Lecture #3

Microcontroller
Instruction Set

18-348 Embedded System Engineering
Philip Koopman
Wednesday, 20-Jan-2015

() Electrical &Com ter Cal' Ilegle

Y ENGINEERING _ Mellon

April 2013: Traffic Light Heaven in L.A.

Los Angeles synes up all 4,500 of its
tratfic lights

"III mn a
B "“ !x '].u

h:::plng to unclog its massive roadway congestion.

It has taken 30 years and 5400 million, but Los Angeles has finally synchronized its traffic lights in an effort to
reduce traffic congestion, becoming the first city in the world to do so.

Mayor Antonio R. Villaraigosa said with the 4,500 lights
now in sync, commuters will save 2.8 minutes driving
five miles in Los Angeles, The Mew York Times
repored. Villaraigosa also said that the average speed
would rise more than two miles per hour on city streets
and that carbon emissions would be greatly reduced as
drivers spend less time starting and stopping.
According to CB3 Mews, less idling will mean a 1-ton
reduction in carbon emissions every year. 2

Wi 2 Week of Mon _Tu-: Wed Thu _Fri Lﬂb'RE;pDﬂ Due Prelgb Due Ffi. Recitation
(Sec E) || (Sec A) || (SecB) || (Sec C) || (Sec D) ||| Wednesday Friday Discusses Labs

1 1_311 No Lab || No Lab [[Open Lab||Open Lab|/Open Lab Nomne 1 1.2

2 1 1 1 1 2 2.3

3 25-Jan 1 2 2 2 2 | 1 3 34

4 1-Feb 2 3 3 3 3 : 2 4 4.5

5 g-Feb 3 4 4 4 4 : 3 5 5.6

6 15-Feb 4 5 3 3 5 : 4 6 6.7

7 22-Feb 5 Open Lab||Open Lab||{Open Lab] : Nomne None 7.8

8 ||29-Feb 6 6 6 6 BREAK 5 ! Due | 0o Recitation

1 Thursday

— T-Mar SPRING || BREAK || SPRING || BREAK | BREAK : None None No Recitation

9 14-Mar Open Lab||Open Lab 7 7 7 : 6 8 8.9

10 [|21-Mar 7 7 g 8 8 : 7 9 9. 10

11 28-Mar 8 8 9 9 9 : 8 10 10,11

12 ||4-Apr 9 0 10 10 10 : 9 11 11

13 11-Apr 10 10 Open Lab|| Camaval || Camaival : None None No Recitation

14 18-Apr Open Lab|/Open Lab||Open Lab||Open Lab||{Open Lab : 10 None Optional/In-Lab

13 ||125-Apr Open Lab||Open Lab||Open Lab||Open Lab||Open Lab : None None Optional/In-Lab

16 |2-May Finals| TBD | TBD || TBD || TBD | TBD iT]tLE;Z_'__} None | | No Recitation

(*%ze hlackhoard for T.ah 11 nrelab demo & writenn information)

Where Are We Now?

¢ Where we’ve been:
 Embedded Hardware

¢ Where we’re going today:
 [nstruction set & Assembly Language

¢ Where we’re going next:

More assembly language

Engineering process

Embedded C

Coding tricks, bit hacking, extended-precision math

Preview

¢ Programmer-visible architecture
* Registers
e Addressing modes

¢ Branching
* Types of branches
* How condition codes are set

¢ Assembly/Disassembly
* Review of how instructions are encoded

¢ Timing
 How long does an instruction take to execute? (simple version)

Where Does Assembly Language Fit?

¢ Source code
* High level language (C; Java)
* Variables and equations
e One-to-many mapping with

assembly language SOuRCe f=RB+C
cope |
c K
¢ Assembly language CoMET Lonp RV, B
* Different for each CPU hrssemp Ly Lopy R2, C
architecture LANCURCE pop R3 RLEZ
* Registers and operations lﬂsfé‘”‘”"éyz SToRe A3, A
« Usually one-to-one mapping
to machine language Mmachinve Px EA47423|
Lndfc/uno'é 07‘ B7 3Z$ﬂq2
Machine language Orvv*’
¢ Mac Juag EXECUTION

e Hex/binary bits

e Hardware interprets to
execute program

Assembler To ROM Process

Figure 2.1
Assembly language
development process.

Source code Assembler

; MC9512C32 :

PIT equ 50240 /_\ Object code

DORT equ $0242 \\\

- org 54000 54000 B60F

Main ldaa #50F 54002 7m0242
staa DDRT 54005 8605

Controller 54007 7A0240
ldaa #5 54008 B&0A
staa PTT ; 0101 S400C TA0240
ldaa #& 5400F B60A
gtaa PFTT ; 0110 54011 7AD240
ldaa #10 54014 8609
staa PTT ; 1010 54016 7TA0240
ldaa #9 54019 20EA
staa PTT ; 1001 SFFFE 4000
bra Controller
org SFFFE
fdb Main

Loader

Microcontroller

Processor fe—

RAM e

ROM
BE0FTA02428605
TA024086067402

40860ATAD24086 |

037A024020EA
4000

/O ports e——

HH
REXX

External circuits
and devices

[Valvano]

RISC Instruction Set Overview

¢ Typically simple encoding format to make hardware
simpler/faster

¢ Classical Example: MIPS R2000
e R7<=R27 +0x1234

31
[opcave REG SRC

,610'*5/; SH//SHs/ 16 bits

ADDI 7, 0x1234

L/g 27\'_# \7 | }2 BLGL ‘/J
|, ¢
001000)1 0 [1] | 00111 ﬂxlz Joz+

cncopmG: Ox2Z ETIE3%

REC VST Hle GWIHTG

CISC Instruction Set Overview

¢ Complex encoding for small programs
¢ Classical Example: VAX; Intel 8088

« REP MOVSB (8088 String move)
— Up to 64K bytes moved; source in Sl reg; dest in DI reg; count in CX
REP mJv s e

miom[W

ENCODING Ox F 2 Jr A 4~

Accumulator-Based Microcontrollers

¢ Usually one or two “main” registers — “accumulators”
» Historically called register “A” or “Acc” or registers “A” and “B”
o This is where the Pentium architecture gets “AX, BX, CX, DX” from

¢ Usually one or more “index” registers for addressing modes
« Historically called register “X” or registers “X” and “Y”
 In the Pentium architecture these correspond to SI and DI registers

¢ Atypical “H =J + K” operation is usually accomplished via:
e Load “J” into accumulator
o Add “K” to “J”, putting result into accumulator
o Store “H” into memory
* Reuse the accumulator for the next operation (no large register file)

¢ Usually microcontrollers are resource-poor
e E.g., No cache memory for most 16-bit micros!

