the original non-critical commercial purpose, and are often modified for use
as well. Moreover, even field proven automotive components are typically cus-
tomized for each vehicle manufacturer to conform to customer-specific design
requirements. When arguing that a COTS item is proven in use, it is important to
account for at least whether there is in fact sufficient field experience, whether the
field experience is for a previous or modified version of the component, and other
factors such as potential supply-chain changes, manufacturing quality fade, and
the possibility of counterfeit goods.

In some cases we have seen proven in use arguments attempted for which the
primary evidence relied upon is the reputation of a manufacturer based on histori-
cal performance on other components. While purchasing from a reputable manu-
facturer is often a good start, a brand name label by itself does not necessarily
demonstrate that a particular component is fit for purpose, especially if a complex
supply chain is involved.

2.2.3 The “small” change pitfall

Another threat to validity for a proven in use strategy is permitting “small” chang-
es without revalidation (e.g. as implicitly permitted by (NHTSA 2016), which
requires an updated safety assessment for significant changes). Change analysis
can be difficult in general for software, and ineffective for software that has high
coupling between modules and resultant complex interdependencies.

Because even one line of bad code can result in a catastrophic system failure, it
is highly questionable to argue that a change is “small” because it only affects a
small fraction of the source code base. Rigorous analysis should be performed on
the change and its possible effects, which generally requires analysis of design
artefacts beyond just source code.

A variant of this pitfall is arguing that a particular type of technology is gener-
ally “well understood” and implying based upon this that no special attention is
required to ensure safety. There is no reason to expect that a completely new im-
plementation – potentially by a different development team with a different engi-

Credible Autonomy Safety Argumentation 13

neering process – has sufficient safety integrity simply because it is not a novel
function to the application domain.

2.2.4 The discounted failure pitfall

A particularly tricky pitfall occurs when a proven in use argument is based upon a
lack of observed field failures when field failures have been systematically under-
reported or even not reported at all. In this case, the argument is based upon faulty
evidence.

One way that this pitfall manifests in practice is that faults that result in low
consequence failures tend to go un-reported, with system redundancy tending to
reduce the consequences of a typical incident. It can take time and effort to report
failures, and there is little incentive to report each incident if the consequence is
small, the system can readily continue service, and the subjective impression is
that the system is perceived as overall safe. Perversely, reporting numerous recov-
ered malfunctions or warnings can actually increase user confidence in a system
even while events go un-reported. This can be a significant issue when removing
backup systems such as mechanical interlocks based on a lack of reported loss
events. If the interlocks were keeping the system safe but interlock or other fail-
safe engagements go unreported, removing those interlocks can be deadly. Vari-
ous aspects of this pitfall came into play in the Therac 25 loss events (Leveson
1993).

An alternate way that this pitfall manifests is when there is a significant eco-
nomic or other incentive for suppressing or mischaracterizing the cause of field
failures. For example, there can be significant pressure and even systematic ap-
proaches to failure reporting and analysis that emphasize human error over
equipment failure in mishap reporting (Koopman 2018b). Similarly, if technologi-
cal maturity is being measured by a trend of reduced safety mechanism engage-
ments (e.g. autonomy disengagements during road testing (Banerjee et al. 2018)),
there can be significant pressure to artificially reduce the number of events report-
ed. Claiming proven in use integrity for a component subject to artificially re-
duced or suppressed error reports is again basing an argument on faulty evidence.

2.2.5 The human filter pitfall

The operational history (and thus the failure history) of many systems is filtered
by human control actions, pre-emptive incident avoidance actions and exposure to
operator-specific errors. This history might not cover the entirety of the required
functionality, might primarily cover the system in a comparatively low risk envi-
ronment, and might under-represent failures that manifest infrequently with hu-
man operators present.

From a proven in use perspective, trying to use data from human-operated ve-
hicles, such as historical crash data, might be insufficient to establish safety re-

14 Koopman, Kane & Black

quirements or a basis for autonomous vehicle safety metrics. The situations in
which human-operated vehicles have trouble may not be the same situations that
autonomous systems find difficult. It is easy to overlook the situations humans are
good at navigating but which may cause problems for autonomous systems when
looking at existing data of situations that humans get wrong. An autonomous sys-
tem cannot be validated only against problematic human driving scenarios (e.g.
NHTSA (2007) pre-crash typology). The autonomy might handle these hazardous
situations perfectly yet fail often in otherwise common situations that humans
regularly perform safely. Thus, an argument that a system is safe solely because it
has been checked to properly handle situations that have high rates of human mis-
haps is incomplete in that it does not address the possibility of new types of mis-
haps.

