
Lecture #12

Time And Counters;
Watchdog Timers

18-348 Embedded System Engineering
Philip Koopman

Monday, 22-Feb-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

https://www.youtube.com/watch?v=-5wpm-gesOY

3

Where Are We Now?
 Where we’ve been:

• Part 1 of course – lots of general topics that you’ll need

• DON’T FORGET TO:
– Look at feedback from TAs on your labs

°

 Where we’re going today:
• Time and counters – a bit more nitty-gritty
• Look for using previous concepts (e.g., fixed point math)

°

 Where we’re going next:
• Test #1 in class Wednesday Feb 24, 2016
• Interrupts, concurrency, and scheduling
• Analog and other I/O
• Test #2 on Wednesday April 20, 2016
• Final project is more self-directed; a bit more time to work on it

4

Preview
 Time of day

• Accuracy, drift
• How computers really measure time

 Hardware timer operation
• Setting up a timer, including frequency calculations
• Converting a hardware timer to time of day
• Classic timer mistakes

 Watchdog timer operation
• How and why to use a watchdog timer
• How not to use a watchdog timer

5

How Do You Know What Time It Really Is?
 www.time.gov

 Other good sources:
• GPS
• NIST radio broadcast (WWV radio)
• Cell phone system
• Internet time servers

• But you have to know what time zone you’re in!
– (What about mobile systems?)

6

Daylight Savings Time & Time Zones
 Daylight savings time switches on particular dates

• Which are declared annually by Congress and have been known to change
– WW II had war-time daylight savings time to save energy
– “Energy Crisis” in the 70’s resulted in year-round daylight savings time
– Only the Navajo nation within Arizona does DST (not the state; not the Hopi resv.)

• http://www.energy.ca.gov/daylightsaving.html
– Beginning in 2007, Daylight Saving Time extended:
– 2 a.m. on the Second Sunday in March to

2 a.m. on the First Sunday of November.
– This does not correspond to European dates!

www.time.gov

9

F-22 Raptor Date Line Incident
 February 2007

• A flight of six F-22 Raptor fighters attempts
to deploy to Japan

• $360 million per aircraft
– (Perhaps $120M RE, rest is NRE)

• Crossing the International Date Line, computers crash
– No navigation
– No communications
– No fuel management
– Almost everything gone!
– Escorted to Hawaii by tankers
– If bad weather, might have

caused loss of aircraft

• Cause: “It was a computer glitch in the
millions of lines of code, somebody made an
error in a couple lines of the code and
everything goes.”

[DoD]

[Wikipedia]

10

2013: NASA Declares End to Deep Impact Comet Mission

http://news.nationalgeographic.com/news/2013/09/1309
20-deep-impact-ends-comet-mission-nasa-jpl/

http://apod.nasa.gov/apod/
image/0505/art1_deepimpact.jpg

Note: Unix epoch is
00:00:00 UTC on
1 January 1970.

ISO 8601 date format:
1970-01-01T00:00:00Z.

12

Problems With Time in the Real World
 Coordinated Universal Time (UTC; world time standard)

• Is not a continuous function due to leap seconds
(and is only monotonic by putting 61 seconds in a minute just before midnight)

• Leap year also causes discontinuities, although they’re more predictable

 Time zones
• Not just on hourly boundaries – Venezuela is UTC/GMT -4:30 hours; no DST
• TV auto-time-set might sync to channel from wrong time zone via cable feed

 DST changeover date changes fairly often
• With little warning compared to a 10-20 year embedded system lifetime

 “Y2K”
• “99”  “00” on Jan 1, 2000 (there were many failures, but world did not end)
• The GPS 1024 week time rollover (a ship got lost at sea…)
• And Unix rollover problem (January 19, 2038 03:15:07 GMT)

13

Internationalization
 The Moral Of The Time Stories:

• Keep time in GMT or UTC, not local time
• Keeping time is tricky (rollover, time zones, etc.); kids don’t try this at home
• And … it’s more than just time keeping

 What day is 02/03/16?
• In the US: Feb 3, 2016
• In Europe: 2 March 2016
• Don’t forget: AM / PM vs. 24 hour clock

 Other internationalization issues:
• English vs. Metric (F vs. C; ft vs. meters; speed limit in mph + distance in km)
• Many, many complications on translation

– Singular v. plural; Gender
– Currency signs & conversion
– ASCII vs. 16-bit Unicode
– …

14

Time and Computers
 Computers are digital (and therefore discrete) devices

• Can count up things (for example, seconds)
• But, can’t actually represent exact analog values

 Time is an analog value
• Time flows smoothly as far as we’re concerned, not in big chunks
• How do we get from a smooth, continuous flow to a countable number?