10

CPU12 Resource — Long Version

DECA Decrement A DECA

Operation:
(A)-$01 = A

Description:
Subtract one from the content of accumulator A.

The N, Z, and V status bits are set or cleared according to the results of the operation. The C status
bit is not affected by the operation, thus allowing the DEC instruction to be used as a loop counter
in multiple-precision computations.

CPU12 CCR Detalls: S X H I N Z V C

[l lefe]o -]

Reference Manual

N: Setif MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise

V: Setif there was a two's complement overflow as a result of the operation;
cleared otherwise. Two's complement overflow occurs if and only if (A)
was $80 before the operation.

Access Detail
Source Form A:‘drdess Object Code
ode HCS12 M&BHC12
DECA INH 43 o o
CPU12RM
Rev. 4.0
03/2006
e

- T

freescale.com Z " freescale”
semiconductor CPU12 Reference Manual, Rev. 4.0
Freescale Semiconductor 141

11

CPU12 Resource — Summary Version

Reference Guide

CPUTZRG/D
Rev. 2, 11/2007

CPUI2 Referance Guide
(for HCS12 and original
M6BHC 12)

als

digitaldna®

MOTOROLA

intelligence everywhere”

T a7 B 0 8-BIT ACCUMULATORS A AND B
15 Do i} CI:E'::j\EiIT DOUBLE ACCUMULATOR D
15 X D| INDEX REGISTER X
15 Y 0| INDEX REGISTER Y
15 sp D| STACK POINTER
15 PC D| PROGRAM COUNTER

§XH I NZVWVC)| CONDTION CODE REGISTER

L carry

OVERFLOW

ZERO
NEGATIVE

MASK (DISABLE) IRQ INTERRUPTS

HALF-CARRY
(USED IN BCD ARITHMETIC)

MASK (DISABLE) XIRQ INTERRUPTS
RESET OR XIRQ SET X,
INSTRUCTIONS MAY CLEAR X

BUT CANNOT SET X

STOP DISABLE {(IGNORE STOP OPCODES)
RESET DEFAULT IS 1

Figure 1. Programming Model

& Motorala, Inc., 2001

CPUIZRGD
Instruction Set Summary (Sheet 2 of 14)
i Addr. Maxchine Aeeess Deil
Source Form Operation Mods Coding (hex) HeSt2 He12 SXHI [NZIVC
A5l opriGa EXT |7& hh 11 5 COPw| ==== |AAAA
AL oprell_rysp - Of |62 == o v
AL gprdxysp D‘_m_c' 00 |68 = £5) £Iow
AL ool xpsp C b] N2 |£8 xb =e £E £rIve £riDw
ASL[Dxysg] [Arithmetic Shill Left [DI0K] [£2 2 EIfTIw EIfTDw
AL [apor 16 xysp] [DXE (€2 s =a £E EI DTV
ASLA [Arithmelic Shilt Lef Accumulator & INH |42 e
ASLE [rithm elic: Shill Lel Accumulaior B INH |52
ASLD -— -+ INH e AAAA
T B0 AW 0 BB
[Arithmetic: Shill Lelt Deuble
ASR aprlga EXT hh 11 ---- |asas
ASR gprd) sysp — L 3k
ASR apredxyep [14] b EE
AR oprelE xysp ! o L 102 b me £E
AR Dyl rithmetic Shilt Right D, I0ik] b
AR opor 16, xysp] [imz] b = EE
ASRA [Arithmetic Shilt Right Accumulaior & INH
AZRE [Arithmetic Shill Right Accumulaor B INH 7
BCC reff Branch if Carry Clear (ifC =) REL |24 zr PR/ E FRR/E
BCLR oprSa, msif = OIR |40 dd mn TPed EPOwW
BCLR ggr 163, msid! o 7 EXT |1D bk 11 om iy 9P
BCLR prail_xysp, mskf - OX |00 x mm rPud EDOwW
BCLR oprad aysp, msk8 IDX1 |00 b £f mm PR Wb
BCLR opral B.aysp, msks |2 |00 ak =e £€ mm | E£rPwic £rpwar
BCS raf [Eranch i Carry St (TC = 1) REL |2E rr PR T et --—- | ----
BEC| ra Eranch if Equal (F 2= 1) REL |27 zr PR T ot --—- | —---
BGE e Branch if Greater Than or Equal REL |2€ zr PR B 2270 [P
M 2V =0 (signed)
BGMD Plce CPU in Backgound Mods INH oo vEPDD vepop| ---- | ----
see CPUNZ Refarance Manual
BECT raf Eranch if Greater Than REL |IE zr PR/ T (2201 [——
W Z =+ (N & V) = 10) isigned)
EHI rslg Eranch if Higher REL |2Z zr oPR/E eroet | - | -
0FC+I =0 junsigned
BHS rsf Branch if Higher or Same REL |24 zr PR PER B --—- | ----
Wl C = 0 funsignad)
same function as BCT
BITA#oprai T4+ M) IMM eE di e el ----[2a0-
BITA o pia Logical AN A with Memory DR |oc dd rpr I
BITAoprigs Diees not change Accumulator o Memary EXT |BE kh 11 PO o
BITA o poel_aysp DX [AS =& L 73
BITA o pnedysp IDK1 |AS ke £ t2:0] RO
BITA 00 16 aysp IIK2 |AS =& == £E 1350 £reE
BITA [DLaysp] [DDE] [AS = EIITPL £1fTIp
BITA [apnr 16ysp] [IDXZ] (RS s == fE EIPIRE £IPTIR
EITE #oprdi B« M) IMM |25 44 v el ----[aa0-
BITE opfs Logical ANDY B with Memory DR |DE 4d L =23
BITE oprlfa Diss not change Accumulator of Memory EXT |FE hh 11 PO rop
BITE opoeilxysp O |EE & rpr I
BITB opoed sysp I |EE =k £ rPo 3=
BITE oo 1§ aysp IDK2 |EE 2 =e £E] erop
EITB [D.aysp] [DDK] |EE s £IfTRE £1fTID
BITE [opne 16, xy=p] [IDXZ [ES ab == ££ EIPTEE £IPTID
ELE =8 Eranch il Lass Than or Equal REL [2F rr 3 oot - --- [----
0T Z+ (N & V) = 1) isigned)
BLOralf Eranch if Lower REL |25 rr =3 o/t - | ——- -
il €= 1) junsigned)
same Tunction as BCS
Motz 1. PPPIP indicales this insruction takes thres cydes 1o rfil the instruction queus if the branchis taken and one program fetch cycls i the branch is noltaken.
+