This pitfall can also occur when arguing safety for existing components being
used in a new system. For example, consider a safety shutdown system used as a
backup to a human operator, such as an Automated Emergency Braking (AEB)
system. It might be that human operators tend to systematically avoid putting an
AEB system in some particular situation that it has trouble handling. As a hypo-
thetical example, consider an AEB system that has trouble operating effectively
when encountering obstacles in tight curves. If human drivers habitually slow
down on such curves there might be no significant historical data indicating this is
a potential problem, and autonomous vehicles that operate at the vehicle dynamics
limit rather than a sight distance limit on such curves will be exposed to collisions
due to this bias in historical operational data that hides an AEB weakness. A prov-
en-in-use argument in such a situation has a systematic bias and is based on in-
complete evidence. It could be unsafe, for example, to base a safety argument
primarily upon that AEB system for a fully autonomous vehicle, since it would be
exposed to situations that would normally be pre-emptively handled by a human
driver, even though field data does not directly reveal this as a problem.

2.3 Field testing

In a field testing argumentation approach a fleet of systems is tested in real-world
conditions to build up confidence. At a certain point the testers declare that the
system has been demonstrated to be safe and proceed with production deploy-
ment.

An appropriate argumentation approach for field testing is that a sufficiently
large number of exposure hours have been attained in a highly representative real-
world environment. In other words, this is a variant of a proven in use argument in
which the “use” was via testing rather than a production deployment. As such, the
same proven in use argumentation issues apply, including especially the needs for
representativeness and statistical significance. However, there are additional pit-
falls encountered in field testing that must also be dealt with.

Credible Autonomy Safety Argumentation 15

2.3.1 The insufficient testing pitfall

Accumulating an appropriate amount of field testing data for high dependability
systems is challenging. In general, real-world testing needs to last approximately 3
to 10 times the acceptable mean time between hazardous failure to provide statis-
tical significance (Kalra and Paddock 2016). For life-critical testing this can be an
infeasible amount of testing (Butler and Finelli 1993, Littlewood and Strigini
1993).

Even if a sufficient amount of testing has been performed, it must also be ar-
gued that the testing is representative of the intended operational environment. To
be representative, the field testing must at least have an operational profile (Musa
et al. 1996) that matches the types of operational scenarios, actions, and other at-
tributes of what the system will experience when deployed. For autonomous vehi-
cles this includes a host of factors such as geography, roadway infrastructure,
weather, expected obstacle types, and so on.

While the need to perform a statistically significant amount of field testing
should be obvious, it is common to see plans to build public confidence in a sys-
tem via comparatively small amounts of public field testing. (Whether there is
additional non-public-facing argumentation in place is unclear in many of these
cases.)

To illustrate the magnitude of the problem, in 2016 there were 1.18 fatalities
per 100 million vehicle miles travelled in the United States, making the Mean
Time Between Failures (MTBF) with respect to fatalities by a human driver 85
million miles (NHTSA 2017). Assuming an exponential failure distribution, for a
given MTBF the required test time in which r failures occur can be computed with
confidence α using a chi square distribution (Morris 2018):

Required Test Time = χ2(α, 2r + 2)(MTBF)/2

Based on this, a single-occupant system needs to accumulate 255 million test

miles with no fatalities to be 95% sure that the mean time is only 85 million miles.
If there is a mishap during that time, more testing is required to distinguish normal
statistical fluctuations from a lower MTBF: a total of 403 million miles to reach
95% confidence. If a second mishap occurs, 535 million miles of testing are need-
ed, and so on. Additional testing might also be needed if the system is changed, as
discussed in a subsequent section. Significantly more testing would also be re-
quired to ensure a comparable per-occupant fatality rate for multi-occupant vehi-
cle configurations.

Attempting to use a proxy metric such as rate of non-fatal crashes and extrapo-
late to fatal mishaps requires also substantiating the assumption that the mishap
profiles will be the same for autonomous systems as they are for human drivers.
(See the human filter pitfall previously discussed.)

16 Koopman, Kane & Black

2.3.2 The fly-fix-fly anti-pattern

In practice, autonomous vehicle field testing has typically not been a deployment
of a finished product to demonstrate a suitable integrity level. Rather, it is an itera-
tive development approach that can amount to debugging followed by attempting
to achieve improved system dependability over time based on field experience. In
the aerospace domain this is called a “fly-fix-fly” strategy. The system is operated
and each problem that crops up in operations is fixed in an attempt to remove all
defects. While this can help improve safety, it is most effective for a rigorously
engineered system that is nearly perfect to begin with, and for which the fixes do
not substantially alter the vehicle’s design in ways that could produce new safety
defects.

A significant problem with argumentation based on fly-fix-fly occurs when de-
signers try to take credit for previous field testing despite a major change. When
arguing field testing safety, it is generally inappropriate to take credit for field
experience accumulated before the last change to the system that can affect safety-
relevant behaviour. (The “small change” pitfall has already been discussed.)

There is no denying the intuitive appeal to an argument that the system is being
tested until all bugs have been fixed. However, this is a fundamentally flawed
argument. That is because this amounts to saying that no matter how many fail-
ures are seen during field testing, none of them “count” if a story can be concocted
as to how they were non-reproducible, fixed via bug patches, and so on.

