
)

REPORT OF WISC CPU/32 CHIP IMPLEMENTATION EFFORT

SEPTEMBER 2, 1987

Phil Koopman Jr.
WISC Technologies

5551 Beacon St.
Pittsburgh, PA 15217

This document contains proprietary WISC Technology information
and is s;ubject to the WISC/HARRIS non-disclosure agreement.

Released under Creative Commons CC0 1.0 Universal
by WISC Technologies

(

i

EXECUTIVE SUMMARY

This is a report of the summer 1987 effort to transfer a
discrete board implementation of the WISC CPU/32 processor to a
semi-custom CMOS chip implementation. This effort produced a
two-chip set which simulates correctly at a 10 MHz clock rate to
produce a 5 MOPS 32-bit stack-oriented processor. It is quite
likely that an optimized second-pass version of the chip will
operate in the 15 MHz to.20 MHz range.

~he most critical problem encountered in the implementation
effort was the unavailability of asynchronous RAM for use in the
stacks. This caus~d up to a 25 ns increase in the critical paths
of the chip set implementation.

This report, wh~n combined with .the previously delivered
WISC CPU/32 Preliminary Documentation manual, provides written
documentation for th~ chip set: h~rdware implementation and
theory of operation, critical path analysis~ performance
evaluation, software operation, firmware operation, system
testing, prototype test board schematic~, and recommendations for

.future enhancements~

...... __ /.

ii

CONTENTS

EXECUTIVE SUMMARY : ···-.. . i

1. INTRODUCTION ~
1.1 Purpose·
1.2 Scope ~
1. 3 Previously Delivered Irif ormation

. -· ~
. • .. 1
.· .. .1

.1
.. · 1

---·------2 .. ,HARDWARE- IMPLEMENTA'I'I.ON ·--·-·· -· •.•'•·-·-·-··· ·-~ .. ·• ·• ·-· .. ·• ·• . ~

.3.

2~1 Portion .of Desigri Included On-chip •••••••••••••••• ~ ••• 2
2.2 Chip Partitioning for Two~Chip De~ign. •••••• .2

2.2.1 Data Chip •••• ~.................. .5
2.2.2 Control Chip....................... • •••• 5

2.3 Differences Between Discrete and Chip Implementation •• 5
2.3.1 Engineering Changes to Discr~te Design ••• ~ ••••• 5
2.3.2 Changes to Eliminate Floating Busses ••••••••••• 6

2.3.2.1 Return Stack ••••••••••• • ••••• 6
2 • 3 • 2 • 2 RAM Data-- .. • • • • ... • • • • • • • •• e .: • -. •• • • 6
2.3.2.3._Mi~ro-Prog~am Memory •••••• • •••••• 6
2~3.2~4 System Data Bus •••••••••••••• • ••••.• 6

2.3.2.4~1 Partially Driven Bus Lines ••••••••••••• 7
2.3.2.4.2 Divide and Multiply Operations ••••••••• 7
2. 3. 2 .• 4. 3 Unused/External Bus Sources •••••••• 7

2.3.3 Changes Due to Two-Chip· Partitioning.~. • •••••• 7
2.3.3.1 System Data Bus Direction Control ••••••••••• 8
· 2.3.3.1.1 Data Chip System Bus Driving ••••••••••• 8

2.3.3.1.2 Control Chip System Bus Driving •••••••• 8
2.3.3.1.3 Host System Bus Diiving ••••••••• 9
2.3.3.1.4 RAM Address Bus Driving •••••••• ~9

2.3.3.2 Clock togic ••••••••••••••••• • • ~ • • -9
2.3.4 Changes Due· to the RAM Compiler··~· •• 10

2.3.4.1 Data S~ack ••••••• ~ ••••••••• • .10
.2. 3. 4 • 2. Return StaCk • . . • -~ ..•.. • .10
2.3.4.3 Micro-Program Memory....... • •••••••. 10

2.3.5 Changes Du~ High Speed.Operation...... • ••••••• 11
2.3~5.1 M~AM Transceiver Vs. MIR-Clock Race •••••••• 11
2.3.5.2 Changes in the Use.of FASTC ••••••••• • .11

THEORY OF HARDWARE OPERATION••••••••••••••
3.1-Slave Mode.··················-·········

3.1.1-Loading.a Hicro~Instruction
3.1.2 Executing a Micro-Instructi6n

3 .1. 2 .1 Single. Stepping the Clock
3.1.2.2 X@ 6p~rations ••·········~·
3.1.2.3 X! Operations ·····.

3.1.3. DMA Transfers ••••••

... .

........
• ...
•' .·. . ·• ·• ~ ·• _

.13

.13

.13

.13

.13

.14 • .• · •• -14 . • . .• •:• .15

. .. ·· ·.···;·· .. ··• .. <
.. , ,· ... · .. ···

1 •• •

iii

3. 2 Master Mode •..•.............•....••.....•.•..•.•... ~ .15.
3.2.1 Executing a Micro-Instruction ••••..•..•••••••••. 16

3.2.1.1 High Clock Period ~ ••.•••.••••••••...••••••• 16
3.2.1.2 Low Clock Period ..•••••..••••.•.••.•••••••• 16

3.2.2 Executing a Macro-Instruction •••••.••••••••..••• 16
3.2.2.1 Unconditional Jump .••.••••••••••••••••••..• 17
3.2.2.2 Subroutine Call .~ ••..•.•••.••••••••••..•••• 18
3.2.2.3 Subroutine Exit •.••....•••••••••••••••.•••• 18

