
20
Critical Systems

and Software Safety
Distributed Embedded Systems

Philip Koopman
November 16, 2015

© Copyright 2001-2015, Philip Koopman

Therac 25 Required Reading
is testable material. Know the
big picture of that story.

“We have become dangerously
dependent on large software systems
whose behavior is not well understood
and which often fail in unpredictable
ways.”

– US President's IT Advisory Committee,
February 1999

3

E-911 Phone Service Outage April 9, 2014

4

Preview
 General safety engineering

• Terminology
• Basic Techniques (FMEA/FTA/HAZOP)

 Risk Management
• PHA matrix

 Related info (not covered in lecture)
• Therac 25 – a cautionary tale
• How software in a radiation therapy machine killed people
• Covered in 18-348 and 18-349

– Should have been covered in whatever embedded course you took!
– Required, testable reading for this lecture as a refresher

5

Traditional Safety Engineering
 Largely based on industrial environments such as chemical plants

 Hazards based on uncontrolled release of energy
• Risk was associated with amount of energy and time (e.g., explosion)
• Risk was reduced via containment, minimizing potential energy in system,

supervised operation in risky situations

 Embedded system engineering has to encompass
• Release of energy from controlled system (physical damage)
• Release of information from controlled system (security)
• Avoiding inability to release energy/information (reliability/denial of service)

6

Definitions of Safety
 Informally:

“Nothing Bad Will Happen”

 N. Leveson, Safeware: (pg. 181)
“Freedom from accidents or losses”

• But, of course, no system can be completely “safe” in an absolute sense
• So the issue is how to make something safe enough …

… given limited budget, time, and resources
• Focuses on end goal of accidents rather than risk

 N. Storey, Safety-Critical Computer Systems: (pg. 2)
“System will not endanger human life or the environment”

• More emphasis on removing hazards than actual accidents
• Again, issue is that complete safety is impossible

– But, that’s not an excuse for slacking on design efforts!

7

Terminology
 Hazard:

• A situation with potential danger to people, environment, or material
• Example: interlock that prevents subway door from opening isn’t activated

 Incident (near miss):
• A situation with actual danger to people, environment, or material
• Sometimes a hazard results in an incident
• Something that under other circumstances would have been an accident
• Example: subway door opens, but nobody is leaning against it

 Accident (also called a mishap):
• If you get unlucky, what could be an incident turns into an accident
• Events that cause death, injury, environmental, or material damage
• Example: subway door opens, and someone falls out of car

 Risk:
• A combination of probability of hazards, and severity of likely outcomes.
• (more on this later)

8

Classical Safety-Critical Failure Handling
 Fail Operational

• Even though something fails the system keeps working
• Usually accomplished through redundancy

 Fail-over to reduced capability system
• Simpler algorithms
• Mechanical backup
• Person

 Fail Safe
• Identify a safe state and transition to that safe state upon failure

– Tension between safety and availability; a system with 0% availability might well
be 100% safe

• Sometimes use a reduced capability system as “limp home” to a safe state

 Key capabilities:
• Knowing what will happen when a component fails
• Designing systems with redundancy to avoid single-point failure vulnerabilities

9

Basic Analysis Technique – FMEA
 Failure Mode and Effects Analysis (FMEA)

• Probably the most commonly used technique in embedded system design
• Looks for consequences of component failures (forward chaining technique)
• Limitation: requires expert analysis to decide what to analyze

 Failure Mode and Effects Criticality Analysis (FMECA)
• Similar to FMEA but with two columns added

– Overall assessment of criticality
– Possible actions to reduce criticality

 General goal
• Find failures that have high criticality and do something to reduce probability

[Leveson]

[Leveson]

12

Hubble Far Ultraviolet Instrument Example
• Severity 2 means loss of FUV mission, but not all of HST
• Severity 2R means redundant units would have to fail

[UC Berkeley]

13

Basic Analysis Technique – FTA
 Fault Tree Analysis (FTA)

• Origins: 1961 to ensure no accidental Minuteman missile launches
• Analyzes possible causes of hazards, but you already have to have the list of

hazards to begin with (backward chaining technique)
• Problems:

– Doesn’t represent real-time issues
– Doesn’t represent system state or operating modes

 General goal
• Eliminate single-point vulnerabilities
• Corresponds to making sure each likely failure is protected by an “AND” gate

