

Prof. Philip Koopman

Carnegie Mellon University

Safety Plans

"Adventure is just bad planning." - Roald Amundsen These tutorials are a simplified introduction, and are not sufficient on their own to achieve system safety. You are responsible for the safety of your system.

© 2020 Philip Koopman 1

Safety Plan: The Big Picture for Safety

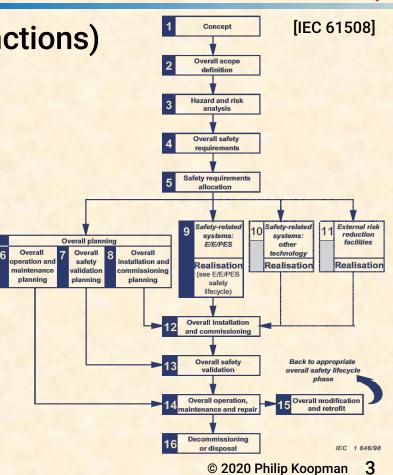
- It's just a pile of unrelated documents
- It doesn't address software integrity
- You don't link to a relevant safety standard
- It doesn't link to a security plan

Safety Plan:

- Safety Standard: pick a suitable standard
- Hazards & Risks: hazard log, criticality analysis
- Goals: safety strategy, safety requirements
- Mitigation & Analysis: HAZOP, FMEA, FTA, ETA, reliability, ...
- Safety Case: safety argument

Carnegie

Jniversity


Safety Standards

Usually "functional safety" (safety functions)

- IEC 61508 is a generic starting point
- Many domains have specific standards
 - ISO 26262, EN-50126/8/9, MIL-STD-882, IEC 60730, DO-178, ...

Key elements of a safety standard:

- Method for determining risk
 - Usually Safety Integrity Level (SIL)
- SIL determines engineering rigor
 - Analysis techniques
 - Mitigation techniques
- Life-cycle approach to safety

Safety Goals & Safety Requirements

- Safety Goal: top level definition of "safe"
 - Example: vehicle speed control
 - <u>Hazard:</u> unintended vehicle acceleration
 - Goal: engine power proportional to accel. pedal position
 - Safety strategy: how you plan to achieve goal
 - Example: correct computation AND engine shutdown if unintended acceleration
- Safety Requirements:
 - Goals at system level; requirements provide supporting detail
 - Supporting requirements generally allocated to subsystems
 - Might include functionality and fail-safe mitigation requirements
 - Examples:
 - Engine torque shall match accelerator position torque curve
 - Pedal/torque mismatch shall result in engine shutdown

Carnegie

University

FMEA: Failure Mode Effects Analysis

Idea: Start with component failure; analyze results; identify hazards

Component	Potential Failure Mode	Failure Effects	Recommended Action	Status
Resistor R2	Open	Triggers Shutdown	Use Industrial spec. component	Done
	Short	Over-current/ potential Fire	Circuit Redesign	Open
Capacitor C7	Explodes	Potential Fire	Select different component	Open

Significant limitations for generating hazards

- "Complex component" failures are not well behaved
 - Software fails however it wants to fail
 - Integrated circuits are usually highly coupled internally
- Poor at representing correlated and accumulated faults
 - E.g., exploding capacitor damaging several nearby components

HAZard and Operability Analysis (HAZOP)

Hazard structured brainstorming

- For each system requirement:
 - Modify with a guide word
 - Does the result suggest a hazard?
- Effective starting point, but not guaranteed to find all hazards

Examples

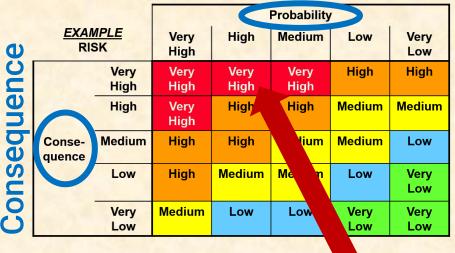
- When pressure exceeds 6000 psig, relief valve shall <u>NOT</u> actuate.
- System shall come to a complete stop within <u>AFTER</u> 5 seconds when emergency stop is activated.
 - Alternately: System shall come to a complete stop within 5 seconds LATE when emergency stop is activated.

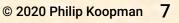
Guide Word	Meaning		
NO OR NOT	Complete negation of the design intent		
MORE	Quantitative increase		
LESS	Quantitative decrease		
AS WELL AS	Qualitative modification/increase		
PART OF	Qualitative modification/decrease		
REVERSE	Logical opposite of the design intent		
OTHER THAN / INSTEAD	Complete substitution		
EARLY	Relative to the clock time		
LATE	Relative to the clock time		
BEFORE	Relating to order or sequence		
AFTER	Relating to order or sequence		