3.2'.3 Interrupts 19
3.2.3.1 Interrupt Causes ••.••••••••.••••••••••••••• 19
3. 2. 3. 2 Interrupt synchronization ··~··~ . ~- •• ~-~ •••• : •• -~-.-. 2 o
3.2.3.3 Interrupt Servicing •••.••••••••••••••.••••• 20
3.2.3.4 Restarting After an Interrupt •••••••••••••• 20

4. CRITICAL PATH ANALYSIS & PERFORMANCE EVALUATION •••••••••• 22
4.1 Subsystem Timing Analysis .•.••••••••••••••••••••.•••• 22

4.1.1 Bus Source/Destination Decoding ••••••••••••.•••• 23
4 • 1 . 2 ALU • . • . • . • • • • . .. • • . • • . . • . . • . . • • . • • • . . • . • • .. • • • • • • • 2 3
4 .1. 3 Data Stack • 24
4·.1. 4 Return Stack ~•...................... 25
4.1.5 Memory Addressing ••••••••••••••••••••••••••••••• 25
4.1.6 Data Bus to Program Memory ••••.••••••••••••••••• 25
4.1.7 Program Memory to Data Bus •• ~ ••••••••••••••••••• 26
4.1.8 Program Memory to MPC ••••••••••••••••••••••••••• 26
4.1.9 Inter-chip Data Bus Delay ••••••••••••••••••.•••• 26
4.1.10 MRAM address valid at Data Chip ••.••••••••••••• 26

4 ~ 2 Critic a 1 p· a th s · ~ 2 6
4.2.1 Data Stack Through ALU •••• ~ •••••••••••••••• ~ •••• 27
4.2.2 Return Stack Through ALU ••••••••••.•••. ~ •••••••• 28
4.2.3 Return Stack to Data Stack ••••..••••••.••••••.•• 28
4.2.4 Data Stack to Program Memory •••••.••.••••••.•••• 28
4.2.5 Program Memory to Data Low Register ..••••••••••• 28
4.2.6 Macro-Instruction Fetching ·~····················29
4.2.7 Macro~Instruction Fetching •••• ~ ..•••.••.•••••••• 29

4.3 Recommendations for Illegal Operations ••••••••••••••• 29
4.2.2 Return Stack Through ALU .••.•••.••••••••••••••••• 29
4.2.3 Program Memory Through ALU •••.•••••••••.•••••••• 29

4.4 Performa.nce Es.timates-~ •• 30

5. DESCRIPTION OF SOFTWARE AND FIRMWARE •.•••••••••.••••••..• 31
5.1· MVP-FORTH/32 •••••••••.••••••••••••••••••.••••••••••••••31

5.1.1 Similarities to MVP--FORTH •••••••.••.•••••••••••• 31
5.1.2 Differences from MVP~FORTH ••••••.•••.••••••••••• 31
5.1.3 LIB-FORTH as a Base for MVP-FORTH/32 ••.••••••••• 32

5.2 Microcoded Functions ••••••••.•••••••••••••••••.•••••• 32
5.2.1 Functions Identical to MVP-FORTH •••.•••.•••••••• 32
5.2 .. 2 Functions Modified from MVP~FORTH ••••••••••••••• 32
5~2.3 New Functions ••••••••••••••••••••••••••••••••••• 32

iv

5.3 High Level Functions •••••••••••••••••••••••..••.••••• 33
5.3.1 Functions Identical to MVP-FORTH ••• ~ .•••••••.••• 33
5.3.2 Functions Modified from MVP-FORTH •••••••••••.••• 34
5.3.3 New Functions •••••.••••••••••••••••••.•••..••••• 34

5.4 Additional High Level Functio~s ••••.•••.••••••• ~~ •••• 35
5.4.1 Math Package ..••••.•.•.••.•••••.•• ~ .•••••..••••• 35
5.4.2 Screen E.ditor : 36
5.4.3 DOS File Interface .••••••••••••••.•.••••••• : •• ~.36

6 • ____ TE_S_T ___ YEC_TORS --·. -.• • __ •. •--. -·· • __ • __ • ~- .•. __ :• •. __ ._ • __ •. _ ... __ ,. • __ •• _ ,. ___ •.• _ ._. _, • _ •• ____ , --·--~ ·--~---~-tt _. _ • ___ !J -~- • ____ ._ 3 7__ ____ ····-·-·-····--·

6.1 Main Slave Mode Test Vectors: HARRIS.BIN ••..•••..•••• 37
6.1.1 Test Vector Generating Program .•••••.•••••••.••• 37
6.1.2 Clock Cycling Information ••••••.•••••••• •· ••.•••• 37
6.1.3 Test Vector Formats •••••••••••• · •••••.•••••••.• ~ .37

6.2 Miscellaneous Slave Mode Test Vectors: CYCLE.BIN ••••• 38
6.2.l ~lock Cycling Information •••••••••••••.••••• ~ ••• 38
6.2.2 Test Vector Formats •.••••••••••••••••••••.••••.• 38

6.3 Master Mode Test Vectors: RUN.BIN .•••••••••••••..•• ~.38
6.2.1 Microcode Memory Set-Up •••• ~.~ •••••.••.••••••••• 38
6.2.2 Master Mode Clock Cycling Information •..•••.•••• 38
6.2.3 Test Vector Formats •••••••••••••••.••••• ~ ••••••• 39

7. PROTOTYPE TEST BOARD ••••••••••••••••••••••••••••••••••••• 4 0 ·
7.1 Purpose and Limitations ••••••••••• ~ ••••••••••••.••••• 40
7.2 Possible Expanded Versions ••••••••••••••••••••••••••• 40