[Leveson]

AND OR

A AB BC

Unsafe
if ALL of
A, B, C

Are True

Unsafe
if of
A, B, C

Are True

ANY

C

15

NEAR Spacecraft Fault Tree
 NASA Near Earth Asteroid Rendezvous mission

• 20 December 1998; used up most of thruster fuel
• Too-small limit on lateral accelerometer + defective command recovery script

[JHU/APL]

16

HAZOP: Hazard & Operability Studies
 Origins in 1960s for chemical & process control plants

• Focus on interconnections & interactions between components
• Flow of materials or energy

 Uses “guide words” in specification to trigger analysis items
• “no” – what if there is no flow?
• “more” – what if a limit is exceeded?
• “as well as” – what if something additional happens?
• “part of” – what if something only partially completes?
• “reverse” – what if flow is reversed?
• “other than” – something else happens, e.g., incorrect data
• “early” – signal earlier than deadline window
• “late” – signal later than deadline window
• “before” – out of order; arrives early
• “after” – out of order; arrives late

[Storey]

18

Embedded Distributed System Failures
 In addition to all the above, there can be network problems

• Network failures can be attacked by using replicated networks
• Network packet errors due to noise are a problem

 Be sure to calculate effects of dropped network packets!
• Contributing causes of lost packets:

– High bit error rate
– Noise bursts due to electric motor operation
– Retries not supported in order to simplify scheduling
– Collision-based communication protocols

• Event triggered systems – loss of packet can leave system in incorrect state
• Time triggered systems – repeated loss of packet can cause loss of control loop

stability
– It doesn’t take many lost packets to lead to problems in a large scale fleet

 Then there are failures due to COTS software…

19

What’s Risk?
 Risk = penalty * likelihood

• Penalty can be in dollars, lives, injuries, amount deadline missed by
• Likelihood is probability that a particular hazard will be “activated” and result

in an undesirable outcome
• The product can be considered as an expected value of cost to project

 “Normal” risks can be prioritized as weighted factors in project risk

• “Pareto Ranking” used to identify largest risk contributors
– Pareto rule is the 80/20 rule -- 80% of the problems are from 20% of the risks
– Pareto ranking simply means address the top of the ranked list first

 But rare+costly events are a problem
• How big is infinite penalty multiplied by near-zero likelihood?
• Catastrophic penalties often must be guarded against even for near-zero

probability

  
i

ii yProbabilitCost Risk Project

20

Risk Prioritization – PHA
 Mathematically, RISK = PROBABILITY * CONSEQUENCE

• This is mathematically neat and tidy; it is an “expected cost” function
 Typical Risk Ranking Matrix: (caution: use with care!)

• Sometimes these tables are asymmetric, with higher weight on consequence
• Often used as part of a PHA (Preliminary Hazard Analysis) to focus efforts
• BTW – also a nice way to prioritize bug reports for non-critical code

EXAMPLE
RISK

Probability

Very
High

High Medium Low Very
Low

Conse-
quence

Very
High

Very
High

Very
High

Very
High

High High

High Very
High

High High Medium Medium

Medium High High Medium Medium Low

Low High Medium Medium Low Very
Low

Very
Low

Medium Low Low Very
Low

Very
Low

21

Putting A $$$ Amount On Human Life Is Risky
 “GM and the Law,” The Economist, July 17, 1999

 Very likely the award amount was reduced
• But, having a written record of quantified, accepted risk creates problems
• A cost-benefit justification document played a role in the Ford Pinto gas tank

story

23

Risk Management
 Identify risks and track them

• “Unknown risks” that haven’t been thought of are of course a problem

 Can Mitigate, Avoid, or Accept Risks
• Mitigate – perform a risk reduction task

– Understand risk well enough to decide on avoid/accept choice
– Perform research to solve problem
– Obtain insurance to collapse risk probability into a known fixed cost -- especially

for rare but expensive risk items
• Avoid

– Use a less risky approach (can’t always do this)
• Accept

– Decide that expected cost (probability * impact) is not worth reducing further
– Often the right choice when avoiding the risk costs more than expected risk cost

» (But, see ethics lecture when costs affect other people)

• Ignore
– Proceed ahead blindly – uninformed acceptance
– Seldom ideal; sometimes unavoidable when in a hurry

24

Civil Aircraft Hazard Categories
 Catastrophic (10-9/hr)

