
14
Controller Area
Network (CAN)

Distributed Embedded Systems
Philip Koopman
October 19, 2015

Significant material (CAN pictures) drawn from
a presentation by Siemens Corp. “CANPRES 2.0, Oct 1998”

© Copyright 2000-2015, Philip Koopman

2

Where Are We Now?
 Where we’ve been:

• Protocol Overview

 Where we’re going today:
• CAN -- an important embedded

protocol
• Primarily automotive, but used in

many places

 Where we’re going next:
• CAN performance
• Other protocols

 REMINDER – look at lessons
learned slides for ideas on how to do
better on second half of project!

3

Preview
 CAN – important automotive protocol

• Physical layer – built on bit dominance
• Protocol layer – binary countdown
• Message filtering layer (with add-on protocols)

 Keep an eye out for:
• Message prioritization
• How “small” nodes can be kept from overloading with received messages
• Tradeoffs

4

Before CAN – Individual Connections

[Siemens]

5

With CAN

[Siemens]

6

CAN Is Central To Automotive Networks

[Leen02]

7

SAE Message Classes
 Fast tends to correlate with critical control

• But, this is not always true; just often true

[Siemens]

(Often LIN or J1850)

8

CAN & the Protocol Layers
 CAN only standardizes the lower layers
 Other high-level protocols are used for application layer

• User defined
• Other standards

• We’ll see one possibility
at the end of this lecture

[Siemens]

9

Remember This? Binary Countdown

 Operation
• Each node is assigned a unique identification number
• All nodes wishing to transmit compete for the channel by transmitting a binary

signal based on their identification value
• A node drops out the competition if it detects a dominant state while

transmitting a passive state
• Thus, the node with the lowest identification value wins

 Examples
• CAN – 500 Kbps or 1 Mbps
• SAE J1850 – pretty much same as CAN, except slower (around 10 Kbps)

1 0 1

1 0 0

1 0 0

Node 5

Node 4

1 0 1

1 0 0

1 0 0

Node 5:

Node 4:

Network Sees:

Nodes Attempt
To Send:

Recessive

Drops out of
competition

10

CAN – Bit Dominance In More Detail
 CAN uses the idea of recessive and dominant bits

• Wired “OR” design
• Bus floats high unless a transmitter pulls it down (dominant)
• (Other bus wire in differential transmission floats low and transmitter pulls up)

 High is “recessive” value
• Sending a “1” can’t override the value seen on the bus

 Low is “dominant” value
• Sending a “0” forces the bus low no matter what another node is sending

[Siemens]

ON OFF OFF

11

Example: Binary Countdown (highest bit first)

Node 8
ID=0001000

Node 9
ID=0001001

Node 10
ID=0001010

Node 12
ID=0001100

Node 17
ID=0010001

17 drops out (stops competing for the bus)

12 drops out

10 drops out

9 drops out

8 has the bus

Value seen
on bus

Time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

0

0

0

1

0

0

1

Values that each node attempts to transmit:

Node 8 message

12

Physical Layer Possibilities
 MUST support bit dominance

• Specifically rules out transformer coupling for high-noise applications
• Differential driver used

– Voltage across wires is dominant; high impedance (0V differential) is recessive
– Opto-isolators are commonly used as well

[Siemens]

13

Non-Return to Zero (NRZ) Encoding
 Send a Zero as LO; send One as HI

• Worst case can have all zero or all one in a message – no edges in data
• Simplest solution is to limit data length to perhaps 8 bits

– SYNC and END are opposite values, guaranteeing two edges per message
– This is the technique commonly used on computer serial ports / UARTs

• Bandwidth is one edge per bit
– Same bandwidth as Miller encoding, but no guarantee of frequent edges