8. RECOMMENDATIONS FOR FUTURE ENHANCEMENTS •••••• ~ ••••••••••• 41
8.1 ~eturn and Data Stack Memory ••••••••••••••••• ~ ••••••• 41

8.1.1 Change.to Subroutine Exit Operation •••••••.••••• 41
8. 1. 2 Asy_nchronou-s ~AM ... _ -·· _ .- · ... -........... 41
8.1.3 Change to Stack Accessing Timing •••••••••••••••• 42
8.1.4 Elimination of Data Stack Transceivers •••••••••• 42
8.1.5 Stack Size Issues •.••••••.•••...••. ~ .•..•• ~ ••••• 43

8.2 Bus Multiplexing ••••••••••••••••••••••• ~ •••..•••••••• 44
8-·.·3 Miqrocode -Me~ory •••••••••••••••••••••••••••.•••••••• -•. 44

8.3.1 Microcode Memory Size ••••••••••••••••••••••••••• 44
8.-3.2 R·AM Vs. ROM ••••••••••• e. ~ •.••••• -••.•.••••• ·-· •••••• • 45

8.4 A Stand-alone Processor/Single Chip Version ••••••••• 45
. 8.5 Uniform Software Environment for FORCE/WISC •••••••.•• 46

9. PROBLEMS ENCOUNTERED IN THE DESIGN PROCESS •••••..••••••• ~47
9 .1 Synchronous Stack Memory ••••••••••••••• • •.••••••• · •••• 4 7
9 .2. Untested Library M·acros ••••••••• · ••••.•• .;· •.•••.•..•••• 4 7
9.3 Simulator Failing t6 Produce Complete Output Li~ts ••• 48

10. CONC.LUSION •• -••••.•••••••••••.••••••• ·· .- •••••••••.•• ·• .-..••.• ·• •. -••• 4 9

APPENDIX A. SIGNAL DESCRIPTIONS FOR LUMPED SYSTEM ••••••..• A-1

APPENDIX B. SIGNAL DESCRIPTIONS FOR DATA CHIP •...••••.•••. B-1

APPENDIX C. SIGNAL DESCRIPTIONS FOR CONTROL CHIP .••••••••• C-1

APPENDIX D. CHANGES TO WISC CPU/32 DOCUMENTATION ••.••••••• D-1

APPENDIX E. SCHEMATICS FOR A PROTOTYPE TEST BOARD ····~····E~l

v

(

' l
. '--·-'?

. l'

--
1. - INTRODUCTION

1.1 Purpose _
The Harris/WISC CPU/32 proje~t is aimed at ultimately

reducing the multi-board WISC/CPU32 discrete component_
implementation to a chip or chip set. This docurnent,provides
amplifying infbrmation for the WISC CPU/32 implementation
delivered to Harris Semiconductor during July and August 1987.

l_. 2 __ Sco_pe ___ ---~ ... ____ .. ____ __. ____ .. __________________ ---~-- _____________ ,----'----------- --~------ _, ___ ,-------------------------·------ ____
This document concerns itself with the design _and

implementation of the Harris/WISC CPU/32 chip~ It provides
amplifying information and changes to the WISC CPU/32 Preliminary
Documentation (which describes the discrete component CPU/32
implementation) to build a complete picture of the CPU/32 chip
design. -

- Areas covered include: hardware implementation, -theory of
hardware operation, critical path analysis, performance
evaluation,-software operation, firmware operation, test vectors,
prototype test boards, recommendations for future enhancements,
and problems encountered in the design process.

- This document is ,written fbr an engineer who has already
read the WISC CP_U/32 Preliminary Documentation and who already
has. a·n orientation to the purposes ·and methods of the Harris/WISC
chip project.

1. 3 Previously Delivered Information ·
Information previously delivered to Harris-Semiconductor

includes: the WISC CPU/32 Preliminary Documentation (2 copies)
with software and firmware, Collected WISC Papers, schematics for
the chip, and test vectors with associated software. Also,
courtesy copies of LI~-FORTH with associafed docu~entation have
been previously delivered. ,

. :

•

__ ,
I

(

2

2. HARDWARE IMPLEMENTATION

Converting the desitjn of the WISC CPU/32 discrete component
board set ("the Boatds") to a chip set ("the Chips") involves

·-partitioning the Board functions into areas -that should be on the
Chips, partitionirig the logic b~tween the Chips to satisfy chip
area and pinout constraints, making changes to the design to
accommodate partitioning and fabrication technology requirements,
thengen~rating test vectors to ensure correct functionality~

____ ';r.'.}1j,_§_§~C:::t:ie>:rt_g:i,,_§~_1,l§p_e_§ __ ~l._l"!:J:i_~se ___ ~~tE:!PS_ except_- test vectors i which
are discussed in Section 6. - -- --- - - - -- - - -- - - - --

2 .1 Por.tion of Design Included On-chip
Due to the se~ere pinout problem~ associated with two off

chip 32-bit stacks and an off-chip 30-bit microcode m~mory, the
WISC Chips use on~chip stack and microciode memory. All -
processing logic is also included on-chip. Since the size of the
stack memories and microccide memory is very large, the final
Chips will have most of their area devoted to memory cells.

·As a trade-off between functionality and memory sizes, both
stack memories ~re 512 elemerits by 32-bits and the microcode
memory is 2048 elements by 32-bits, giving a total of 256
possible op-bodes.

The logic not included on the Chips includes the: host
interface, program memory interface, program ~emery, and
oscillatdr synth~~is.

