

Philip Koopman

PHILIP KOOPMAN

Breaking the Tyranny of Net Risk Metrics for Automated Vehicle Safety

October 2023 www.Koopman.us

> Carnegie Mellon University

What Do We Mean By Safe?

Rhetoric:

- "Safety is our #1 priority"
- "Robotaxis won't make stupid driving mistakes"
- Acceptable net risk:
 - Positive Risk Balance
 - Risk is managed via insurance
- Requirements beyond net risk:
 - Avoid risk inequities
 - Avoid negligent driving behavior
 - Expectation of safety via engineering rigor

Carnegie

"Safety Is Our #1 Priority"

Because Safety is Urgent™

Autonomous Driving Technology Can Save Lives and Improve Mobility

https://waymo.com/safety/

cruise

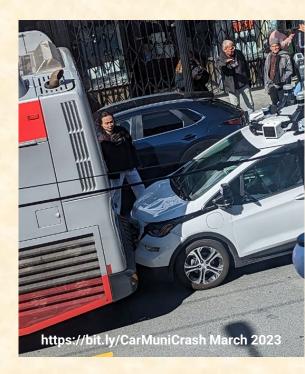
https://getcruise.com/safety/

Safety Drives Us

Motional is developing safe autonomous vehicles.

https://motional.com/safety-philosophy

A new bar for safety


Safety isn't just part of what we do. It's why we're here.

Do Robotaxis Make Stupid Mistakes?

Positive Risk Balance (PRB)

- PRB: No worse than a human driver
 Human driver baseline for comparison??
 - Which driver (age, training, impairment)?
 - Where (region, road type, road condition)?
 - When (weather, lighting, congestion)?
 - Which vehicle (new with AEB, or old junker)?
- Difficult to confirm at deployment time
 - Need 100M+ miles to determine outcomes
 - Simulations have limited ability to predict edge case outcomes
 - Each crash during data gathering presents bad optics for industry

Carnegie

Insuring Risk

- "We are safe because we bought insurance"
 - Insurance companies struggling to evaluate AV risk
- Affordable risk might exceed everyday safety
 - Commercial space launch insurance
 - Life insurance for combat military personnel
 - Insurance is about pricing risk, not ensuring safety
- Property damage can outweigh cost of harm
 - Motorcycle insurance cheap less property damage
- Affordable Insurance ≠ Acceptable Safety

Carnegie

Limits To Statistical Safety

- Redistribution of harm
 - What if more pedestrians, cyclists die?
 - What if more mishaps happen in historically disadvantaged areas?
- Negative risk externalities
 - Blocking fire trucks, ambulances
- Known significant risks not mitigated
 - Even if total fatalities decrease, is that OK?
- Fatalities due to breaking traffic rules
 - Humans break rules too...
 but they are *held accountable via negligence*

RISK

Carnegie

Tort Law for Engineers

Civil Tort Law

 Compensate a claimant who has suffered loss ... proximately caused by ... the negligence of another party.

Key idea: Duty of Care

- A human driver has Duty of Care to other road users
 - − Breach of this duty of care → negligence
- Must act as a "reasonable person" would act
 - A theoretical competent, unimpaired person, according to a jury
 - Per incident -> statistical safety does not avoid negligence

Negligence → **Accountability**

- Legal fiction of a "computer driver"
 - Sustained automated steering of vehicle
 - Manufacturer is responsible
- Transfer of duty of care is key
 - Computer driver has it while steering
 - Can transfer duty of care back to human
 - With sufficient notice (10 seconds or more)

- Computer driver held to same standard as human driver
 - Would a human driver have been negligent?
 - Loss resulting from traffic law violation is negligence per se
 - Statistical safety does not avoid negligence

Carnegie

University

Engineering Rigor

Need process-based assurance

- Pure testing is impractical; lagging metric
- Simulations might have defects
- We get safety via engineering rigor
- Safety standards + good engineering
 - Sets prior expectation of acceptable safety
 - Shows good faith efforts for safety
 - Might be strongest credible argument for deployment
 - ISO 26262, ISO 21448, UL 4600, ISO 21434, etc.

Carnegie

University

Summary: Safe Enough AV Deployment

- Rhetoric is just talk
 - Need a strong safety culture
- Net risk metrics
 - Risk management is just a start
 - Safer than human is a long term goal
- Beyond statistical safety
 - Avoid risk inequities
 - Avoid negligent driving behavior
 - Avoid regulatory-based recalls
 - Use engineering rigor & oversight to set expectation of safety

[Dall-e

Carnegie

Carnegie Mellon University

- Liability-based proposal for AV regulation & podcast
 - <u>https://safeautonomy.blogspot.com/2023/05/a-liability-approach-for-automated.html</u>
- Video lecture series on autonomous vehicle safety:
 - Keynote AV Safety overview video : <u>https://youtu.be/oE_2rBxNrfc</u>
 - Mini-course: <u>https://users.ece.cmu.edu/~koopman/lectures/index.html#av</u>
- "Safe Enough" book & talk video:
 - <u>https://safeautonomy.blogspot.com/2022/09/book-how-safe-is-safe-enough-measuring.html</u>

QUESTIONS?

Carnegie Mellon University