
Abstract

Many embedded systems have substantially different design
constraints than desktop computing applications. No single
characterization applies to the diverse spectrum of embed-
ded systems. However, some combination of cost pressure,
long life-cycle, real-time requirements, reliability require-
ments, and design culture dysfunction can make it difficult
to be successful applying traditional computer design meth-
odologies and tools to embedded applications. Embedded
systems in many cases must be optimized for life-cycle and
business-driven factors rather than for maximum computing
throughput. There is currently little tool support for expand-
ing embedded computer design to the scope of holistic em-
bedded system design. However, knowing the strengths and
weaknesses of current approaches can set expectations ap-
propriately, identify risk areas to tool adopters, and suggest
ways in which tool builders can meet industrial needs.

1. Introduction

Approximately 3 billion embedded CPUs are sold each
year, with smaller (4-, 8-, and 16-bit) CPUs dominating by
quantity and aggregate dollar amount [1]. Yet, most re-
search and tool development seems to be focussed on the
needs of high-end desktop and military/aerospace embedded
computing. This paper seeks to expand the area of discus-
sion to encompass a wide range of embedded systems.

The extreme diversity of embedded applications makes
generalizations difficult. Nonetheless, there is emerging
interest in the entire range of embedded systems (e.g., [2],
[3], [4], [5], [6]) and the related field of hardware/software
codesign (e.g., [7]).

This paper and the accompanying tutorial seek to identify
significant areas in which embedded computer design differs
from more traditional desktop computer design. They also

present “design challenges” encountered in the course of
designing several real systems. These challenges are both
opportunities to improve methodology and tool support as
well as impediments to deploying such support to embedded
system design teams. In some cases research and develop-
ment has already begun in these areas — and in other cases
it has not.

The observations in this paper come from the author’s
experience with commercial as well as military applications,
development methodologies, and life-cycle support. All
characterizations are implicitly qualified to indicate a typi-
cal, representative, or perhaps simply an anecdotal case
rather than a definitive statement about all embedded sys-
tems. While it is understood that each embedded system has
its own set of unique requirements, it is hoped that the
generalizations and examples presented here will provide a

Embedded System Design Issues (the Rest of the Story)

Philip Koopman
Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213
koopman@cs.cmu.edu

http://www.cs.cmu.edu/~koopman/

SENSORS

A/D

CONVERSION

D/A

CONVERSION

ACTUATORS

HUMAN

INTERFACE

DIAGNOSTIC

PORT

AUXILIARY

SYSTEMS

(POWER,

COOLING)

FPGA/

ASIC
MEMORY

SOFTWARE

EXTERNAL

ENVIRONMENT

CPU

ELECTROMECHANICAL

BACKUP & SAFETY

Figure 1. An embedded system encompasses the CPU

as well as many other resources.

broad-brush basis for discussion and evolution of CAD tools
and design methodologies.

2. Example Embedded Systems

Figure 1 shows one possible organization for an embed-
ded system. In addition to the CPU and memory hierarchy,
there are a variety of interfaces that enable the system to
measure, manipulate, and otherwise interact with the exter-
nal environment. Some differences with desktop computing
may be:

·The human interface may be as simple as a flashing light
or as complicated as real-time robotic vision.

·The diagnostic port may be used for diagnosing the system
that is being controlled — not just for diagnosing the
computer.

·Special-purpose field programmable (FPGA), application
specific (ASIC), or even non-digital hardware may be used
to increase performance or safety.

·Software often has a fixed function, and is specific to the
application.

In addition to the emphasis on interaction with the exter-
nal world, embedded systems also provide functionality
specific to their applications. Instead of executing spread-
sheets, word processing and engineering analysis, embedded
systems typically execute control laws, finite state machines,
and signal processing algorithms. They must often detect
and react to faults in both the computing and surrounding
electromechanical systems, and must manipulate applica-
tion-specific user interface devices.