PHYSICAL
BIT

PHYSICAL
BIT

PHYSICAL
BIT

PHYSICAL
BIT

H HL L

SYMBOL SYMBOLSYMBOL SYMBOL

ONE ENDZERO SYNC

Simple NRZ Bit Encoding

L L L L L

SYNC SYNC …

Simple NRZ Encoding Example: 1101 0001

ONE ONE ONE ONE

H H H H H

ZERO ZERO ZERO ZERO ENDEND
SUBSEQUENT
MESSAGE

PREVIOUS
MESSAGE

14

Bit Stuffing To Add Edges To NRZ Encoding
 Long NRZ messages cause problems in receivers

• Clock drift means that if there are no edges, receivers lose track of bits
• Periodic edges allow receiver to resynchronize to sender clock

 Solution: add “stuff bits”
• Stuff bits are extra bits added to force transitions regardless of data
• Typical approach: add an opposite-valued stuff bit after every 5 identical bits
• In best case you don’t need stuff bits – they only are needed for runs of values

L L L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H H H H

H H H

BIT STUFF IDEA:

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ST
UF

F
ON

E
ON

E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ST
UF

F

ST
UF

F

ST
UF

F

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

SIMPLE NRZ ENCODING OF: 1111 1111 1111 0000 0000 0000:

BIT-STUFFED NRZ ENCODING OF: 1111 1111 1111 0000 0000 0000:

15

NRZ Encoding Error Susceptibility
 A single inverted physical bit is undetectable with Simple NRZ

• High efficiency comes at price of poor error detection

• (Can be detected via CRC sometimes; but CRCs have limitations)

 Bit stuffing error detection in general case:
• Improves error detection if stuffing rule is violated
• Any six identical data bits in a row is an stuffing error
• But, there is a subtle problem with bit stuffing…

L
L H

L L L L

SYNC SYNC …ONE ONE ONE ONE

H H H H H

ZERO
ZERO ONE

ZERO ZERO ZERO ENDEND
SUBSEQUENT
MESSAGE

PREVIOUS
MESSAGE

X X

X X

16

Cascaded Bit Stuffing Errors
 Bit inversions in just the wrong place can confuse bit stuffing logic

• Worst errors occur in pairs that create and then break runs of bits
• Data bit is converted to stuff bit; stuff bit to data bit
• Net effect is same message length BUT, it shifts intervening data bits
• CAN has this problem; can cause 2-bit error to escape CRC detection!

Cascaded bit stuff error example:

L

L

H

H

H

H

H H

H

H

H

H

H

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ST
UF

F
ZE

RO

L

L L

L

L

H

H

ZE
RO

ST
UF

F

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

ZE
RO

L

L

H

H

H

H

H

H

H

H

H

H

H

H

END

END

L

L

H

H

L

L

L

L

L

L

L

L

L

L

L L

L

H

H

H

H H

H H H

H H H

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

ON
E

SYNC

TRANSMITTED LOGICAL BITS: 1101 0101 0111 1111

RECEIVED LOGICAL BITS: 11 1 11 1 111 1010 1 0 0

SYNC

PHYSICAL BIT
INVERSIONS

17

General CAN Message Format

 Header
• Application can set any desired value in 11- or 29-bit header
• Global priority information (which message gets on bus first?)
• Header often contains source, destination, and message ID

 Data
• Application- or high-level-standard defined data fields
• 0 to 8 bytes of data for CAN

 Error detection
• Detects corrupted data (uses a 15-bit CRC):

– All 15-bit or shorter burst errors (groups of flipped bits clumped together)
– All 5-bit errors regardless of where they occur …

… except bit stuffing problem reduces this to all 1-bit errors

HEADER DATA ERROR DETECTIONSYNC END

18

Two Sizes of CAN Arbitration Fields

[Bosch]

19

CAN Message Fields
 SOF – Start of frame (SYNC symbol)

• Single dominant bit
 Arbitration field – binary countdown priority value; set by application

• Also an RTR (remote transmission) field for atomic transactions; seldom used
• SRR is a dummy bit to let standard format RTR messages win arbitration