MOTOROLA

CPU12 Reference Guide (for HCS12 and original MGBHC12)

12

“CPU12” Programming Model — (MC9S512C128)

T A D| 7 B 0 SEITACCUMULATDRS AAND B D iS reallv iUSt A: B

15 D 0| 16-BIT DOUBLE ACCUMULATOR D -
NOT a separate register!

15 X 0| INDEX REGISTER X

15 Y 0| INDEX REGISTER Y

15 SP 0| STACK POINTER

15 PC 0| PROGREAM COUMTER

SXHINZVC| CONDITION CODE REGISTER

I— CARRY (1 77
‘ e o Flags™ used for
ZERO conditional branches
NEGATIVE
MASK (DISABLE) IRQ INTERRUPTS
HALF-CARRY
(USED IN BCD ARITHMETIC)

MASK (DISAELE) XIRQ INTERRUPTS
RESET OR XIRQ SET X,
INSTRUCTIONS MAY CLEAR X

BUT CANNOT SET X

STOP DISABLE (IGNORE STOP OPCODES)
RESET DEFAULT IS 1

[Motorola0l] 13

The CPU12 Reference Guide

¢ Summarizes assembly language programming info
e Lots of info there This lecture is an intro to that material

[Motorola01]

. Addr. Machine Access Detail
Source Form Operation Mode Coding (hex) HOS 12 He12 SXHI [NZVC

ABA A)+ (B)=4A INH 128 06 o0 00| ——A- |AAAA
Add Accumulators A and B

ABX Bl +(X) =X DX |12 ES Pf PR —-—- | —=—-
Translates to LEAX B X

ABY Bl +(¥)=Y DX |19 =D Pf PEY| ———— | ———-
Transiates to LEAY BY

ADCA #opr8i A+ M +C=A IMM |22 ii = Pl c—A- |AAAA

ADCA opréa Add with Carryto A DIR |22 d4 rPf rfP

ADCA gpriéa EXT |Bg hh 11 PO rOP

ADCA gprx0_xysp DX |2 xb rPf rfP

ADCA oprxd, xysp IDX1 [ns xb £f rFO rBo

ADCA gprx16.xysp IDX2 |29 xb ee ff £rPP ErEP

ADCA [D, xysp] [DIDX] |22 xb fIfrPf f1PrfP

ADCA [oprx 76 xysp] [IDXZ] |29 xb ee ff fIPrPf fIPTP

ADCE #opr8i B)+(M+C=B MM |co id P Pl --A- |[AAAA

ADCB opréa Add with Carryto B DIR |pg dd rpf rfP

ADCB apriba EXT |F2 hh 11 TEO rOF

14

ALU Operations — Addition as an Example

¢ “Inherent” address modes:

« ABA (B) + (A) =>A Add accumulator B to A
— Encoding: 18 06

« ABX (B) + (X) =>X Add accumulator B to X
— Encoding: 1A E5

¢ Immediate Operand:

« ADDD #value (D) + jj:kk=>D AddtoD
— Add constant value to D (example: D <= D + 1234)
— Encoding: C3 jj kk
— Example: ADDD #$534 Adds hex 534 (0x534) to D reg

¢ “Extended” operand — location in memory at 16-bit address:
« ADDD address (D) + [HH:LL]=>D AddtoD
— Fetch a memory location and add to D
— Encoding: F3 HH LL
— Example: ADDD $5910 Adds 16-bit value at $5910 to D

« NOTE: “[xyz]” notation means “Fetch from address xyz”

15

Address Modes

Address Modes

IMM — Immediate

IDX — Indexed (no extension bytes) includes:
9-bit constant offset
Pre/post increment/decrementby 1...8
Accumulator A, B, or D offset

IDX1 — 9-bit signed offset (1 extension byte)

IDX2 — 16-bit signed offset (2 extension bytes)

[D, IDX] — Indexed indirect (accumulator D offset)

[IDX2] — Indexed indirect (16-bit offset)

INH — Inherent (no operands in object code)

REL — 2’s complement relative offset (branches)

DIR — Direct (8-bit memory address with zero high bits)
EXT — Extended (16-bit memory address)