2.2 Chip Partitioning for_ Two-Chip Design
Since initial estimates for combined stack and microcode

memory sizes indicated that a single chip implementation could be
too large, a two-chip implementation was adopted. As is commonly
the case, the cleanest way to divide the implementation was in:to
a data path chip and a control path chip. As it turned out, this
division put one of the .staciks on each chipr and-spiit up the
microcode memory (12 bits on the data chi~, 18 bits on the
Control chip}, thus giving a good partitioning in thi& memory-
qell intensive ~esign. · · ·

· Figures' 1 and 2.show the partitioning between the two chips
at the block diagram level. _ _

Appendix A describes the pinouts for the "lumped system",
that is, the_ external interface of the Data c·hip/Control Chip
pair to the outside world. If the D~~a Chip and Control Chip
were integrated ihto a single packag~i these are th~ only pins
that would be required. ' - - -

. :·· --~ ·.·.· ·, -

. · .. , ; .'· ·: · ...

. ;

'
'

. !

..
LLi
i
<T
Q

..
L!J
..J
H

LL

..
I

1-
w
i.JJ
I
(f.J

u ._.
i
<I
E
Lil
I
u
f.fj

z
w
w
0::
" ' '-'
(f.J

(f.J
u

I I
i I
I !

I I
I ·1
I i

I l
I l
! i

I I
I I

I ' I I

. I
F.:S::-::::-:: I

!

L _____ _
HIGHEST BIT IGNORED FOR

1 / ·=· , 1-1, 1 .-. r r·=·-r· I
;I 1··, '-: "-:·- .. i I:.· - • ·-·- -· ····,.i./

I '·,•1r1h'.•i="C•:· r·r·11•ffi="!;· l .. 1 ;:;:-1·.·H···.r,i,· i:::.r1n':"·FC:C· , · ····Ti-·H l
j H.l1 _ ! ··~·-~·-I ._ .. _!._ f r r :-1 • .. r I 1 : ~-f::_._ . ._i ;..,.H 1 -·· r 1

~I) k .:"21 I:If'.:;) I (2:3 BITS) i,
! 1 'ri i . - . !

HT r• • .-, I ..-•·. j
""UH r:: j '•., / ,_ LO~-J 2:~;

. , F.:AD::-::x
i--1 = ···----;;r· --·---------IGi-------.
~ I ux~ 2:3 [, ...

!. I ,.,_ -.-
1
,.----..___ ______ ____,

, rH1-c.. 1 t··lE>=:T ADDF.:ES::; REGI::;TER

cu I I REGr°~TEF.:111
t .. -.,.-... 1 ! { ,-, p -1 T ,-. ·., I 1

i .. 1:1 .z.J l~f

I .·.-.. -.. -.. -i +1··. ~~ .•. ~.-L-. --'·.C-:.1 .. - . .:,£-.:·} .. ·· ··.. ,...... ..·· ·· ..

..-) .. -:i
1

~----.1. , . Lm1 2 BiTS~'"'

:<t···' 0 r ~ >< r: ,-~ I RDx:< .JC:

....... ! ... ····

(2J BITS)

K. !._.IL 1._ .. 1111·

I

I
I F'F.'.OGF.:AM F.:AM

f"""-··. l (2G ;-:: :32 BiiS) I
... · .. r·· ..
I ... ·•··

. ··· .••.

1
L···

..-i .. -)
["_ .. ::_:.

I/,, BYTE ADDRESSING I

f·~· ::I' ·n·-· ··-1·-r· -- 1' , 'A I A r:'.Li.J I .. f"il.J
i

I I I ,__ _ _,

I

··-i ..
lJJ
1-
<r
Q

..
w
_J
H

LL

=· :>

=·
I

1-
w
w
I
co

u
H

1-
:::r
E
w
I
u
(J)

H

z
w
w
er::
u
(J)

(J)

u
H

'I
0..
:::r:
er::

ll ,--~l ~32· ..)·:::i _____ _

i r-- r<~__;'n1r. ~ _.~_}L=-~~~~-~~-~---~-
··. ! ..L.· r··· .. .

I

11' ·-.. -.. ---:---__ ___:_:__:.__.:___',}? l ··· ... I/

I! ___ ... ,~.· i •• ·.·::::1'. DATA POWTEF.: I BUS LATCH' I
lL_ffjl' . (12 ms; J G2 ws:. I I
~~ ! ~ i
I .. -., .·-·1 ·. . H'"Il-11~.-.'

-· -·· . ·• _!_ ··

1 :::-:i '··· ... ~ · .. r ... h .-- ~-..... r::--2:J y' ~ IIHTH :-; 1 ArY I ··..... . ···· ···
I' /W>h. /i ,.., . _: ·-·· ', B SIDE '\ ./ •

. , I ·" x :;2 BITS) i '\ \,,/ A SIDE /

I
I : \\...__ 32 BIT ALU /'

'J '.) ' - . I < -- -·-' L I HLUxx t ----_ _ _ ··4 =;;::.t..F.~u7
('•j DATA Lm REGISTER:~ SHIFT r :.11' T .,./ -/ SIGN BIT

I I ' ,,,., p .-· - =·~ ----- . I - ;'l,L. IPLlXEi<

r
! ! l ' ' ···-''- IT.: ... ' I ,•J, ... :1-11 IT - - I i-'A~:S-TH~'! ! F - • • 1

1
................ ' I .r<._. :::HIF...-, 91-1-H·

-T ----r------- . - 0 - . ~ "' , .• I I ('l i -----~------ .· . ~ T LEFT' BYTE o.-,.l i··· -1.- !
i II .. _.i .. fji : I l1l'"TI !'"''I --.................... -;-.......................... il . r<.•- rl t.. !