In order to make the discussion more concrete, we shall
discuss four example systems (Table 1). Each example
portrays a real system in current production, but has been
slightly genericized to represent a broader cross-section of
applications as well as protect proprietary interests. The four
examples are a Signal Processing system, a Mission Critical
control system, a Distributed control system, and a Small
consumer electronic system. The Signal Processing and
Mission Critical systems are representative of traditional

An example of: Signal Processing Mission Critical Distributed Small

Computing speed 1 GFLOPS 10 - 100 MIPS 1-10 MIPS 100,000 IPS

I/O Transfer Rates 1 Gb/sec 10 Mb/sec 100 Kb/sec 1 Kb/sec

Memory Size 32 - 128 MB 16 - 32 MB 1 - 16 MB 1 KB

Units Sold 10 - 500 100 - 1000 100 - 10,000 1,000,000+

Development Cost $20M - $100M $10M - $50M $1M - $10M $100K - $1M

Lifetime 15 - 30 years 20 - 30 years 25 - 50 years 10 - 15 years

Environment Vibration, Heat Heat, Vibration,

Lightning

Dirt, Fire Over-voltage, Heat,

Vibration

Cost Sensitivity $1000 $100 $10 $0.05

Other Constraints Size, weight, power Size, weight Size Size, weight, power

Safety � Redundancy Mechanical Safety �

Maintenance Frequent repairs Aggressive fault

detection/maintenance

Scheduled

maintenance

�Never� breaks

Digital content Digital except for

signal I/O

~½ Digital ~½ Digital Single digital chip; rest

is analog/power

Certification authorities Customer Federal Government Development team Customer;

Federal Government

Repair time goal 1-12 hours 30 minutes 4 min. - 12 hours 1-4 hours

Initial cycle time 3-5 years 4-10 years 2-4 years 0.1-4 years

Product variants 1-5 5-20 10-10,000 3-10

Engineering allocation

method

Per-product budget Per-product budget Allocation from large

pool

Demand-driven daily

from small pool

Other possible

examples in this

category:

Radar/Sonar

Video

Medical imaging

Jet engines

Manned spacecraft

Nuclear power

High-rise elevators

Trains/trams/subways

Air conditioning

Automotive auxilliaries

Consumer electronics

�Smart� I/O

Table 1. Four example embedded systems with approximate attributes.

military/aerospace embedded systems, but in fact are be-
coming more applicable to general commercial applications
over time.

Using these four examples to illustrate points, the follow-
ing sections describe the different areas of concern for em-
bedded system design: computer design, system-level
design, life-cycle support, business model support, and de-
sign culture adaptation.

Desktop computing design methodology and tool support
is to a large degree concerned with initial design of the digital
system itself. To be sure, experienced designers are cogni-
zant of other aspects, but with the recent emphasis on quan-
titative design (e.g., [8]) life-cycle issues that aren’t readily
quantified could be left out of the optimization process.
However, such an approach is insufficient to create embed-
ded systems that can effectively compete in the marketplace.
This is because in many cases the issue is not whether design
of an immensely complex system is feasible, but rather
whether a relatively modest system can be highly optimized
for life-cycle cost and effectiveness.

While traditional digital design CAD tools can make a
computer designer more efficient, they may not deal with the
central issue — embedded design is about the system, not
about the computer. In desktop computing, design often
focuses on building the fastest CPU, then supporting it as
required for maximum computing speed. In embedded sys-
tems the combination of the external interfaces (sensors,
actuators) and the control or sequencing algorithms is or
primary importance. The CPU simply exists as a way to
implement those functions. The following experiment
should serve to illustrate this point: ask a roomful of people
what kind of CPU is in the personal computer or workstation
they use. Then ask the same people which CPU is used for
the engine controller in their car (and whether the CPU type
influenced the purchasing decision).

In high-end embedded systems, the tools used for desktop
computer design are invaluable. However, many embedded
systems both large and small must meet additional require-
ments that are beyond the scope of what is typically handled
by design automation. These additional needs fall into the
categories of special computer design requirements, system-
level requirements, life-cycle support issues, business model
compatibility, and design culture issues.

3. Computer Design Requirements

Embedded computers typically have tight constraints on
both functionality and implementation. In particular, they
must guarantee real time operation reactive to external
events, conform to size and weight limits, budget power and
cooling consumption, satisfy safety and reliability require-
ments, and meet tight cost targets.