[Motorola0l] 16

Instruction Description Notation

abc — AorBor CCR
abcdxys — AorBorCCRorDor X orY or SP. Some assemblers also allow T2 or T3.
abd — AorBorD
abdxys — AorBorDorXorY or SP
dxys — DorXorY or 5P
msk&8 — 8-bit mask, some assemblers require # symbol before value

opr8i — 8-bit immediate value
)y 0pr16i — 16-bit immediate value

opr8a — 8-bit address used with direct address mode
——)y 0pr16a — 16-bit address value
oprx0 _xysp — Indexed addressing posthyte code:
oprx3—xys Predecrement XorYorsPby 1. . .8

oprx3+xys PreincrementXorYorSPby1...8

oprx3 . xys— Postdecrement XorY orSPhy1.. .8

oprx3 xys+ Postincrement X orYorSPby 1 ... 8

oprx5 xysp 5-bit constant offset from X or Y or SP or PC

abd xysp Accumulator A or B or D offset from X or Y or SP or PC

oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement

oprx5 — Any value in the range —16 . . . +15

oprx9 — Any value in the range —256 . . . +255

oprx16 — Any value in the range —32,768 . . . 65,535

page — 8-bit value for PPAGE, some assemblers require # symbol before this value
rel8 — Label of branch destination within —256 to +255 locations
rel9 — Label of branch destination within =512 to +511 locations

rel16 — Any label within 64K memaory space

trapnum — Any 8-bit value in the range $30-%39 or $40-$FF

xys — XorY orsP

xysp — XorY or SP or PC [MotorolaO1] 17

Notation for Encoding of Instruction Bytes
Machine Coding

ﬁ
q
q

é

dd
ee
eb
ff

hh
ii
37
kk
1b
11

mim

P9

e
tn

rr

pide)

8-bit direct address $0000 to $SO0FF. (High byte assumed to be $00).
High-order byte of a 16-bit constant offset for indexed addressing.
Exchange/Transfer post-byte. See Table 3 on page 23.

Low-order eight bits of a 9-bit signed constant offset for indexed addressing,
or low-order byte of a 16-bit constant offset for indexed addressing.

High-order byte of a 16-bit extended address.

8-bit immediate data value.

High-order byte of a 16-bit immmediate data value.
Low-order byte of a 16-bit imnmediate data value.

Loop primitive (DBNE) post-byte. See Table 4 on page 24.
Low-order byte of a 16-bit extended address.

8-bit immediate mask value for bit manipulation instructions.
Set bits indicate bits to be affected.

Program page (bank) number used in CALL instruction.
High-order byte of a 16-bit relative offset for long branches.
Trap number $30-$39 or $40-SFF.

Signed relative offset $80 (—128) to $7F (+127).
Offset relative to the byte following the relative offset byte, or
low-order byte of a 16-bit relative offset for long branches.

Indexed addressing post-byte. See Table 1 on page 21

and Table 2 on page 22.
18

ALU Operations — Addition Example Revisited

¢ “Inherent” address modes:

« ABA (B) + (A)=>A Add accumulator B to A
— Encoding: 18 06

e ABX (B) + (X) =>X Add accumulator B to X
— Encoding: 1A E5

¢ Immediate Operand:

« ADDD #oprl6ei (D) +jj:kk=>D AddtoD
— Add constant value to D (example: D <= D + 1234)
— Encoding: C3 jj KK
— Example: ADDD #$534 Adds hex 534 (0x534) to D reg

¢ “Extended” operand — location in memory at 16-bit address:
« ADDDoprl6a (D) +[HH:LL]=>D Add to D
— Fetch a memory location and add to D

— Encoding: F3 HH LL < —
— Example: ADDD $5910 Adds 16-bit value at $5910 to D

19

ALU Operations — Addition — 2

¢ Immediate Operand:

« ADDD #oprlei (D) +jj:kk=>D AddtoD
— Add constant value to D (example: D <= D + 1234)
— Encoding: C3 jj kk
— Example: ADDD #$534 Adds hex 534 (0x534) to D reg

 What C code would result in this instruction?

register intl6 T; // assume that X is kept in machine register D
T =T+ 0x534;

¢ “Extended” operand - location in memory at 16-bit address:
« ADDD opril6a (D) + [HH:LL]=>D Addto D
— Fetch a memory location and add to D
— Encoding: F3 HH LL
— Example: ADDD $5910 Adds 16-bit value at $5910 to D
* What C code would result in this instruction?

static int16 B; // B is a variable that happens to be at address $5910
T=T+B;

ALU Operations — Addition — 2

¢ “Direct” operand — location in memory at 8-bit address:

« ADDD opr8a (D) +[00:LL]=>D AddtoD
— Fetch a memory location and add to D; address is 0..FF (“page zero” of memory)
— Encoding: D3 LL
— Example: ADDD $0038

» Special optimized mode for smaller code size and faster execution
— Especially for earlier 8-bit processors, but still can be useful

— Gives you 256 bytes of memory halfway between “memory” and “register” in terms
of ease & speed of access

— Assembler knows to use this mode automatically based on address being $00xx

* Result — programs often optimized to store variables in first 256 bytes of RAM
— If you have very limited RAM, this is worth doing to save time & space!
— But it also promotes use of shared RAM for variables, which is bug prone

 What C code would result in this instruction?

static int16 B; // B is a variable that happens to be at address $0038
T=T+B;

21

ALU Operations — Addition — 3

¢ “Indexed” operand — memory indexed; pre/post increment/decrement
« ADDD oprx,xysp (D) + [EE:FF+XYSP] => D
— Add oprx to X, Y, SP or PC; use address to fetch from memory; add value into D

— Encoding: E3 xb /I E3 xb ff // E3 xb ee ff
(Signed offset value; encoding varies — 5 bits, 9 bits; 16 bits)

— Example: ADDD $FFFO, X add value at (X-16,,) to D
Encoding: E3 10 (5 bit signed constant ... “$10”)
(see Table 1 of CPU12 reference guide for xb byte encoding)

» Special optimized mode for smaller code size and faster execution

— “Xxb” can do many tricks, including support for post/pre-increment/decrement to
access arrays

 What C code would result in this instruction?
static int16 B[100];
register intl6 *p = &B[50]; // assume “p” is stored in register X
T=T+*p-8); [/adds B[42]t0o T

22

Indexed Examples

Figure 2.2 RAM
Example of the 6811 X|50023 50026
indexed addressing e ﬁ%ﬁﬁ? §56
THogE: 30029
Figure 2.3 RAM
Example of the 6812 ¥|$0823 5081E
indexed addressing [zg:ﬁr 356
mode, $0821
Figure 2.4 RAM
Another example of the v[40823 $0862
6812 indexed addressing = gnnﬂp $56

