
Lecture #3

Microcontroller
Instruction Set

18-348 Embedded System Engineering
Philip Koopman

Wednesday, 20-Jan-2015

© Copyright 2006-2015, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

April 2013: Traffic Light Heaven in L.A.

4

Where Are We Now?
 Where we’ve been:

• Embedded Hardware

 Where we’re going today:
• Instruction set & Assembly Language

 Where we’re going next:
• More assembly language
• Engineering process
• Embedded C
• Coding tricks, bit hacking, extended-precision math

5

Preview
 Programmer-visible architecture

• Registers
• Addressing modes

 Branching
• Types of branches
• How condition codes are set

 Assembly/Disassembly
• Review of how instructions are encoded

 Timing
• How long does an instruction take to execute? (simple version)

6

Where Does Assembly Language Fit?
 Source code

• High level language (C; Java)
• Variables and equations
• One-to-many mapping with

assembly language

 Assembly language
• Different for each CPU

architecture
• Registers and operations
• Usually one-to-one mapping

to machine language

 Machine language
• Hex/binary bits
• Hardware interprets to

execute program

7

Assembler To ROM Process

[Valvano]

8

RISC Instruction Set Overview
 Typically simple encoding format to make hardware

simpler/faster
 Classical Example: MIPS R2000

• R7 <= R27 + 0x1234

ADDI R27, R7, 0x1234

27

9

CISC Instruction Set Overview
 Complex encoding for small programs
 Classical Example: VAX; Intel 8088

• REP MOVSB (8088 String move)
– Up to 64K bytes moved; source in SI reg; dest in DI reg; count in CX

10

Accumulator-Based Microcontrollers
 Usually one or two “main” registers – “accumulators”

• Historically called register “A” or “Acc” or registers “A” and “B”
• This is where the Pentium architecture gets “AX, BX, CX, DX” from

 Usually one or more “index” registers for addressing modes
• Historically called register “X” or registers “X” and “Y”
• In the Pentium architecture these correspond to SI and DI registers

 A typical “H = J + K” operation is usually accomplished via:
• Load “J” into accumulator
• Add “K” to “J”, putting result into accumulator
• Store “H” into memory
• Reuse the accumulator for the next operation (no large register file)

 Usually microcontrollers are resource-poor
• E.g., No cache memory for most 16-bit micros!

11

CPU12 Resource – Long Version

12

CPU12 Resource – Summary Version

13

“CPU12” Programming Model – (MC9S12C128)

[Motorola01]

D is really just A:B
NOT a separate register!

“Flags” used for
conditional branches}

14

The CPU12 Reference Guide
 Summarizes assembly language programming info

• Lots of info there …. This lecture is an intro to that material

[Motorola01]

15

ALU Operations – Addition as an Example
 “Inherent” address modes:

• ABA (B) + (A) => A Add accumulator B to A
– Encoding: 18 06

• ABX (B) + (X) => X Add accumulator B to X
– Encoding: 1A E5

 Immediate Operand:
• ADDD #value (D) + jj:kk => D Add to D

– Add constant value to D (example: D <= D + 1234)
– Encoding: C3 jj kk
– Example: ADDD #$534 Adds hex 534 (0x534) to D reg

 “Extended” operand – location in memory at 16-bit address:
• ADDD address (D) + [HH:LL] => D Add to D

– Fetch a memory location and add to D
– Encoding: F3 HH LL
– Example: ADDD $5910 Adds 16-bit value at $5910 to D

• NOTE: “[xyz]” notation means “Fetch from address xyz”

16

Address Modes

DIR – Direct (8-bit memory address with zero high bits)
EXT – Extended (16-bit memory address)

[Motorola01]

17

Instruction Description Notation

[Motorola01]

18

Notation for Encoding of Instruction Bytes

19

ALU Operations – Addition Example Revisited
 “Inherent” address modes:

• ABA (B) + (A) => A Add accumulator B to A
– Encoding: 18 06

• ABX (B) + (X) => X Add accumulator B to X
– Encoding: 1A E5

 Immediate Operand:
• ADDD #opr16i (D) + jj:kk => D Add to D

– Add constant value to D (example: D <= D + 1234)
– Encoding: C3 jj kk
– Example: ADDD #$534 Adds hex 534 (0x534) to D reg

 “Extended” operand – location in memory at 16-bit address:
• ADDD opr16a (D) + [HH:LL] => D Add to D

– Fetch a memory location and add to D
– Encoding: F3 HH LL
– Example: ADDD $5910 Adds 16-bit value at $5910 to D

20

ALU Operations – Addition – 2
 Immediate Operand:

