
 © 2016 Philip Koopman 1

18-642:
Global Variables

Are Evil!

9/11/2017

© 2017, Philip Koopman

2© 2016-2017 Philip Koopman

Anti-Patterns:
 More than a few read/write globals
 Globals shared between tasks/threads
 Variables have larger scope than needed

Global variables are visible everywhere:
 Use of globals indicates poor modularity

– Globals are prone to tricky bugs and race conditions
 Local static variables are best if you need persistence

– File static variables can be OK if used properly
– Don’t make procedures globally visible if not needed

Global Variables Are Evil!

3© 2016-2017 Philip Koopman

 Globals:
uint32_t gVar = 0;
void gProc(…) { … }

 Global risks
 Written from anywhere

– Debugging: who wrote it?
 Read from anywhere

– Changes break everything
 Multithreaded race conditions
 Increased complexity

– Data flow “spaghetti”

 File Static:
static uint32_t fsVar = 0;
static void fsProc(…) { … }

 Only inside .c file
 Use with small .c files
 Like C++ “private”

 Local Static:
void gProc(…)
{ static uint32_t sVar = 0;
… }

 Persistent variable value
 Can’t be seen outside procedure

Global vs. Static Variables

https://goo.gl/PhhDcY

4© 2016-2017 Philip Koopman

Define smallest scope possible (variables and procedures)
 Change global to file static; file static to local static

Arrange .c files based on access to data
 Example: time of day updated by ISR

– File static time of day variable in TimeOfDay.c
– Put timer tick ISR in TimeOfDay.c
– Put procedure to disable interrupts & read time of day in TimeOfDay.c

Configuration values & constants
 Use const keyword – prevents multiple writers
 Read-only access to global configuration data structure
 Limit visibility to need-to-know within relevant .h file

Avoiding And Removing Globals

5© 2016-2017 Philip Koopman

 Use smallest practical scope for variables & procedures
 Ideally, zero global variables
 Use file static if you must; local static if you can
 A good compiler will generate efficient code

 Reorganize code to reduce scope
 Write anything except locking variables only in one place
 File static variables for small groups of functions

– More or less the idea of C++ private keyword
– Take care of data locking when reading

 Global Variable Pitfalls
 Lots of global variables is a sign of bad code

Best Practices For Avoiding Globals

GLOBALS

	18-642:�Global Variables�Are Evil!��9/11/2017
	Global Variables Are Evil!
	Global vs. Static Variables
	Avoiding And Removing Globals
	Best Practices For Avoiding Globals

