
Lecture #23

Real Time
Operating Systems

18-348 Embedded System Engineering
Philip Koopman

Monday, April 11, 2016

© Copyright 2010-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Lighting

 It’s just a
light switch –
how hard
can it be?

http://www.lutron.com/Products/WholeHomeSystems/Homeworksqs/Pages/Components.aspx

3

Energy Savings

[Lutron]

Real time light dimming
• Occupancy Sensors
• Daylight Sensors
• Wireless & wired networking
• Provide constant illumination

across building
• Save by avoiding 100%-on

4

Where Are We Now?
 Where we’ve been:

• Interrupts
• Context switching and response time analysis
• Concurrency
• Scheduling

 Where we’re going today:
• RTOS and other related topics
• Priority inversion
• Why software quality matters (safety & security)

 Where we’re going next:
• Intro to embedded networks
• System booting, control, safety
• Test #2 on Wednesday April 20th, 2016

5

Preview
 Priority Inversion

• Combining priorities with a mutex leads to complications
• Priority inheritance & priority ceiling as solutions

 RTOS overview
• What to look for in an RTOS
• Market trends in RTOS
• General embedded design trends

6

Remember the Major Scheduling Assumptions?
 Five assumptions throughout this lecture

1. Tasks {Ti} are perfectly periodic
2. B=0
3. Pi = Di
4. Worst case Ci
5. Context switching is free

7

Overcoming Assumptions
 WHAT IF:

1. Tasks {Ti} are NOT periodic
– Use Sporadic techniques

2. Tasks are NOT completely independent
– Worry about dependencies

(lets talk about this one)

3. Deadline NOT = period
– Use Deadline monotonic

4. Worst case computation time ci isn’t known
– Use worst case computation time, if known
– Build or buy a tool to help determine Worst Case Execution Time (WCET)
– Turn off caches and otherwise reduce variability in execution time

5. Context switching is free (zero cost)
– Gets messy depending on assumptions
– Might have to include scheduler as task
– Almost always need to account for blocking time B

8

Reminder: Basic Hazards
 Deadlock

• Task A needs resources X and Y
• Task B needs resources X and Y

• Task A acquires mutex for resource X
• Task B acquires mutex for resource Y

• Task A waits forever to get mutex for resource Y
• Task B waits forever to get mutex for resource X

 Livelock
• Tasks release resources when they fail to acquire both X and Y, but…

just keep deadlocking again and again

 We’re not to solve these here… desktop OS designers have these too
• But there are related priority problems specific to real time embedded systems

9

Mutex + Priorities Leads To Problems
 Scenario: Higher priority task waits for release of shared resource

• Task L (low prio) acquires resource X via mutex
• Task H (high prio) wants mutex for resource X and waits for it

 Simplistic outcome with no remedies to problems (don’t do this!)
• Task H hogs CPU in an infinite test-and-set loop waiting for resource X
• Task L never gets CPU time, and never releases resource X

• Strictly speaking, this is “starvation” rather than “deadlock”

[Renwick04] modified

Waits for Mutex Forever

10

Bounded Priority Inversion
 An possible approach (BUT, this has problems…)

• Task H returns to scheduler every time mutex for resource X is busy
• Somehow, scheduler knows to run Task L instead

– If it is a round-robin preemptive scheduler, this will help
– In prioritized scheduler, task H will have to reschedule itself for later

» Can get fancy with mutex release re-activating waiting tasks, whatever ….

• Priority inversion is bounded – Task L will eventually release Mutex
– And, if we keep critical regions short, this blocking time B won’t be too bad

[Renwick04]

11

Unbounded Priority Inversion
 But, simply having Task H relinquish the CPU isn’t enough

• Task L acquires mutex X
• Task H sees mutex X is busy, and goes to sleep for a while; Task L resumes
• Task M preempts task L, and runs for a long time
• Now task H is waiting for task M  Priority Inversion

– Task H is effectively running at the priority of task L because of this inversion

[Renwick04]

12

Solution: Priority Inheritance
 When task H finds a lock occupied:

• It elevates task L to at least as high a priority as task H
• Task L runs until it releases the lock, but with priority of at least H
• Task L is demoted back to its normal priority
• Task H gets its lock as fast as possible; lock release by L ran at prio H

 Idea: since mutex is delaying task H, free mutex as fast as you can
• Without suspending tasks having higher priority than H!
• For previous slide picture, L would execute with higher prio than M

[Renwick04]

13

Priority Inheritance Pro/Con
 Pro: it avoids many deadlocks and starvation scenarios!

