Autonomous Vehicles Meet The Physical World

SAFECOMP 2019
Philip Koopman, Beth Osyk, Jack Weast
Overview

- Intro to RSS
 - Physics-based safety envelope approach

- Following distance as an example
 - Finding an RSS edge case

- But, the physical world is more complex
 - Assumptions & probabilities involved in making assurances

https://bit.ly/2kiarDs
The 2 Second Rule

- 2 (or 3) second following distance
 - Allows for human reaction time
 - Differences in vehicle performance

Typical Stopping Distances

- 20 mph (32 km/h): 6 m (6 m = 12 metres (40 feet) or three car lengths)
- 30 mph (48 km/h): 9 m (14 m = 23 metres (75 feet) or six car lengths)
- 40 mph (64 km/h): 12 m (24 m = 36 metres (118 feet) or nine car lengths)
- 50 mph (80 km/h): 15 m (38 m = 53 metres (175 feet) or thirteen car lengths)
- 60 mph (96 km/h): 18 m (55 m = 73 metres (240 feet) or eighteen car lengths)
- 70 mph (112 km/h): 21 m (75 m = 96 metres (315 feet) or twenty-four car lengths)

[UK Highway Code]
Rules of Thumb ≠ Guarantee

A bad case is:
- High performance vehicle executing a panic braking
- Followed by low brake performance heavy vehicle

Is 2 seconds enough?
Responsibility-Sensitive Safety rules (Mobileye):
- Safe distances based on physics
- Definition of dangerous situations (possible collision)
- Definition of proper response to evade a dangerous situation

Example: single-lane following:
This yields a minimum following distance (id., Lemma 2):

\[
d'_{\text{min}} = \text{MAX} \left\{ 0, \left(v_f \rho + \frac{1}{2} a_{\text{max,accel}} \rho^2 + \frac{(v_r + \rho a_{\text{max,accel}})^2}{2a_{\text{min,brake}}} - \frac{v_f^2}{2a_{\text{max,brake}}} \right) \right\}
\] (1)

Where in our case the ego vehicle is the following ("rear") vehicle, and:

- \(d'_{\text{min}} \) is the minimum following distance between the two vehicles for RSS
- \(v_f \) is the longitudinal velocity of the lead ("front") vehicle
- \(v_r \) is the longitudinal velocity of the following ("rear") vehicle
- \(\rho \) is the response time delay before the ego (rear) vehicle starts braking
- \(a_{\text{max,brake}} \) is the maximum braking capability of the front vehicle
- \(a_{\text{max,accel}} \) is the maximum acceleration of the ego (rear) vehicle
- \(a_{\text{min,brake}} \) is the minimum braking capability of the ego (rear) vehicle
Follower stops with space left behind leader

- Different initial speeds
- Follower initially accelerating during response time
- Different braking capabilities
- Considered safe if any gap between vehicles at rest
What About Edge Cases?

- Initial spreadsheet model
 - Sweep parameters
 - Discovered a small edge case

- Modeled in Ptolemy II
 - Hybrid state + continuous modeling
 - State machine: response time, braking, final stop
 - Continuous system: acceleration dynamics, braking dynamics
 - Actor-oriented design (each car is an actor)
 - Simulation campaign sweeping parameters...
 - Discovered the edge case was more general
High performance vehicle approaching from behind

- Initially approaching at high speed
- Can collide during response time...
 ... and still have shorter total calculated stopping distance

Intuition:

- Special case: Original RSS solves for distance at end
- General case: minimum distance at equal speed (not necessarily 0)
\[d'_{\text{min}} = \text{MAX}\left\{0, \left(v_r \rho + \frac{1}{2} a_{\text{max, accel}} \rho^2 + \frac{(v_r + \rho a_{\text{max, accel}})^2}{2a_{\text{min, brake}}} - \frac{v_f^2}{2a_{\text{max, brake}}} \right) \right\} \] (1)

\[d''_{\text{min}} = (v_r - v_f) \rho + \frac{(a_{\text{max, accel}} + a_{\text{max, brake}}) \rho^2}{2} \] (2)

\[d'''_{\text{min}} = (v_r + a_{\text{max, accel}} \rho) t_r - \frac{a_{\text{min, brake}} t_r^2}{2} \]
\[- \left((v_f - a_{\text{max, brake}} \rho) t_f - \frac{a_{\text{max, brake}} t_f^2}{2} \right) \] (3)

\[t = \frac{(v_r - v_f) + (a_{\text{max, accel}} + a_{\text{max, brake}}) \rho}{a_{\text{min, brake}} - a_{\text{max, brake}}} \] (4)

\[d_{\text{min}} = \begin{cases} \text{MAX}[d'_{\text{min}}, (d''_{\text{min}} + d'''_{\text{min}})] & \text{; special case} \\ d'_{\text{min}} & \text{; otherwise (Original RSS)} \end{cases} \] (5)
But, Where Does the “A” Come From?

- **F = MA** → **A = M / F**
 - F is limited by tire friction force

\[
F_{\text{friction}} = \mu \times F_{\text{normal}} \tag{6}
\]

where:
- \(F_{\text{friction}} \) is the force of friction exerted by the tires against the roadway
- \(\mu \) is the coefficient of friction, which can vary for each tire
- \(F_{\text{normal}} \) is the force with which the vehicle presses itself onto the road surface

Depends upon:
- Ability of vehicle to exert force on roadway \((F_{\text{friction}}) \)
- Ability of driver to exert that much force (braking capacity)
Road Conditions Affecting Braking

- **Slopes**
 - Decreases friction AND pulls car

- **Curves:**
 - Friction maintains centripetal force
 - Banking (superelevation)
 - Reverse bank reduces normal force

- **Road surface condition**
 - Dry concrete \(\mu = 0.75 \)
 - Snow \(\mu = 0.2 - 0.25 \)
 - Ice \(\mu = 0.1 - 0.15 \)
Other Factors Affecting Brake Force

- Braking capability:
 - Tire capability ("sticky" tires might have $\mu > 1$)
 - Brake maximum friction (pad wear)

- Equipment condition
 - Tire condition: temperature, pressure, tread
 - Brake condition: hot, wet, damaged, ...
 - Vehicle suspension, weight distribution across axles, ...

- Braking controls
 - Driver leg strength and willingness to brake hard
 - Braking assist force (multiplies driver leg strength)

- Other factors: aerodynamics, suspension, debris, ...
Epistemic Uncertainty – Vehicles

- Own vehicle weak braking (less than expected)
 - Break wear & failures
 - Loss of brake assist
 - High tire pressure / bald tires
 - Brakes hot from recent use
 - Brakes wet from recent puddle

- Other vehicle strong braking
 - Type of vehicle and standard braking
 - Aftermarket brake upgrade?
 - Aftermarket tire upgrade? Low tire pressure?
 - Leg strength of lead driver to press brakes?

Epistemic Uncertainty – Environment

- Road surface of own vehicle
 - Might not be same as lead vehicle surface

- Road surface of lead vehicle
 - Might have dramatically different friction properties

A Worse Case

- Sports car with good tires & brakes, uphill
 - Followed by heavy truck with worn brakes and bald tires down an icy hill
Conclusions

- Proofs are great, but they rely upon assumptions
 - Need to find edge cases
 - Need to information about the physical world
 - Permissiveness vs. safety tradeoff in real vehicles

- Proving moves uncertainty into the assumptions
 - Uncertainty about own system
 - Uncertainty about other actors
 - Uncertainty about the environment

- The math applies whether you use RSS or not
 - You might forget the edge cases. But they won’t forget you!
 - Future work: addressing the uncertainty
F=MA

It’s not just a good idea.

It’s the Law!