I, I __ J ··-:::) ··::. i . r:.r:.. ' ·- r:'.n PO I t-HEF.' I n

I
1 ·
I

I I il1 ~-'LID! 11 (!21B!TS) . i ::) 32
··-ATID'"'•

I I .·.·.·.·I I i . . II ")·" 1.:. r:.

I . I/ ",fDl' ' I -·-· ·- " i t- rx~ Kt.iU!<~l SWY I :: DATA CHIF) ·1'

";11.";11.";;I, 'S.";11."So

•
1

<I i ·.. ~--.,_ I ./I (4K x :32 B·r~1:_;). 1I 1"'.... I - ------- ~----~
f "·f-·1t··,JTD1::..·.·1 . I f-··u TD

..
LL!
!
<I
Q

w
I

w
!1!

C2
u
(.f)

(.f)
u
H

...J :[
H CL
l.L <L

1-
/T
"•-l..,

!_I -

I

I

I

···· ... ! ... ···· ~--·~_)_t_ __ ~_:1_1~_:x_. ~·~
i ··

·· . .J/
INSTRUCTION LATCH! (9 OP-CODE t:

01 BIT::;) ! 2 I:Ir:; ADDF.:Es::; TYPD
~-------___J

·· .. ,,_/
cor·mITIOH

CODES

II \.~.~ ~:-.. _:· .. ~::_~_-', 1t~_:.1AL1 __ ~.c .. :·:.~_-~ .•. -_:,'·r\.~ T
- MI C~:O-PPOG~:AM

I'..-··"· : 1 -1 .. , •.* cour·1TEF.: 1·
- ~ ~===~~======~====~a===9 r--- 1..L)!,__ __ ~ (12 BITS) 11 ·i

! ': L___j 0 if • I - --- !
t_- , I ,., !- 1 r·.j1 i i :.. = t

r··· ... (S-1 '3) i l.1 r-· -. ---==============·-:·-........ J.._ ... ··_h_:I_1r_1F_.: ___ :: ___,
1

,._. ~ ~, :BI T:3 OF MF~AM :~.: MIR , ..
• i,1 ARE LOCATED Dr·i DATA CHIP 11

f'1 I CF.'.0-P~'.OG~:AM MEMOP\'
l (4f::: ::-:: :~:2 BI r::;) I
I ~? !

~ X>~r< /r :: I
I··.. . I • ,.,· i I ···-.. 1- , I

.I

I MI cRo- r rt:rn~:ucr r Cli F.:EG I ::;TEF.: L j

.·--= .. -·i
I ,-.)L
!>-l-· _---11 n i
I"'"··.. L::S
I

C?.:2 BITS) I===================,
!

PH IL J):n:tPMAM .JF.~ = · I
CPu-32 :BLOC~< DIAGRAM .I

CO!"ffF.'.OL t: I

I
HOST IMTE~:FACE

(FILE: PBLK2)

!.Li
i
i::r
Q

w
_j
H

Ii ...

>

I

i
w
!.Li
I
UJ

u
;-;

i
([
I:
LLl
I
u
co

z
!.Li
!.Li
!L
u
(j)

r--·-1 i
i i i, 1,·-·1 :,· j t-·i I
1 1 L , __ .I v--1 ::::1 -.....J i !i--------.-= ... j -·1

I j .·· j (_· !_:; .r:T'! .LT -.i :_:; .) .. ·•• .l'j

I ! ,
1 1 .. -.; .. -·, • I
·,ii !- ·.~) i-· ·· ... J 32-i:.1.:IT 1_1:u::;-HOST i1 __ • ••• I -·- ··- -...,.. - . - . .

- ·-.: "----·..;;···' I u nu::: l liH i A ;~-: ~-------;;. - -
I j ••• • •••• ··1 DATA T~:Ar·1scEI£r1EF ,....... __ ,

1
1

I I . ------~i I ADDPESS BUS

I SER'nCE f:EQUEST [/ I I
~~G~,~~~;, r, , ii

. 1' nnr-1·r1 -~,1~,rlA1C_ir1·
f ·,r· t-i:-1 !._.! . I._.• 1 J_

;11, __ ••• -· I-., i··' •• •• _ •• ···' -·'·-·! i ·· ... - . ~ ----------------------------=! , i l.! r:::.... • I
i r·· ... L.m.i ::: • 31-·E: IT ~'.AM ADDF.'.ES::; 11

l " . t: ... ~- ~; r/=- .. -C:"rj N" i R"Ci ,-- ' I ADxx I
II Ir·--.... ..: ~····... 11 .,.-.. ,-~ T P .-. - - - - - ~--.L···~ - - - - - - .·. · I

(.() HIGH ._.· 1 1.. i ·

I i I . ! PROGRAM RAi'1 I
I ~ i I <21~ >=: 32 I: Ir:: ::i 11

11

.

! i I
I <T I I .. -., ,-., i - - - - - - ?",,. .. ~.. - - - - - - j
l I ! -:, .. -· I ;II,,,•

.... 1
\j

I

'

5

2.2.1 Data Chip
The Data Chip contains the ALU with its associated

multiplexer, the Data High Register, the Bus Latch into the B
side of the ALU, the Data Stack and Data Stack Pointer, the Data

·Low Register, and twelve bits of the Micro-program Meinory/Micro
Instructi6n Register Structure (bits 8-9,12-13,16-23). These
twelve micro-program bits were chosen for placement on the Data
Chip because they directly control Data Chip resources (e.g. ALU
function).

___ -----~-The data chip may _be thought of as "the part that got off-__
loaded from the main chip", since the Data Chip does not
interface with the outside world.

Appendix B describes the pinout for the Data Chip.

