Safety Performance Indicators (SPIs) for Self-Driving Cars

June 2020

Carnegie Mellon University

@PhilKoopman

EDGE CASE RESEARCH
Overview

■ KPIs: Key Performance Indicators
 ● Quantify performance
 ● Important, but not enough for safety

■ SPIs: Safety Performance Indicators
 ● Quantify safety
 ● Leading vs. Lagging SPIs
 ● Safety case validity SPIs
Key Performance Indicator (KPI)

- **KPI:**
 - Quantifiable measurement
 - Used to gauge statistical performance

- **KPI examples:**
 - Percent correctly identified pedestrians
 - Miles between SDC self-disengagements
 - Miles between uncomfortable braking

- **KPIs can measure SDC progress**
 - Metrics should improve over time
 - But – KPIs are wrong approach for safety
KPIs help with quality
- Are all functions working?
- Is the functionality improving?
- Is the fault rate decreasing?

Good KPIs are only the start
- Six Sigma Quality: 99.99966% (five nines)
 - A good start; not enough for life critical functions
- Fatal Crash Avoidance: 99.9999999996% (eleven nines)
 - Safety is 1 million times more demanding! 8.34 sigma
 » (example: 1000 opportunities/mile, 250M miles/fatal crash, 1.5σ shift)
Functionality vs. Safety

Functionality (KPIs):
- Are all the features implemented?
- Does each feature work as intended?
- Are all scenarios accounted for?
- Does the product do what it is supposed to?

Safety:
- Are there dangerous mis-behaviors?
- Are there dangerous gaps in the Operational Design Domain?
- Are there dangerous gaps in fault responses?
- Are there dangerous defects in requirements, design, repair, etc.?
Safety Performance Indicator (SPI)

- SPI:
 - Quantifiable measurement
 - Used to gauge safety
 - Typically: arrival rate of adverse events compared to a risk budget

- Lagging SPI metrics: *(per hour is implied)*
 - Loss events (crashes) per hour
 - Incidents (could have been a loss event)
 - Example: running a red light, driving wrong direction for lane

Leading SPIs

- System Level Leading SPIs:
 - Road test incidents caught by safety driver
 - Simulator (SIL/HIL) incidents

- Subsystem Leading SPIs:
 - Vehicle Controls: compromised vehicle stability
 - Path Planning: insufficient clearance to object
 - Perception: false negative (non-detection)
 - Prediction: unexpected object behavior

- Lifecycle SPIs:
 - Maintenance errors
 - Invalid configuration installed
Safety Case

- System is safe because ...
 - Explanation of why
 - Evidence supporting explanation
 - Assumptions

- Ex.: SDC misses pedestrians because...
 - Pedestrians are detected with 3 sensor types
 - Pedestrian intent is predicted accurately
 - Path planning leaves buffer zone around them

- SPIs help detect violations of the safety case
SPIs and the Safety Case

- SPIs also measure safety case assumptions
 - ODD matches the Operational Domain
 - Validation predicts operational performance
 - Maintenance performed as required
 - Correct configuration installed in vehicle

- Example Safety Case-related SPIs:
 - Appearance of assumed rare objects and events
 - Correlated diverse sensor detection faults
 - Safety related maintenance error

https://bit.ly/3gHWiYu
KPI vs. SPI Contrast

- **Distance to object:**
 - KPI: average and 95th percentile clearance
 - SPI: how often SDC violates safe clearance limit

- **Sensor effectiveness:**
 - KPI: detection rate, SNR per sensor
 - SPI: concurrent multi-sensor detection failure
 - SPI: loss of calibration

- **Pedestrian perception:**
 - KPI: accuracy, precision, recall
 - SPI: false negative for more than <k> consecutive frames
 - SPI: previously unknown type of pedestrian encountered
KPIs can predict if your SDC will “work”
- SOTIF analysis resolves many outliers

SPIs can predict if it will work safely
- System level SPIs from simulation & testing
 - At system level, an outlier could be fatal
- Subsystem SPIs
 - Control, planning, prediction, perception performance SPIs
 - Ability of system to detect and respond to exiting ODD
- Safety case SPIs
 - Arrival rate of “surprises” / unknown unknowns during testing
 - Arrival rate of gaps in safety case being discovered
Conclusions

SPIs predict and monitor system safety
- KPIs: “how well do we drive”
- SPIs: “how often are we potentially unsafe”

Different flavors of SPIs
- Lagging (e.g., crash rates)
- Leading (e.g., simulator collisions, testing incidents)
- Safety case SPIs (how often is safety case invalid)

Do you have SPI coverage for your system?
- Extend SOTIF analysis beyond KPIs to include SPIs
- See ANSI/UL 4600 Chapter 16 on SPIs
EDGE CASE RESEARCH
WE DELIVER THE PROMISE OF AUTONOMY