 Control field
• 4-bit data length (number of bytes in data field); valid values: 0 .. 8
• 1 bit specifies standard or extended format; 1 bit unused

 Data field
• 0 to 8 bytes

 CRC field
• 15-bit CRC, followed by one recessive delimiter bit

 Ack field
• If message received OK, assert as dominant bit (at least one node received)

 END of frame delimiter
• Seven recessive bits mark end of frame (phase violation for bit stuff pattern)

20

Error Frame Messages
 Error frame alerts transmitter if message garbled at some receivers

• Sent if bit stuff violation detected or CRC error detected
• Error flag is six dominant bits in a row – guaranteed to violate bit stuffing rules

– (Unless the Error Frame itself suffers a bit error)
• If transmitter sees that it has been pre-empted by an error frame, it attempts

retransmission
– Note – this is a source of nondeterminism in protocol – timing varies depending on

errors encountered!

[Siemens]

21

CAN vs. FlexRay Length Field Corruptions
 CAN does not protect length field against ONE-BIT errors

• Corrupted length field will point to wrong location for CRC!
– One bit error in length field circumvents HD=6 CRC
– Could get unlucky and have a match

 FlexRay solves this with a header CRC to protect Length

ID

ID

LEN

LEN

CRC

CRCCRC

DATA

DATA

Original Message

Corrupted LEN

Source: FlexRay Standard, 2004

22

Other CAN Issues
 CAN advertises “exactly once” delivery semantics

• A message corrupted only in some places is retransmitted…
… and received more than once by some nodes

[Rufino 1998]
 “Stuck at zero” (dominant) transmitter output locks up network
 CAN retry:

• “Error frame” scheme causes re-transmit
and ALSO,

• Node monitors network and looks for data sent == data received
– If no match, assumes corruption and tries again

• But what if the transmitter is what is broken?
– CAN node can lock up the network with retries [Perez 2003]

 In general, CAN unsuitable for highly critical applications
• That’s one reason we have FlexRay (and TTP) protocols
• This is news to some embedded folks (e.g., ARINC 825 aviation standard)

http://betterembsw.blogspot.com/2012/02
/can-protocol-vulnerabilities.html

23

CAN (SAE J1939) Example: Caterpillar 797

ADEM II
Master

ADEM II
Slave 2

ADEM II
Slave 1

ET Service Tool

VIMS II
(ABL2M)

RAC/CLIM
(68K Module)

Chassis Control
(ABL2C)

Braking/Cooling
(ABL2C)

Tire
Monitor

797 System
VIMS - PC

Xmsn/TC
(ABL2C)

CAT Datalink

CAN SAE J1939 Datalink

797sys.vsd
6-18-98
dab/jwf
Warning: All paper copies of this document are uncontrolled

+ 195 sensors and actuators
+ wireless data link

[Slide courtesy of Caterpillar Inc.]

24

Prelube Relay
3E-5239ADEM-II-6X

Master
115-3055

Coolant Flow
Switch

138-3672

Ground Level
Shutdown Switch

4D-1836

User Shutdown
Switch

Throttle Bypass
Switch

126-0236

Manual Ether Aid
Switch

3E-7176

Throttle Sensor
3E-7700

Speed/Timing
Sensor

129-6628

CAN Data Link (future)

ATA Data Link

CAT Data Link

LH Turbo Exh.
Temp. Sensor

109-4367

Atmospheric
Pressure Sensor

143-9696

Speed/Timing
Sensor

129-6628

Fuel Pressure
Sensor

XX-XXXX

Low Oil Level
Sensor

123-2993

Very Low Oil
Level Sensor

123-2993

Oil Press. Sensor
(Unfiltered)
143-9695

RH Turbo Exh.
Temp. Sensor

109-4367

RH Turbo Inlet
Pressure Sensor

143-9696

Oil Press. Sensor
(Filtered)
143-9695

Coolant Temp.
Sensor

102-2240

After Cooler
Temp. Sensor

102-2240

Crankcase
Pressure Sensor

143-9696

Oil Renewal
Solenoid
142-7363

Wastegate
Solenoid
109-4591

Injector Solenoids
137-9881
(QTY. 12)