To the degree such an argument could be credible, it would have to find and fix
the root cause of essentially all field failures. It would further have to demonstrate
(somehow) that the field failure root cause had been correctly diagnosed, which is
no small thing, especially if the fix involves retraining a machine-learning based
system. Additionally, it would have to argue that a sufficiently high fraction of
field failures have actually been encountered, resulting in a sufficiently low prob-
ability of encountering novel additional failures during deployment.

A fly-fix-fly argument must also address both the fault reinjection problem.
Fault reinjection occurs when a bug fix introduces a new bug as a side effect of
that fix. Ensuring that this has not happened via field testing alone requires reset-
ting the field testing clock to zero after every bug fix. (Hybrid arguments that in-
clude rigorous engineering analysis are possible, but simply assuming no fault
reinjection without any supporting evidence is not credible.)

It is difficult to believe an argument that claims that a fly-fix-fly process alone
(without any rigorous engineering analysis to back it up) will identify and fix all
safety-relevant bugs. If there is a large population of bugs that activate infrequent-
ly compared to the amount of field testing exposure, such a claim would clearly be
incorrect. Generally speaking, fly-fix-fly requires an infeasible amount of opera-
tion to achieve the ultra-dependable results required for life critical systems, and
typically makes unrealistic assumptions such as no new faults are injected by fix-
ing a fault identified in testing (Littlewood and Strigini 1996). A specific issue is
the matter of edge cases, discussed in the next section.

Credible Autonomy Safety Argumentation 17

2.3.3 Dealing with edge cases

A significant limitation to a field testing argument is the assumption of random
independent failures inherent in the statistical analysis. Arguing that software fail-
ures are random and independent is clearly questionable, since multiple instances
of a system will have identical software defects. Moreover, arguing that the arrival
of exceptional external events is random and independent across a fleet is clearly
incorrect in the general case. A few simple examples of correlated events between
vehicles in a fleet include:

• Timekeeping events (e.g. daylight savings time, leap second)
• Extreme weather (e.g. tornado, tsunami, flooding, blizzard white-out, wild-

fires) affecting multiple systems in the same geographic area
• Appearance of novel-looking pedestrians occurring on holidays (e.g. Hallow-

een, Mardi Gras)
• Security vulnerabilities being attacked in a coordinated way

For life-critical systems, proper operation in typical situations needs to be vali-
dated. But this should be a given. Progressing from baseline functionality (a vehi-
cle that can operate acceptably in normal situations) to a safe system (a vehicle
that safely handles unusual situations and unexpected situations) requires dealing
with unusual cases that will inevitably occur in the deployed fleet.

We define an edge case as a rare situation that will occur only occasionally, but
still needs specific design attention to be dealt with in a reasonable and safe way.
The quantification of “rare” is relative, and generally refers to situations or condi-
tions that will occur often enough in a full-scale deployed fleet to be a problem but
have not been captured in the design or requirements process. (It is understood
that the process of identifying and handling edge cases makes them – by definition
– no longer edge cases. So in practice the term applies to situations that would not
have otherwise been handled had special attempts not be made to identify them
during the design and validation process.)

It is useful to distinguish edge cases from corner cases. Corner cases are com-
binations of normal operational parameters. Not all corner cases are edge cases,
and the converse. An example of a corner case could be a driving situation with an
iced over road, low sun angle, heavy traffic, and a pedestrian in the roadway. This
is a corner case since each item in that list ought to be an expected operational
parameter, and it is the combination that might be rare. This would be an edge
case only if there is some novelty to the combination that produces an emergent
effect with system behaviour. If the system can handle the combination of factors
in a corner case without any special design work, then it’s not really an edge case
by our definition. In practice, even difficult-to-handle corner cases that occur fre-
quently will be identified during system design. Only corner cases that are both
infrequent and present novelty due to the combination of conditions are edge cas-
es. It is worth noting that changing geographic location, season of year, or other
factors can result in different corner cases being identified during design and test,
and leave different sets of edge cases unresolved. Thus, in practice, edge cases

18 Koopman, Kane & Black

that remain after normal system design procedures could differ depending upon
the operational design domain of the vehicle, the test plan, and even random
chance occurrences of which corner cases happened to appear in training data and
field trials.

Classically an edge case refers to a type of boundary condition that affects in-
puts or reveals gaps in requirements. More generally, edge cases can be wholly
unexpected events, such as the appearance of a unique road sign, or an unexpected
animal type on a highway. They can be a corner case that was thought to be im-
possible, such as an icy road in a tropical climate. They can also be an unremarka-
ble (to a human), non-corner case that somehow triggers an autonomy fault or
stumbles upon a gap in training data, such as a light haze that results in perception
failure. The thing that makes something an edge case is that it unexpectedly acti-
vates a requirements, design, or implementation defect in the system.