• Only elevates priority when needed (only when high prio task wants mutex)

 Run-time scheduling cost is perhaps neutral
• Task H burns up extra CPU time to run Task L at its priority
• Blocking time B costs per the scheduling math are:

– L runs at prio H, which effectively increases H’s CPU usage
– But, H would be “charged” with blocking time B regardless, so no big loss

 Con: complexity can be high
• Almost-static priorities, not fully static

– But, only changes when mutex encountered, not on every scheduling cycle
• Nested priority elevations can be tricky to unwind as tasks complete
• Multi-resource implementations are even trickier

 If you can avoid need for a mutex, that helps a lot
• But sometimes you need a mutex; then you need priority inheritance too!

14

Mars Pathfinder Incident (Sojourner Rover)
 July 4, 1997 – Pathfinder lands on Mars

• First US Mars landing since Vikings in 1976
• First rover to land (vs. crash) on Mars
• Uses VxWorks RTOS

 But, a few days later…
• Multiple system resets occur

– Watchdog timer saves the day!
– System reset to safe state instead of unrecoverable crash

• Reproduced on ground; patch uploaded to fix it
– Developers didn’t have Priority Inheritance turned on!
– Scenario pretty much identical to H/M/L picture a couple slides back
– Rough cause: “The data bus task executes very frequently and is time-critical -- we

shouldn't spend the extra time in it to perform priority inheritance” [Jones07]

15

RTOS Selection
 RTOS = Real Time Operating System

• An OS specifically intended to support real time scheduling
– Usually, this means ability to meet deadlines

• Can support any scheduling approach, but often is preemptive & prioritized
• Usually designed to have low blocking time B

 Why isn’t plain Windows an RTOS?
• Example – Win NT (in all fairness, it was never supposed to be an RTOS!)
• 31 priority levels (not enough if you need one per task and one per resource)

– Round robin execution to all threads at same priority
– Probably want 256 or more for an RTOS

• Didn’t support priority inheritance
• Long blocking times on simple system calls (e.g., 670 usec+ on WinNT)
• Device drivers aren’t designed to guarantee minimum blocking time
• Virtual memory is assumed active (swap to disk is a timing problem!)
• It’s expensive for mass market products at $186+ per license
• Source: [http://www.dedicated-systems.com/magazine/97q2/winntasrtos.htm]

16

So What Do You Need In An RTOS?
Source: [Hawley03] Selecting a Real-Time Operating System, Embedded.com

 Build vs. buy
• Don’t build it if you can buy it (“free” = “buy” for right now)
• More on this later

 Footprint
• How much memory does the RTOS take?
• Tasker can be very small, but there is more to an RTOS than that
• Libraries

– If you use one math function, does linker drag in all math functions?
– Or can linker just link functions you actually use?

• Feature subsetting
– Can you get RTOS to include only features you need to minimize footprint?

17

RTOS Features – 2
 Performance

• Real Time != Real Fast … but Real Slow is no fun either
• Blocking time B is key!
• What is task switching time?
• What is maximum blocking time within supplied code?
• Does it get things such as device driver blocking right?
• Boot time – does your customer want to wait 5 minutes to boot a flashlight?
• Make sure you compare apples to apples – comparable CPUs and clock speeds

 Add-ons
• Does it come with support for web connectivity?
• Does it support domain-specific needs (e.g., MISRA C compiler for

automotive?)

 Tool support – comes with or supports other tools you need
• Compilers
• Debuggers
• Simulators, ICE, etc.

18

RTOS – 3
 Standards support

• Windows?
• POSIX (“Unix”)?

