

Safety Performance Indicators and Continuous Improvement Feedback

Prof. Philip Koopman

Carnegie Mellon University

SEAMS 2022 KEYNOTE

Virtual Events: 18, 19, 20 May. Physical Event: 23 May, Pittsburgh, USA, co-located with ICSE 2022

Overview

Lifecycle approach to Autonomous Vehicle safety

- Historically we assume perfectly safe production release
- Need move to lifecycle adaptation model
 - Operational metrics used as basis for continuous improvement
- Safety Performance Indicators (SPIs)
 - Beyond "vehicle is acting unsafely"
 - Beyond dynamic risk management
 - Beyond run-time safety monitors
 - ANSI/UL 4600 SPIs monitor safety case soundness

Carnegie

Jniversity

Big Changes In Safety Engineering for AVs

- Conventional software safety engineering
 - Do hazard and risk analysis (e.g., ISO 26262)
 - Mitigate hazards; achieve acceptable risk
 - Assume "perfect" for safety when deployed
 - Human driver intervention to clean up loose ends
- Autonomous system safety is about change
 - Machine learning-based validation is immature
 - Open, imperfectly understood environment
 - Unknown unknowns, gaps in requirements, etc.
 - Keep up with a constantly evolving real world
 - System monitoring → safety/security updates

Carnegie

Safety Engineering: Hazards & Risks

- Hazard and Risk Analysis for conventional systems
 - List all applicable hazards
 - Characterize the resultant risk
 - Mitigate risk as needed, e.g., update design
 - Iterate until all risks acceptably mitigated
- Use various techniques to create hazard list
 - Lessons learned from previous projects; industry standards
 - Brainstorming & analysis techniques
 - FMEA, Fault Trees, HAZOP, bring your own favorite approach ...

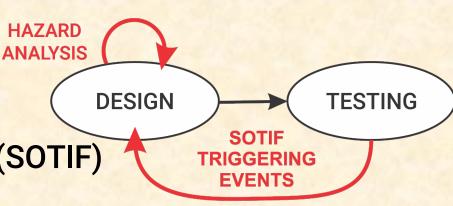
Presumption all hazards covered before deployment

Fully characterized operating environment

DESIGN

HAZARD

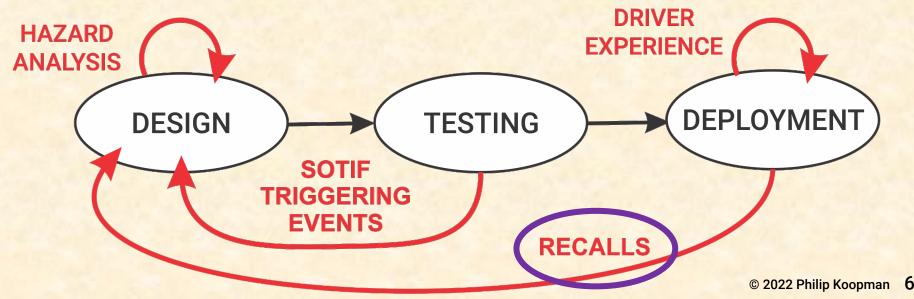
ANALYSIS


Carnegie

iversity

Hazard Analysis for Novel, Open World Systems

- Operating in the open world
 - All hazards aren't known at first
 - Test, test, test until you have uncovered enough hazards
- Safety Of The Intended Function (SOTIF)
 - Operate in the real world
 - Unknowns manifest "triggering events" (ISO 21448 terminology)
 - Mitigate newly discovered hazards caused by triggering events
 - Repeat until you stop seeing triggering events
- Limitation: residual unknown unknowns (requirements gaps)
 - Hypothesize you can find enough of the unknowns


Carnegie

Driver Assistance Feedback Model

- Driver does dynamic risk mitigation
 Useful fiction: systems safe forever when released
 - Driver expected to help mitigate risks & surprises
 - Recalls for defects drivers can't handle not supposed to happen

Carnegie

Reaction To Incidents and Loss Events

Conventional systems (in practice) too often:

- Ignore if not reproducible
- Blame it on the operator
- Educate operators on workarounds
- Try again to blame it on the operator
- VERY reluctantly do a software update
- This persists across domains:

- Power imbalance between victims and system designers
- Normalization of #MoralCrumpleZone strategies [https://bit.ly/3qX2D92]
- Poor adoption of software engineering practices
- The fact that the feedback loop is called a "recall"

Carnegie

Jniversity

How Is The Recall Approach Working Out?