3.1. Real time/reactive operation

Real time system operation means that the correctness of
a computation depends, in part, on the time at which it is
delivered. In many cases the system design must take into
account worst case performance. Predicting the worst case
may be difficult on complicated architectures, leading to
overly pessimistic estimates erring on the side of caution.
The Signal Processing and Mission Critical example sys-
tems have a significant requirement for real time operation
in order to meet external I/O and control stability require-
ments.

Reactive computation means that the software executes
in response to external events. These events may be peri-
odic, in which case scheduling of events to guarantee per-
formance may be possible. On the other hand, many events
may be aperiodic, in which case the maximum event arrival
rate must be estimated in order to accommodate worst case
situations. Most embedded systems have a significant reac-
tive component.

Design challenge:
·Worst case design analyses without undue pessimism in

the face of hardware with statistical performance charac-
teristics (e.g.,cache memory [9]).

3.2. Small size, low weight

Many embedded computers are physically located within
some larger artifact. Therefore, their form factor may be
dictated by aesthetics, form factors existing in pre-electronic
versions, or having to fit into interstices among mechanical
components. In transportation and portable systems, weight
may be critical for fuel economy or human endurance.
Among the examples, the Mission Critical system has much
more stringent size and weight requirements than the others
because of its use in a flight vehicle, although all examples
have restrictions of this type.

Design challenges:
·Non-rectangular, non-planar geometries.
·Packaging and integration of digital, analog, and power

circuits to reduce size.

3.3. Safe and reliable

Some systems have obvious risks associated with failure.
In mission-critical applications such as aircraft flight con-
trol, severe personal injury or equipment damage could
result from a failure of the embedded computer. Tradition-
ally, such systems have employed multiply-redundant com-
puters or distributed consensus protocols in order to ensure
continued operation after an equipment failure (e.g., [10],
[11])

However, many embedded systems that could cause per-

sonal or property damage cannot tolerate the added cost of
redundancy in hardware or processing capacity needed for
traditional fault tolerance techniques. This vulnerability is
often resolved at the system level as discussed later.

Design challenge:
·Low-cost reliability with minimal redundancy.

3.4. Harsh environment

Many embedded systems do not operate in a controlled
environment. Excessive heat is often a problem, especially
in applications involving combustion (e.g.,many transpor-
tation applications). Additional problems can be caused for
embedded computing by a need for protection from vibra-
tion, shock, lightning, power supply fluctuations, water,
corrosion, fire, and general physical abuse. For example, in
the Mission Critical example application the computer must
function for a guaranteed, but brief, period of time even
under non-survivable fire conditions.

Design challenges:
·Accurate thermal modelling.

·De-rating components differently for each design, depend-
ing on operating environment.

3.5. Cost sensitivity

Even though embedded computers have stringent re-
quirements, cost is almost always an issue (even increasingly
for military systems). Although designers of systems large
and small may talk about the importance of cost with equal
urgency, their sensitivity to cost changes can vary dramati-
cally. A reason for this may be that the effect of computer
costs on profitability is more a function of the proportion of
cost changes compared to the total system cost, rather than
compared to the digital electronics cost alone. For example,
in the Signal Processing system cost sensitivity can be esti-
mated at approximately $1000 (i.e., a designer can make
decisions at the $1000 level without undue management
scrutiny). However, with in the Small system decisions
increasing costs by even a few cents attract management
attention due to the huge multiplier of production quantity
combined with the higher percentage of total system cost it
represents.

Design challenge:
·Variable “design margin” to permit tradeoff between prod-

uct robustness and aggressive cost optimization.

4. System-level requirements
In order to be competitive in the marketplace, embedded

systems require that the designers take into account the entire
system when making design decisions.

4.1. End-product utility

The utility of the end product is the goal when designing
an embedded system, not the capability of the embedded
computer itself. Embedded products are typically sold on
the basis of capabilities, features, and system cost rather than
which CPU is used in them or cost/performance of that CPU.

One way of looking at an embedded system is that the
mechanisms and their associated I/O are largely defined by
the application. Then, software is used to coordinate the
mechanisms and define their functionality, often at the level
of control system equations or finite state machines. Finally,
computer hardware is made available as infrastructure to
execute the software and interface it to the external world.
While this may not be an exciting way for a hardware
engineer to look at things, it does emphasize that the total
functionality delivered by the system is what is paramount.