• Prevents continued safe flight and landing
 Hazardous (10-7/hr)

• Large reduction in safety margins; perhaps fatal injuries to some passengers
 Major (10-5/hr)

• Significant reduction in safety margins; perhaps non-fatal injuries to passengers
 Minor (10-3/hr)

• Slight reduction in safety margins; reasonable workarounds
 Nuisance (10-2/hr)

• Failure causes no effect

 Notes:
• You can’t achieve better than about 10-5/hr without good redundancy
• Increase in crew workload is a significant factor to be considered
• Related fact: risk from lightning is

– 5 x 10-7 deaths per person-year = 5 x 10-11 /hr
– 1.25 x 10-6 injuries per person-year
– (There is often a tacit argument that death rates lower than this are acceptable)

Grenoble Train
Station
January 2007

(Our train leaves in 3
minutes. Which track
is it on?)

Essen Germany Train Station March 2010
(“Is This The Train To Dusseldorf?”)

27

Departure Status Display (not on an aircraft)

28

2008 Workshop on Exception Handling, Atlanta GA

29

Why Not Build Cars Like Aircraft or Trains?
 We all “know” that flying is safer than driving

• (This is only true per mile, not per hour)

 So, use commercial aircraft techniques to build automated vehicles
• Computer-controlled navigation & tactical maneuvers
• Redundant hardware
• Near-perfect software
• High-quality design and components
• Highly trained professional operators (oops…)

30

Automotive vs. Aviation Safety

 U.S. Automobiles U.S. Commercial
Aircraft

Deployed Units ~100,000,000 ~10,000

Operating hours/year ~30,000 Million ~55 Million

Passengers 1-5+ 50-500+

Cost per vehicle ~$20,000 ~$65 Million

Vehicle Mass 4,000 pounds 500,000 pounds

Mortalities/year 42,000 ~120

Accidents/year 21 Million ~170

Mortalities / Million Hours 0.71 2.1

Operator/Maintenance skill variable High

Redundancy Levels Brakes only

(will change soon)

All flight-critical
systems

• Aviation autopilot is probably easier than an automotive autopilot

31

Why Not Aerospace Approaches For Cars?
 Based on culture of redundant HW, perfect SW
 Too expensive

• Component “Pain threshold” for vehicles is at the $.05 level
• Higher levels of cost OK for Europe if they provide performance value

 Different operating environment/reaction time
 Difficult to enforce maintenance

• People run out of gas &
engine oil; ignore “idiot lights”

• Aircraft don’t leave gate if
something is broken

• End-of-life wearout -- old
vehicles stay on the road

• Can we ensure same maintenance quality?
 Poorly trained operators

• Yearly driver exam with road test?
• Required simulator time for accident response?

32

The Safety Case
 A safety case is:

A well-reasoned argument proving that the system is safe
• One nice technique is an annotated fault-tree called GSN (Goal Structure Notation)

 Safety cases are a relatively new idea for software
• Exactly what goes in a safety case is still a research topic
• But, one way to build one is:

1. Perform a HAZOP to identify hazards
2. Rank hazards to identify the ones that are important enough to address
3. Use a fault tree (FTA) to represent the sources of hazards
4. Demonstrate sufficient protection

(e.g., no single-point failure branches exist in the fault tree)

 Difficult to accept, but true situation:
• We don’t know how to decide if an artifact, taken in isolation, is “safe” in many cases
• Safety is assured by combination of:

– Using a good process & managing/reviewing the process
– Following safety standards written largely in blood of past mistakes
– Using good analysis techniques to ensure nothing obvious is missed

33

Fault Mitigation Strategies For Safety
 Avoid faults occurring

• Careful design of software to avoid defects
• Use robust hardware

 Detect and contain faults
• Error correction HW, redundant CPUs
• Watchdog timers for failed tasks, etc.