2.2.2 Control Chip
The Control Chip contains everything in the system that

didn't get factored off onto the Data Chip. This includes the
Return Stack, the memory addressing logic, the micro-instruction
addressing logic, and almost all of the control circuitry. The
Control Chip holds eighteen bits of the Micro~program
Memory/Micro-Instruction Register structure (bits 0-7,10-11,24-
31) w Bits 14-15 of each micro-instruction are unused~ and
therefore omitted from Micro-program Memory.

The Control Chip may be thought of as the "main" chip, since
it is the chip that controls all global actions and interfaces to
the outside world. Appendix C describes the pinout for the
Control Chip. ·

2,3 Differences Between Discrete and Chip Implementation
There are five types of differences between the Chip

implementafion and the Board implementation described in the WISC
CPU/32 Preliminary Documentation. These differences are due to
Engineering Changes to the Boards (which will appear in
subsequent versions of the Board documentation), changes to
eliminate floating buses in the Board design, changes due to the
partitioning of the design into two chips, changes due to the use
of synchronous stack and microcoda memoriesi and changes required
due the the high speed of operation iri the CMOS chip (i.e. race
elimination.)

2.3.1 Engineering Changes to Discrete Design . .
Two Engineering Changes-have been made to the Board design

in order to Obtain ~orrect op~ration of interrupts.~ The first
change is changing IC38 pin 10 on figure 59 from being cqrinect to
the signal INTR to simply being connected .to IC38 pin 9. This

·change in effect makes NDEC2 and ND2CK the same signal~ On tha
Chip implementation all occurrences of ND2CK are chaQged to
NDEC2, and the.OR-gate is simply eliminated.

Th~ second charige is changing the CLR pins on the EXIT and
CALL flip~flops to Be pulled high. This means that on figure 65,

,IC57 pin 13 and IC58 pin 13 are disc6nnected from NINTR and
instead connected to PULLG, which is a pull~up resistor.

6

Both these changes are ref le~ted in the new versions of
figures 59 and 65 included in Appendix D. ·These changes
accomplish the changes in functions to interrupt processing
described on the new page 51 of the Board documentation given in
Appendix D.

2.3.2 Changes to Eliminate Floating Busses
__ ,Sinc::~fl9ating tri-state __ busf3es_are not tolerable on a CMOS

IC I ea.ch bus on -the Board design that had. -one or more-bi ts that
were allowed to float is changed to be driven on every clock
cycle. · This is accomplished by adding drivers for undrivert bits,
by adding a default bus driving source when the bus is not in
use, or by adding pull-down resisto~s.

2.3.2.1 Return Stack
The Return Stack bus (RS<0:31>) connecting the Return Stack,

Address Counter, and Address Latch was allowed to float when none
of these resources was in use in the Board design. In the Chip ·
design, the signal NRSOE on the figure Return Stack Control Logic
(F.60) is defined to let the Return Stack drive the bus when the
bus would otheiwise be idle.

2.3.2.2 RAM Data
The RAM Data bus (RD<0:31>) floats whenever a RAM access is

not being perf6rmed in the Board implementation. Although
changing logic to allow the Chip to drive this bus during unused
cycles is possible, software access to non-existent memory
locations would allo~ the bus to float. Therefore, pull- down
resistors are installed in the pads for the RAM Data bus. These
pad drivers are shown in the Chip schematics figure entitled "BUS
PAD DRIVERS with PULL-DOWN".

2.3.2.3 Micro-Program Memoiy
.Th~ Micro~Program Memory bus is allowed to float when irt

Slave mode in the Board implementation. In the Chip
implementation, the signal NMROE enables the Micro-Program Memory
outputs to drive the bus when it would otherwise have been idle.
The logic to accomplish this is shown in the schematics figure
entitled "MRAM/MIR CONTROL LOGIC -- F.24".

2.3.2.4 System Data B-us ·
The system Data Bus (BUS<0:31>) can float either due to

being partially driven by system resources that are less than 32
bits wide {such as the Data Stack Pointer,) can float during the
Divide and Multiply operations, and can float if no external
source drives the bus during cert.ain operations. On the Board
implementation, this problem is handled .by using pulldown
resistors on a11 32 Data Bus lines. While this is convenient and

(

7

space-effective on a discrete board implementation, it is not
acceptable for a high-speed CMOS implementation where the unused
bits must be zeroed for correct program operation.·

2.3.2.4.1 Partially Driven Bus Lines .
In order to correct the problem of system resour~es less

than 32 bits wide not driving ~he Data Bus properly, all sy~tem
Data Bus sources less than 32 bits wide are expanded to 32 bits
using tri-state bus drivers that drive zeros onto the data bus. .

. ----- These_bus_drivers are __ found _in_ schematics.,: ~'p.!Jll4Y?llf3_~~~--fp~ _________________________ ; __
SOURCE=RAM-:BYTE, SOURCE=FLAGS, SOURCE=RP, SOURCE=MPC and "DATA
STACK. POI.NTER --· F. 25" for .SOURCE= DP.