A 0864
mode. 50865
Figure 2.5 RAM
Athird example of the v|$0823 50R22
6812 indexed addressing 20A23 556
mode. A[$56 1 ggi‘i;

SFR00
SFB01| SA7
5FR02| 504
SFB03

SFB00

EEPROM

}staa 4.x

EEPROM

SFB01| $6A
SF802| 55C

SF803

E

SFB00
5F801
SFB02
SFB03

EEPROM

SFB801
SFB02
SF803
SFB804

}staa -&, Y

EPROM

S6A

540

S6R
SER
502

SEB }staa 540,Y

> gtaa 5200,V

500)

[Valvano]:

ALU Operations — Addition — 4

¢ “Indexed Indirect” operand — use memory value as address, with offset

« ADDD [oprx16,xysp] (D) + [[EE:FF+XYSP]]=>D

— Add oprx to X, Y, SP or PC; use address to fetch from memory; use the value
fetched from memory to fetch from a different memory location; add value into D

— Encoding: E3 xb ee ff
Example: ADDD [$8, X] add value at [(X+8)] to D
Encoding: E3 E3 0008 16-bit constant offset

(see Table 1 of CPU12 reference guide for xb byte encoding)

 What C code would result in this instruction?
static int16 vart;
register intl6 *p;
static int16 *B[100]; // B is a variable that happens to be at address $38

B[4] = &vart;

p = &B[0]; // assume “p” is stored in register X
T=T+**(p+4)); [/laddsvarttoT

24

Indexed Indirect Example

LDAA #3$56
LDY #%$2345

STAA [-4)Y] ; Fetch 16-bit address from $2341, store A at $1234

Figure 2.6

Example of the 6812
iIndexed-indirect
addressing mode.

!

1233
__1234 56

skl i 1235 A
2345 Wa, .
"teay, 2340 1

15

$2345 — 4 = $2341 i:? -

[Valvano]

25

Had Enough Yet?

¢ Really, all these modes get used in real
programs

* You’ve already seen very similar stuff in
18-240, but that’s more RISC-like

* We expect you to be able to tell us what a
short, simple program we’ve written does
If it uses any of the modes described
during lecture

 There are even trickier modes — seldom
used but nice to have

» See Valvano Section 2.2 for more
discussion

26

Other Math & Load/Store Instructions

¢ Math
e ADD - integer addition (2’s complement)
o SBD - integer subtraction (2’s complement)
« CMP - compare (do a subtraction to set flags but don’t store result)
¢ Logic
 AND - logical bit-wise and
 ORA - logical bit-wise or
 EOR - bit-wise exclusive or (xor)
o ASL, ASR - arithmetic shift left and right (shift right sign-extends)
e LSR - logical shift right
¢ Data movement
« LDA, LDX, ... —load from memory to a register
« STA, STX, ... —store from register to memory
e MOV —memory to memory movement

¢ Bit operations and other instructions
e Later...

27

Control Flow Instructions

¢ Used to go somewhere other than the next sequential instruction
« Unconditional branch — always changes flow (“goto instruction x”)
« Conditional branch — change flow sometimes, depending on some condition

¢ Addressing modes

 REL: Relative to PC - “go forward or backward N bytes”
— Uses an 8-bit offset rr for the branch target
— Most branches are short, so only need a few bits for the offset
— Works the same even if segment of code is moved in memory

« EXT: Extended hh:ll - “go to 16-bit address hh:lI”
— Takes more bits to specify
— No limit on how far away the branch can be

28

Relative Addressing

¢ Relative address computed as:

Address of next in-line instruction after the branch instruction

— Because the PC already points to the next in-line instruction at execution time

Plus relative byte rr treated as a signed value

— rr of 0..$7F is a forward relative branch

— rr of $80..$FF is a backward relative branch

¢ Example: BCCcy clr
Next instruction is at $0009; rr = $03

$0009 + $03 = $000C (cy clr)

¢ Example: BRA asm_loop

Next instruction is at $000F;
rr=$F7
$000F + $F7 =

$000F + $FFF7 =

$000F - $0009 =

$0006 (asm_loop)

000000
000004
000005

000006
000007
oooo00%2
000004
00000B

e
00000D

180B 0lxx
K
87

52
2403
43
43
43

AT
20F7

asm_main:

asm_loop:

cy_clr:

MOVEB

CLRA

INCEB
BCC

DECA
DECA
DECA

NOP
BRA

#1, temp_bvte

cy_clr

asm_loop

29

Unconditional Branch

¢ JMP instruction — Jump

e JMP $1256 -- jump to address $1256
JMP Target Name

o JMP also supports indexed addressing modes — why are they useful?

e BRA $12 -- jJump to $12 past current instruction
— Relative addressing (“rr”) to save a byte and make code relocatable

¢ JSR instruction — Jump to Subroutine

e JSR $7614 -- jJump to address $7614, saving return address
e JSR Subr_Name

» Supports DIRect (8 bit offset to page 0) and EXTended, as well as indexed
addressing

 More about how this instruction works in the next lecture

30

Conditional Branch

¢ Branch on some condition

« Always with RELative (rr 8-bit offset) addressing

— Look at detailed instruction set description for specifics of exactly what address the
offset is added to

e Condition determines Instruction name

« BCC 308 - branch 8 bytes ahead if carry bit clear

« BCS Loop - branch to label “Loop” if carry bit set

« BEQ /BNE - branch based on Z bit (“Equal” after compare instruction)
« BMI/BPL - branch based on N bit (sign bit)

¢ Other complex conditions that can be used after a CMP instruction
« BGT - branch if greater than
 BLE - branch if less than or equal

31

Condition Codes

¢ Status bits inside CPU that indicate results of operations
o C =carry-out bit
o Z =whether last result was zero
* N = whether last result was “negative” (highest bit set)
* V = whether last result resulted in an arithmetic overflow

¢ Set by some (but not all instructions)
o CMP — subtracts but doesn’t store result; sets CC bits for later “BGE, BGT” etc
« ADD and most arithmetic operations — sets CC bits

MOV instructions — generally do NOT set CC bits on this CPU
— But, on a few other CPUs they do — so be careful of this!