– Watch out for subsetting! Might support some functions but not even a command
prompt

– QNX and RT-Linux have a command prompt
– VxWorks is Posix compliant, but doesn’t support “fork”

• Safety certification, if required (domain specific)
– This is becoming more common for major players

 Technical support
• Will they answer the phone at 3 AM if your biggest customer is down?
• Training
• Examples

 Source code
• Some will provide you with source code outright so you can self-support
• Some will put source code in escrow in case they go out of business

19

RTOS – 4
 RTOS features you need

• Mutex / semaphore
– Priority inheritance or priority ceiling

• Scheduling support: RMS (big RTOS) or static multi-rate (medium RTOS) or single-
rate cyclic exec (small RTOS)

• Processes (big RTOS) or just tasks (medium/small RTOS)
• Memory protection and memory management

 Licensing – how much does it cost?
• Bulk license – flat fee for unlimited copies
• Per-copy license – usually “runtime only” license is “cheap”

– Development license may be expensive
• Free software isn’t really free

– Support comes from somewhere – internal or 3rd party

 Reputation
• Will the company be there for you?

– Will it still be there tomorrow (is it one guy in a garage?)
• Does its software actually work?

21

22

Adopting A Free RTOS Can Be Tricky
 Example: Adopt a “free” RTOS

• Assume it’s “free” (source code available), popular, and pretty good
• Local engineers learn it and make some tweaks
• Now you have your own local code base and some expert engineers

 Is it really “free?”
• Engineers invested time learning it, but they’d do that for any RTOS
• Local code base has to be maintained – this is not free

– If bug fixes are published for initial code, have to adapt them to your version
– Maybe no big deal if a small fraction of engineer’s time
– Engineer was good at RTOS design already, so it’s a “free” skill

 But what is the organizational cost?
• If that engineer leaves, you need to hire someone else with RTOS skills!

– And convince them to move to whatever little town that company is in
• May or may not be able to benefit from later add-on tools

– May or may not be able to migrate to later major upgrades

23

Industry Concern: Open Source “Poisoning”
 Industry projects have to be very careful about open source

• Some open source licenses are no big deal (probably Berkeley)
• Some open source licenses are toxic (especially GPL)

– GPL library code and using compilers is OK; rest can be a problem
• Some are in between

 Common concerns with open source
• Requirement to publish source code of “derivative works”
• Prohibition for fixed-function product “Tivo-ization” prohibited
• Tracking and publishing copyright attribution (an annoyance)
• Possibility of being sued for patent infringement by open source code

 How do you manage the risks?
• Use open source tracking tools that sniff out all open source code in a build
• Have explicit legal department sign-off on every open source component

– Sometimes you can’t use them because the legal issues are too tough
– And sometimes it’s OK … depends upon product & company

24

Few Projects Are “Clean Sheet of Paper”

25

C & C++ Are Prevalent

http://webpages.uncc.edu/~jmconrad/ECGR4101-2015-
08/Notes/UBM%20Tech%202015%20Presentation%20of%20Embedded%20Markets%20Study%20World%20Day1.pdf

26

RTOS Selection Factors:

http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

27

RTOS Popularity

http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

	Lecture #23�Real Time�Operating Systems
	Lighting
	Energy Savings
	Where Are We Now?
	Preview
	Remember the Major Scheduling Assumptions?
	Overcoming Assumptions
	Reminder: Basic Hazards
	Mutex + Priorities Leads To Problems
	Bounded Priority Inversion
	Unbounded Priority Inversion
	Solution: Priority Inheritance
	Priority Inheritance Pro/Con
	Mars Pathfinder Incident (Sojourner Rover)
	RTOS Selection
	So What Do You Need In An RTOS?
	RTOS Features – 2
	RTOS – 3
	RTOS – 4
	Slide Number 20
	Slide Number 21
	Adopting A Free RTOS Can Be Tricky
	Industry Concern: Open Source “Poisoning”
	Few Projects Are “Clean Sheet of Paper”
	C & C++ Are Prevalent
	RTOS Selection Factors:
	RTOS Popularity

