Wrap up

- Dependability benchmarking problem space
- **Session 1** - Dependability Benchmarking Approaches
- **Session 2/ Session4** - Current Projects & Research
- Panels:
 - Software testing and dependability benchmarking
 - Customer point of view on dependability benchmarking
 - Fault representativeness
Conclusions and some thoughts - 1

Dependability benchmarking problem space

- The problem space is very large but we need to understand this space;
- We need to make choices to define a general framework;
- Segmentation of the application domain is needed to handle the problem;
- Critical dimensions are measures and fault representativeness.
Conclusions and some thoughts - 2

Dependability Benchmarking Approaches

- A set of dependability classes (measures) are defined for transactional servers.
- Defining a benchmark is to specify how these measures can be obtained.
- There is a market for dependability benchmarking. People/enterprises involved on dependability evaluation and validation know this.
Conclusions and some thoughts - 3

Current Projects & Research

- Dbench project;
- Direct measures and models are needed;
- Unconditional dependability measures are one of the goals;
- Existing techniques/tools need to be improved;
- However, even with existing tools we can do a lot in improving existing systems. Examples from robustness testing show this quite clear.
Panel: SW testing and dependability benchmarking

- SW testing goal is finding faults; benchmarking doesn’t care about this;
- Test sets are almost never generic!
- Standard test procedure; not a standard (unique) test set
 → Standard benchmark framework; many benchmark
- Eliminate or standardize “non-essential” elements;
- Build a standard benchmark environment. Formalization of the benchmarks is important;
- Dependability benchmarking can also learn from SW testing:
 - Operational profiles
 - Share of SW faults in the faultload
Conclusions and some thoughts - 5

Panel: costumer point of view on dependability benchmarking

- Application area → costumers → measures;
- One benchmark: different levels (in detail) of measures;
- Different customer classes;
- End users like simple measures;
- Simple measures are rather incomplete from a technical point of view;
- Dependability classes is a way to produce understandable measures without oversimplifying the problem;
- Classes could be useless for comparison purposes.
Conclusions and some thoughts - 6

Panel: Fault representativeness

- Representativeness of errors is the question;
- Fault representativeness should be discussed in a statistical basis;
- The main problems are clear and are being subject of research:
 - Which classes of faults are relevant?
 - How to create a representative mix of classes of faults?
 - How to “inject” the faults in a benchmark (i.e., how to create a faultload?)?
 - How to include external features (environment, operation conditions, etc) in the faultloads?
- We can start with what we know about how to emulate faults;