
16
Time Triggered

Protocol
(TTP)

18-549 Distributed Embedded Systems
Philip Koopman
October 25, 2004

Significant material drawn from:
Prof. H. Kopetz [Kopetz]
TTP Specification v 1.1 [TTTech]

[TTtech04]

2

Where Are We Now?
Where we’ve been:
• Protocol mechanisms & performance
• CAN – an event-centric protocol with

priorities
• FlexRay – a “flexible” X-by-Wire protocol

Where we’re going today:
• TTP – a TDMA X-by-Wire protocol with

additional services

Where we’re going next:
• Test #2 review
• Test #2

Test #2 – bring a calculator

3

Preview
TTA = Time Triggered Architecture
TTP = Time Triggered Protocol

TTP – more than just a protocol
• TTP/C Network protocol (“/C” means

automotive class C = hard real time)
• Operating system scheduling philosophy
• Fault tolerance approach

Time-triggered approach
• Cyclic schedules
• Stable time base used to provide access

to network (no overt “arbitration”)
• Peer-based system – no master node(s)
• Also an inexpensive variant (TTP/A)

(automotive Class A = soft real time)

[TTTech04]

4

TTP History
Origins: research at TU Vienna / Prof. Hermann Kopetz
• MARS fault tolerance project started in 1979

Originally designed as “backbone” communication bus for automobiles
• First published in 1994
• Designed for X-by-Wire
• Safety critical applications

Protocol has evolved
• Correct problems found in extensive reviews & testing
• Added higher level services; list stabilized in 1997-1998
• Add a few more capabilities (some to compete with FlexRay)

Also finding a home in other areas
• Aviation applications (e.g., Honeywell general aviation flight controls)

5

TTP Context:
TTP/C for Class C automotive applications (critical + hard real time)
• Redundant bus for reliability

[Most pictures from Kopetz’s TTP writings]

6

Single Node Configuration
Includes controller to run
protocol
DPRAM = Dual Ported RAM
• Used to implement memory-

mapped network interface
(state variables a.k.a.
“mailboxes”)

BG = Bus Guard
• Hardware watchdog to ensure

“fail silent” behavior
• Guards against “babbling

idiots”
Real chips must use highly
accurate time sources
(Redudant oscillators – one for

controller & one for BG)

[Kopetz]

7

System Topologies
Originally just a bus system
• Probably need an active hub to do startup properly with some faults

[TTTech]

8

Computational Clusters & FTUs
Cluster = all the nodes on a particular network
FTU = Fault Tolerant Unit = nodes performing identical computations
• Assume node fails silent / can use “voting” to determine correct answer

[Kopetz]

9

TDMA - Time Division Multiplexed Access

Operation
• Master node sends out a frame sync to synchronize clocks
• Each node transmits during its unique time slot

Examples
• Satellite Networks, DATAC, TTP

1 2 3 4 1 2 ...Channel

Sync

Maste
r 1 2 3 4

Time

10

TTP/C Is A TDMA Approach
Static schedule for all messages in system – predetermined ordering!
• A completely deterministic TDMA approach
• All tasks synchronized to network TDMA schedule as well

A TDMA cycle – each FTU gets to compute and broadcast its results in
turn
• Each FTU sends results twice to reduce problems with lost messages
• Then next FTU sends some results
• And so on, coming back to the next message from the first FTU
• (Does not have to be strict rotation – can be any arbitrary static schedule)

– But time synchronization works better if things are spread out

A “cluster cycle” occurs when all possible messages have been sent
• TDMA cycle sends messages from the different nodes
• Cluster cycle involves scheduling all possible messages + all possible tasks

11

TTP Cycles
TDMA cycle – nodes take turns broadcasting predetermined messages
Cluster cycle – accounts for all possible tasks/messages

[Kopetz]

12

Dependable Time Sources Are Important
Maybe even dual redundant crystal oscillators/DATAC for Boeing 777

Example: TTP AS8202 requires two oscillators
• One for main chip oscillator
• One for independent bus guardian

13

MeDL – Message Descriptor List
Globally shared schedule of messages and ordering
• All nodes know the entire message schedule
• Only one node is permitted to transmit at a time, and only its predetermined

message

Static schedule simplifies arbitration and resynchronization
• Every node knows when its turn is based on time, so no arbitration is required
• Designer can allocate appropriate compute time to avoid receiver over-runs
• If a message is missed, all nodes know what was missed by when it failed to

arrive

But, some challenges
• Requires stable time sources

– Nodes adjust every time a message arrives based on knowing expected time from
MeDL for that message

– Requires arbitration to start network and add nodes

14

N-Frames & I-Frames
I-frames used for initialization
• Also sent occasionally to permit recovered nodes to resync to cluster
• C-state is current state of system (time & position in cluster schedule)

N-frames for normal messages

[Kopetz]

15

Why Consistency & Group Membership?
Fundamental distributed system problem – agreement
• How can you make sure that all other nodes get your message?
• How do you know when all other nodes actually got your message?
• Provably impossible with asynchronous system
• Requires very tricky algorithms and some notion of a “timeout” or time

triggered system

FlexRay approach – application has to deal with this

CAN approach – ack + Nack multicast acknowledge
• Provides partial solution – doesn’t detect dead/offline nodes by itself

TTP – group membership
• All nodes in your group have seen same messages you have seen
• If messages diverge, then groups split in a short bounded time
• Thus, if a node is still in your group, you know it got your message*

16

Simplified Look At Group Membership
C-state is internal state of the TTP/C controller
• Global time value
• Current slot in cluster cycle
• Cluster mode (mode changes permit changing MEDL)
• Membership information (which nodes are in the current group)

A node sending you data is in your group if:
• You’ve received a correctly formatted message (passes CRC data integrity test)
• That node’s C-state matches your own C-state (i.e., you both agree on protocol

state)