There are two implications to the occurrence of such edge cases in safety ar-
gumentation. One is that fixing edge cases as they arrive might not improve safety
appreciably if the population of edge cases is large due to the heavy tail distribu-
tion problem (Koopman 2018c). This is because removing even a large number of
individual defects from an essentially infinite-size pool of rarely activated defects
does not materially improve things. Another implication is that the arrival of edge
cases might be correlated by date, time, weather, societal events, micro-location,
or combinations of these triggers. Such a correlation can invalidate an assumption
that losses from activation of a safety defect will result in small losses between the
time the defect first activates and the time a fix can be produced. (Such correlated
mishaps can be thought of as the safety equivalent of a “zero day attack” from the
security world.)

It is helpful to identify edge cases to the degree possible within the constraints
of the budget and resources available to a project. This can be partially accom-
plished via corner case testing (e.g. Ding 2017). The strategy here would be to test
essentially all corner cases to flush out any that happen to present special prob-
lems that make them edge cases. However, some edge cases also require identify-
ing likely novel situations beyond combinations of ordinary and expected scenario
components. And other edge cases are exceptional to an autonomous system, but
not obviously corner cases in the eyes of a human test designer.

Ultimately, it is unclear if it can ever be shown that all edge cases have been
identified and corresponding mitigations designed into the system. (Formal meth-
ods could help here, but the question would be whether any assumptions that
needed to be made to support proofs were themselves vulnerable to edge cases.)
Therefore, for immature systems it is important to be able to argue that inevitable
edge cases will be dealt with in a safe way frequently enough to achieve an appro-
priate level of safety. One potential argumentation approach is to aggressively
monitor and report unusual operational scenarios and proactively respond to near
misses and incidents before a similar edge case can trigger a loss event, arguing
that the probability of a loss event from unhandled edge cases is sufficiently low.
Such an argument would have to address potential issues from correlated activa-
tion of edge cases.

Credible Autonomy Safety Argumentation 19

2.4 Vehicle simulation

In this pattern, vehicle-level simulation rather than on-road operation is used as a
proxy field testing strategy. Simulation offers a number of potential advantages
over field testing of a real vehicle including lower marginal cost per mile, better
scalability, and reduced risk to the public from testing. Ultimately, simulation is
based upon data that generates scenarios used to exercise the system under test,
commonly called the simulation workload. The validity of the simulation work-
load is just as relevant as the validity of the simulation models and software.

Simulation-based validation is often accomplished with a weighting of scenari-
os that is intentionally different than the expected operational profile. Such an
approach has the virtue of being able to exercise corner cases and known rare
events with less total exposure than would be required by waiting for such situa-
tions to happen by chance in real-world testing (Ding 2017). To the extent that
corner cases and known rare events are intentionally induced in physical vehicle
field testing or closed course testing, those amount to simulation in that the occur-
rence of those events is being simulated for the benefit of the test vehicle.

A more sophisticated simulation approach should use a simulation “stack” with
layered levels of abstraction. High level, faster simulation can explore system-
level issues while more detailed but slower simulations, bench tests, and other
higher fidelity validation approaches are used for subsystems and components.

Regardless of the mix of simulation approaches, simulation fidelity and realism
of the scenarios is generally recognized as a potential threat to validity. The simu-
lation must be validated to ensure that it produces sufficiently accurate results for
aspects that matter to the safety case. This might include requiring conformance of
the simulation code and model data to a safety-critical software standard.

2.4.1 Missing rare events

Even with a conceptually perfect simulation, the question remains as to what
events to simulate. Even if simulation were to cover enough miles to statistically
assure safety, the question would remain as to whether there are gaps in the types
of situations simulated. This corresponds to the representativeness issue with field
testing and proven in use arguments. However, representativeness is a more press-
ing matter if simulation scenarios are being designed as part of a test plan rather
than being based solely on statistically significant amounts of collected field data.

Another way to look at this problem is that simulation can remove the need to
do field testing for rare events, but does not remove determine what rare events
matter. All things being equal, simulation does not reduce the number of road
miles needed for data collection to observe rare events. Rather, it permits a sub-
stantial fraction of data collection to be done with a non-autonomous vehicle.
Thus, even if simulating billions of miles is feasible, there needs to be a way to

20 Koopman, Kane & Black

ensure that the test plan and simulation workload exercise all the aspects of a ve-
hicle that would have been exercised in field testing of the same magnitude.

As with the fly-fix-fly anti-pattern, fixing defects identified in simulation re-
quires additional simulation input data to validate the design. Simply re-running
the same simulation and fixing bugs until the simulation passes invokes the “pes-
ticide paradox.” (Beizer 1990) This paradox holds that a system which has been
debugged to the point that it passes a set of tests can’t be considered completely
bug free. Rather, it is simply free of the bugs that the test suite knows how to find,
leaving the system exposed to bugs that might involve only very subtle differences
from the test suite.