<u>Small</u> sampling of NHTSA recalls (confirmed defects)

- 22V-169 and many others: Backup camera & display failures
- 21V-972: Parking lock system error leads to vans rolling away when parked
- 21V-873 and MANY others: Airbags disabled
- 21V-846: Phantom braking due to inconsistent software state after power up
- 21V-109: Battery controller reset disconnects electric drive motor power
- 20V-748: Improper fail-safe logic degrades brake performance
- 20V-771: Malfunctions of wipers, windows, lights, etc. due to comms failure
- <u>20V-557 and others: Airbags deploy too forcefully or when they should not</u>
- 17V-713: Engine does not reduce power due to ESP software defect
- 15V-569: Unexpected steering motion causes loss of control
- 15V-145: Unattended vehicle starts engine → carbon monoxide poisoning

See: https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.html

Autonomous Vehicles Are Even Worse

- Machine Learning (ML) only learns things it has seen
 - Learns by example
 - Can be brittle; generalization is limited
 - Spectacular failures for the unexpected
- ML complicates safety engineering
 - Safety engineering assumes "V" model
 - Prone to brittleness to unexpected data variations
 - Were there biases or gaps in training data?
 - Assurance for rare objects and events in the real world?
 - Safety tends to be limited by rare, high-consequence events

[Mitchells vs. Machines]

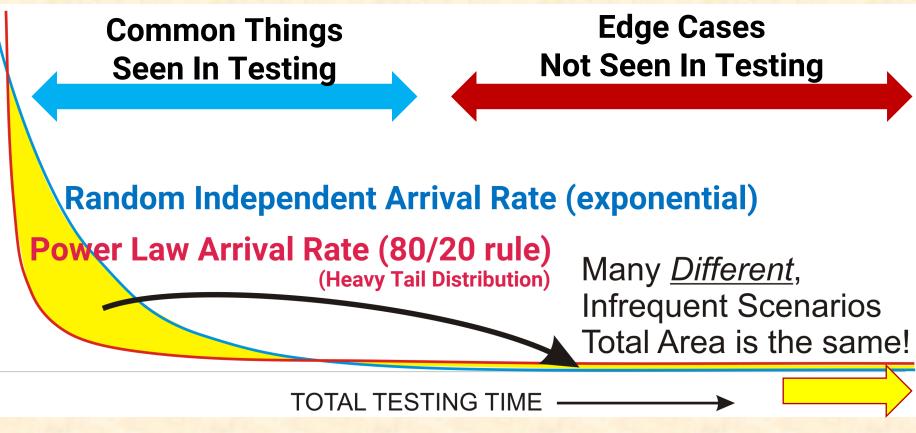
Carnegie

Jniversity

Incomplete Open World Requirements

Unusual road obstacles & conditions

Strange behaviorsSubtle clues



Carnegie Mellon

The Real World: Heavy Tail Distribution

Carnegie Mellon University

SURPRISE ЧO PROBABILITY

Why The Heavy Tail Matters

- Where will you be after 1 Billion miles of testing?
 - At 100M miles per fatality, need perhaps 1 billion miles
- Assume 1 Million miles between unsafe "surprises"
 - Example #1: 100 "surprises" @ 100M miles / surprise
 - Example #2: 100,000 "surprises" @ 100<u>B</u> miles / surprise
 - Only 1% of surprises seen during 1B mile testing
 - <u>SOTIF fixes of triggering events don't really help</u>

https://goo.gl/3dzguf

Carnegie

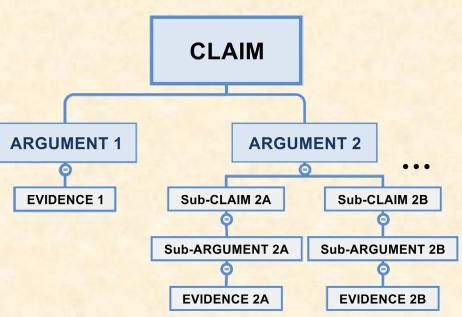
- "Perfect when deployed" no longer a useful fiction
 - We're going to need feedback measurements from deployment

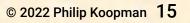
Which Metrics Should We Use?

- Key Performance Indicator (KPI) approach is typical:
 - Deviation from intended vehicle path
 - Ride smoothness
 - Hard braking incidents
 - Disengagements during testing
 - Coverage of defined scenario catalog
 - Risk metrics such as Time to Collision
- But how do we predict operational safety?
 - Are KPIs good leading metrics for loss events?
 - Does a particular KPI set cover all aspects of safety?
 - How can we select KPIs for traceability to safety?