Design challenge:
·Software- and I/O-driven hardware synthesis (as opposed

to hardware-driven software compilation/synthesis).

4.2. System safety & reliability

An earlier section discussed the safety and reliability of
the computing hardware itself. But, it is the safety and
reliability of the total embedded system that really matters.
The Distributed system example is mission critical, but does
not employ computer redundancy. Instead, mechanical
safety backups are activated when the computer system loses
control in order to safely shut down system operation.

A bigger and more difficult issue at the system level is
software safety and reliability. While software doesn’t nor-
mally “break” in the sense of hardware, it may be so complex
that a set of unexpected circumstances can cause software
failures leading to unsafe situations. This is a difficult
problem that will take many years to address, and may not
be properly appreciated by non-computer engineers and
managers involved in system design decisions ([12] dis-
cusses the role of computers in system safety).

Design challenges:
·Reliable software.
·Cheap, available systems using unreliable components.
·Electronicvs.non-electronic design tradeoffs.

4.3. Controlling physical systems

The usual reason for embedding a computer is to interact
with the environment, often by monitoring and controlling
external machinery. In order to do this, analog inputs and
outputs must be transformed to and from digital signal levels.
Additionally, significant current loads may need to be
switched in order to operate motors, light fixtures, and other
actuators. All these requirements can lead to a large com-

puter circuit board dominated by non-digital components.
In some systems “smart” sensors and actuators (that

contain their own analog interfaces, power switches, and
small CPUS) may be used to off-load interface hardware
from the central embedded computer. This brings the addi-
tional advantage of reducing the amount of system wiring
and number of connector contacts by employing an embed-
ded network rather than a bundle of analog wires. However,
this change brings with it an additional computer design
problem of partitioning the computations among distributed
computers in the face of an inexpensive network with modest
bandwidth capabilities.

Design challenge:

·Distributed system tradeoffs among analog, power, me-
chanical, network, and digital hardware plus software.

4.4. Power management

A less pervasive system-level issue, but one that is still
common, is a need for power management to either minimize
heat production or conserve battery power. While the push
to laptop computing has produced “low-power” variants of
popular CPUs, significantly lower power is needed in order
to run from inexpensive batteries for 30 days in some appli-
cations, and up to 5 years in others.

Design challenge:

·Ultra-low power design for long-term battery operation.

5. Life-cycle support

Figure 2 shows one view of a product life-cycle (a sim-
plified version of the view taken by [13]). First a need or
opportunity to deploy new technology is identified. Then a
product concept is developed. This is followed by concur-

rent product and manufacturing process design, production,
and deployment. But in many embedded systems, the de-
signer must see past deployment and take into account
support, maintenance, upgrades, and system retirement is-
sues in order to actually create a profitable design. Some of
the issues affecting this life-cycle profitability are discussed
below.

5.1. Component acquisition

Because an embedded system may be more application-
driven than a typical technology-driven desktop computer
design, there may be more leeway in component selection.
Thus, component acquisition costs can be taken into account
when optimizing system life-cycle cost. For example, the
cost of a component generally decreases with quantity, so
design decisions for multiple designs should be coordinated
to share common components to the benefit of all.

Design challenge:

·Life-cycle, cross-design component cost models and opti-
mization rather than simple per-unit cost.

5.2. System certification

Embedded computers can affect the safety as well as the
performance the system. Therefore, rigorous qualification
procedures are necessary in some systems afteranydesign
change in order to assess and reduce the risk of malfunction
or unanticipated system failure. This additional cost can
negate any savings that might have otherwise been realized
by a design improvement in the embedded computer or its
software. This point in particular hinders use of new tech-
nology by resynthesizing hardware components — the re-
designed components cannot be used without incurring the
cost of system recertification.

One strategy to minimize the cost of system recertifica-
tion is to delay all design changes until major system up-
grades occur. As distributed embedded systems come into
more widespread use, another likely strategy is to partition
the system in such a way as to minimize the number of
subsystems that need to be recertified when changes occur.
This is a partitioning problem affected by potential design
changes, technology insertion strategies, and regulatory re-
quirements.

Design challenge:

·Partitioning/synthesis to minimize recertification costs.