 Basic source of timing information – the system clock
• A clock provides discrete time chunks at some operating speed
• Not only cycles the CPU registers, but also providing a basis for counting time!

• Basis of time in computers is – no surprise – counting “clock” cycles

15

Physical Clock – What’s The Basis For Time?
 Typical source: oscillator circuit, perhaps augmented

with GPS time signal
• R/C timing circuit; somewhat stable (e.g., 1% resistor gives a lot of drift!)
• Commodity crystal oscillator; perhaps 10-6 /sec stability (14-pin DIP size)
• Oven-controlled for wireless communications; perhaps 10-11 /sec stability
• Micro-rubidium atomic oscillator

– perhaps 10-11 /month stability
– 0.7 kg weight
– 0.3 liter volume

16

Can You Run Faster Than The Oscillator?
 Course board uses a 4 MHz crystal oscillator

• Divided to 2 MHz to get accurate 50% duty cycle
• Specs from module documentation are: 4 MHz +/- 30 ppm

– 30 ppm = 3 * 10-5 = 0.003% => +/- 120 Hz

 We want to run at 8 MHz
• CPU can handle up to 25 MHz
• Old modules ran at 8 MHz and this avoids many

potential bugs in course software infrastructure
• Any guesses as to why new module is at 2 MHz?

 Running faster than the oscillator:
• Turn on the PLL (Phase Locked Loop)
• Set PLL multiplier
• Hardware automatically generates

faster clock that tracks input oscillator edges
• What is drift rate of this faster oscillator?

17

Simple Real-World Drift Example
 A gizmo has a crystal oscillator running at 32,768 Hz + 0.002%

• 32,768 is a standard watch crystal frequency (15-bit divider gives you 1 Hz)
– (.002% is a 2*10-5 drift rate)

• The product specification requires accuracy of 2 seconds/day
• Assume perfect software counting of oscillator clock cycles
• Will the oscillator meet the specification?

(.00002 sec/sec drift rate * (60 sec * 60 min * 24 hr)
= 1.728 sec drift per day (so it meets the spec.)

• How far will it drift over a 2-year battery life?

1.728 sec/day * (365.25 days * 2 years) = 21 minutes drift over 2 years

 Observations:
• 10-6 or 10-7 is probably desirable for consumer products that keep time

– Is the course computer good enough to be a clock?
• There are a lot of seconds in a year (31.6 million ~= 225 of them)

18

Counting The Clocks
 Time is an integer count of some number of clock “ticks”

• One year @ 2 MHz takes about 47 bits to represent as an integer – too big to be
useful for most embedded applications

• But, most applications don’t need time to the nearest 1/2,000,000 second
• So, we want time with a bigger granularity than this

 Thus, the concept of the timer
• Increment a “timer” once every N CPU clocks (this is a clock “tick”)

– Potentially, tell the CPU to update its software-maintained clock on every timer
increment; maybe a 32-bit integer

• Example: Original IBM PC updated time of day 18.2 times/second
– Windows Forms timer is still that speed (55 msec)

• Many Unix systems have base timers that run at 30 or 60 times/second
– Why this frequency?

19

Course Chip Timing Support

Ignore for today

[Freescale]

20

Hardware Timer Operation
 “Channels” and “IOC” items are for pulse inputs/outputs

• Not relevant to this lecture
 Prescaler

• Divide system clock by an integer value as input to timer
– System clock is 8 MHz for course HW; defaults to some other speed in simulator

• PR[2:0] controls prescale amount
– Divide bus clock by: 1, 2, 4, 8, 16, 32, 64, 128

 16-bit Counter -- TCNT
• “up” counter – always increments
• Clocked by prescaled bus – one increment every 1, 2, 4, 8, … , 128 bus clocks

[Freescale]

21

Reading The Hardware Timer
// set TN = 1 Timer Enable TSCR1 bit 7
TSCR1 |= 0x80;
// set PR[2:0] Timer prescale in bottom 3 bits of TSCR2
TSCR2 = (TSCR2 & 0xF8) | 0x04; // 0x04 bus clock / 16
for(;;) { timer_val = TCNT;
} /* update timer_val forever */

[Freescale]

22

How Can We Use This To Measure Time?
 Every time TCNT rolls over to zero, increment a software time counter

