Lecture #23

Real Time
Operating Systems

18-348 Embedded System Engineering
Philip Koopman
Monday, April 11, 2016

() Electrical &Com ter Cal' Ilegle

Y ENGINEERING _ Mellon

Lighting

¢ It’sjusta
light switch -
how hard
can it be?

http://www.lutron.com/Products/WholeHomeSystems/Homeworksqgs/Pages/Components.aspx

System Overview
RadioRA 2

Keypads

o
o
— | &
—
t —d — |
o]]
Keypad Hybrid
Keypad
£
0
Pico Wireless
Control Tablatop
Keypad

Lighting Fixtures

e

Finire™ by Ivalo®
LED Recessed Light

—
.

Main Repealer
-
Dimmers & Switches
1A r,
e ot
.. B
Drirmmier Tablelop Lamp Switch
Dimmer

.J;:(-
Remote Controls
.
oo
[|

Temperature Control

w

sealamp Sensor TouchPRO Wireless™
dispiay Thermastal

r hone i T [0 b

! b LI 8 3ncd r

Sensors
“::‘ Wireless
.J_F
Radio Powr Sawr
Cicecupany,
Wacanoy Sensor
Programming & Software
Applas [Pad™ mobil
PhonaF figital devica
P s

Window Treatments

p

Sivoia QS Wireless

Energy SaVingS Hart Building Suite 101 oom

Lighting Energy Saved Over Last 7 Days Lighting Power
=2 ‘| | % Instanteneous
Power Savings
) et Maximum Savings 10—
Green Glancem client PC Green Glance display = -
DVI video signal [ErTE—— a@- -
s e . . .
m i Auerage Total Savinas) Saving
— B = . Relative to Full On: BE=2 kW
o - B30 kWh

3235
24 Tons Geal
Mot Burned

5.7 Tons GOy
Mot Emitted

Fulos O = t R 3 T
Internet connection required . s Mos d
Corporate for weather information T
Intranet 3 Hours 2aMours || 7Days | aooms 1 Yaar

P2 LUTRON. (fg} e e o]
Q 1!:'.I\.N TUM. GREIN GLANCE 2 Cloud
Wind 12 mph from W
Q-Managerm lighting
management server Lutron light

management
network

Real time light dimming
e Occupancy Sensors
» Daylight Sensors
» Wireless & wired networking
* Provide constant illumination
across building
 Save by avoiding 100%-on

management hub 3

Q-Adminmu client PC

[Lutron]

Where Are We Now?

¢ Where we’ve been:
e Interrupts
« Context switching and response time analysis
e Concurrency
e Scheduling

¢ Where we’re going today:
e RTOS and other related topics
 Priority inversion
o Why software quality matters (safety & security)

¢ Where we’re going next:
 Intro to embedded networks
o System booting, control, safety
o Test #2 on Wednesday April 20th, 2016

Preview

¢ Priority Inversion
e Combining priorities with a mutex leads to complications
 Priority inheritance & priority ceiling as solutions

¢ RTOS overview
* What to look for in an RTOS
o Market trends in RTOS
* General embedded design trends

Remember the Major Scheduling Assumptions?

¢ Five assumptions throughout this lecture
1. Tasks {T;} are perfectly periodic

B=0

P; = D;

Worst case C;

Context switching is free

o B~ W

Overcoming Assumptions

¢ WHAT IF:

1. Tasks {T;} are NOT periodic
— Use Sporadic techniques

2. Tasks are NOT completely independent

— Worry about dependencies
(lets talk about this one)

3. Deadline NOT = period
— Use Deadline monotonic

4. Worst case computation time c; isn’t known
— Use worst case computation time, if known
— Build or buy a tool to help determine Worst Case Execution Time (WCET)
— Turn off caches and otherwise reduce variability in execution time

5. Context switching is free (zero cost)
— Gets messy depending on assumptions
— Might have to include scheduler as task
— Almost always need to account for blocking time B

Reminder: Basic Hazards

¢ Deadlock
e Task A needs resources X and Y
e Task B needs resources X and Y

o Task A acquires mutex for resource X
o Task B acquires mutex for resource Y

» Task A walits forever to get mutex for resource Y
o Task B waits forever to get mutex for resource X