ADEM Slave #1
132-8900

ADEM Slave #2
132-8900

adem.vsd
6-18-98
dab/jwf

CAT Data Link

Turbo Outlet
Pressure Sensor

143-9694

Start Aid Pull-in
Relay

3E-5239

Start Aid Hold
Relay

3E-5239

CAN Data Link
(future)

ATA Data Link
Timing

Calibration

CAT Data Link

LH Turbo Exh.
Temp. Sensor

109-4367

Atmospheric
Pressure Sensor

143-9696

Speed/Timing
Sensor

129-6628

Fuel Pressure
Sensor

XX-XXXX

Low Oil Level
Sensor

123-2993

Very Low Oil
Level Sensor

123-2993

Oil Press. Sensor
(Unfiltered)
143-9695

RH Turbo Exh.
Temp. Sensor

109-4367

RH Turbo Inlet
Pressure Sensor

143-9696

Oil Press. Sensor
(Filtered)
143-9695

Coolant Temp.
Sensor

102-2240

After Cooler
Temp. Sensor

102-2240

Crankcase
Pressure Sensor

143-9696

Turbo Outlet
Pressure Sensor

143-9694

Start Aid Pull-in
Relay

3E-5239

Start Aid Hold
Relay

3E-5239

CAN Data Link
(future)

ATA Data Link
Timing

Calibration

ADEM II Engine Control

[Slide courtesy of Caterpillar Inc.]

25

Arbitration Limits Network Size
 Need 2*tpd per bit maximum speed

[Siemens]

26

“Big” & “Small” Nodes
 Some nodes can handle a lot of messages

• Many message mailboxes/filters
• Fast processor

 Some small nodes have limited capacity
• One or two mailboxes/filters
• Slow processor

 System designer has to prevent message over-run via one of:
• Dedicated mailbox per message (hardware ensures no data lost)
• If mailbox shared, ensure messages to slow processors are spaced apart

– Must be infrequent
– Must ALSO not be clumped closer than receiver response time
– This ends up being a constraint for real time scheduling (a later lecture)

27

Generic CAN Network Implementation
 Signals usually sent differentially – CAN_H and CAN_L

[Siemens]

28

Example CAN Microcontrollers
 Motorola 68HC05 Family

• 11-bit headers; 1 Tx buffers; 2 Rx message buffers; 8-bit accept mask
• 8-bit CPU; up to 32 KB on-chip ROM; 28- or 64-pin housing
• (Also 68HC08 with 29-bit support and more buffers)

 Motorola 68HC912 Family
• 11- & 29-bit headers; 3 Tx buffers; 2 Rx message buffers; 2 accept masks
• 16-bit CPU; up to 128 KB on-chip Flash; 80- or 112-pin housing

 Motorola 6837X Family
• 11- & 29-bit headers; 16 Tx/Rx buffers; 16 accept masks
• 32-bit CPU; 256 KB on-chip Flash

 Many other companies support CAN of course – these are just
examples

29

Basic CAN Controller (avoid this one if possible)

 “Cheap” node
• Could get over-run with messages even if it didn’t need them

[Siemens]

30

Full CAN Controller
 Hardware message filters sort & filter messages without interrupting

CPU
• Message object holds most recent message fo that type – not a queue!