• This is really inefficient!!! – but demonstrates the general idea

int time_count = 0;
// set TN = 1 Timer Enable TSCR1 bit 7
TSCR1 |= 0x80;
// set PR[2:0] Timer prescale in bottom 3 bits of TSCR2
TSCR2 = (TSCR2 & 0xF8) | 0x07; // 0x07 bus clock / 128

// Only works if loop is faster than timer increments!
for(;;)
{ // increment time_count whenever TCNT reaches zero
if (TCNT == 0)
{ time_count++;
while (TCNT == 0); /*wait for TCNT to change again*/

}
}

23

How Fast Does That Time Counter Increment?
 Analytically:

• 8 MHz module
• 16-bit counter rolls over every 65536 counts
• Prescale by 128, so roll over happens 128 times slower

• (How long for 2 MHz Module?)

 Experimentally (via simulator set for 8 MHz):
• Set breakpoint at: time_count++;
• First breakpoint: 8,372,411
• Second breakpoint: 16,761,026
• Elapsed time: 8388615 clocks = 1.048577 seconds

– (accurate within less than time to execute the loop testing for zero)

seconds 1.048576000,000,8/128*65536 ==time

24

Accuracy
 What if we wanted to display time with seconds?

• This hardware won’t make that easy!
• Can’t get exactly 1 second tick values from hardware
• Can do better by updating a lot more frequently than every second

 For example, to display time in seconds…
• Find a divider value for which TCNT rolls over every 0.025 to 0.10 seconds

– This is how the IBM PC got 0.055 second ticks – it was an “easy” divider value
• Update a software counter on every TCNT rollover
• Whenever that software counter exceeds 1 second of value,

update the seconds count

• This still won’t display exact seconds….
– Accurate to within TCNT rollover period plus sampling jitter
– But for a clock the human eye can only “see” about 0.05 to 0.1 seconds anyway

25

Design To Track Seconds
 Keep state machine to track rollover

• Only needs to sample TCNT a few times per
rollover to avoid missing one

• Accuracy improved with sampling speed
• Do other application stuff in both “TCNT high bit

set” and “TCNT high bit clear” states
• But how do we handle the rollover?

TCNT
High Bit

SET

TCNT
High Bit
CLEAR

TCNT
ROLL-
OVER

Top Bit of
TCNT = 0

Top Bit of
TCNT = 1

ALWAYS
Init

Timer

Top Bit of
TCNT = 1

Top Bit of
TCNT = 0

26

Design Example – Don’t Lose Fractions
 Assume bus clock divide by 64; 25 MHz board

• 65536 * 64 / 25,000,000  TCNT rollover every 0.167772 seconds
• (Need to sample TCNT every 0.08 seconds to catch the rollover event)

• If we want to keep seconds, then increment seconds every 5 or 6 rollovers

 How do we track fractional seconds without floating point?
• Answer: 16.16 fixed point! – a 32-bit fixed point integer

– unsigned long current_time;
– Top 16 bits are integer seconds
– Bottom 16 bits are fractional seconds

(each integer “count” = 1/65536 seconds = 0.00001525878906 seconds)
• For each TCNT rollover, add 0.166772 / 0.00001525878906

= 10930 fractional seconds

• TCNT rollover becomes: current_time += 10930;
• Seconds are in: (current_time >> 16) & 0xFFFF;

27

Time Accuracy Calculation
 An approximation makes life easy, but how far off is it?

 In 10,000 seconds, TCNT will roll over:
• 10,000 * 25,000,000 / (65536 * 64) = 59,605 times
• That’s 10930 fractional seconds added to the 32-bit time counter

10930 * 59,605 = 651,482,650  $26D4 D61A
• Top 16 bits are $26D5 (rounded)  9941 (instead of 10,000)

• Accuracy is 9941/10,000  99.41% (0.59% error due to timer interval)
• How could we be better?

 Is this good enough?
• Crystal Oscillator is 4 MHz +/- 0.003%, which is insignificant for this purpose
• Error is: 0.59% * 31536000 seconds/year = 51.7 hours per year; 8.5

minutes/day
• NOTE: Our time counter rolls over every 64K seconds = 18.2 hours

– What this really means is you want 32.32 fixed point time for longer operation

28

Why Are Timers Such A Big Deal?
 No more counting NOPs in loops

• NOP-delay loops are a pain to build and get right
• And they break every time you change the oscillator speed or CPU clocks/instr!