¢ Livelock

» Tasks release resources when they fail to acquire both X and Y, but...
just keep deadlocking again and again

¢ We’re not to solve these here... desktop OS designers have these too

« But there are related priority problems specific to real time embedded systems
8

Mutex + Priorities Leads To Problems

¢ Scenario: Higher priority task waits for release of shared resource
o Task L (low prio) acquires resource X via mutex
o Task H (high prio) wants mutex for resource X and waits for it

¢ Simplistic outcome with no remedies to problems (don’t do this!)
e Task H hogs CPU in an infinite test-and-set loop waiting for resource X
o Task L never gets CPU time, and never releases resource X

o Strictly speaking, this is “starvation” rather than “deadlock”

Waits for Mutex Forever
Task H

Task L

'

Normal execution | Critical section execution
[Renwick04] modified

Bounded Priority Inversion

¢ An possible approach (BUT, this has problems...)
o Task H returns to scheduler every time mutex for resource X is busy
e Somehow, scheduler knows to run Task L instead

— If it is a round-robin preemptive scheduler, this will help

— In prioritized scheduler, task H will have to reschedule itself for later
» Can get fancy with mutex release re-activating waiting tasks, whatever

 Priority inversion is bounded — Task L will eventually release Mutex
— And, if we keep critical regions short, this blocking time B won’t be too bad

Bounded priority)
inversion

|

Naormal execution | Critical section execution

Figure 1: Bounded priority inversion [Renwick0d]
10

Unbounded Priority Inversion

¢ But, simply having Task H relinquish the CPU isn’t enough
o Task L acquires mutex X
o Task H sees mutex X is busy, and goes to sleep for a while; Task L resumes
o Task M preempts task L, and runs for a long time

* Now task H is waiting for task M =» Priority Inversion
— Task H is effectively running at the priority of task L because of this inversion

Unbounded priority inversion ' |
Task H

I I N || I
Normal execution F | Critical section execution

Figure 2: Unbounded priority in\fersion

[Renwick04]

11

Solution: Priority Inheritance

¢ When task H finds a lock occupied:
o Itelevates task L to at least as high a priority as task H
o Task L runs until it releases the lock, but with priority of at least H
e Task L is demoted back to its normal priority
o Task H gets its lock as fast as possible; lock release by L ran at prio H

¢ Idea: since mutex is delaying task H, free mutex as fast as you can
* Without suspending tasks having higher priority than H!
« For previous slide picture, L would execute with higher prio than M

Priority

Task L A

(hoisted)
Req A B A
Task H -
ReqA | A
Task L
P TirmI
1 2 3 “ 5 b 7 B
Normal execution ' | Critical region

Figure 5: Simple priority inheritance [Renwicko4] 12

Priority Inheritance Pro/Con

¢ Pro: it avoids many deadlocks and starvation scenarios!
* Only elevates priority when needed (only when high prio task wants mutex)

¢ Run-time scheduling cost is perhaps neutral
o Task H burns up extra CPU time to run Task L at its priority

» Blocking time B costs per the scheduling math are:
— L runs at prio H, which effectively increases H’s CPU usage
— But, H would be “charged” with blocking time B regardless, so no big loss

¢ Con: complexity can be high

» Almost-static priorities, not fully static
— But, only changes when mutex encountered, not on every scheduling cycle

» Nested priority elevations can be tricky to unwind as tasks complete
« Multi-resource implementations are even trickier

¢ If you can avoid need for a mutex, that helps a lot
e But sometimes you need a mutex; then you need priority inheritance too!

13

Mars Pathfinder Incident (Sojourner Rover)

¢ July 4, 1997 — Pathfinder lands on Mars
« First US Mars landing since Vikings in 1976
» First rover to land (vs. crash) on Mars
o Uses VxWorks RTOS

¢ But, a few days later...

