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All the really important mistakes are

made the first day.
— Eberhardt Rechtin,
System Architecting © 2020 Philip Koopman 1
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Architecture & High Level Design (HLD) Mellon,

m Anti-Patterns: Navigator
e Skipping from requirements to code
e No picture that shows how all the
components fit together
e “Wedding cake” layer diagram that Tava Virtual Machine (CDC)
omits interface information system software (operating system, drivers)

hardware {CPU, MPEG2-decoder, remote control)

® Elements of High Level Design

e Architecture: boxes, arrows, interfaces
— Arrows/interfaces show communication paths between components
— Recursive: one designer’s system is another designer’'s component
e High Level Design (HLD) = architecture (nouns) + requirements (verbs)
— Sequence Diagrams (SDs) show interactions © 2020 Philip Koopman 3




Architecture: Boxes and Arrows Vil
m Software architecture = s SRR
shows the big picture RCS Node [

e Boxes: software modules/objects 1_\\ zme ol ] ‘ ] % SR
e Arrows: interfaces P i By I
e Box and arrow semantics well-defined —— %“Q‘Ng

— Meaning of box/arrow depends on goal ;"“* B
e Components all on a single page o T R eocs

— Nesting of diagrams is OK i o
® Many different architecture diagrams are possible, such as:

e Software architecture (components and data flow types)

e Hardware architecture with software allocation

e Controls architecture showing hierarchical control

e Call graph showing run-time hierarchy © 2020 Philip Koopman 4
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Sequence Diagram as HLD Notation Ml e
m SD construction: OBJECT OBJECT OBJECT
e Each object has a time ! — : : —
column extending downward (Preoondltlon> CPrecondFuon)
e Arcs are interactions ——Event #LQ‘WZ:
between objects f 5 Event #3 :

®m Each SD shows a scenario
e Top ovals are preconditions
e Middle ovals are side effects
e Bottom ovals are postconditions

Event #4

G’ostconditiorD G’ostconditiorD

< dJNIL

m SD is a partial behavioral description for objects
e Generally, each object participates in multip/e SDs; each SD only has some objects

e The set of all SDs forms the HLD for all objects in the system o o
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Example Sequence Diagram Niclon

University

I

Legend: Blue = physical objects / Black = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects

Sequence Diagram 3A:
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18649 Spring 2010
Group 7

Justin Ray/justinr2
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Use Cases to Sequence Diagrams Mellon

University

Soda Machine

U1. Customer
inserts a quarter

B Use Case diagram — types of interactions Use Cases
e System has multiple use cases
e Example: Use Case #1: Insert a coin

B Scenario — a specific variant of a use case i

e Each use case has one or more scenarios

— Scenario 1.1: insert coin to add money Scenario
— Scenario 1.2: insert excess coin (too many inserted) |

The soda machine has one additional coin for this vend cycle.

— Scenario 1.3: ... some other situation...
e Interactions between objects are different for each scenario

. gl y ] _Sequence” Diagram
B Sequence Diagram — a specific scenario design —

e Diagram 1A:

| Customer I l CoinIn | | CoinControl l | VendControl |
e For our purposes each scenario has one sequence diagram
— Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

m Statechart — design that incorporates all scenarios
e One StateChart per object, addressing all scenarios © 2020 Philip Koopman T




Combining SDs To Make Statecharts

B For each object in each SD: identify input & output arcs

Carnegie
Mellon
University

e Detailed Design: design statechart that accounts for all SD behaviors

CoinReturn

CoinOut

CoinControl

VendControl

ButionConr ]| [ ConGonil | | VendGomal | [ vens | FencPustonConino] [
anpeum
- Tc. mButton(s|(rue] q
(true) 1d Count(2) : . .
' 3gendl
o 3b. mVendMotor(RIGHT) Qi

—ry

b }
3. mVendMotor(STOP)
-

4 Vendifrus
4b_ mVendtnue)
i

{(CoinCount=0 )

B

4. mCoinCount

VandM

4c. Soda @nded

49, Vendifalsa) |

mendfalse)
. . 5—‘
Talse)

5b. nfuttons|fzlse) /

SD set specifies be

Sequence Diagram 1A:

Customer

=

haviors

2¢. comOut(fdse)

7. mooi

incount(®)

State 53.8 OVERPAY_STRETCH

Do:
Set CoinOut to True.

CoinControl Statechart:

Do:

State 53.4 OVERPAY

Set CoinOut to True.
Decrement CoinCount.
Set mCoinCount to CoinCount.

Do:

Set CoinOut to False.
Set mCoinCount to CoinCount.

Do:
Set CoinOut to False.
Set CoinCount to 0.

Set mCoinCount to CoinCount.

[13.5]

t

18643 Spring 2010

Justin Ray/justinrz

Set mCoinCount to CoinCount. Set mCoinCount to CoinCount.

Statechart Must Exhibit All Those Behaviors

State S3.7 VEND

State 53.3 COIN_IN_2

Do:
Set CoinOut to False.

CoinControl I I

1a. Coin Inserted

CoinCount=<2

1b. Coinin(true)

1c. Coinln(false)

18649 Spring 7010

Group 7
Justin Ray/justinr2

ConGount++

1d. mCsinCount(CoinCount)

VE;/

State 53.5 RETURN_1

Do:
Set CoinOut to True.
Decrement CoinCount.
Set mCoinCount to CoinGount.

State 53.9 RETURN_STRETCH

Do:
Set CoinOut to False.
Set mCoinGount to CeinCount.

Set mCoinCount to CoinCount.
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High Level Design Best Practices

Vending Machine Architecture Diagram

® HLD should include:

e One or more architecture diagrams
— Defines all components & interfaces
— HW arch., SW arch., Network arch., ...
e Sequence Diagrams
— Both nominal and off-nominal interactions
— See 18-649 soda machine for a fully worked example

e HLD must co-evolve with requirements
— Need both nouns + verbs to define a system!
®m High Level Design pitfalls:
e Diagrams that leave out interactions

e Boxes and arrows don't have well defined meanings

e HLD that bleeds into detailed design information

— Should have separate Detailed Design per component

Bution| 1

(revised 2010-01-17)
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https://users.ece.cmu.edu/
~koopman/ece649/project/

sodamachine/index.html
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CAN YOU PASS
THE SALT?

I SAD-
I KNOW! T'™M DEVELOPING
A SYSTEM TO PASS YOU
ARBITRARY CONDIMENTS.

ITS BEEN 20 )

MINUTES!

J ITLL SAVE TIME
IN THE LONG RUN!

https://xkcd.com/974/
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