All the really important mistakes are made the first day.

— Eberhardt Rechtin,
 System Architecting
Anti-Patterns:
- Skipping from requirements to code
- No picture that shows how all the components fit together
- “Wedding cake” layer diagram that omits interface information

Elements of High Level Design
- Architecture: boxes, arrows, interfaces
 - Arrows/interfaces show communication paths between components
 - Recursive: one designer’s system is another designer’s component
- High Level Design (HLD) = architecture (nouns) + requirements (verbs)
 - Sequence Diagrams (SDs) show interactions

https://goo.gl/J8MAuK
Software architecture shows the big picture
- Boxes: software modules/objects
- Arrows: interfaces
- Box and arrow semantics well-defined
 - Meaning of box/arrow depends on goal
- Components all on a single page
 - Nesting of diagrams is OK

Many different architecture diagrams are possible, such as:
- Software architecture (components and data flow types)
- Hardware architecture with software allocation
- Controls architecture showing hierarchical control
- Call graph showing run-time hierarchy
Sequence Diagram as HLD Notation

- **SD construction:**
 - Each object has a time column extending downward
 - Arcs are interactions between objects

- Each SD shows a scenario
 - Top ovals are preconditions
 - Middle ovals are side effects
 - Bottom ovals are postconditions

- **SD** is a partial behavioral description for objects
 - Generally, each object participates in *multiple* SDs; each SD only has *some* objects
 - The set of all SDs forms the HLD for all objects in the system
Example Sequence Diagram

Legend: **Blue** = physical objects / **Black** = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects
Use Cases to Sequence Diagrams

- Use Case diagram – types of interactions
 - System has multiple use cases
 - Example: Use Case #1: Insert a coin

- Scenario – a specific variant of a use case
 - Each use case has one or more scenarios
 - Scenario 1.1: insert coin to add money
 - Scenario 1.2: insert excess coin (too many inserted)
 - Scenario 1.3: ... some other situation...
 - Interactions between objects are different for each scenario

- Sequence Diagram – a specific scenario design
 - For our purposes each scenario has one sequence diagram
 - Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

- Statechart – design that incorporates all scenarios
 - One StateChart per object, addressing all scenarios
Combining SDs To Make Statecharts

- For each object in each SD: identify input & output arcs
- Detailed Design: design statechart that accounts for all SD behaviors

Statechart Must Exhibit All Those Behaviors

SD set specifies behaviors
High Level Design Best Practices

- HLD should include:
 - One or more architecture diagrams
 - Defines all components & interfaces
 - HW arch., SW arch., Network arch., ...
 - Sequence Diagrams
 - Both nominal and off-nominal interactions
 - See 18-649 soda machine for a fully worked example
 - HLD must co-evolve with requirements
 - Need both nouns + verbs to define a system!

- High Level Design pitfalls:
 - Diagrams that leave out interactions
 - Boxes and arrows don’t have well defined meanings
 - HLD that bleeds into detailed design information
 - Should have separate Detailed Design per component

https://users.ece.cmu.edu/~koopman/ece649/project/sodamachine/index.html
CAN YOU PASS THE SALT?

I SAID-
I KNOW! I'M DEVELOPING A SYSTEM TO PASS YOU ARBITRARY CONDIMENTS.
IT'S BEEN 20 MINUTES!
IT'LL SAVE TIME IN THE LONG RUN!

https://xkcd.com/974/