 Lets processor do other useful work while keeping time
• Can check timer once in a while to see if top bit of TCNT rolled over
• Combined with “interrupts” (next lecture), processor doesn’t have to check time

periodically – is just notified on every rollover of TCNT

 Time values independent of software execution
• Not sensitive to variations in instruction timing
• Still works if software inside loop has multiple “if/else” paths…

because it is not based on how long software takes to run
• Still works at different clock speed (need to adjust the prescale value)

 BUT, it’s a bit of work getting accurate time-of-day values
• Have to take into account exactly how often HW timer ticks and rolls over!

29

Classic Timer Mistakes – “Nanosecond” Time
• [http://www.gnu.org/software/libc/manual/html_node/Elapsed-

Time.html#Elapsed-Time]
• — Data Type: struct timespec

The struct timespec structure represents an elapsed time. It is
declared in time.h and has the following members:

• long int tv_sec
– This represents the number of whole seconds of elapsed time.

• long int tv_nsec
– This is the rest of the elapsed time (a fraction of a second),
represented as the number of nanoseconds. It is always less
than one billion.

 This value reports time in nanoseconds
• That means it is a number of nanoseconds
• That does NOT mean it is the nearest nanosecond
• The underlying hardware has a timer that only increments once in a while!

• Classic mistake is to ignore quantization error in the timers

30

Classic Timer Mistakes – Non-Atomic Access

 What happens if you use two 8-bit reads (LDAA) instead of LDD?
• 16-bit fetch locks the value as it is being read; gives correct result
• Timer hardware might increment between two byte-sized reads
• AND, that increment might include a carry from low 8 to high 8 bits

• $03FF  $0400 read hi then lo gives $03 … $00 => $0300!
• This is an absolutely classic timer bug – don’t let it happen to you!!!

[Freescale]

31

Classic Timer Mistakes – Rollover

 Eventually integer timers roll over
• Assume time kept in 100ths of a second as a signed 32-bit integer (wrong type!)

• 0x7FFFFFF = 2147483647 / (24 * 60 * 60 * 100) = 248.55 days to overflow
• (Note: unsigned int would roll over after 497 days)

http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgad.nsf/0/584c7ee3b270fa3086257e38004d0f3e/$FILE/2015-09-07.pdf

http://www.nytimes.com/2015/05/01/business/faa-orders-
fix-for-possible-power-loss-in-boeing-787.html

32

33

Watchdog Timers – Detecting Software “Hangs”
 A common symptom of software problem – system hang

• Could be an infinite loop
• Could be continually chasing a “wild” pointer around
• Could be corrupted data
• … but often systems “lock up” or “hang”

 Good general-purpose remedy – reboot system if it hangs
• But, there is no person around to press “ctl-alt-delete”
• So, let the watchdog timer do it instead
• BUT realize this doesn’t solve all problems

– just some that are nice to address

 Basic watchdog idea:
• Have a hardware timer running all the time (count-down timer)
• When timer reaches zero, it resets the system
• Software periodically “kicks” (or “pets”) the watchdog, restarting the count
• If software has “kicked” the watchdog often enough, no reset takes place

34

Watchdog General Block Diagram
 System reset starts the watchdog initially

• Clock is used to count-down the watchdog timer
• Kick restarts the watchdog
• Watchdog resets CPU when it reaches zero

Microcontroller
CPU

WATCHDOG
TIMER

CLOCK

KICK

RESET

35

Course MCU Watchdog  “COP”
 See chapter 9 of data sheet – “Clocks and Reset Generator” (CRGV4)

• COP = “Computer Operating Properly”  Freescale name for watchdog

[Freescale]

36

When To Kick
 Kick periodically

• Often enough to avoid reset

 Kick only when doing so means the
system is really alive
• Between major subroutine calls
• Only in the main program loop
• NEVER within individual task loops

– Except if you are sure they will
terminate (e.g., fixed integer loop
bounds)

– And even then, probably only in the
main program loop

 These are basic rules
• Advanced topic: with multitasking

system, every task should participate in a
consensus-based watchdog reset
operation

37

Watchdog Timer Select
 Set watchdog so that it is fast enough to catch problems quickly

• But not so fast you miss it
• Requires estimate of program execution speed between kicks

[Freescale]

38

Petting The Watchdog (Kicking the COP)

NOTE – multi-operation “kick” to reduce chance of random code kicking it
[Freescale]

39

Bad Watchdog Use
 Kicking inside a single task loop

• OK, so that loop is alive, but what about other tasks?

 Kicking in a great many places in the code
• Only kick in the main loop; as few places as possible
• What if you make a mistake and kick inside a loop?