32

C &V flags

¢ Carry: did the previous operation result in a carry out bit?
e $FFFF+1 = $0000 + Carry out
e $7FFF + $8000 = $FFFF + No Carry out

o Carry-in bit, if set, adds 1 to sum for ADC
— we’ll do multi-precision arithmetic later

o Carry bit is set if there 1s an unsigned add or subtract overflow
— Result is on other side of $0000/$FFFF boundary

¢ Overflow (V): did the previous operation result in a signed overflow?
e $FFFF + 1 =%$0000 no signed overflow (-1+1=0)
e $7FFF +1=%8000 has signed overflow (32767 + 1 =» -32768)

« This is overflow in the normal signed arithmetic sense that you are used to
— Result is on other side of $8000/$7FFF boundary

¢ Note that the idea of “overflow” depends on signed vs. unsigned
» Hardware itself is sign agnostic — software has to keep track of data types
» (Carry flag indicates unsigned overflow
« V flag indicates signed overflow

33

ook For Annotations Showing CC Bits Set

Instruction Set Summary (Sheet 5 of 14)

. Addr. Machine Access Detail |
Source Form Operation Mode Coding (hex) HCS12 HCT2 SXHI v
DENE abdxys, reld {cntr) -1 = cntr REL |04 1b rr ppr (branch) FPE| ---- -
If {cntr) not = 0, then Branch; (9-hit) rro (no branch)
else Continue to next instruction
Decrement Counter and Branch if = 0
fentr=A B D, XY, or 5P
DEC opriGa M -301 =M EXT |73 nn 11 TEWD TOPW| ---- AAA-
DEC oprx0_xysp Decrement Memory Location DX &2 xb rPw row
DEC opmel xysp ID¥1 [e2 xb f£ TOWD TDOW
DEC opm 16.xysp ID¥2 |62 xb e= ff frEwE frerw
DEC [D.xyspl] [0DX] |s2 xb fIfrew fIfrew
DEC [opr 16,xysp] [ID%2] |62 xb as £f fIPTrEw fIETrDw
DECA (A -501 =A Decrement A INH |4z o o
DECB (B)-301 =B Decrement B INH £3 o o
DES (SP]- 40001 = 5P IDX |1B 3F pf prt -
Transfates to LEAS -1,5P
DEX () -50001 =X INH o= o o A
Decrement Index Register X
DEY () -50001 =Y INH |o2 o o

Decrement Index Register

[Motorola0l] 34

Assembler to Hex

¢ Sometimes (less often these days, but sometimes) you have to write your
own assembler!

¢ In this course, we want you to do just a little by hand to get a feel

« LDAB #254
LDAB #opr8i M=8B IMM |cé ii P Pl -——— |AAOD-
LDAB opr8a Load Accumulator B DIR |De aa rPf rfP
LDAB opri6a EXT |Fé hh 11 TPO rOP
LDAB oprx0_xysp IDX |EB6 xb rPf rfP
LDAB aprx3,xysp IDX1 |E6 xb ff PO rPO
LDAB oprx16,xysp IDX2 |E6 xb ee ff frep frpp
LDAB [D.xyspl [D.IDX] |E6 xb fIfrpf EIfrfp
LDAB [oprx16,xyspl [IDX2] |E6 xb ee ff fIPrpf fIPrfp

Addressing mode Is:
Opcode is:

Operand is:

Full encoding is:

[MotorolaO1] 35

Hex to Assembler (Dis-Assembly)

¢ If all you have is an image of a program in memory, what does it do?
 Important for debugging
 Important for reverse engineering (competitive analysis; legacy components)

¢ Start with Hex, and figure out what instruction is
« AAE223CC

ORAA #oprsi A)+M=A MM |sm ii P P| -——— | AAD-
ORAA opr8a Logical OR A with Memory DIR |on ad rPf rfp
ORAA opri6a EXT |BR hh 11 TPO rOP
ORAA oprx0_xysp DX |2 xb rPf rfp
ORAA oprx9,xysp IDX1 |AR xb ff rPO rPO
ORAA oprx16,xysp IDX2 |An xb ee ff frPP frEP
ORAA [D,xyspl [D.IDX] |22 xb fIfrPf fIfrfp
ORAA [oprx16,xyspl] [IDX2] |22 xb ee ff fIPrPf fIPrfp

e ORAA - one of the indexed versions [Motorola01]
* Need to look up XB value =>

lable 1. Indexed Addressing Mode Fostbyte Encoding (Xb)

00 10 20 30 40 50 60 70 80 90 AD BO Co Do EQ FO

0. -16,% 1,+X 1%+ 0,y —18.Y 1,+% 1%+ 0.5P -18,5P 1,+5P 1,5P+ 0,PC -16,PC nx nspP
Sb const Sh const pre-inc post-inc Sk const Sk const ore-inc past-inc Sk const Sb const pre-ing posi-inc 5Sb const Sk const 9b const b const
01 il 21 31 41 51 81 71 81 91 A1 B1 c1 D1 E1 F1

1% -15,X 2,+X 2+ 1, —18Y 2.4 2%+ 1,5P —-15,5P 2,+5P 2,5P+ 1,PC -15,PC —n, X -n,SP
Sb const Sh const pre-inc post-inc Sk const Sk const ore-inc past-inc Sk const Sb const pre-ing posi-inc Sb const Sk const 9b const b const
02 12 22 32 42 52 62 T2 82 92 A2 B2 C2 D2 E2 F2

2% —14 % 3,+X 3+ 2.Y 14y 3+ 3+ 2,5P —14 5P 3,+5P 3,5P+ 2.PC —14 PC nx nspP
5Sb const 5h const pre-inc post-inc Sb const S5b congt ore-inc post-ing S5b const Sb const pre-inc post-ing Sb const Sb const 16k const |16k const
03 13 23 33 43 53 63 EE] a3 93 A3 B2 C3 D3 E2 F3

