
1© 2020 Philip Koopman

Embedded Software
Safety – Overview

“Engineering is achieving function
while avoiding failure.”

– Henry Petroski

Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

2© 2020 Philip Koopman

Anti-Patterns for Embedded System Safety:
 Requirements do not address safety
 Not using an appropriate safety standard
 Safety analysis assumes perfect software
 Redundancy management inadequate

Actually know system is safe
 Correctness is only a starting point

– Requirements and other aspects matter
 Fault responses must be safe

– Hardware faults (permanent; transient)
– Software faults

Is Your System Appropriately Safe?

https://goo.gl/EgxHEo

https://goo.gl/vnqH7G

3© 2020 Philip Koopman

Defense-In-Depth For Safety
 Avoid faults occurring

 Careful design of software to avoid software defects
 Use robust hardware to avoid hardware run-time faults

 Detect and contain faults
 Error correction HW, redundant CPUs
 Watchdog timers for failed tasks, exception handling

 Use Fail Safe strategies to mitigate hazards
 For example, automatic safety shutdown mechanisms

 Incidents require operator intervention (or luck)
 Operator may be able to react correctly and quickly
 Incident will be a mishap some fraction of time

 Want to avoid escalation as much as possible
 E.g., fail safe approaches that work to avoid incidents

(For more information, see Safeware, Leveson 1986, pp. 149-150)

4© 2020 Philip Koopman

 Safety must be seen to be present
 System presumed unsafe unless convincing safety argument made
 Outsider must be able to determine safety purely from documents

 The greater the risk, the greater the need for information
 Riskier systems require more engineering rigor

 Safety must be built in, not added on
 If code is created without a safety process, throw it away; start over

 Systematic, random, and malicious faults all matter
 Consider design errors and transient faults (e.g., soft errors)
 If it’s not secure, it’s not safe

 Safety must be argued in writing and demonstrated
 Failure-free testing isn’t enough

 Safety is a lifecycle concern
 “Mission critical failures” can be considered “safety” as well

Basic Safety Principles Adapted from
MISRA 1994

5© 2020 Philip Koopman

 Space Shuttle Challenger Mishap
 January 1986 launch explosion; 7 fatalities
 Dual O-rings keep hot gases inside solid booster

– History of sometimes failing if too cold
– At launch, joint temperature was below freezing

 Booster team told: “prove launch is unsafe”
– Should have been: “no launch unless proven safe”
– Getting lucky is not the same thing as being safe

Safety Culture: Everyone Is Sure It’s Safe

EX
TE

RN
AL

 F
UE

L
TA

N
K

SOLID ROCKET JOINT

goo.gl/htsgid goo.gl/1qeswJ

EXTERNAL
FUEL TANK

SOLID
ROCKET
SEGMENTS

O
-R

IN
G

S

JOINTS

6© 2020 Philip Koopman

 Safety Topics:
 Safety Plan & Safety Standards
 Safety Requirements
 Critical System Design
 Dependability
 Single Points of Failure
 Redundancy Management
 Isolation Mechanisms
 Safety Architectural Patterns

 Pitfall:
 Safety isn’t just about whether you think it’s safe …

… it’s about whether you can prove it is appropriately safe

Overview of Embedded System Safety

(1985 – 1987) THERAC 25
Software-Controlled Radiation Therapy Mishaps

7© 2020 Philip Koopman

https://xkcd.com/1992/

	��Embedded Software�Safety – Overview����
	Is Your System Appropriately Safe?
	Defense-In-Depth For Safety
	Basic Safety Principles
	Safety Culture: Everyone Is Sure It’s Safe
	Overview of Embedded System Safety
	Slide Number 7