5.3. Logistics and repair

Whenever an embedded computer design is created or
changed, it affects the downstream maintenance of the prod-
uct. A failure of the computer can cause the entire system to

NEED/

OPPORTUNITY

CONCEPT

DEVELOPMENT

PRODUCT

DESIGN

MANUFACTURING

PROCESS

DESIGN

PRODUCTION

DEPLOYMENT

SUPPORT/

MAINTENANCE

UPGRADES

RETIREMENT/

DISPOSAL

Figure 2. An embedded system lifecycle.

be unusable until the computer is repaired. In many cases
embedded systems must be repairable in a few minutes to a
few hours, which implies that spare components and main-
tenance personnel must be located close to the system. A
fast repair time may also imply that extensive diagnosis and
data collection capabilities must be built into the system,
which may be at odds with keeping production costs low.

Because of the long system lifetimes of many embedded
systems, proliferation of design variations can cause signifi-
cant logistics expenses. For example, if a component design
is changed it can force changes in spare component inven-
tory, maintenance test equipment, maintenance procedures,
and maintenance training. Furthermore, each design change
should be tested for compatibility with various system con-
figurations, and accommodated by the configuration man-
agement database.

Design challenge:

·Designs optimized to minimize spares inventory.

·High-coverage diagnosis and self-test at system level, not
just digital component level.

5.4. Upgrades

Because of the long life of many embedded systems,
upgrades to electronic components and software may be
used to update functionality and extend the life of the em-
bedded system with respect to competing with replacement
equipment. While it may often be the case that an electronics
upgrade involves completely replacing circuit boards, it is
important to realize that the rest of the system will remain
unchanged. Therefore, any special behaviors, interfaces,
and undocumented features must be taken into account when
performing the upgrade. Also, upgrades may be subject to
recertification requirements.

Of special concern is software in an upgraded system.
Legacy software may not be executable on upgraded re-
placement hardware, and may not be readily cross-compiled
to the new target CPU. Even worse, timing behavior is
likely to be different on newer hardware, but may be both
undocumented and critical to system operation.

Design challenge:

·Ensuring complete interface, timing, and functionality
compatibility when upgrading designs.

5.5. Long-term component availability

When embedded systems are more than a few years old,
some electronic components may no longer be available for
production of new equipment or replacements. This prob-
lem can be especially troublesome with obsolete processors
and small-sized dynamic memory chips.

When a product does reach a point at which spare com-

ponents are no longer economically available, the entire
embedded computer must sometimes be redesigned or up-
graded. This redesign might need to take place even if the
system is no longer in production, depending on the avail-
ability of a replacement system. This problem is a signifi-
cant concern on the Distributed example system.

Design challenge:

·Cost-effectively update old designs to incorporate new
components.

6. Business model
The business models under which embedded systems are

developed can vary as widely as the applications themselves.
Costs, cycle time, and the role of product families are all
crucial business issues that affect design decisions.

6.1. Designvs.production costs

Design costs, also called Non-Recurring Engineering
costs (NRE), are of major importance when few of a particu-
lar embedded system are being built. Conversely, produc-
tion costs are important in high-volume production.
Embedded systems vary from single units to millions of
units, and so span the range of tradeoffs between design
versusproduction costs.

At the low-volume end of the spectrum, CAD tools can
help designers complete their work with a minimum of
effort. However, at the high-volume end of the spectrum the
designs may be simple enough and engineering cost such a
small fraction of total system cost that extensive hand-opti-
mization is performed in order to reduce production costs.

CAD tools may be able to outperform an average engi-
neer at all times, and a superior engineer on very large
designs (because of the limits of human capacity to deal with
complexity and repetition). However, in small designs some
embedded computer designers believe that a superior human
engineer can outperform CAD tools. In the Small system
example a programmer squeezed software into a few hun-
dred bytes of memory by hand when the compiler produced
overly large output that needed more memory than was
available. It can readily be debated whether CAD tools or
humans are “better” designers, but CAD tools face skepti-
cism in areas that require extraordinary optimization for size,
performance, or cost.

Design challenge:

· Intelligently trade off design time versus production cost.