• ADDD #opr16i (D) + jj:kk => D Add to D
– Add constant value to D (example: D <= D + 1234)
– Encoding: C3 jj kk
– Example: ADDD #$534 Adds hex 534 (0x534) to D reg

• What C code would result in this instruction?
register int16 T; // assume that X is kept in machine register D
T = T + 0x534;

 “Extended” operand – location in memory at 16-bit address:
• ADDD opr16a (D) + [HH:LL] => D Add to D

– Fetch a memory location and add to D
– Encoding: F3 HH LL
– Example: ADDD $5910 Adds 16-bit value at $5910 to D

• What C code would result in this instruction?
static int16 B; // B is a variable that happens to be at address $5910
T = T + B;

21

ALU Operations – Addition – 2
 “Direct” operand – location in memory at 8-bit address:

• ADDD opr8a (D) + [00:LL] => D Add to D
– Fetch a memory location and add to D; address is 0..FF (“page zero” of memory)
– Encoding: D3 LL
– Example: ADDD $0038

• Special optimized mode for smaller code size and faster execution
– Especially for earlier 8-bit processors, but still can be useful
– Gives you 256 bytes of memory halfway between “memory” and “register” in terms

of ease & speed of access
– Assembler knows to use this mode automatically based on address being $00xx

• Result – programs often optimized to store variables in first 256 bytes of RAM
– If you have very limited RAM, this is worth doing to save time & space!
– But it also promotes use of shared RAM for variables, which is bug prone

• What C code would result in this instruction?
static int16 B; // B is a variable that happens to be at address $0038
T = T + B;

22

ALU Operations – Addition – 3
 “Indexed” operand – memory indexed; pre/post increment/decrement

• ADDD oprx,xysp (D) + [EE:FF+XYSP] => D
– Add oprx to X, Y, SP or PC; use address to fetch from memory; add value into D
– Encoding: E3 xb // E3 xb ff // E3 xb ee ff

(Signed offset value; encoding varies – 5 bits, 9 bits; 16 bits)
– Example: ADDD $FFF0, X add value at (X-1610) to D

Encoding: E3 10 (5 bit signed constant … “$10”)
(see Table 1 of CPU12 reference guide for xb byte encoding)

• Special optimized mode for smaller code size and faster execution
– “xb” can do many tricks, including support for post/pre-increment/decrement to

access arrays

• What C code would result in this instruction?
static int16 B[100];
register int16 *p = &B[50]; // assume “p” is stored in register X
T = T + *(p-8); // adds B[42] to T

23

Indexed Examples

[Valvano]

24

ALU Operations – Addition – 4
 “Indexed Indirect” operand – use memory value as address, with offset

• ADDD [oprx16,xysp] (D) + [[EE:FF+XYSP]] => D
– Add oprx to X, Y, SP or PC; use address to fetch from memory; use the value

fetched from memory to fetch from a different memory location; add value into D
– Encoding: E3 xb ee ff

Example: ADDD [$8, X] add value at [(X+8)] to D
Encoding: E3 E3 00 08 16-bit constant offset
(see Table 1 of CPU12 reference guide for xb byte encoding)

• What C code would result in this instruction?
static int16 vart;
register int16 *p;
static int16 *B[100]; // B is a variable that happens to be at address $38

B[4] = &vart;
p = &B[0]; // assume “p” is stored in register X
T = T + *(*(p+4)); // adds vart to T

25

Indexed Indirect Example
LDAA #$56
LDY #$2345
STAA [-4,Y] ; Fetch 16-bit address from $2341, store A at $1234

$2345 – 4 = $2341

[Valvano]

26

Had Enough Yet?
 Really, all these modes get used in real

programs
• You’ve already seen very similar stuff in

18-240, but that’s more RISC-like
• We expect you to be able to tell us what a

short, simple program we’ve written does
if it uses any of the modes described
during lecture

• There are even trickier modes – seldom
used but nice to have

• See Valvano Section 2.2 for more
discussion

27

Other Math & Load/Store Instructions
 Math

• ADD – integer addition (2’s complement)
• SBD – integer subtraction (2’s complement)
• CMP – compare (do a subtraction to set flags but don’t store result)

 Logic
• AND – logical bit-wise and
• ORA – logical bit-wise or
• EOR – bit-wise exclusive or (xor)
• ASL, ASR – arithmetic shift left and right (shift right sign-extends)
• LSR – logical shift right

 Data movement
• LDA, LDX, … – load from memory to a register
• STA, STX, … – store from register to memory
• MOV – memory to memory movement

 Bit operations and other instructions
• Later…

28

Control Flow Instructions
 Used to go somewhere other than the next sequential instruction

• Unconditional branch – always changes flow (“goto instruction x”)
• Conditional branch – change flow sometimes, depending on some condition

 Addressing modes
• REL: Relative to PC – “go forward or backward N bytes”