* Multiple system resets occur
— Watchdog timer saves the day!
— System reset to safe state instead of unrecoverable crash

» Reproduced on ground; patch uploaded to fix it
— Developers didn’t have Priority Inheritance turned on!
— Scenario pretty much identical to H/M/L picture a couple slides back

— Rough cause: “The data bus task executes very frequently and is time-critical -- we
shouldn't spend the extra time in it to perform priority inheritance” [Jones07]

=myermr
s T

RTOS Selection
¢ RTOS = Real Time Operating System

An OS specifically intended to support real time scheduling
— Usually, this means ability to meet deadlines

Can support any scheduling approach, but often is preemptive & prioritized
Usually designed to have low blocking time B

¢ Why isn’t plain Windows an RTOS?

Example — Win NT (in all fairness, it was never supposed to be an RTOS!)

31 priority levels (not enough if you need one per task and one per resource)
— Round robin execution to all threads at same priority
— Probably want 256 or more for an RTOS

Didn’t support priority inheritance

Long blocking times on simple system calls (e.g., 670 usec+ on WIinNT)
Device drivers aren’t designed to guarantee minimum blocking time

Virtual memory is assumed active (swap to disk is a timing problem!)

It’s expensive for mass market products at $186+ per license

Source: [http://www.dedicated-systems.com/magazine/97q2/winntasrtos.htm]

15

So What Do You Need In An RTOS?

Source: [Hawley03] Selecting a Real-Time Operating System, Embedded.com

¢ Build vs. buy
e Don’tbuild it if you can buy it (“free” = “buy” for right now)
e More on this later

¢ Footprint
 How much memory does the RTOS take?
» Tasker can be very small, but there is more to an RTOS than that

o Libraries
— If you use one math function, does linker drag in all math functions?
— Or can linker just link functions you actually use?
» Feature subsetting
— Can you get RTOS to include only features you need to minimize footprint?

16

RTOS Features — 2

¢ Performance
* Real Time !'= Real Fast but Real Slow is no fun either
* Blocking time B is key!
e What is task switching time?
* What is maximum blocking time within supplied code?
» Does it get things such as device driver blocking right?
* Boot time — does your customer want to wait 5 minutes to boot a flashlight?
» Make sure you compare apples to apples — comparable CPUs and clock speeds

¢ Add-ons
e Does it come with support for web connectivity?

* Does it support domain-specific needs (e.g., MISRA C compiler for
automotive?)

¢ Tool support — comes with or supports other tools you need
o Compilers
* Debuggers
« Simulators, ICE, etc.

17

RTOS -3

¢ Standards support
e Windows?
o POSIX (*“Unix”)?
— Watch out for subsetting! Might support some functions but not even a command
prompt
— QNX and RT-Linux have a command prompt
— VxWorks is Posix compliant, but doesn’t support “fork”

« Safety certification, if required (domain specific)
— This is becoming more common for major players

¢ Technical support
* Will they answer the phone at 3 AM if your biggest customer is down?
e Training
o Examples

¢ Source code
« Some will provide you with source code outright so you can self-support
« Some will put source code in escrow in case they go out of business

18

RTOS -4
¢ RTOS features you need

e Mutex / semaphore
— Priority inheritance or priority ceiling

« Scheduling support: RMS (big RTOS) or static multi-rate (medium RTOS) or single-
rate cyclic exec (small RTOS)

» Processes (big RTOS) or just tasks (medium/small RTOS)
« Memory protection and memory management

¢ Licensing — how much does it cost?
» Bulk license — flat fee for unlimited copies
« Per-copy license — usually “runtime only” license is “cheap”
— Development license may be expensive
» Free software isn’t really free
— Support comes from somewhere — internal or 39 party

¢ Reputation
« Will the company be there for you?
— Will it still be there tomorrow (is it one guy in a garage?)
» Does its software actually work?

19

ThreadX is Field Proven!

With ower a billion deployments, ThreadX is industry proven and ready for vour most demanding

reguirements.

Small Footprint

ThreadX is implemented as a C library. Only the features used by the application are brought into
the final image. The minimal footprint of ThreadX is under ZKB on Microcontrollers.