3K -13,% 4.+x 4K+ 3 =13,Y 4.+ 4.+ 3,5P -13,5P 4 +5P 4 5P+ 3.PC -13,PC [n,X] [n,5P]
Sb const 5h const pre-inc post-inc 5h const S5b congt ore-inc post-ing S5b const Sb const pre-inc post-ing Sb const Sb const 160 indr 16k indr 36
04 i4 24 34 44 g4 fd T4 a4 G4 Ad B4 4 D4 E4 F4

Easier Way To Find Op-Code Information

o [Motorola01] Table 6. CPU12 Opcode Map (Sheet 1 of 2)

0o TS| 10 1120 3| 30 3| 40 1] 50 1|80 36|70 4|50 1) 80 3| AD 3-6| BO 3
BGND | ANDCC | BRA | PULX | NEGA | NEGB | NEG | NEG | SUBA | SUBA | SUBA | SUBA
IH 1] IM 2| RL 2|6 1] 1H 1| H 111D 2-4 | EX 3| IM 21Dl 211D 24| EX 3
01 3] 11 11 [21 1] 31 3] 41 1] 51 1181 36|71 4181 1] 81 3 Al 36| B1 3
MEM | EDIV | BRN | PULY | COMA | COMB | COM | COM | CMPA | CMPA | CMPA | CMPA
IH 1] IH 1 [RL 2|6 1] 1H 1| H 111D 2-4 | EX 3| IM 21Dl 211D 24| EX 3
02 112 11|22 3] 32 3| 42 1] 52 1|82 36|72 4382 1|82 3| AZ 36| B2 3
INY | MUL BHI | PULA | INCA | INCB | INC INC | SBCA | SBCA | SBCA | SBCA
IH 1] IH 1| RL 2= 1] IH 1| H 111D 24| EX 31 21Dl 211D 24| EX 3
03 113 323 3] 33 3| 43 1153 1[83 N 41583 293 3 A3 36| B3 3
DEY | EMUL | BLS | PULB | DECA | DECB | DEC | DEC | SUBD | SUBD | SUBD | SUBD
IH 1| 1H 1|RL 21 H 11 1H 1] IH 1(1D 24| EX 3 [In 3Dl 211D 24| Ex 3
04 314 1(24 3] 34 2| 44 1] 54 1|84 36|74 4 | 84 1|94 3| A4 36| B4 3
loop” | ORCC | BCC | PSHX | LSRA | LSRB | LSR | LSR | ANDA | ANDA | ANDA | ANDA
RL 3 I8 2| RL 21 H 11 1H 1] IH 1(1D 24| EX 3 [Ind 2ol 211D 24| Ex 3
05 36|15 4.7 25 31 35 2| 45 11 55 1|85 36|75 4185 1895 3| AS 36| B3 3
JMP | JSR | BCS | PSHY | ROLA | ROLB | ROL | ROL | BITA | BITA | BITA | BITA
1D 2.4 1D 2-4| RL 21 H 11 1H 1] IH 1(1D 24| EX 3| In 20Dl 211D 24| Ex 3
06 3|16 4126 3] 36 2| 48 1| 58 1|88 36| TE 4 88 1|96 3| AB 3-8 | B 3
JMP | JSR | BNE | PSHA | RORA | RORB | ROR | ROR | LDAA | LDAA | LDAA | LDAA
EX 3| EX 3| RL 21 H 11 1H 1] IH 1(1D 24| EX 3 [Ind 2ol 211D 24| Ex 3
a7 417 4127 3| 37 2| 47 1157 1| &7 38| 7T 4|87 1|87 1| AT 1| BT 1
BSR | JSR | BEQ | PSHB | ASRA | ASRB | ASR | ASR | CLRA | TSTA | NOP |TFRIEXG
RL 2|0l 2| RL 2] 1= 1] IH 1] IH 1110 2-4| EX 3| IH 1] IH 1]1IH 1] IH 2
08 1|18 - 28 3] 38 3| 48 11 58 1|88 35| TE 413588 1|98 3| AB 36| BB 3
INX | page2 | BVC | PULC | ASLA | ASLB | ASL | ASL | EORA | EORA | EORA | EORA
IH 1] - -| RL 2] 1= 1] IH 1] IH 1110 2-4| EX 3| IM 2|10l 2110 24| Ex 3
09 1119 2|28 1] 39 2| 459 1] 59 11858 12479 3|89 1189 3| AS 3-6| B9 3

DEX | LEAY | BVS | PSHC | LSRD | ASLD | CLR | CLR | ADCA | ADCA

IH 1110 2-4| RL 2| IH 1] I1H 1| IH 1110 2-4| EX 3[IM 200l

04 T 1A 2| 2a 1| 34 3| 44 17| 5A 2(6A 124 TA 3| 8A 1] 84
RTC LEAX BPL PULD CALL STAA STAA STAA ORAA ORAE

IH 1110 2-4| RL 2| IH 1] EX 41 D1 21D 2-4| EX 3 [IM 200l

0B 8| 1B 2| 2B 31| 3B 2| 4B f7-10| 5B E 68 124|776 3| 8B 1] 56
RTI LEAS BMI PSHD CALL STAB STAB STAB ADDA ADDA

Key to Table 6: 2| o

Opcode — »l'np s l«—— MNumber of HCS12 cycles (1 indicates HC12 different) D 2
Mnemaonic ——={ BGND

Address Mode ——»| 11 | &—— Number of bytes 3| Dl

L OHE9W [eubLIO pue Z| SOH 104) aping aouaiajay ZLNdD

2l an

Performance — How Many Clock Cycles?

¢ This is not so easy to figure out
o See pages 73-75 of the CPU 12 reference manual

¢ In general, factors affecting speed are:
* Does the chip have an 8-bit or 16-bit memory bus? (Ours has a 16-bit bus)
— 8-bit bus needs one memory cycle per byte
— 16-bit bus needs one memory cycle per 2 bytes, but odd addresses only get 1 byte
How many bytes in the encoded instruction itself?