[Siemens]

31

Mask Registers
 Used to set up message filters

• Mask register selects bits to examine
• Object Arbitration register selects bits that must match to be accepted
• Map multiple messages into each message object “mailbox”

[Siemens]

32

Mask Register Example
 Mask Register: 1 1 0 1 1 1 0 1 0 1 1
 Message Object Arbitration: 1 0 0 0 1 0 0 0 0 0 1
 Effective Match Value: 1 0 * 0 1 0 * 0 * 0 1

 Matches these message IDs: 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0 0 0 1
1 0 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0 1 0 1
1 0 1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1

 More likely, you mask a few bits next to each other
• See DeviceNet later in lecture

33

DeviceNet
 One of several higher-level protocols

• Based on top of CAN
• Used for industrial control (valves, motor starters, display panels, …)

– Caterpillar is a member of ODVA as well (Open DeviceNet Vendors Assn.), but for
factory automation.

 Basic ideas:
• CAN is used in high volumes = cheaper network chips than competitors
• Use structured approach to message formats to standardize operation

 Does NOT standardize specific message contents
• But it does specify a hierarchy of message ID formats

34

DeviceNet Message ID Scheme
 Each node on network “owns” a source node or message ID (or both)

 Use message filters to only listen to messages you care about
• E.g., Use message object arbitration to subscribe to a particular message ID
• E.g., Use mask object to accept that message ID from any source node #
• Elevator example: message ID is button press; source node # tells which button

– Single receiver mailbox then holds most recently received button press message
– Message must be processed before next such message is received!

10

0

1

1

1

1 1 1 1 1 1 1 X X X X

1 1 1 1

1

0 Msg ID

Msg ID (0..6)

Message ID Source Node #

Source Node #

Source Node #

Message ID (0..2f)

9 8 7 6 5 4 3 2 1 0

Message Identifier Bits

Hex Range Identity Usage

000 - 3ff

400 - 5ff

600 - 7bf

7c0 - 7ef

7f0 - 7ff

Group 1

Group 2

Group 3

Group 4

Invalid

35

DeviceNet Group Strategy
 Group 1

• Prioritized by Message ID / Node number
• High priority messages with fairness to nodes

 Group 2
• Prioritized by Node number / Message ID
• Gives nodes priority

 Group 3
• Essentially same as Group 1, but allows Group 2 to have higher priority

 Group 4
• Global housekeeping messages / must be unique in system (no node number)

36

Other Approaches Are Possible
 And, you can invent your own too…

 Variations include:
• Automatic assignment of node numbers (include hot-swap)
• Automatic assignment of message numbers (include hot-swap)
• Mixes of node-based vs. message-ID based headers

 Can you have two transmitters using the same exact header field?
• No – that would produce a bus conflict
• Unless you have middleware that ensures only one node can transmit at a time

– For example use a low priority message as a token to emulate token-passing

 Higher level protocols define message types
• For example, J1939 defines message ID meanings, mostly for trucks and buses

37

CAN Workloads – Spreadsheets
 “SAE Standard Workload” (53 messages) V/C = Vehicle Controller [Tindell]

38

CAN Tradeoffs
 Advantages

• High throughput under light loads
• Local and global prioritization possible
• Arbitration is part of the message - low overhead

 Disadvantages
• Requires bit dominance (can’t be used with transformer coupling)
• Propagation delay limits bus length (2 tpd bit length)
• Unfair access - node with a high priority can "hog" the network

– Can be reduced in severity with Message + Node # prioritization
– Can, in principle, use a bus guardian to limit duty cycle of each node

• Poor latency for low priority nodes
– Starvation is possible

 Optimized for:
• Moderately large number of message types
• Arbitration overhead is constant
• Global prioritization (but limited mechanisms for fairness)

39[Electronic Design; Jan 8, 2001, pg. 66]

40

Review
 Controller Area Network

• Binary-countdown arbitration
• Standard used in automotive & industrial control

 CAN Tradeoffs
• Good at global priority (but difficult to be “fair”)
• Efficient use of bandwidth
• Requires bit-dominance in physical layer
• Message filters are required to keep small nodes from being overloaded

– Only works if small node can read data before next data in that mailbox arrives