TTP/C approach to sending C-state
• Include C-state in computed message CRC, but don’t actually send the bits
• Thus, message CRC only checks out OK on receiver if C-states match
• If node isn’t in your group or diverges, you simply ignore its messages (because

messages will fail CRC checks)

17

TTP Design Principles
Consistent Distributed Computing Platform
• All correct nodes have exactly the same state (replica determinism)
• Any node that doesn’t have same values of state variables is ejected from group

Temporal “firewalls”
• Pure time triggered design – no node can affect timing of rest of system directly

Composability (If you have enough slack in TDMA schedule)
• Changing a node or message doesn’t disturb other nodes
• Adding a node or message doesn’t disturb other nodes

Fault Tolerance as a built-in service
• Fault Hypothesis: any single component suffers arbitrary failure
• Assume that error detection takes place before second failure can occur
• Assume controller & cluster design are free of design faults

Scalability
• Pure time triggered/state variable approach said to promote scalability

18

Other TTP/C Services
Fault tolerant global time base
• Precision in the microsecond range to all nodes without time master

Consistent membership service
• Each node updates itself about state of other nodes within two TDMA rounds
• Distributed agreement algorithm – only nodes in complete agreement in a group

Clique avoidance
• Prevents fragmentation of network into multiple competing groups

Arbitrary single hardware failure tolerated
• This includes testing with radiation-induced arbitrary faults

Protection from maliciously faulty host
• TTP/C chip (with bus guardian) guarantees host can’t kill protocol operation

19

Fault Tolerance Approach Based On Redundancy
Send each message twice
• Assume random bit errors

don’t happen back-to-back
• Avoids need for

acknowledgements (most of
the time…)

Have two (or more) sets of
hardware
• Redundant sets of hardware

send extra messages
• Distributed, fault-tolerant time

master
• When one set fails, backup

automatically intervenes

[Kopetz]

20

FTU Configurations

[Kopetz]

21

Operating Modes
Different operating modes require different message schedules
• Accelerating vs. cruise might need different information
• Operation vs. diagnosis need emphasis on different aspects of the vehicle
• Failure recovery might need access to different message traffic

TTP solution: use multiple
schedules
• Precompute a different MeDL

for every possible situation
• (And invent tool support to

make this feasible)

Basis of Mode selection
for TTP/C

[Kopetz]

22

Advanced Application: X-by-Wire
Look Ma – no mechanical connection!
• Digital (or optical) connections between user controls and actuators
• Airplanes do it now, so why not cars?

[Kopetz]

23

But, There Are Multiple Networks In A Vehicle
Some applications are less demanding – and more cost sensitive

24

TTP/A: A Reduced Cost Version
How do you do this for about $2 per node?
• Answer: you make compromises… and use on Class A devices (soft real time)
• Distributed fault tolerance is expensive (especially time bases), so go master-

based TDMA instead
– (TTP folks call this “master slave polling”, but it is really TDMA)

[Kopetz]

25

TTA = Time Triggered Architecture
TTP/A operates in lock step with cluster’s TTP/C schedule

[Kopetz]

26

TDMA With Very Short Message Chunks
Use master node instead of implicit agreement/I-frame distribution of
bus timing responsibility
• Each frame is one byte(!)

27

But TTP/A Is Suppose To Be Cheap…
… so each message frame is only a byte long within the round

“Fireworks” Frame used by master to denote start of round
• Includes MeDL number for system reconfiguration to new modes

[Kopetz]

28

TTP/A Sensor Redundancy
The “dependable” way

The “cheap” way

[Kopetz]

29

TTP Is A “Total” Approach
Goes from Application scheduling to network
• Defines message construction
• Defines network arbitration
• Defines task execution times

Static system scheduling
• Multiple schedules for

mode shifts

[Kopetz]

30

Time Synchronization
Clusters resynchronize over time
• Important that differences be unbiased for this to work

[Kopetz]

31

Tradeoffs (adjusted for TTP/A)
Advantages
• Simple protocol to implement;

historically very popular
• Bounded latency for real-time applications

Disadvantages
• Single point of failure from centralized master
• Polling consumes bandwidth
• Network size fixed during installation (not robust)

– Or, master must discover nodes during reconfiguration
– Or, master has to modify MEDL for each reconfiguration

• Static scheduling – no prioritization
– But, can use centralized load balancing

32

Tradeoffs (adjusted for TTP/C)
Advantages
• Simple protocol to implement
• Deterministic response time
• No wasted time for Master polling messages

Disadvantages
• Single point of failure from the bus master – So TTP uses distributed

mastership
• Wasted bandwidth when some nodes are idle (or when values don’t change)
• Requires stable clocks
• Network size fixed during installation (not robust) – I-nodes permit admissions
• Prioritization is static – TTP doesn’t use priorities at all

34

TTP/C Demonstrator Vehicle (2000)

35

How Do You Know A Protocol Is OK?
TTP is probably most-studied X-by-wire protocol
• And, after years of development, new issues are being revealed
• Most of the issues are relatively minor – indicates this is a difficult problem
• Expect other protocols (e.g., FlexRay) to go through a similar process

Main techniques for TTP Validation:
• Careful design
• Early publication of details
• Formal verification of algorithms
• Extensive testing
• Physical fault injection

[TTTech04]

36

Review
TTP – more than just a protocol
• Network protocol
• Operating system scheduling philosophy
• Fault tolerance approach

Time-triggered approach TTP/C
• Cyclic schedules
• Stable time base used to provide access to network (no overt “arbitration”)
• Very simple to implement the usual stuff

– Startup is painful
– Mode shifts are painful
– Stable time base is painful

• Also a cheaper master/slave variant…TTP/A