6.2. Cycle time

The cycle time between identification of a product oppor-
tunity and product deployment (also called Time to Market)

can be quite long for embedded systems. In many cases the
electronics are not the driving force; instead, product sched-
ules are driven by concerns such as tooling for mechanical
components and manufacturing process design. Superfi-
cially, this would seem to imply that design time for the
electronics is not an overriding concern, but this is only
partially true.

Because the computer system may have the most malle-
able design, it may absorb the brunt of changes. For exam-
ple, redesign of hardware was required on the Mission
Critical example system when it was found that additional
sensors and actuators were needed to meet system perform-
ance goals. On the Small example system, delays in making
masked ROM changes in order to revise software dominate
concerns about modifications (and programmable memory
is too expensive). So, although the initial design is often not
in the critical path to product deployment, redesign of the
computer system may need to be done quickly to resolve
problems.

Design challenge:

·Rapid redesign to accommodate changing form factors,
control algorithms, and functionality requirements.

6.3. Product families

In many cases embedded system designs are not unique,
and there are a variety of systems of various prices and
capabilities forming a product family. To the extent that
system designers can reuse components, they lower the total
cost of all systems in the product family.

However, there is a dynamic tension between overly
general solutions that satisfy a large number of niche require-
ments, and specifically optimized designs for each point in
a product family space. Also, there may be cases in which
contradictory requirements between similar systems prevent
the use of a single subsystem design. In the Mission Critical
and Small examples different customers require different
interfaces between the embedded system and their equip-
ment. In the Distributed example regulatory agencies im-
pose different safety-critical behavior requirements
depending on the geographic area in which the system is
deployed.

Design challenge:

·Customize designs while minimizing component variant
proliferation.

7. Design culture

Design is a social activity as well as a technical activity.
The design of desktop computers, and CPUs in particular,
has matured in terms of becoming more quantitative in
recent years. With this new maturity has come an emphasis

on simulation and CAD tools to provide engineering trade-
offs based on accurate performance and cost predictions.

Computer designers venturing into the embedded arena
must realize that their culture (and the underlying tool infra-
structure) are unlike what is commonly practiced in some
other engineering disciplines. But, because embedded sys-
tem design requires a confluence of engineering skills, suc-
cessful computer designers and design methodologies must
find a harmonious compromise with the techniques and
methodologies of other disciplines as well as company man-
agement. Also, in many cases the engineers building em-
bedded computer systems are not actually trained in
computer engineering (or, perhaps not even electrical engi-
neering), and so are not attuned to the culture and method-
ologies of desktop computer design.

7.1. Computer culturevs.other cultures

A specific problem is that computer design tools have
progressed to the point that many believe it is more cost-ef-
fective to do extensive simulation than build successive
prototypes. However, in the mechanical arena much exist-
ing practice strongly favors prototyping with less exhaustive
up-front analysis. Thus, it may be difficult to convince
project managers (who may be application area specialists
rather than computer specialists) to spend limited capital
budgets on CAD tools and defer the gratification of early
prototype development in favor of simulation.

Design challenge:

·Make simulation-based computer design accessible to non-
specialists.

7.2. Accounting for cost of engineering design

One area of common concern is the effectiveness of using
engineers in any design discipline. But, some computer
design CAD tools are very expensive, and in general organi-
zations have difficulty trading off capital and tool costs
against engineering time. This means that computer design-
ers may be deprived of CAD tools that would reduce the total
cost of designing a system.

Also, in high-volume applications engineering costs can
be relatively small when compared to production costs.
Often, the number of engineers is fixed, and book-kept as a
constant expense that is decoupled from the profitability of
any particular system design, as is the case in all four
example systems. This can be referred to as the “Engineers
Are Free” syndrome. But, while the cost of engineering time
may have a small impact on product costs, the unavailability
of enough engineers to do work on all the products being
designed can have a significant opportunity cost (which is,
in general, unmeasured).

Design challenge:

· Improved productivity via using tools and methodologies
may be better received by managers if it is perceived to
increase the number of products that can be designed,
rather than merely the efficiency of engineers on any given
product design effort. This is a subtle but, in practice,
important distinction.

