

Prof. Philip Koopman

PHILIP KOOPMAN

"Al" and Autonomous Vehicle Safety

ARTS 2023 July 10, 2023

Carnegie Mellon University

AI and Machine Learning

Artificial Intelligence ("AI")

- Capability to which people attribute intelligence
- The best AI can <u>simulate</u> narrowly intelligent behavior

Machine Learning ("ML")

- A statistical technique to implement AI capabilities
- When people say "AI" they usually mean "ML"
- TRAINING: show the system lots and lots of data
- DEPLOYMENT: outputs are based on statistics

Carnegie

University

Classification Via ML

- 1. "Train" on lots of data with labels
 - E.g.: {person, taxi}
- 2. Examine a new piece of input
 - E.g.: some image while driving
- 3. Which label is statistically closer?
 - Classify as either person or taxi
- Crucial points
 - Self-taught statistical correlations
 - Might train on unexpected features
 - Very confident when clueless

[Photos from Pexels.com]

"96%

ΊΧΑ

Carnegie

Generative Al

- Synthesize something statistically plausible
 Example 1: photos
 - "Deer at side of road standing still"

Example 2: chat

Carnegie

Mellon University

[DALL-E 2]

I see a deer standing still at the side of the road. Will the deer run in front of my car? Yes/No answers only.

ML Advantages for AVs

- Train based on examples
 - Old school: mathematical description of "a person"
 - Old school: physics equations of motion
 - *ML:* train on millions of pictures of people
 - ML: train on millions of traffic data sets
- Simpler, scalable development
 - Collecting data seen as easier than writing code
- Impressive effectiveness
 - Might get 90% 99% accuracy...
 ... often *much* better than previous methods
 - Viable technology for many perception tasks

Carnegie

ML Challenges for AVs

- Does not "understand" in the deep sense
 - Correlative rather than causal connections
- Vulnerable to surprises
 - Struggles when detecting something unexpected
 - Often falsely confident when it is just guessing
 - Can miss small clues that flip interpretation
- Safety is engineering process, not just testing
 - Good ML is 99%; Safety is 99.9999999%+
 - Testing does not prove safety.
 - Testing validates good safety engineering
 - How do we validate engineering of an ML-based system? © 2023 Philip Koopman

bird	0.997
no person	0.990

Safety Questions To Ask:

- What <u>exactly</u> do you mean by "safe"?
 - How can we measure your safety outcomes?
- How safe is your un-crewed vehicle right now?
 - Need 100M+ miles if based only on road experience

Carnegie

https://on.gei.co/2r2rjzg

- Do you follow industry-written safety standards?
 - ISO 26262, ISO 21448, ANSI/UL 4600, AVSC guidelines
 - Which do you actually conform to? (Not just cherry picked some ideas)
- Do you believe that safety requires transparency?
 - Are your NHTSA crash reports 100% transparent?