Carnegie

Mellon University

© 2020 Philip Koopman


6

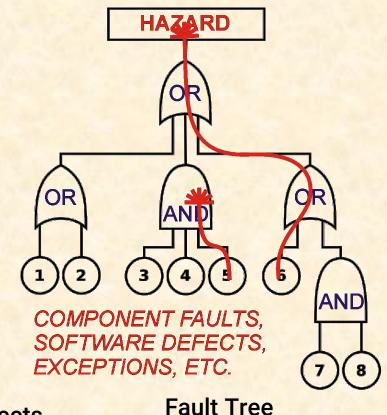

https://goo.gl/KTer9C

Hazards & Risks

- Hazard: a potential source of injury or damage
 - A potential cause of a mishap or loss event (people, property, financial)
- Hazard log
 - Captures hazards for a system
 - HAZOP generates some hazards
 - Others are legacy & experience
- Risk evaluation
 - Risk = Probability * Consequence
 - Typically determined via a risk table
 - Risk must be reduced to acceptable levels
 - Risk determines required SIL (e.g. "Very High" → SIL 4)

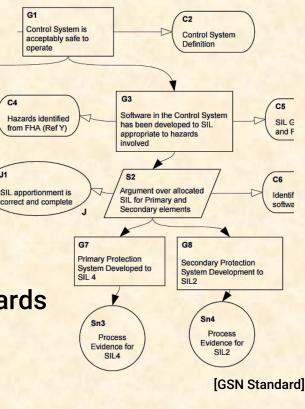
Probability

RISK


Carnegie

Mellon University

Safety Analysis & Mitigation


- Failure Mode Effects Analysis (FMEA)
 - Work forward from fault to mishap
- Fault Tree Analysis (FTA)
 - Work backward from hazard to causes
 - Strategy: HAZOP identifies fault tree roots
- Avoid single points of failure
 - If component breaks, is system unsafe?
 - Computational elements fail in worst way
 - Life-critical systems require redundancy
 - Also avoid correlated faults
 - High-SIL software techniques to avoid SW defects

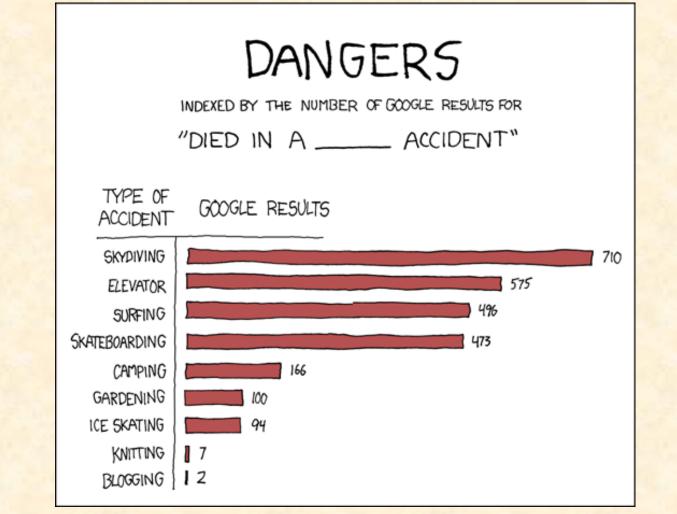
Safety Case

- This system is safe because: structured argument + evidence Incorporates safety plan topics:
 - Methodical identification of hazards
 - Each hazard evaluated for risk
 - Mitigation rigor determined by risk (e.g., SIL)
 - Analysis rigor determined by risk (e.g., SIL)
 - Safety requirements appropriately cover all hazards
 - Including both accidental faults & malicious faults
- Example techniques
 - Goal Structuring Notation (GSN) http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
 - Systems-Theoretic Process Analysis (STPA / Leveson)

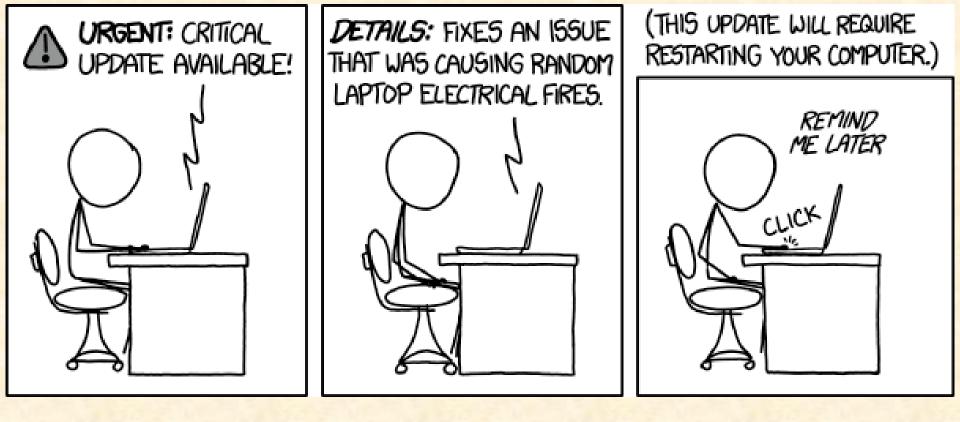
C4

Best Practices For Safety Plans

- A written Safety Plan including:
 - Hazards + risks
 - Safety goals + requirements
 - Safety analysis + Mitigation
 - Following a safety standard
 - Resulting in a *written* safety case
 - Independent audit of safety case


https://www.flickr.com/photos/jurvetson/1118807

Pitfalls:


- Software safety usually stems from rigorous SIL engineering
- FMEA can miss correlated & multipoint faults must use FTA
- Need to include safety caused by security attacks

Carnegie

Mellon University

https://xkcd.com/369/

https://xkcd.com/1328/