2.3.2 .. 4.2 Divide and Multiply Operations
.In order to correct the problem of the bus floating during

multiply and.dividemicro-operations, _the DHI register is driven
to the bus during SOURCE=DHI as well as MULTIPLY and DIVIDE
micro-operati6ns. The 3-input ~ND gate that accomplishes this
generates the signal used- to enable the SN74244 devices on the
schematic "Data High.Register". This change does modify the
functionality of the Chip compared._ to the Board in that during
divide a.nd multiply operations, the Board's Data Bus shows. all ..
zeros,_ whereas the-Chip's Data Bus· shows the contents'of the_DHI
register. Because of this, the Data Bus valu,es ar:e ndon't cares"
~hen testing a chip and usihg the MU~TIPLY or DIVIDE micro- ·
operations. · ·

2.3.2.4.3 Unused/External Bus Sources
In order· to· correct the problem of bus floating for Data Bus

source number 15, the implemented instruction set does not use
the SOURCE=FPU bit pattern. . This precaution s.hould be sufficient
for·normal operation.· However, to guard against a floating data
bus for illegal·or improper micro-instructions which could
conceivably be generated, due to programmer errors or a~
unfortunate power-on micro-instruction bit pattern, the unused
source _decoder SN74138 output pin (Y7 ori the lower left '138 of
the s~hematic "BUS SOURCE &. DgSTINATION DECODERS -- F.23") should
be AND'ed with the.'138 output that currently drives the signal
NSPC on that schematic to make the new NSPC signal. Making this
chanqe will des:i,gnate the PC host to .drive _the Data Bus for.both
source number 0 and source number 15, leaving ho undefined bus
source situations. · ·
. . .. ·

~. 3. 3 Changes Due·. to Two-Chip Partitioning ·
.Other tli-an the obvious changes of adding pad.drivers for

inputs ·and _outputs, the two-:-chip paititionipg scheme requires
changing log.ic to correctly orchestrate _the flow of bi ts .on the
Data.Bus,_ and requires·replic;:ation and changing of .the system
clock logic to avoid clock skew and reduce the number of pins
required on . each. chip;, .

',:··:.

. . : ~ ... :.

8

2.3.3.1 Bus Direction Contr61
· Since the System Data Bus may l;>e driven from the Data Chip,

the Control Chip, or the Host, special logic at each chip must be·
used to control the direction of the pad drivers. Since some bus
sources have different bits of the bus driven from different
components of the system, groups of pads within each chip may be
driven iri. different directions duririg the same clock cycle.

· Also, since the RAM Data Bus has pad drivers associated ~ith

. I
i
I
I

-·it,- logi-c-to. control.- the-direction of the pad.drivers is .included ______ : ____ : __
in the control Chip.

2.3.3.1.l D.ata Chip System Bus Driving
· The Data Chip's S~stem Bus pads are driven by the 9at~s
shown in the sc_hematic "WISC DATA. CHIP". . These gates drive all
32 bi ts .of the Data Bus· as chip output$ for micro-operations
SOURCE=DLO; SOURCE=DS, SOURCE=DP, SOURCE=DHI, DIVIDE, and
MULTIPLY.

For the micro-operation -SOURCE=MRAM and the MIR source.to
BUS input pin function (signal· NSMIR,) bi ts· 8-9, 12-13, and 16..,.;23
are driven off the chip while all.other bits are driven onto the
chip. The bits driven off the chip correspond to the micro-
instruction bits residing on the bata Chip~ . .

For the MIR loading operation (signal NDMIR), all pins are
configured to inputs·· regardless of the current micro-operation.
If this were not done, any micro..:operation specifying outputs
c6uld block the ne~ micr6-instruction from being l6aded.
·(Optimization note: the use of the NDMIR signal to control pin
directions appears redundant, since the schematic "BUS SOURCE &
DESTINATION DECODERS -- F. 23 11 shows that all bus sources are ..
disabled during the NDMIR operation, making these pin~ default to
inputs.)

For all Other micro...;operations, all 32 bits of the system
Data Bus are configured as.inputs.

2.3.3.1.2 Control Chip System Bus Driving
~he Control Chip's System Bus pads are driven by the gates

shown in the schematic •iwISC CONTROL CHIP". .These gates drive
all 32 bits of the oata Bus as chip inputs for micro-operations
SOURCE=DLO, SOURCE=DS ,_ SOURCE=DP ~ SOURCE= DH I, DIVIDE, and .
MULTIPLY and for· .the default bus source desigJ1ated by the NSPC
control line ·(the default bus source is from the ho.st PC• s
interface.) · · · · · · •·· · .. · . · · . · .. ·. ··

.. Fo;r the micro-operat.ioh.SOURCE=MRAM and the MIR source to
BUS input pin function (signal NSMIR,) bits 8-9, 12-13,·and 16-23
are configured· as inputs to avoid a bus cras.h with these bits
from the Data Chip. They are driveri onto the Control cbip's BUS
but·are not used •. All other bus.bits are configured.as outputs,.
since they correspond to the micro-instruction bits ·r.esiding .on ..
the Data. Chip. ·.·.In this implementation the two unused. micro~

: . '. '

~ ·' ...

.. . ·,:

: >.'"
.'•. : :.

/·;·. .. · ··•·.·,·_.:.···
. '" . ,',.. : . ; .. .'··: :~

. . ,.~·· .

;
. I

I.

' ··'

!
i.

~--- ,'

9

instruction bits (14-15) are driven to ground whenever the MRAM
of MIR are read.

For the mic~o-operation SOURCE=FLAGS, bits 0-7 of the Data
Bus are configured as inputs so that the host .Service Request
Register may be driven onto BUS from outside the chips. Bits 8-
31 are configured as outputs to drive the interrupt status flags
and unused (forced to zero) bits onto BUS.

For the MIR loading operation (signal NDMIR), all pins are
configured to inputs regardless of the. current micro-pperation~
If this were noL done,_ any __ micr_o""."operation_specifying outpµ:t~- ______ _
could block the new micro-instruction from being loaded.

For all other micro-operations, all 32 bits of the syst~m
Data Bus are configured as outputs.