 Use Fail Safe strategies to mitigate hazards
• For example, automatic instant shutdown mechanisms

 Incidents require operator intervention (or luck)
• Operator may be able to react correctly and quickly
• Incident will be a mishap some fraction of time

 Want to avoid escalation as much as possible
• E.g., fail safe approaches that work to avoid incidents

33(Points based on Leveson 1986, pp. 149-150)

DETECT &
CONTAIN FAULTS

FAIL SAFE

OPERATOR
INTERVENTION

(or, get lucky)

FAULT

INCIDENT

HAZARD

AVOID FAULTS

MISHAP

Each mitigation level attempts
to prevent escalation to next level:

[Hollnagel93]

35

Techniques To Make Systems Safer
 Address risk explicitly; don’t bury the issue

• No system is perfect; but you should address the issue
• Use a good process

– A good process enables (but does not guarantee) a good product

 Design system at an appropriate level of
reliability/availability/safety
• Commonly, this means looking for single-point failures
• Isolate safety-critical portions of system and apply more attention to them
• Simplicity is a virtue
• Plan for the unexpected (exceptions)
• Be competent at writing good software (why do we need to even say this?)

 Perform verification/validation/certification
• Reviews/inspections
• Testing (but, you can’t test long enough to ensure ultra-reliability)
• Formal methods
• Hazard analysis

 Include people as part of the system safety design

36

Best Safety Books
 Leveson: Safeware, 1995

• Gives the big picture on software safety
• Good discussions of issues & historical stories
• But, not very specific on how to solve all the problems

 Storey: Safety-Critical Computer Systems, 1996
• Roll up your sleeves and get things done
• Textbook that covers all the basic techniques
• Doesn’t have a lot of software answers

(they aren’t really known now, and they weren’t in 1996 either)

37

Lessons That Should Have Been Learned By Now
 In carefully designed systems, most catastrophes are caused by multiple

interacting events
• BUT, if that doesn’t mean simple things don’t happen in everyday systems!
• Calling anything an “Act of God” usually leads to problems
• So does blaming the human as the default strategy for avoiding change

 Just because you can get away with it doesn’t make it safe
• Challenger O-ring problem was in part based on an escalation of what they

(thought they) could get away with
• Just because a component worked last time doesn’t mean it is safe in the new

application

 Humans are part of the system
• Operators can help the system or make things worse
• Often managers are too quick to blame humans for problems that are really due

to over-complicated systems
• Often the cause of a mishap is rooted in the operating environment/culture

38

China Rail Accidents
 July 2011 – Dozens killed; hundreds injured in China high speed rail

accident
• One explanation was lightning strike of signaling systems

(which are supposed to be safe even if hit by lightning)
• “The system "failed to turn the green light into red", said An Lusheng, head of

the Shanghai Railway Bureau.”

&Electrical Computer
ENGINEERING

Lessons From Therac-25

Adapted with permission from slides by:
Prof. Priya Narasimhan
Assistant Professor of ECE and ISRI

Carnegie Mellon University

© 2004 Priya Narasimhan

40

Impact on Life of Failing Software

 Mission-critical applications
• Air traffic control
• Nuclear power plants
• Aircraft/automobile control

 Therac-25 radiation failure
• One of the most well-documented failures in a safety-critical computer system

 Why should you care?
• Very well documented safety failure case
• Lessons learned
• Failures you can relate to, and learn from
• These problems are not limited to the medical industry – they are generic problems in

safety engineering and software engineering

41

Therac-25 Radiation Therapy Machine
 Cancer cells are vulnerable to radiation

• Radiation kills cancer cells more easily
than it kills normal cells

• So, give just right amount of radiation in a
specific target area to only kill cancer cells

 When a patient undergoes radiation
therapy for cancer
• Patient is scheduled for several sessions

over a period of few weeks
• Patient told to expect minor discomfort
• Patient told to expect a “mild sunburn-

like” sensation in the treated area

 Therac-25
• Device that targeted electron or X-ray

beams on cancerous tissue
• Purpose was to destroy cancerous cells
• Deployed from 1983-1987

Moveable
X-Ray Target

42

Why Was the Therac-25 Different?
 Accelerator that moved to more complete computer control

• Think of this as radiation-treatment-by-wire
• Previous system had software, but also had mechanical safeties

 Why move to more computer control?
• Allowed operators to set up the machine more quickly
• Gave operators more time to speak with patients
• Made it possible to treat more patients in a day

– Machines like this are expensive! More patients/day reduces per patient cost

 What was the consequence of this decision for system design?
• Most of the safety checks during machine operation were in software
• Hardware safety interlocks were removed
• Operators were told that there were “so many safety mechanisms” and that it

was “virtually impossible” to overdose a patient

43

What Happened?
 Massive radiation overdoses in at least six documented cases

• Led to deaths and disabilities in patients from radiation overdose

 These overdoses were due to a combination of
• Simple programming errors
• Inadequate safety engineering
• Poor human-computer-interaction design

 What is the point here?
• Make you think about and analyze the design and use of software in safety-

critical applications
• What design decisions led to the accidents?
• How might a different software design have helped to avoid the accidents or

minimize the harmful impact?