Safety Performance Indicator (SPI)

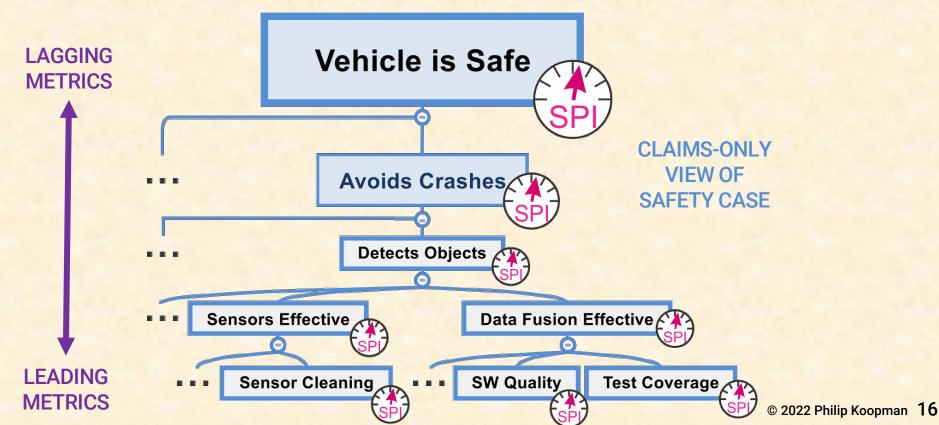
SPI (per ANSI/UL 4600):


- Measurement used to measure or predict safety
- Lagging SPI metrics (how it turned out):
 - Arrival rate of adverse events compared to a risk budget
 - Example: Loss events (crashes) per hour
 - Incidents (could have been a loss event)
 - Example: running a red light, wrong lane direction
- Also need leading metrics to predict safety
 - We can do that by linking to a safety case



Safety Cases for Autonomous Vehicles

- Claim a property of the system
 - "System avoids hitting pedestrians"
- Argument why this is true
 - "Detect & maneuver to avoid"
- Evidence supports argument
 - Tests, analysis, simulations, ...
- Sub-claims/arguments address complexity
 - "Detects pedestrians" // evidence
 - "Maneuvers around detected pedestrians" // evidence
 - "Stops if can't maneuver" // evidence


Carnegie

SPIs Instrument a Safety Case

Carnegie

Mellon University

SPIs monitor the validity of safety case claims

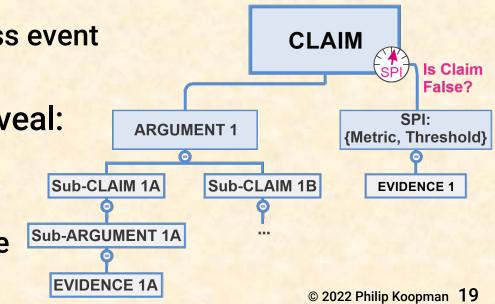
Example SPIs

System Level SPIs:

- Road test incidents caught by safety driver in testing
- Simulator (SIL/HIL) incidents
- Subsystem SPIs:
 - Vehicle Controls: compromised vehicle stability
 - Path Planning: insufficient clearance to object
 - Perception: false negative (non-detection)
 - Prediction: unexpected object behavior
- Lifecycle SPIs:
 - Maintenance errors
 - Invalid configuration installed

Carnegie

Detailed SPI Definition

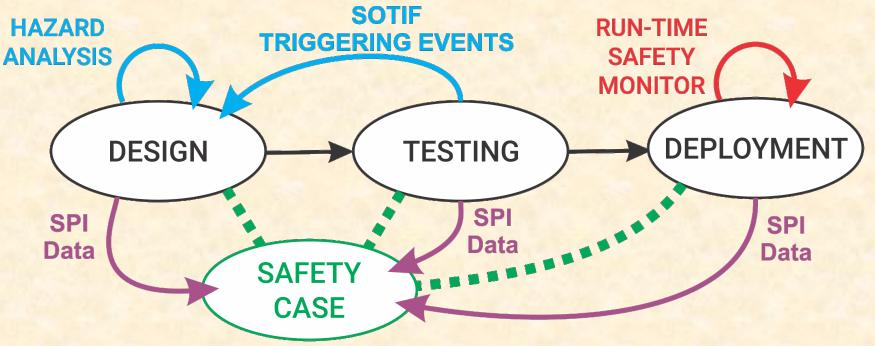

- An SPI is a metric supported by evidence that uses a threshold comparison to condition a safety case claim.
 - Metric: measurement of performance, design quality, process quality, operational procedure conformance, etc.
 - Threshold: acceptance test on metric value
 - Often statistical (e.g., fewer than X events per billion miles)
 - Evidence: data used to compute the metric
 - Condition a claim: threshold violation falsifies a specific claim
 - Argument for claim is (potentially) proven false by SPI
 - Anything that does not meet all criteria is a KPI, not an SPI
- SPI violation: part of a safety case has been falsified