2.4.2 Nondeterministic behaviour and legibility

The nature of the algorithms used by autonomy systems creates problems for
modelling and testing that go beyond typical safety critical software. Some auton-
omy algorithms, such as randomized path planning, are inherently non-
deterministic. Others can be brittle, failing dramatically with subtle variations in
data, such as perception false negatives induced by adversarial attacks (Szegedy at
al. 2013) or false negatives induced by slight image degradation due to haze or
defocus (Pezzementi et al. 2018).

A related issue is over-fitting to the test, in which an autonomy system over-fits
and learns how to beat a fixed test. By analogy, this is the pitfall of the system
cheating by having memorized the correct answers. A proposed way to deal with
this risk is by randomly varying aspects of test cases. In such a fuzzing or variable
testing approach it is important to randomly vary all relevant aspects of a problem.
For example, varying geometries for traffic situations can be helpful, but probably
does not address potential over-fitting for perception algorithms that perform ob-
ject classification.

The use of potentially non-deterministic test scenarios combined with non-
deterministic system behaviours and opaque system designs means it is difficult to
know whether a system has passed a test, because there is no single correct an-
swer. Rather, there must be some algorithmic way to determine whether a particu-
lar system response is acceptable or not, making that test oracle algorithm safety
critical.

Moreover, it is possible that a system has passed a particular test by chance.
For example, a pedestrian might be avoided due to a properly functioning detec-
tion and avoidance algorithm. But a pedestrian might also be avoided merely be-
cause a random path planner by chance picked a path that did not intersect the
pedestrian, or responded to a completely unrelated aspect of the environment that
caused it to pick a fortuitously safe path. Similarly, a pedestrian might be detected
in one image, but undetected in another that differs in ways that are essentially
imperceptible to a human.

It is unclear if resolving this issue requires solving the difficult problem of ex-
plainable AI (Gunning 2018). As a minimum, a credible safety argument will need

Credible Autonomy Safety Argumentation 21

to address the problem of how plans to test vehicles with less than a statistically
valid amount of real-world exposure data can avoid these pitfalls. It seems likely
that a credible argument will also have to establish that each type of test has been
passed due to safe operation of the system rather than simply by chance.

2.4.3 Human test scenario bias

Simulation-based testing (including especially closed-course testing of real vehi-
cles) can suffer from a test planning bias. The problem is that a test plan is often
made according to human perception of the scenario being tested. For example, a
test scenario might be “child crossing in a painted cross-walk.” Details of the test
scenario might explore various corner cases involving child clothing, size, weather
conditions, scene clutter, and so on.

Commonly test scenarios map to a human-interpretable taxonomy of the sys-
tem and environmental state space. However, autonomy systems might have a
different internal state space representation than humans, meaning that they classi-
fy the world in ways that differ from how humans do so. This in turn can lead to a
situation in which a human believes apparent complete coverage via a testing plan
has been achieved, while in reality significant aspects of the autonomy system
have not been tested. As a hypothetical example, the autonomy system might have
deduced that a human’s shirt colour is a predictor of whether that human will step
into a street because of accidental correlations in a training data set. But the test
plan might not specify shirt colour as a variable, because test designers did not
realize it was a relevant autonomy feature for pedestrian motion prediction.

Machine-learning based systems are known to be vulnerable to learning bias
that is not recognized by human testers, at least initially. Some such failures have
been quite dramatic (e.g. Grush 2015). Thus, simplistic tests such as having an
average body size white male in neutral summer clothing cross a street to test pe-
destrian avoidance do not demonstrate a robust safety capability. Rather, such
tests tend to demonstrate a minimum performance capability.

Interpreting the results of human-constructed test designs, including humans in-
terpreting why a particular on-road scenario failed, are also subject to human test
scenario bias. A credible safety argument that relies upon human-constructed tests
or human interpretation of root cause analysis in claiming that test failures have
been fixed should address this pitfall.

2.4.4 Data validity

Any safety argument that relies upon simulation must not only argue that the sim-
ulation is sufficiently accurate, but also that the workload is sufficiently accurate.

For example, consider a workload derived from a collection of on-road data.
The sensors that captured the data, the data recording mechanism, the data transla-
tion programs, and the data handling procedures that eventually produce the simu-

22 Koopman, Kane & Black

lation workload are all safety relevant. This is because any biases or faults in that
data handling process will produce inaccurate testing data, potentially resulting in
flawed simulation evidence of safety. Relevant guidance exists on the topic of
safety relevant data, and should be taken into account (DSIWG 2018).

As a simple example of how simulation data collection can go wrong, consider
a data handling approach that discards outliers or seemingly invalid data. That
approach might usually discard legitimate outliers. On the other hand, the outlier
rejection method might also discard legitimate edge cases that are then excluded
from simulation, resulting in a deficient safety case.