44

Predecessors of the Therac-25
 Predecessor products were Therac-6 and

Therac-20
• Limited software functionality
• Used a PDP-11 computer
• Software written by one person in assembly language
• Therac-20 had independent protective circuits for

monitoring the beam
• Therac-20 had mechanical interlocks for ensuring

safe operation
• History of safe clinical use without computer control

– The computer did not directly control release of energy
…
… “release of energy” implies safety is an issue

 And then came the Therac-25 …………..
• Influenced by Therac-6 and Therac-20
• But some different design choices were made

PDP-11 [Wikipedia]

45

And Then Came the Therac-25
 Also used a PDP-11 computer (like

its predecessors)
• Manufacturer decided to take

advantage of the computer to control
and monitor the hardware

• Decided not to duplicate all of the
hardware interlocks and safety
mechanisms

• Some of the same Therac-6 and
Therac-20 software was used

 Computer was responsible for
checking that the turntable (where
patient was placed) was in the right
position
• Positions – X-ray (deep tissue),

electron-beam (upper tissue) and
field-light (no dosage)

• 100 times greater beam strength for
X-ray therapy (attenuated ~100x if X-
ray mode target is correctly in place)

Either X-Ray
Target or Magnet

Top View

Side View

46

Therac-25 Treatment Room

47

The Software Part of the Therac-25
 What does the software actually do?

• Monitors the machine status
• Accepts input about, and sets machine up for, the desired treatment
• Turns the beam on in response to an operator command (assuming that certain

operational checks on the status of the physical machine are satisfied)
• Turns the beam off when treatment is completed, when an operator commands

it, or when a malfunction is detected
 Very little software documentation

• Almost no software specifications and no software test plan
• Unit and software testing was minimal – focus on integrated system testing

 Stand-alone, “real-time” operating system
• Not a commercial OS – written specifically for the Therac-25
• Preemptive scheduler that handles critical and non-critical tasks

– Critical tasks: treatment monitor, servo (beam/gun-control), housekeeper
• Software allows concurrent access to shared memory

– No synchronization apart from shared variables
– Mutex (test and set operations) were not atomic

• Race conditions played an important part in the accidents

48

Bad Assumptions!
 Manufacturer did a safety analysis

• Fault-tree analysis (What can go wrong? What can cause that?)
• Excluded the software (assume software can’t cause a system fault)
• No justification for numbers used in analysis – for example

– Generic failure rate of 10-4 per hour for software events
– Prob(Computer selects wrong energy) was assigned 10-11

– Prob(Computer selects wrong mode) was assigned 4 x 10-9

 Assumptions made in this analysis
1. Programming errors have been reduced by extensive testing on a hardware

simulator and under field conditions on teletherapy units. Any residual
software errors are not included in the analysis.

2. Program software does not degrade due to wear, fatigue, or reproduction
process.

3. Computer execution errors are caused by faulty hardware components and by
"soft" (random) errors induced by alpha particles and electromagnetic noise.

In other words – assumed software was perfect.

49

Operator Interface
 Operator entered data manually and machine cross-verified
 Operators complained about data-entry process being time-consuming

• New “auto-complete” function to copy treatment data instead of operator data re-entry
 Cryptic error messages

• “malfunction” + number (1-64, represents analog or digital channel number)
• Operators became insensitive to malfunctions, never thought to affect patient safety

Source:
Nancy Leveson

50

Selected Accidents
 Kennestone, 1985: apparently 15,000 - 20,000 rads instead of 200 rads

• (500 rads is fatal if delivered to the whole body, but this was focused)

 Ontario, 1985: 13,000 - 17,000 rads
• Identified turntable switches as a potential problem
• If turntable is out of place, X-ray strength beam isn’t attenuated by target

 Yakima Valley, 1985: overdose of unknown size
• Manufacturer argued it that an overdose was impossible; machine was safe
• 1987: two more overdoses to additional patients