Carnegie

iversity

SPIs and Lifecycle Feedback

- SPI: direct measurement of claim failure
 - Independent of reasoning ("claim is X ... yet here is ~X)
 - Partial measurement(s) OK; multiple SPIs for a claim OK
- A falsified safety case claim:
 - Not (necessarily) imminent loss event
 - Safety case has some defect
- Root cause analysis might reveal:
 - Product or process defect
 - Invalid safety argument
 - Issue with supporting evidence
 - Assumption error, ...



Carnegie

SPI-Based Feedback Approach

Safety Case argues acceptable risk

SPIs monitor validity of safety case

Carnegie

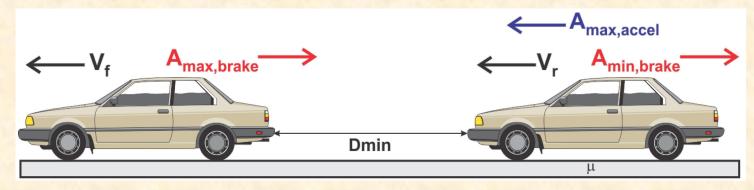
SPIs Go Beyond Overt Dangerous Behavior

- "Acts dangerously" is only one dimension of SPIs
 - Violation rate of pedestrian buffer zones
 - Time spent closer than safe following distance
- Components meet safety related requirements
 - False negative/positive detection rates
 - Correlated multi-sensor failure rates
- Design & Lifecycle considerations
 - Design process quality defect rates
 - Maintenance & inspection defect rates
- Is it relevant to safety? Safety Case SPIs

Carnegie

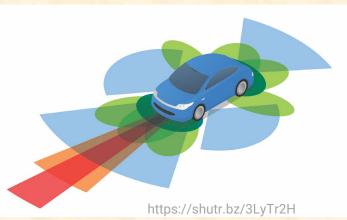
Quality vs. Runtime Monitor vs. SPI

Functionality (KPIs):


- Are all the features implemented?
- Does each feature work as intended?
- Is testing progress on track per schedule?
- Runtime safety monitors:
 - Triggers risk reduction during run time
- Safety Feedback (SPIs):
 - Did runtime safety monitor miss something?
 - Are there dangerous gaps in the Operational Design Domain?
 - Are there problems with requirements, design, upkeep, etc.?
 - Are there dangerous gaps in fault responses?

Following Distance Example

Responsibility-Sensitive Safety (RSS) Scenario:



- KPI: is average following distance appropriate for driving conditions
- Runtime monitor: force an increase of following distance if too close
- SPIs: situation more dangerous than expected (e.g., ODD issues)
 - Spent more time in too-dense traffic than expected
 - Lead/own vehicle brake violate expectations (too often; too aggressive)
 - Spent too long to recover from lead vehicle cut-in

Carnegie

Sketch of an AV Safety Argument

- AV is safe enough to deploy because:
- We've followed industry safety standards
 - ISO 26262, ISO 21448, ANSI/UL 4600, ...
 - Safety culture is robust
- Known hazards have been mitigated
 - Residual risk is acceptable at system level
- Arrival rate of unknowns is low
 - Incidents which do not trigger runtime safing
- Safety case has good SPI coverage
 - SPIs usually detect unknowns without an actual crash
 - System is fixed to mitigate unknowns before likely reoccurrence

Carnegie

Conclusions

Removing human drivers makes safety much harder

- Tactical: run-time safety monitoring in vehicle
- Strategic: SPI monitoring across fleet
- Field feedback as lifecycle adaptation
- SPIs predict and monitor system safety
 - KPIs: "how well do we drive?"
 - SPIs: "how often are safety claims falsified?"
 - SPIs can detect safety problems with no crash
- SPIs: are you as safe as you think you are?
 - See ANSI/UL 4600 Chapter 16 for SPI guidance
 - Field feedback via SPIs provides lifecycle safety adaptation

Carnegie