2.5 Formal proof of correctness

In this pattern, formal methods are used to define and prove system safety proper-
ties. These might include model checking, control system analysis, use of validat-
ed synthesis tools, kinematic analysis, and correct by construction approaches. It
is unlikely that any such technique will scale up to the entirety of an autonomous
vehicle in the near future, but such techniques can be a valuable part of appropri-
ate aspects of a safety argument.

2.5.1 Assumption validity

Any assumptions made in formal analysis must be shown to be valid – or at least
not safety relevant – in deployed systems. Assumptions vary widely and can in-
clude items such as: defect-free computational hardware, defect free computation
execution (e.g. no soft errors), defect-free sensors, 100% fault diagnosis coverage,
objects obeying expectations such as following traffic laws, absence of unex-
pected obstacles, model accuracy, and perfect vehicle maintenance. Additionally,
any specific model or proof is likely to have other assumptions or simplifications
required to make a formal proof practicable.

A way to mitigate the threats to validity posed by incorrect assumptions is to
monitor them for validity during deployment using some type of runtime monitor-
ing (Koopman and Wagner 2016). When an assumption violation does occur that
does not quite mean that the system is unsafe, nor does it mean a mishap is inevi-
table. But an assumption violation does mean that the safety case is invalid while
the assumption is being violated.

2.5.2 Proving safety

While formal methods can be an extremely useful piece of verifying correctness
of a system, safety is an emergent property that touches the system’s implementa-
tion and environment in ways that often reach beyond the formal verification.

Credible Autonomy Safety Argumentation 23

There are many subtle ways in which formal verification can provide less as-
surance than is assumed, including model or implementation bugs (e.g. Vanhoef
and Piessens 2017) or requirements gaps (failures which occur outside the mod-
el/proof or outside the hypothesized fault model). These types of issues highlight
the value of an explicit, heterogeneous safety case that can clearly delineate what
evidence the formal methods are actually providing as well as the strengths and
limitations of how that evidence can be used in a credible manner.

3 Other autonomous vehicle safety argument observations

While not necessarily argumentation patterns, we have observed a number of oth-
er common issues that are worthy of comment.

Defective disengagement mechanisms. Generally this involves the ability of an
arbitrary fail-active autonomy failure to prevent successful disengagement by a
human supervisor. As a concrete example, a system might read the state of the
disengagement activation mechanism (the “big red button”) as an I/O device fed
directly into the primary autonomy computer rather than using an independent
safing mechanism. This is a special case of a single point of failure in the form of
the autonomy computer.

Assuming perception failures are independent. Some arguments assume inde-
pendent failures of multiple perception modes. While there is clearly utility in
creating a safety case for the non-perception parts of an autonomous vehicle, one
must argue rather than assume the safety of perception to create a credible safety
case at the vehicle level.

Requiring perfect human supervision of autonomy. Humans are well known to
struggle when assigned such monitoring tasks. Koopman et al. (2019) cover this
topic in more detail as it relates to autonomous vehicle road testing safety.

Dismissing a potential fault as “unrealistic” without supporting data. For ex-
ample, argumentation might state that a lightning strike on a moving vehicle is
unrealistic or could not happen in the “real world,” despite data to the contrary
(e.g. Holle 2008). To be sure, this does not mean that something like a lightning
strike must be completely mitigated via keeping the vehicle fully operational. Ra-
ther, such faults must be considered in risk analysis. Dismissing hazards without
risk analysis based on a subjective assertion that they are “unrealistic” results in a
safety case with insufficient evidence.

Using multi-channel comparison approaches for autonomy. In general auton-
omy algorithms are nondeterministic, sensitive to initial conditions, and have
many acceptable (or at least safe) behaviours for any given situation. Architectural

24 Koopman, Kane & Black

approaches based on voting diverse autonomy algorithms tend to run into a prob-
lem of deciding whether the outputs are close enough to be valid. Averaging and
other similar approaches are not necessarily appropriate. As a simple example, the
average of veering to the right and veering to the left to avoid an obstacle could
result in hitting the obstacle dead-on.

Confusion about fault vs. failure. While there is a widely recognized terminolo-
gy document for dependable system design (Avizienis 2004), we have found that
there is widespread confusion about the terms fault and failure in practical use.
This is especially true when discussing malfunctions that are not due to a compo-
nent fault, but rather a requirements gap or an excursion from the intended opera-
tional environment. It is beyond the scope of this paper to attempt to resolve this,
but we note it as an area worthy of future work and particular attention in interdis-
ciplinary discussions of autonomy safety.

4 Conclusions

Creating a credible safety case for an autonomous vehicle seems likely to require a
heterogeneous approach, with various aspects argued via different methods. It
would be no surprise if a safety case for a complete autonomous vehicle required
using all of the strategies described in this paper and more. It is important to note
that addressing all the pitfalls in this paper is necessary, but is likely insufficient
for creating a safe autonomous vehicle. A number of other factors must be re-
solved including understanding the role of engineering rigor, software quality, and
the special needs of validating system functionality based upon machine learning
techniques. Along the way, we expect that additional pitfalls and argumentation
anti-patterns will be identified that should be added to the list given in this paper.