 East Texas, 1986: 16,500 - 25,000 rads
• Operator initially type “X”-ray; but changed it to “e”lectron
• Patient ended up pounding on door to be let out (intercom was broken)
• Manufacturer again said overdose was impossible
• Second similar overdose three weeks later; patient died within 3 weeks

51

What Went Wrong?
 Overall, machine was known to be quirky

• Operators had to ignore or override error messages all the time to use machine
– Gave false sense of security – “lots of safety shutdowns” instead of “why doesn’t

this work?”
• Errors poorly documented – difficult to know when accident had really

occurred
• No independent checks on correct operation; patient burns were only sign of

problems

 Initially blamed a position sensor sensitive to a single-bit error
• Table at boundary between shaft encoder values could give false readings
• They didn’t use gray coding on shaft encoders!

52

There Were Software Defects
 Tyler (East Texas) accident software problem:

• Changes ignored for an 8-second magnet moving window (even “x” to “e”)
– So, changing from X-Ray to Electron might not change dose
– But, X-Ray dose in Electron mode delivers 100x overdose, because diffuser is not in

place to attenuate beam by 99%!
• Race condition on whether prescription is completed or not

– Changes made to operate inputs ignored during 8-second window
– Screen showed changed version, but machine executed unchanged version
– Problem with hand-off between user interface and dosing task

 Yakima software problem:
• 8-bit rollover skips a safety check when passing through value zero

– “0th” time in loop is an initialization … but re-executes every 256 iterations!
• Operator hit “set” button precisely when rollover occurred

– 1 in 256 chance of it happening
– Unlikely to find this in testing, especially if you’re not looking for exactly this

problem

53

Lessons Learned
 Virtually all complex software can be made to behave in an unexpected

fashion under certain conditions

 Safety analysis requires failure-rate numbers that are realistically
derived
• Fault-tree analysis and other safety analysis methods are only as good as the

numbers that you put into them for modeling

 Fault-tolerance requires good backup mechanisms, with possible
diversity, for safety-critical functionality
• Software mechanisms did not have a hardware interlock backup that might have

provided a sanity check
• If you don’t have a completely independent duplex system, you’re not going to

be safe for a critical system

 Race conditions can occur in time-critical software and you need to
handle concurrency, shared variables and real time carefully
• This is 348/349 intro material

54

Could It Happen Again Anywhere?
 2001 in Panama: Radiation Therapy Overdoses

• 28 patients affected
• 5 deaths

 Due to planning software (i.e., how big a dose to use)
• “IAEA says technicians in Panama misused treatment planning

software”
• “patients received anywhere from 20%-100% more radiation than

intended”
• US spokesperson said it can’t happen here, because our treatments

are given by a team of “highly trained and dedicated
professionals”

• http://www.aip.org/isns/reports/2001/020.html

55

Could It Happen Again In The US?
March 2005: Radiation therapy overdoses

• 77 patients affected in Tampa, Florida
• 12 deaths (but unclear if due to overdoses or just due to cancer)
• 50% overdose due to improper calibration when machine was

installed
– Second check by second physicist not performed as required

• $1000 fine levied against hospital by Florida Bureau of Radiation
Control

– http://www.boston.com/yourlife/health/diseases/articles/2005/04/02/cancer_
patients_exposed_to_high_radiation/

56

Could It Happen Yet Again Elsewhere?
 October 2006

http://news.bbc.co.uk/1/hi/scotland/
glasgow_and_west/6065040.stm

Paperwork error on treatment plan lead to the overdoses – given treatments for other patients
http://uk.news.yahoo.com/27102006/325/paperwork-error-led-radiation-overdose.html

57

Could It Happen YET AGAIN In The US?
 October 2009: Brain Scan overdoses in Los Angeles

• 200 brain scans to look for stroke systems given 8x intended dose on CT system
• New, tailored operation profile to give better data – but had a mistake
• (Reports of broader CT scan overdoses being investigated a few years later)

[LA Times]
.

.

58

Additional Links
 “An Investigation of the Therac-25 Accidents”

Nancy Leveson & Clark Turner
http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html

 Therac-25 Case Materials
http://www.computingcases.org/case_materials/therac/therac_case_intro.html

 What you should get out of this part of the lecture
• What the Therac 25 does
• The general scenarios for the faults

– What type of thing went wrong at the application level (general; not exact)
– What underlying technical causes were (general; not exact)
– Lessons Learned