– Uses an 8-bit offset rr for the branch target
– Most branches are short, so only need a few bits for the offset
– Works the same even if segment of code is moved in memory

• EXT: Extended hh:ll – “go to 16-bit address hh:ll”
– Takes more bits to specify
– No limit on how far away the branch can be

29

Relative Addressing
 Relative address computed as:

• Address of next in-line instruction after the branch instruction
– Because the PC already points to the next in-line instruction at execution time

• Plus relative byte rr treated as a signed value
– rr of 0..$7F is a forward relative branch
– rr of $80..$FF is a backward relative branch

 Example: BCC cy_clr
• Next instruction is at $0009; rr = $03
• $0009 + $03 = $000C (cy_clr)

 Example: BRA asm_loop
• Next instruction is at $000F;

rr=$F7
• $000F + $F7 =

$000F + $FFF7 =
$000F - $0009 =
$0006 (asm_loop)

30

Unconditional Branch
 JMP instruction – Jump

• JMP $1256 -- jump to address $1256
JMP Target_Name

• JMP also supports indexed addressing modes – why are they useful?

• BRA $12 -- jump to $12 past current instruction
– Relative addressing (“rr”) to save a byte and make code relocatable

 JSR instruction – Jump to Subroutine
• JSR $7614 -- jump to address $7614, saving return address
• JSR Subr_Name

• Supports DIRect (8 bit offset to page 0) and EXTended, as well as indexed
addressing

• More about how this instruction works in the next lecture

31

Conditional Branch
 Branch on some condition

• Always with RELative (rr 8-bit offset) addressing
– Look at detailed instruction set description for specifics of exactly what address the

offset is added to
• Condition determines instruction name

• BCC $08 – branch 8 bytes ahead if carry bit clear
• BCS Loop – branch to label “Loop” if carry bit set
• BEQ / BNE – branch based on Z bit (“Equal” after compare instruction)
• BMI / BPL – branch based on N bit (sign bit)

 Other complex conditions that can be used after a CMP instruction
• BGT – branch if greater than
• BLE – branch if less than or equal
• …

32

Condition Codes
 Status bits inside CPU that indicate results of operations

• C = carry-out bit
• Z = whether last result was zero
• N = whether last result was “negative” (highest bit set)
• V = whether last result resulted in an arithmetic overflow

 Set by some (but not all instructions)
• CMP – subtracts but doesn’t store result; sets CC bits for later “BGE, BGT” etc
• ADD and most arithmetic operations – sets CC bits
• MOV instructions – generally do NOT set CC bits on this CPU

– But, on a few other CPUs they do – so be careful of this!

33

C & V flags
 Carry: did the previous operation result in a carry out bit?

• $FFFF + 1 = $0000 + Carry out
• $7FFF + $8000 = $FFFF + No Carry out
• Carry-in bit, if set, adds 1 to sum for ADC

– we’ll do multi-precision arithmetic later
• Carry bit is set if there is an unsigned add or subtract overflow

– Result is on other side of $0000/$FFFF boundary

 Overflow (V): did the previous operation result in a signed overflow?
• $FFFF + 1 = $0000 no signed overflow (-1 + 1 = 0)
• $7FFF + 1 = $8000 has signed overflow (32767 + 1  -32768)
• This is overflow in the normal signed arithmetic sense that you are used to

– Result is on other side of $8000/$7FFF boundary

 Note that the idea of “overflow” depends on signed vs. unsigned
• Hardware itself is sign agnostic – software has to keep track of data types
• Carry flag indicates unsigned overflow
• V flag indicates signed overflow

34

Look For Annotations Showing CC Bits Set

[Motorola01]

35

Assembler to Hex
 Sometimes (less often these days, but sometimes) you have to write your

own assembler!

 In this course, we want you to do just a little by hand to get a feel
• LDAB #254

• Addressing mode is:___________________
• Opcode is:___________________
• Operand is:___________________
• Full encoding is:_____ _____

[Motorola01]

36

Hex to Assembler (Dis-Assembly)
 If all you have is an image of a program in memory, what does it do?

• Important for debugging
• Important for reverse engineering (competitive analysis; legacy components)

 Start with Hex, and figure out what instruction is
• AA E2 23 CC

• ORAA – one of the indexed versions
• Need to look up XB value => _______________________________

[Motorola01]

37

Easier Way To Find Op-Code Information
[Motorola01]

38

Performance – How Many Clock Cycles?
 This is not so easy to figure out

• See pages 73-75 of the CPU 12 reference manual

 In general, factors affecting speed are:
• Does the chip have an 8-bit or 16-bit memory bus? (Ours has a 16-bit bus)

– 8-bit bus needs one memory cycle per byte
– 16-bit bus needs one memory cycle per 2 bytes, but odd addresses only get 1 byte

• How many bytes in the encoded instruction itself?
– AA E2 23 CC takes 4 bytes of fetching

» 2 bus cycles if word aligned
» 3 bus cycles if unaligned (but get next instruction byte “for free” on 3rd cycle)

• How many bytes of data
– Need to read data and, potentially write it

• Is there an instruction prefetch queue that can hide some fetch delay?
• Is it a complicated computation that consumes clock cycles (e.g., division)?