 Hooking up a timer interrupt to kick the watchdog
• Every time timer rolls over, kick the watchdog
• Only proves the timer is working, not the main tasks!
• (There are very special exceptions for multitasking)

 Watchdog can be defeated by software
• HW should prevent watchdog turning off once on
• HW should prevent masking/disabling the watchdog

reset once enabled
• Watchdog should require sequence of values to “kick”
• Some systems forget to turn on watchdog

40

Watchdog Margin
 Let’s say you set the watchdog where you think it should be

• You compute expected task execution time
• In the lab, you never see a watchdog trip

– Hopefully you don’t blame one on something else – make sure they are
unmistakable!

• In the field, the watchdog trips – what happened?
– Well, obviously something you didn’t test
– Maybe you set the watchdog too close to the edge!

 Testing watchdog margin
• Change the watchdog divider until it trips

– Does it trip where you expect? (If not, you don’t understand something)
• Add some time-wasting nop-loops in your code

– Does it trip where you expect? (If not, you don’t understand something)

41

Multi-Tasking Watchdog
 Consider a preemptive tasking system

• (We’ll talk more about preemption later – we just mean “multi-tasking” here)
• Assume there is a watchdog timer (a COP timer)
• kick() restarts the watchdog time at initial value

void task0(void) { .. Do stuff..; kick(); …more… ;}
void task1(void) { .. Do stuff..; kick(); …more… ;}
void task2(void) { .. Do stuff..; kick(); …more… ;}
void task3(void) { .. Do stuff..; kick(); …more… ;}

• What’s wrong with the above approach?

• (Murphy00 supplemental reading also talks about this issue)

42

Effective Multi-Tasking Watchdog Approach
void task0(void) { .. Do stuff..; Alive(0x1); }
void task1(void) { .. Do stuff..; Alive(0x2); }
void task2(void) { .. Do stuff..; Alive(0x4); }
void task3(void) { .. Do stuff..; Alive(0x8); }

 Main idea – each task sets a bit indicating it has run
• Separate watchdog monitor task kicks watchdog only when every task has reported in
• Needs to be modified to account for task periods, but this is the basic idea

static uint16 watch_flag = 0;
void Alive(uint16 x)
{ SEI(); // disable interrupts
watch_flag |= x;
CLI(); // enable interrupts

} // set task’s “I’m Alive” bit

void taskw(void) // run periodically
{ if (watch_flag == 0x0F) // if all tasks alive
{ kick(); // kick watchdog
watch_flag = 0; // erase flags

}}

43

Review
 Time of day

• Accuracy – time measurement and quantization
• Drift – due to oscillator speed AND software inaccuracies
• Converting a hardware timer to time of day

 Hardware timer operation
• Setting up a timer, including frequency calculations
• Classic timer mistakes

 Watchdog timer operation
• Setting up the watchdog, including frequency calculations
• How to ensure a watchdog timer is set properly
• Rules for good and bad watchdog use
• Multi-tasking watchdog

44

Lab Skills
 Counter/timer

• Be able to set, read, and generate time of day from a hardware timer

 Watchdog timer
• Be able to set up and measure effects of watchdog timer

	Lecture #12�Time And Counters;�Watchdog Timers
	Slide Number 2
	Where Are We Now?
	Preview
	How Do You Know What Time It Really Is?
	Daylight Savings Time & Time Zones
	Slide Number 7
	Slide Number 8
	F-22 Raptor Date Line Incident
	2013: NASA Declares End to Deep Impact Comet Mission
	Slide Number 11
	Problems With Time in the Real World
	Internationalization
	Time and Computers
	Physical Clock – What’s The Basis For Time?
	Can You Run Faster Than The Oscillator?
	Simple Real-World Drift Example
	Counting The Clocks
	Course Chip Timing Support
	Hardware Timer Operation
	Reading The Hardware Timer
	How Can We Use This To Measure Time?
	How Fast Does That Time Counter Increment?
	Accuracy
	Design To Track Seconds
	Design Example – Don’t Lose Fractions
	Time Accuracy Calculation
	Why Are Timers Such A Big Deal?
	Classic Timer Mistakes – “Nanosecond” Time
	Classic Timer Mistakes – Non-Atomic Access
	Classic Timer Mistakes – Rollover
	Slide Number 32
	Watchdog Timers – Detecting Software “Hangs”
	Watchdog General Block Diagram
	Course MCU Watchdog  “COP”
	When To Kick
	Watchdog Timer Select
	Petting The Watchdog (Kicking the COP)
	Bad Watchdog Use
	Watchdog Margin
	Multi-Tasking Watchdog
	Effective Multi-Tasking Watchdog Approach
	Review
	Lab Skills