We believe that assuring the validity and credibility of autonomous vehicle
safety cases can benefit from a library of both valid and invalid argumentation
strategies as well as examples and pitfalls. Such a library at the very least provides
fodder for assessors to ensure that the most common argumentation and evidence
pitfalls are avoided in safety cases. This paper provides a starting point for such an
approach.

5 References

ACWG (2018) Goal Structuring Notation Community Standard, version 2, The Assur-
ance Case Working Group (ACWG), SCSC-141B, January 2018.

Autosar.org (2018) The Standard Software Framework for Intelligent Mobility,
https://www.autosar.org/ accessed Nov. 5, 2018.

Credible Autonomy Safety Argumentation 25

Avizienis, A., Laprie, J.-C., Randell B., Landwehr, C. (2004) “Basic concepts and tax-
onomy of dependable and secure computing,” IEEE Trans. Dependability, 1(1):11-33, Oct.
2004.

Bannerjee, S., Jha, S., Cyriac, J., Kalbarczyk, Z, Iyer, R., (2018) “Hands Off the Wheel
in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data,”
48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2018.

Beizer, B. (1990) Software Testing Techniques, 2nd Ed., 1990.
Bishop, Bloomfield (1998) “A methodology for safety case development,” Proceedings

of the Sixth Safety-Critical Systems Symposium, Feb. 1998.
Burton, S., Gauerhof, L., Heinzemann, C. (2017) Making the case for safety of machine

learning in highly automated driving, 5th International Workshop on Assurance Cases for
Software-Intensive Systems (ASSURE 2017), 2017, pp. 5-16

Butler, Finelli (1993) “The infeasibility of experimental quantification of life-critical
software reliability,” IEEE Trans. SW Engr. 19(1):3-12, Jan 1993.

Catapult (2017) Taxonomy of Scenarios for Automated Driving, v1.2, Technical Report,
Transport Systems Catapult, UK, April 2017.

Ding, Z., “Accelerated evaluation of automated vehicles,” http://www-
personal.umich.edu/~zhaoding/accelerated-evaluation.html on 10/15/2017.

DSIWG (2018) Data Safety Guidance, The Data Safety Initiative Working Group
[DSIWG], January 2018.

Gao, F. (2016) Modeling Human Attention and Performance in Automated Environ-
ments with Low Task Loading, Ph.D. Dissertation, Massachusetts Institute of Technology,
Feb. 2016.

Gauerhof, L., Munk, P., Burton, S. (2018) “Structuring Validation Targets of a Machine
Learning Function Applied to Automated Driving,” International Conference on Computer
Safety, Reliability, and Security (SAFECOMP), 2018, pp. 45-58

Goodenough, J., Weinstock, C., Klein, A., (2015) Eliminative Argumentation: A Basis
for Arguing Confidence in System Properties, Software Engineering Institute, Technical
Report CMU/SEI-2015-TR-005, Feb. 2015.

Graydon, P., Habli, I., Hawkins, R., Kelly, T., Knight, J. (2012) “Arguing conform-
ance,” IEEE Software, May/June 2012, pp. 50-57.

Grush, L. (2015) “Google engineer apologizes after Photos app tags two black people as
gorillas,” The Verge, July 1, 2015. https://www.theverge.com/2015/7/1/8880363/google-
apologizes-photos-app-tags-two-black-people-gorillas (Accessed Oct. 27, 2018)

Gunning, D. (2018), Explainable Artificial Intelligence (XAI), Defense Advanced Re-
search Projects Agency, https://www.darpa.mil/program/explainable-artificial-intelligence
(accessed October 27, 2018).

Hammett, R., (2001) “Design by extrapolation: an evaluation of fault-tolerant avionics,
20th Conference on Digital Avionics Systems, IEEE, 2001.

Holle, R. (2008) Lightning-caused deaths and injuries in the vicinity of vehicles, Ameri-
can Meteorological Society Conference on Meteorological Applications of Lightning Data,
2008.

IEC (1998) IEC 61508: Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-related Systems, International Electronic Commission, December, 1998.

26 Koopman, Kane & Black

ISO (2011) Road vehicles -- Functional Safety -- Management of functional safety, ISO
26262, International Standards Organization, 2011.

ISO (2018) Road vehicles – Safety of the Intended Function, ISO/PRF PAS 21448 (un-
der development), International Standards Organization, 2018.

Kalra, N., Paddock, S., Driving to Safety: how many miles of driving would it take to
demonstrate autonomous vehicle reliability? Rand Corporation, RR-1479-RC, 2016.

Kelly, T., (1998) Arguing Safety – a systematic approach to managing safety cases,
Ph.D. Thesis, University of York, Sept. 1998.