 Usual lower bound estimate
• Count up clock cycles for memory touches and probably it takes that or longer

39

Simple Timing Example
 ADCA $1246

• EXT format – access detail is “rPO” for HCS12
– r – 8-bit data read
– P – 16-bit program word access to fetch next instruction
– O – either prefetch cycle or free cycle (memory bus idle) based on alignment

• Total is 3 clock cycles
– (lower case letters are 8-bits; upper case letters are 16-bit accesses)
– Simple rule – count letters for best case # of clock cycles

[Motorola01]

40

Another Timing Example
 Recall that “D” is a 16-bit register comprised of A:B
 ADDD $1247, X

• IDX2 format – access detail is “fRPP” for HCS12
– f – free cycle (to add address to computation performed, memory bus idle)
– R – 16-bit data read
– P – 16-bit program word access to fetch next instruction
– P – 16-bit program word access to fetch next instruction

• Total is 4 or 5 clock cycles
– 4 for minimum; plus 1 if value of X+$1247 is odd (straddles word boundaries)

[Motorola01]

41

Preview of Labels for Prelab 2
 Labels are a convenient way to refer to a particular address

• Can be used for program addresses as well as data addresses
• You know it is a label because it starts in column 1 (“:” is optional)

 Assume you are currently assembling to address $4712
• (how you do that comes in the next lecture)

Mylabela:
ABA ; this is at address $4712

Mylabelb:
Mylabelc

PSHA ; this is at address $4713

• The following all do EXACTLY the same thing:
– JMP $4713
– JMP Mylabelb
– JMP Mylabelc

42

Preview of Assembler Psuedo-Ops
 The following are assembler directives, not HC12 instructions

• Labels – refer to an address by name instead of hex number
• ORG: define the address where data/code starts
• DS: Define Storage (allocate space in RAM)
• DC: Define Constant (allocate space in ROM/flash)
• EQU: Equate (like an equal sign for assembler variables)

 This is for orientation when looking at code
• Specifics in the next lecture

43

Lecture 3 Lab Skills
 Write an assembly language program and run it

 Manually convert assembly language to hex

 Manually convert hex program to assembly language

44

Lecture 3 Review
 CPU12 programmer model

• Registers
• Condition codes

 Memory Addressing modes
• Given an instruction using one of the modes described and some memory

contents, what happens?

 Assembly
• Given some assembly language, what is the hex object code?
• Given some hex object code, what is the assembly language

 Simple timing
• Given an encoded instruction, what is the minimum number of clocks to

execute?
– Be able to count number of letters in the timing column
– We do not expect you to figure out all the rules for straddling word boundaries etc.

• Branch cycle counting covered in next lecture

	Lecture #3�Microcontroller�Instruction Set
	April 2013: Traffic Light Heaven in L.A.
	Slide Number 3
	Where Are We Now?
	Preview
	Where Does Assembly Language Fit?
	Assembler To ROM Process
	RISC Instruction Set Overview
	CISC Instruction Set Overview
	Accumulator-Based Microcontrollers
	CPU12 Resource – Long Version
	CPU12 Resource – Summary Version
	“CPU12” Programming Model – (MC9S12C128)
	The CPU12 Reference Guide
	ALU Operations – Addition as an Example
	Address Modes
	Instruction Description Notation
	Notation for Encoding of Instruction Bytes
	ALU Operations – Addition Example Revisited
	ALU Operations – Addition – 2
	ALU Operations – Addition – 2
	ALU Operations – Addition – 3
	Indexed Examples
	ALU Operations – Addition – 4
	Indexed Indirect Example
	Had Enough Yet?
	Other Math & Load/Store Instructions
	Control Flow Instructions
	Relative Addressing
	Unconditional Branch
	Conditional Branch
	Condition Codes
	C & V flags
	Look For Annotations Showing CC Bits Set
	Assembler to Hex
	Hex to Assembler (Dis-Assembly)
	Easier Way To Find Op-Code Information
	Performance – How Many Clock Cycles?
	Simple Timing Example
	Another Timing Example
	Preview of Labels for Prelab 2
	Preview of Assembler Psuedo-Ops
	Lecture 3 Lab Skills
	Lecture 3 Review