* Minimal Kernel Size: Under 2K bytes
* Queue Services: 300 bytes

* Semaphore Services: 450 bytes

s Mutex Services: 1200 bytes

* Block Memory Services: 550 bytes

* Minimal RAM requirement: 500 bytes
* Minimal ROM requirement: 2K bytes

* Measurements based on ThreadX V5.1, configured for minimal size

Fast Response

Thread¥ helps yvour application respond to external events faster than ever before. ThreadX is
also deterministic. A high priority thread starts responding to an external event on the order of

the time it takes to perform a highly optimized Threadx context switch.

* Boot Time: 300 cycles
* Context Switch Time: 20 cycles

* Semaphore Get: 30 cycles
* timing based on Threadx V3.1, configured for maximum performance and minimal size.

Instant On

Thread¥ requires as little as 300 cycles to imitialize and start scheduling application threads. This

iz hugely important for consumer and medical devices that simply can't afford a long boot time.

_~s s
Green Hills Leading the Embedded World A A

SOFTWARE

|
I) e e e e e M s

Safety Critical Products: INTEGRITY®-178B RTOS

» Download INTEGRITY®-178B RTOS Datasheet (PDF)

. : . _ Related Articles
The INTEGRITY®E-178B operating system is the most secure operating system in

the waorld to have been certified by the NSA-managed NIAP lab to EALG+ High * INTEGRITY Security Overview

Robustness. No other commercial operating system has attained this level of » The Gold Standard for Operating System Security:
security. No other commercial operating system has entered into an evaluation at SKPP

EALG+ High Robustness. « Secure Separation Architecture

Secure Partition 1 Secure Partition 2 Secure Partition 3 Secure Partition 4

INTEGRITY-173B
Ada Program C Program EC++ Program C Program

Safety Level: A Safety Level: A Safety Level: B Safety Level: D Safety critical runtime options

(High i Medi (Low) " : .
éhﬁ“i (High) (Mocium) + Securely partitioned real-time operating system

P o SO + Protection in both the time and space domains
+ Resource/I0 protection

+ ARINC-653-1 compliant APEX interface

« Support for multiple levels of safety criticality

« Support for Ada 95, C, and Embedded C++

« Support for Rate Monotonic Analysis (RMA)
HO EFFECT ! « DO-178B Level & certification package

INTEGRITY-178B Kernel

Embedded Processor

21

Adopting A Free RTOS Can Be Tricky

¢ Example: Adopt a “free” RTOS
o Assume it’s “free” (source code available), popular, and pretty good
» Local engineers learn it and make some tweaks
* Now you have your own local code base and some expert engineers

¢ Isit really “free?”
* Engineers invested time learning it, but they’d do that for any RTOS
» Local code base has to be maintained — this is not free
— If bug fixes are published for initial code, have to adapt them to your version

— Maybe no big deal if a small fraction of engineer’s time
— Engineer was good at RTOS design already, so it’s a “free” skill

¢ But what is the organizational cost?
 |f that engineer leaves, you need to hire someone else with RTOS skills!
— And convince them to move to whatever little town that company is in

e May or may not be able to benefit from later add-on tools
— May or may not be able to migrate to later major upgrades

22

Industry Concern: Open Source “Poisoning”
¢ Industry projects have to be very careful about open source
e Some open source licenses are no big deal (probably Berkeley)

« Some open source licenses are toxic (especially GPL)
— GPL library code and using compilers is OK; rest can be a problem

 Some are In between

¢ Common concerns with open source
e Requirement to publish source code of “derivative works”
 Pronhibition for fixed-function product “Tivo-ization” prohibited
» Tracking and publishing copyright attribution (an annoyance)
» Possibility of being sued for patent infringement by open source code

¢ How do you manage the risks?
» Use open source tracking tools that sniff out all open source code in a build

« Have explicit legal department sign-off on every open source component
— Sometimes you can’t use them because the legal issues are too tough
— And sometimes it’s OK ... depends upon product & company

23

Few Projects Are “Clean Sheet of Paper”

2015 UBM Electronics Embedded Markets Study

Does your current project reuse code from a previous
embedded project?

In 2015, 86% reused code.
In 2014, 86% reused code.

