

Prof. Philip Koopman

Autonomous Vehicles and Machine Learning Safety

Carnegie Mellon University

National Academies Event

June 2, 2023

Quick Overview

Jniversity Getting past Autonomous Vehicle (AV) safety rhetoric Safety Engineering in a nutshell Why Machine Learning (ML) breaks safety engineering Core ML safety technical issues ANSI/UL 4600 approach

Beyond technical safety metrics

Carnegie

Getting Past the AV Safety Rhetoric

- Nobody knows when/if Autonomous Vehicles (AVs) will be safer than human drivers
 - Improved safety is purely aspirational
 - "AVs are safe" messaging is often propaganda
- Some humans drive drunk
 - On average they are still good and adaptable
- But computers lack common sense
 - ML is brittle when encountering novelty

Carnegie

niversitv

- Computer drivers can be imperfect even for "easy" failures
 - Safety must be engineered, not assumed

Safety Engineering In A Nutshell

Conventional vehicle safety is ~1 fatality / 100M miles (US)

- Call it 0.0000000001 fatalities per meter
 - Including drunk, distracted drivers, etc.!
- Testing does not prove safety
 - Too much testing needed to be practicable
- Safety comes from engineering rigor
 - Identify and mitigate hazards
 - Use engineering rigor responsive to risk presented
 - Testing validates hazard mitigation & engineering quality
 - Safety standards, e.g. ISO 26262, ANSI/UL 4600 exist...
 - ... but conformance is patchy at best; no requirement to follow these

ARCHITECTURE

DESIGN

MODULES

Test Plan & Test Results

IMPLEMEN

TEST

UNIT

TEST

Source Code

Unit Test Results

offware Test Resu

Machine Learning Breaks Safety Engineering University

- Primary safety concern: ML for perception/prediction
- Data-centric/training approach breaks safety engineering
 - Safety engineering depends on traceability
 - ML model training not traceable for safety
- Brute force simulation has limits
 - Simulation accuracy becomes life critical
 - Billions of miles real-world to validate simulated world
- ML breaks the safety certification/recall model
 - Currently a useful fiction that vehicles are "safe" when deployed
 - AVs will need lifetime monitoring and updates to maintain safety

[Mitchells vs. Machines]

NSYSTEM ERROR

Core ML Safety Technical Issues

- Long tail events are handled poorly by ML
 - Safety is about rare, high-consequence events
 - ML is brittle for novel events
 - ML Safety is limited by handling novel events
- Experience suggests "surprises" are heavy tail
 - Need to detect unknown relevant characteristics

Carnegie

- Human drivers are terrible automation supervisors
 - Approaches expecting perfect human supervision are not viable
 - Driver attention management technology needs more work
 - Common to see "moral crumple zone" strategy instead

ANSI/UL 4600 Approach

- ANSI Standard issued in 2020
 - Assessment approach to safety cases
 - Safety case: structured argument with safety claims supported by evidence

Evaluation of Autonomous Products

UL Standard Standard 4600, Edition 3 Edition Date: March 17, 2023 ANSI Approved: March 17, 2023

Autonomous vehicles: from grocery bots to trucks

Key UL 4600 features

- Minimum required content of safety case
- Numerous "did you think of that?" hazard prompts
- Quantitative measurement of safety case claims
 - Safety Performance Indicators detect falsified claims
 - Lifecycle feedback to evolve safety case as required

Beyond Technical Safety

- Engineering utilitarian approaches aren't enough
 - Risk redistribution, fatalities as an affordable cost of business, ...
- "As safe as a human driver" has multiple interpretations
 - Technical: which driver, where, in what vehicle, which victims, etc.
 - Statistical outcome measurements; very complex
 - Legal: lack of negligent behavior
 - Compare to "reasonable" rather than "average" driver
 - Emphasize avoiding harm rather than average outcomes
- Modest proposal:
 - Any "AI" system that supplants human judgement... ... should be held to human standards of negligence

PHILIP KOOPMAN

HOW SAFE IS SAFE ENOUGH?

Measuring and Predicting Autonomous Vehicle Safety

Resources

Carnegie Mellon University

- Video lecture series on autonomous vehicle safety:
 - Keynote AV Safety overview video : https://youtu.be/oE_2rBxNrfc
 - Mini-course: <u>https://users.ece.cmu.edu/~koopman/lectures/index.html#av</u>
- "Safe Enough" book & talk video:
 - <u>https://safeautonomy.blogspot.com/2022/09/book-how-safe-is-safe-enough-measuring.html</u>
 - UL 4600 book & talk video:
 - https://safeautonomy.blogspot.com/2022/11/blog-post.html
- Liability-based proposal for AV regulation & podcast
 - <u>https://safeautonomy.blogspot.com/2023/05/a-liability-approach-for-automated.html</u>