— AAE223 CC takes 4 bytes of fetching
» 2 bus cycles if word aligned
» 3 bus cycles if unaligned (but get next instruction byte “for free” on 31 cycle)

How many bytes of data
— Need to read data and, potentially write it
Is there an instruction prefetch queue that can hide some fetch delay?
Is it a complicated computation that consumes clock cycles (e.g., division)?

¢ Usual lower bound estimate

e Count up clock cycles for memory touches and probably it takes that or longer
38

Simple Timing Example

¢ ADCA $1246
o EXT format — access detail is “rPO” for HCS12
— r— 8-bit data read
— P - 16-bit program word access to fetch next instruction
— O - either prefetch cycle or free cycle (memory bus idle) based on alignment
o Total is 3 clock cycles

— (lower case letters are 8-bits; upper case letters are 16-bit accesses)
— Simple rule — count letters for best case # of clock cycles

Access Detail
Source Form Aﬁlir:esﬁ Object Code

HCS12 MesHC12

ADCA #opréi MM B9 i1 L p
=B Eriroprie B =Tl T D
ADCA opriga EXT ES hh 11 rbo ropP
WalTATane e e yip 7, — A= e TET rfp
ADCA oprxg, xysp DX A9 xb ff rbo rEO
ADCA oprx16, xysp DXz 29 xb ee ff frIop frIop
ADCA [D.xysp] [D,1DX] A9 xb fIfrDE fIfrfD
ADCA [oprmxi6, xysp] [IDX2] 29 xb ee ff FIDrDf fIDriD

[Motorola01] 39

Another Timing Example

¢ Recall that “D” is a 16-bit register comprised of A:B

¢ ADDD $1247, X

o |IDX2 format — access detail is “fRPP” for HCS12
— f—free cycle (to add address to computation performed, memory bus idle)
— R - 16-bit data read
— P - 16-bit program word access to fetch next instruction
— P - 16-bit program word access to fetch next instruction
o Total is 4 or 5 clock cycles
— 4 for minimum; plus 1 if value of X+3$1247 is odd (straddles word boundaries)

Access Detail
Source Form Aﬂir:‘:ﬁ Object Code

HCS12 MesHC12

ADDD #oprisi IMM C3 341 kk Do op
ADDD opréa DIR D2 dd RDF RED
ADDD oprisa EXT F3 hh 11 REPO ROD
ADDD oprxd _xysp DX E3 xb RDf RED
e et s E RDOC
ADDD oprx 16 xysp DXz El xb ee ff fRDD \ fRDD
— | AUDOORTER [CHIOR] ET Ab T fIfRED
ADDD [oprx16, xysp] [IDX2] El xb ce ff fIDRDE fIDPRED

[Motorola0l] 40

Preview of Labels for Prelab 2

¢ Labels are a convenient way to refer to a particular address
o (Can be used for program addresses as well as data addresses
e You know it is a label because it starts in column 1 (“:” is optional)

¢ Assume you are currently assembling to address $4712
e (how you do that comes in the next lecture)

My labela:

ABA ; this is at address $4712
Mylabelb:
My labelc

PSHA ; this is at address $4713

e The following all do EXACTLY the same thing:
— JMP $4713
— JMP Mylabelb
— JMP Mylabelc

41

Preview of Assembler Psuedo-Ops

¢ The following are assembler directives, not HC12 instructions

Labels — refer to an address by name instead of hex number
ORG: define the address where data/code starts

DS: Define Storage (allocate space in RAM)

DC: Define Constant (allocate space in ROM/flash)

EQU: Equate (like an equal sign for assembler variables)

¢ This is for orientation when looking at code

Specifics in the next lecture

42

Lecture 3 Lab Skills

¢ Write an assembly language program and run it
¢ Manually convert assembly language to hex

¢ Manually convert hex program to assembly language

43

Lecture 3 Review

¢ CPU12 programmer model
* Registers
« Condition codes

¢ Memory Addressing modes

« Given an instruction using one of the modes described and some memory
contents, what happens?

¢ Assembly
* Given some assembly language, what is the hex object code?
* Given some hex object code, what is the assembly language

¢ Simple timing
« Given an encoded instruction, what is the minimum number of clocks to
execute?
— Be able to count number of letters in the timing column
— We do not expect you to figure out all the rules for straddling word boundaries etc.

» Branch cycle counting covered in next lecture

44

	Lecture #3�Microcontroller�Instruction Set
	April 2013: Traffic Light Heaven in L.A.
	Slide Number 3
	Where Are We Now?
	Preview
	Where Does Assembly Language Fit?
	Assembler To ROM Process
	RISC Instruction Set Overview
	CISC Instruction Set Overview
	Accumulator-Based Microcontrollers
	CPU12 Resource – Long Version
	CPU12 Resource – Summary Version
	“CPU12” Programming Model – (MC9S12C128)
	The CPU12 Reference Guide
	ALU Operations – Addition as an Example
	Address Modes
	Instruction Description Notation
	Notation for Encoding of Instruction Bytes
	ALU Operations – Addition Example Revisited
	ALU Operations – Addition – 2
	ALU Operations – Addition – 2
	ALU Operations – Addition – 3
	Indexed Examples
	ALU Operations – Addition – 4
	Indexed Indirect Example
	Had Enough Yet?
	Other Math & Load/Store Instructions
	Control Flow Instructions
	Relative Addressing
	Unconditional Branch
	Conditional Branch
	Condition Codes
	C & V flags
	Look For Annotations Showing CC Bits Set
	Assembler to Hex
	Hex to Assembler (Dis-Assembly)
	Easier Way To Find Op-Code Information
	Performance – How Many Clock Cycles?
	Simple Timing Example
	Another Timing Example
	Preview of Labels for Prelab 2
	Preview of Assembler Psuedo-Ops
	Lecture 3 Lab Skills
	Lecture 3 Review