Koopman, P. and Latronico, B., (2019) Safety Argument Considerations for Public
Road Testing of Autonomous Vehicles, SAE WCX, 2019. (In press.)

Koopman, P. and Wagner, M., (2016) "Challenges in Autonomous Vehicle Testing and
Validation," SAE Int. J. Trans. Safety 4(1):2016

Koopman, P., (2018a), Potentially deadly automotive software defects,
https://betterembsw.blogspot.com/2018/09/potentially-deadly-automotive-software.html,
Sept. 25, 2018.

Koopman, P. (2018b), "Practical Experience Report: Automotive Safety Practices vs.
Accepted Principles," SAFECOMP, Sept. 2018.

Koopman, P. (2018c) "The Heavy Tail Safety Ceiling," Automated and Connected Ve-
hicle Systems Testing Symposium, June 2018.

Leveson, N. (1993) An investigation of the Therac-25 Accidents, IEEE Computer, July
1993, pp. 18-41.

Littlewood, B., Strigini, L. (1993) “Validation of Ultra-High Dependability for Soft-
ware-Based Systems,” Communications of the ACM, 36(11):69-80, November 1993.

Lyons, J.L. (1996) Ariane 5: Flight 501 Failure Report By The Inquiry Board, Paris, Ju-
ly 1996.

Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J-P., Roy, M., Masson, L., (2018)
“SMOF – a safety monitoring framework for autonomous systems,” IEEE Trans. System,
Man and Cybernetics Systems, 48(5) May 2018, pp. 702-715.

Morris, S. (2018) Reliability Analytics Toolkit: MTBF Test Time Calculator.
https://reliabilityanalyticstoolkit.appspot.com/mtbf_test_calculator. Reliability Analytics.
(accessed December 12, 2018)

Musa, J., Fuoco, G., Irving, N., Kropfl, D., Juhlin, B., (1996) “The Operational Profile,”
Handbook of Software Reliability Engineering, pp. 167-216, 1996.

NHTSA (2007) Pre-Crash Scenario Typology for Crash Avoidance Research, National
Highway Traffic Safety Administration, DOT HS-810-767, April 2007

NHTSA (2016) Federal Automated Vehicles Policy, National Highway Transportation
System Administration, U.S. Department of Transportation, September 2016.

NHTSA (2017) Traffic Safety Facts Research Note: 2016 Fatal Motor Vehicle Crashes:
Overview. U.S. Department of Transportation National Highway Traffic Safety Admin-
istration. DOT HS-812-456.

OMG (2018) Structured Assurance Case Metamodel (SACM) version 2.0, Object Man-
agement Group, March 2018.

Pezzementi, Z., Tabor, T., Yim, S., Chang, J., Drozd, B., Guttendorf, D., Wagner, M.,
Koopman, P., "Putting image manipulations in context: robustness testing for safe percep-

Credible Autonomy Safety Argumentation 27

tion," IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR),
Aug. 2018.

Rushby (2015) “On the interpretation of assurance case arguments,” AI Workshop on
Argument for Agreement and Assurance (AAA 2015), November 2015, Springer LNAI
Vol. 10091, pp. 331-347.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus,
R. (2013) "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199
(2013).

UK Ministry of Defence (2017) Defence Standard 00-56 Issue 7 (Part 1): Safety Man-
agement Requirements for Defence Systems, Feb. 2017.

Vanhoef, M., Piessens, F. (2017) Key Reinstallation Attacks: Forcing Nonce Reuse in
WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS '17). ACM, New York, NY, USA.

Wang, R., Guiochet, J., Motet, G., (2017) “Confidence assessment framework for safety
arguments,” SAFECOMP 2017, Sept. 2017.

	1 Introduction
	1.1 Heterogeneous safety arguments
	1.2 Support for assessment
	1.3 Previous work

	2 Safety argumentation strategies
	2.1 Conformance to an existing standard
	2.1.1 Command override anti-pattern
	2.1.2 The implicit controllability pitfall
	2.1.3 Arguing compliance with an inadequate safety standard

	2.2 Proven in use
	2.2.1 The violated assumptions pitfall
	2.2.2 Depending upon COTS components
	2.2.3 The “small” change pitfall
	2.2.4 The discounted failure pitfall
	2.2.5 The human filter pitfall

	2.3 Field testing
	2.3.1 The insufficient testing pitfall
	2.3.2 The fly-fix-fly anti-pattern
	2.3.3 Dealing with edge cases

	2.4 Vehicle simulation
	2.4.1 Missing rare events
	2.4.2 Nondeterministic behaviour and legibility
	2.4.3 Human test scenario bias
	2.4.4 Data validity

	2.5 Formal proof of correctness
	2.5.1 Assumption validity
	2.5.2 Proving safety

	3 Other autonomous vehicle safety argument observations
	4 Conclusions
	5 References