90% - In 2013, 86% reused code.
78 79 78 80
80% - 77 In 2012, 85% reused code.
In 2011, 87% reused code.
70% -
60% - Note: Multiple choice for “Yes”

0 answers (a respondents can select
50% - more than one type of reused code).
40% -

30% - 0 23 25 25 25
10% -

% .

No, all new Yes, reused code Yes, reused open- Yes, reused
software, nocode developedin- source, shareware purchased code
reuse house code

m2015 (N = 1,217) =2014 (N = 1,596) m2013 (N = 2,065) 2012 (N = 1,659) ®2011 (N = 1,862)
24

C & C++ Are Prevalent

2015 UBM Electronics Embedded Markets Study

My current embedded project is programmed mostly in:

C
C++

Assembly language

Java

C#
MATLAB 2015 (N =1,217)
2014 (N = 1,594)
LabVIEW ®2013 (N =2,075)
=2012 (N =1,675)

Python
w2011 (N = 1,876)

NET

Other E‘F

http://webpages.uncc.edu/~jmconrad/ECGR4101-2015-
08/Notes/UBM%20Tech%202015%20Presentation%200f%20Embedded%20Markets%20Study%20World%20Day1.pdf
25

RTOS Selection Factors:

2014 Embedded Market Study

Which factors most influenced your deciSten to'use
a commercial operating system?
(Top 14 choices.)

Processor or hardware compatibility e 43%
42%
44

Real-time capability %

35%
35%

34%

Good software tools

[

Support for processor & drivers 8%

32%

J

Technical support 6

30%

Ease of future maintenance 2o

|

Documentation —2 627%
Overall cost T 26%
Royalty-free — 2315,6%
Code size/memory usage [—— I 2%

o

Supplier's reputation
PP P W 2014 (N = 327)

2013 (N = 479)

18%

N
=
X

Networking capability

16%
15%

|

Scheduling efficiency

|

Context switch time 2y, 16%
http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

26

RTOS Popularity

2014 Embedded Market Study
Please select ALL of the operating systems you arexconsidering

using in the next 12 months.

Android — %7%%

FreeRTOS ﬂ 26%

_
Inhouse/custom 15%

19%

Ubuntu H%M%

Micrium (UC/OS-II, [1]) e —, 12%
Debian (Linux) [e— 10%
Microsoft (Win Embedded 7/Standard) E—=——————— 0.
Texas Instruments RTOS [HEG————— 07
Microsoft (Win 7 Compact) ~|SeEG_—————/
Freescale MQX [eSG———_7%
Wind River (VxWorks) —[ESG—_—7%
Texas Instruments (DSP/BIOS) [We—"7%,
Keil (RTX) [eS—c
Mentor Graphics (Nucleus/Linux) T 5%
QNX (QNX) e—5%
Angstrom (Linux) [MEe—5%
Wind River (Linux) [e—_42%
Red Hat (IX Linux) [See—_d%,
Express Logic (Threadx) —[M— 4%
eCos ' 4%
Wittenstein (OpenRTOS/SAFERTOS) s 4%
Analog Devices (VDK) [=—_3%

http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

m 2014 (N = 1,031)

2013 (N = 1,572)
Base: Those who are

considering an operating

system in any project in the
next 12 months

27

	Lecture #23�Real Time�Operating Systems
	Lighting
	Energy Savings
	Where Are We Now?
	Preview
	Remember the Major Scheduling Assumptions?
	Overcoming Assumptions
	Reminder: Basic Hazards
	Mutex + Priorities Leads To Problems
	Bounded Priority Inversion
	Unbounded Priority Inversion
	Solution: Priority Inheritance
	Priority Inheritance Pro/Con
	Mars Pathfinder Incident (Sojourner Rover)
	RTOS Selection
	So What Do You Need In An RTOS?
	RTOS Features – 2
	RTOS – 3
	RTOS – 4
	Slide Number 20
	Slide Number 21
	Adopting A Free RTOS Can Be Tricky
	Industry Concern: Open Source “Poisoning”
	Few Projects Are “Clean Sheet of Paper”
	C & C++ Are Prevalent
	RTOS Selection Factors:
	RTOS Popularity