7.3. Inertia

In general, the cost of change in an organization is high
both in terms of money and organizational disruption. The
computer industry can be thought of as being forced to
change by inexorable exponential growth in hardware capa-
bilities. However, the impact of this growth seems to have
been delayed in embedded system development. In part this
is because of the long time that elapses between new tech-
nology introduction and wide-scale use in inexpensive sys-
tems. Thus, it may simply be that complex designs will force
updated CAD tools and design methodologies to be adopted
for embedded systems in the near future.

On the other hand, the latest computer design technolo-
gies may not have been adopted by many embedded system
makers because they aren’t necessary. Tool development
that concentrates on the ability to handle millions of transis-
tors may simply not be relevant to designers of systems using
4- and 8-bit microprocessors that constitute the bulk of the
embedded CPU market. And, even if they are useful, the
need for them may not be compelling enough to justify the
pain and up-front expense of change so long as older tech-
niques work.

That is not to say that new tools aren’t needed, but rather
that the force of cultural inertia will only permit adoption of
low-cost tools with significant advantagesto the problem at
hand.

Design challenge:

·Find/create design tools and methodologies that provide
unique, compelling advantages for embedded design.

8. Conclusions

Many embedded systems have requirements that differ
significantly both in details and in scope from desktop com-
puters. In particular, the demands of the specific application
and the interface with external equipment may dominate the
system design. Also, long life-cycles and in some cases
extreme cost sensitivity require more attention to optimiza-
tion based on these goals rather than maximizing the com-
putational throughput.

The business and cultural climates in many embedded
system design situations are such that traditional simulation-
based computer design techniques may not be viable in their

current form. Such methodologies may not be cost-effective
given constraints on categories of expenditures, may not be
seen as worthwhile by non-computer-trained professionals,
or may simply be solving the wrong problems.

Recent interest in hardware/software codesign is a step in
the right direction, as it permits tradeoffs between hardware
and software that are critical for more cost-effective embed-
ded systems. However, to be successful future tools may
well need to increase scope even further to include life-cycle
issues and business issues.

The tutorial slide presentation presented at the conference
augments this paper, and may be found at:
http://www.cs.cmu.edu/~koopman/iccd96/

Acknowledgements

This work was sponsored, in part, by DARPA contract
DABT63-95-C-0026, and ONR contract N00014-96-1-
0202.

References

[1] Bernard Cole, “Architectures overlap applications”,Electronic
Engineering Times, March 20, 1995, pp. 40,64-65.

[2] Stephanie White, Mack Alford & Julian Hotlzman, “Systems
Engineering of Computer-Based Systems.” In: Lawson
(ed.),Proceedings 1994 Tutorial and Workshop on Systems
Engineering of Computer-Based Systems, IEEE Computer
Society, Los Alamitos CA, 1994, pp. 18-29.

[3] Design Automation for Embedded Systems: an international
journal, Kluwer Academic, ISSN 0929-5585.

[4] Embedded Systems Programming, Miller Freeman, San Fran-
cisco, ISSN 1040-3272.

[5] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan & Jie Gong,
Specification and Design of Embedded Systems, PTR Pren-
tice Hall, Englewood Cliffs NJ, 1994.

[6] Jack Ganssle,Art of programming Embedded Systems, Aca-
demic Press, San Diego, 1992.

[7] Don Thomas & Rolf Ernst (eds.),Proceedings: Fourth Inter-
national Workshop on Hardware/Software Co-Design,
IEEE Computer Society, Los Alamitos CA, 1996.

[8] David Patterson & John Hennessy,Computer Architecture: a
Quantitative Approach, Morgan Kaufmann, San Mateo CA,
1990.

[9] Philip Koopman, “Perils of the PC Cache”,Embedded Systems
Programming, May 1993,6(5) 26-34.

[10] Shem-Tov Levi & Ashok Agrawala,Fault Tolerant System
Design, McGraw-Hill, New York, 1994.

[11] Daniel Siewiorek & Robert Swarz,Reliable Computer Sys-
tems: design and evaluation (2nd edition), Digital Press,
Burlington MA, 1992.

[12] Nancy Leveson,Safeware: system safety and computers,
Addison-Wesley, Reading MA, 1994.

[13] Georgette Demeset al., “The Engineering Design Research
Center of Carnegie Mellon University,”Proceedings of the
IEEE, 81(1) 10-24, January 1993.

