C o Electr1ca1&Com uter
M%II.{:)% gle (() ENGINEERING

University

¢\l Software Architecture &
High Level Design

All the really important mistakes are

made the first day.
— Eberhardt Rechtin,
System Architecting © 2020 Philip Koopman 1

YOU ARE HERE

Carnegie
Mellon
University

TRACEABILITY# VALIDATION
SPECIFY < ..) ACCEPTANCE _>pRQDUCT
PRODUCT Test Plag#& Test Results TEST
Product Software Test
Requirements Results
SPECIFY [E i i oo s e } SOFTWARE
SOFTWAR Test Plan & Test Results TEST

Software Requiremg

CREATE SW

High Level Design x

ﬂ Integration Test Results

R T INTEGRATION
ARCHITECTURE st Plan & Test Results TEST

ﬂ Unit Test Results

Test
Plan &
UNIT
o> TEST
Test
Results
Detailed Design X ﬂSource Code
IMPLEMENT

© 2020 Philip Koopman 2

Carnegi
arnegie

Architecture & High Level Design (HLD) Mellon,

m Anti-Patterns: Navigator
e Skipping from requirements to code
e No picture that shows how all the
components fit together
e “Wedding cake” layer diagram that Tava Virtual Machine (CDC)
omits interface information system software (operating system, drivers)

hardware {CPU, MPEG2-decoder, remote control)

® Elements of High Level Design

e Architecture: boxes, arrows, interfaces
— Arrows/interfaces show communication paths between components
— Recursive: one designer’s system is another designer’'s component
e High Level Design (HLD) = architecture (nouns) + requirements (verbs)
— Sequence Diagrams (SDs) show interactions © 2020 Philip Koopman 3

Architecture: Boxes and Arrows Vil
m Software architecture = s SRR
shows the big picture RCS Node [

e Boxes: software modules/objects 1_\\ zme ol] ‘] % SR
e Arrows: interfaces P i By I
e Box and arrow semantics well-defined —— %“Q‘Ng

— Meaning of box/arrow depends on goal ;"“* B
e Components all on a single page o T R eocs

— Nesting of diagrams is OK i o
® Many different architecture diagrams are possible, such as:

e Software architecture (components and data flow types)

e Hardware architecture with software allocation

e Controls architecture showing hierarchical control

e Call graph showing run-time hierarchy © 2020 Philip Koopman 4

Al Lo
Carnegie

Sequence Diagram as HLD Notation Ml e
m SD construction: OBJECT OBJECT OBJECT
e Each object has a time ! — : : —
column extending downward (Preoondltlon> CPrecondFuon)
e Arcs are interactions ——Event #LQ‘WZ:
between objects f 5 Event #3 :

®m Each SD shows a scenario
e Top ovals are preconditions
e Middle ovals are side effects
e Bottom ovals are postconditions

Event #4

G’ostconditiorD G’ostconditiorD

< dJNIL

m SD is a partial behavioral description for objects
e Generally, each object participates in multip/e SDs; each SD only has some objects

e The set of all SDs forms the HLD for all objects in the system o o

Carnegie

Example Sequence Diagram Niclon

University

I

Legend: Blue = physical objects / Black = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects

Sequence Diagram 3A:

I 2b. CoinOut{false)

r=

1

.
1

1

-t

Customer CoinReturn CoinOut CoinControl VendControl
T T T T T
I I |
| 1 (PRE: CoinCou‘tt==2) I
1a. Press Coin Retumn_ | 1 1 1
| 1b. mCoihRetum(true) I I
T | I
1c. mCoidReturn(false) | |
T Lt | I
1 2a. CoinOut{true) 1 |
r= 1 1
| |
|
1
|
|

| 2¢c. mCoinCount(1)

2d. CoinOut{true) I

1

I 2e. CoinOut{falkse) |

r= 1

1
1
I | 2f. mCoinCount(0)
I I
1
I
I

|
1
|
1
|
|
|
|
|
I
|
|
|
I
1
|
1
1

18649 Spring 2010
Group 7

Justin Ray/justinr2

(POST: CcinCount==0)

. [RTR—. |

. © 2020 Philip Koopman 6

Carnegi
arnegie

Use Cases to Sequence Diagrams Mellon

University

Soda Machine

U1. Customer
inserts a quarter

B Use Case diagram — types of interactions Use Cases
e System has multiple use cases
e Example: Use Case #1: Insert a coin

B Scenario — a specific variant of a use case i

e Each use case has one or more scenarios

— Scenario 1.1: insert coin to add money Scenario
— Scenario 1.2: insert excess coin (too many inserted) |

The soda machine has one additional coin for this vend cycle.

— Scenario 1.3: ... some other situation...
e Interactions between objects are different for each scenario

. gl y] _Sequence” Diagram
B Sequence Diagram — a specific scenario design —

e Diagram 1A:

| Customer I l CoinIn | | CoinControl l | VendControl |
e For our purposes each scenario has one sequence diagram
— Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

m Statechart — design that incorporates all scenarios
e One StateChart per object, addressing all scenarios © 2020 Philip Koopman T

Combining SDs To Make Statecharts

B For each object in each SD: identify input & output arcs

Carnegie
Mellon
University

e Detailed Design: design statechart that accounts for all SD behaviors

CoinReturn

CoinOut

CoinControl

VendControl

ButionConr]| [ConGonil | | VendGomal | [vens | FencPustonConino] [
anpeum
- Tc. mButton(s|(rue] q
(true) 1d Count(2) : . .
' 3gendl
o 3b. mVendMotor(RIGHT) Qi

—ry

b }
3. mVendMotor(STOP)
-

4 Vendifrus
4b_ mVendtnue)
i

{(CoinCount=0)

B

4. mCoinCount

VandM

4c. Soda @nded

49, Vendifalsa) |

mendfalse)
. . 5—‘
Talse)

5b. nfuttons|fzlse) /

SD set specifies be

Sequence Diagram 1A:

Customer

=

haviors

2¢. comOut(fdse)

7. mooi

incount(®)

State 53.8 OVERPAY_STRETCH

Do:
Set CoinOut to True.

CoinControl Statechart:

Do:

State 53.4 OVERPAY

Set CoinOut to True.
Decrement CoinCount.
Set mCoinCount to CoinCount.

Do:

Set CoinOut to False.
Set mCoinCount to CoinCount.

Do:
Set CoinOut to False.
Set CoinCount to 0.

Set mCoinCount to CoinCount.

[13.5]

t

18643 Spring 2010

Justin Ray/justinrz

Set mCoinCount to CoinCount. Set mCoinCount to CoinCount.

Statechart Must Exhibit All Those Behaviors

State S3.7 VEND

State 53.3 COIN_IN_2

Do:
Set CoinOut to False.

CoinControl I I

1a. Coin Inserted

CoinCount=<2

1b. Coinin(true)

1c. Coinln(false)

18649 Spring 7010

Group 7
Justin Ray/justinr2

ConGount++

1d. mCsinCount(CoinCount)

VE;/

State 53.5 RETURN_1

Do:
Set CoinOut to True.
Decrement CoinCount.
Set mCoinCount to CoinGount.

State 53.9 RETURN_STRETCH

Do:
Set CoinOut to False.
Set mCoinGount to CeinCount.

Set mCoinCount to CoinCount.

© 2020 Philip Koopman 8

High Level Design Best Practices

Vending Machine Architecture Diagram

® HLD should include:

e One or more architecture diagrams
— Defines all components & interfaces
— HW arch., SW arch., Network arch., ...
e Sequence Diagrams
— Both nominal and off-nominal interactions
— See 18-649 soda machine for a fully worked example

e HLD must co-evolve with requirements
— Need both nouns + verbs to define a system!
®m High Level Design pitfalls:
e Diagrams that leave out interactions

e Boxes and arrows don't have well defined meanings

e HLD that bleeds into detailed design information

— Should have separate Detailed Design per component

Bution| 1

(revised 2010-01-17)

1

Soda Vending Machine
8

Carnegie
Mellon
University

ButtonLight

8
1 | ButtonControl
» 1

%

Actuator

CoinOQut | 1

1

<
Actuator

CoinIn| 1

Empty

Smart Senscr

CoinControl
1

Vend | 1

Coin_Return
Smart Senscr

1 1
VendControl

<
Actuator

VendMotor

1 1 it !
P VendPositionControl

[—

<

Actuator

¥}

VendPosition
Smart Senscor

https://users.ece.cmu.edu/
~koopman/ece649/project/

sodamachine/index.html

© 2020 Philip Koopman 9

CAN YOU PASS
THE SALT?

I SAD-
I KNOW! T'™M DEVELOPING
A SYSTEM TO PASS YOU
ARBITRARY CONDIMENTS.

ITS BEEN 20)

MINUTES!

J ITLL SAVE TIME
IN THE LONG RUN!

https://xkcd.com/974/

	��Software Architecture &�High Level Design�� ���
	YOU ARE HERE
	Architecture & High Level Design (HLD)
	Architecture: Boxes and Arrows
	Sequence Diagram as HLD Notation
	Example Sequence Diagram
	Use Cases to Sequence Diagrams
	Combining SDs To Make Statecharts
	High Level Design Best Practices
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Modes Revisited: Levels of Abstraction
	Slide Number 14
	Slide Number 15
	Discussion Questions
	Exercises