2.3.3.1.3 Host System Bus Driving
The external Host Interface is required to drive all 32 bits

of the system Data Bus when the NSPC control signal is active.
NSPC is generated by the default source micro-operation
(designated by the lack offa SOURCE~ or the use of SOURCE=HOST in
a micro-instruction.) This function is used in Slave Mode so
that the X! operation can be used to drive BUS when no internal
bus source is specified. In. master mode, NSPC is used to signal
the host to drive BUS in order to avoid letting BUS float.

The external Host Interface is required to drive bits. 0-7 of
the system Data Bus when the NSFLG control signal is active.
These 8 bits are driven from the host's Service Request Register.
The Service Request Regisfer is an off-chip 8-bit register used
to communicate the type of service required when the host
generates an interrupt to the chip.

2.3.3.l.4 RAM Address Bus Driving
The RAM Address Bus is driven off the data chip for the

micro-operations: DEST=RAM, DEST=RAM-BYTE,, and. DEST=PAGE. The
RAM ~ddress Bus is also driven off-chip for the micro~operation
DEST=DECODE~ except when a.SOURCE=RAM is also used,· to allow for
the important capability to per£orm a "manual" decode of an
instruction from RAM as in the micro--instruct,ion "3 :: SOURCE=RAM
DEST=DECODE ;;" • -

2.3.3.2 Clock Logic
In the Board implementation, the system clock was generated

on ~rte board, and copies were buffered on each circuit board to
gener~te local copies of the clock. In the Chip implementation,

·this rnetho~ would cause a clock skew on the Data Chip, or would
lead to the use of delay inverters in the Control Chip~ To avoid
this problem, .c6pies of the clock generatirig logic are placed on
both the Data Chip (schematic "DATA· CLOCK CONDITIONING") ·and the
Control Chip (schematic "CLOCK CONDITIONING".).

· Instead of transmitting copies of FASTC and XCLK £iom a
central clock generator, the Data Chip·and the Control Chip each

10

use separate copies of the· clock conditioning logic to synthesize
CLOCK and FASTC from the NCYCL, DVOSC, and NMAST inputs.

As an additional change, since CLOCK and FASTC are not
available off-chip~ the "WISC Control Chip" schematic Shows three
OR gates to condition the signals NDRB, NDRW, and NRAM with FASTC
to generate RAM control signals synchronized with the system
clock arid to eliminate spurious signals caused by decoding
glitches from the bus control demultiplexers. On the Board
implementation, the system clock was distributed to the memory

____ boards __ to accornplish_this _ _synchronization.

2.3.4 Changes Due to the RAM Compiler
In the Board implementation, asynchronous 4K x 32-bit

memories are used for both stacks and the Micro-Program Memory.
Since Harris' RAM compiler allows the use of RAMs with an
individual output enable line instead of a combined CS/OE pin,
extra logic was generated to create the output enable function
(which will eventually improve system performance).

Unfortunately, the RAM compiler also requires the use of
synchronous RAM. This required the synthesis of a chip enable
signal, all will significantly hurt performance as discussed in
Section 9.

2.3.4.1 Data Stack
The changes in the Data Stack control signals are very

straightforward. The Data Stack memory's chip enable is tied to
the system clock. This means that the high part of the clock
cycle is used for precharge and the low part is used to
read/write data. See Section 3 for a discussion of the high/16w
portions of the clock cycle.

The Data Stack output enable is ~ctivated whenever a
SOURCE=DS mi~ro-operation is used.

2.3.4.2 Return Stack
The Returri Stack memory's chip enable is also tied to _the

system clock. As in the Data Stack, this means that the high
part of the clock cycle is used for precharge and the low part is
used to read/write dat~.

The Return Stack output enable is activated whenever the
Return Stack is read and whenever- the RS_bus would otherwise be
idle. This means that the Return Stack output enable is active:
when a SOURCE=RS micro-operation is used; during the first clock
cycle of a subroutine return; any time the following signals are
all inadtive: NDADC, NDADL, NSADC, NDRS and NCAL2. (Notei NCAL2
is active during the DEC2 cycle of a subroutine call.)

2.3.4.3 Micro-Program Memory .
The changes in the Micro~Program Memory control signals are

very straightforward. The MRAM's chip enable is tied to the
system clock~ This means that the high part of the ~lock cycle

,.·:. : -:· .. : :·
. : _'-,· .··.

is used for precharge and the low part is used to read/write
·data. ·

The MRAM output enable aiways act.ivated, except when a
DEST=MRAM micro-operation is used or a write t6 the MIR is
performed (using signal NDMIR) •

2.3.5 Changes Due High Speed Operation

11

· Surprisingly few changes were required to compensate for
timing differences between relatively slow ALS and LS logic used
in- the -Board- -implementation and the faster CMOS- process -used bY---- -
Hartis. · ·

2.3.5.1 MRAM Transceiver Vs. MIR-Clock Race
The one required change to the design due to the logic speed

difference resolves a race condition between the signals MIRCK
·and NMRXE on schematic ."MRAM/MIR CONTROL LOGIC -- F.24". The
signal MIRCK is used to clock the value on the internal MRAM data
bus into the Micro-Instruction Register. In Slave Mode, this
data bus is_dri\ten by SN74245 transceivers from the system Data
Bus {see schematic. "Cmicro ram".)

The enable signal for~those '245·transceivers is derived
from the signal NDMIR in. the Board_ implementation. Bµt,. since
NDMIR is also used to g~nerate MIRCK in Sl~ve Mode (see schematic
"CLOCK CONDITIONING",) a race develops between the sig~nal trying
to turri 6ff the data transceiver and the signal tryin~ to clock
that output of the transceivers into the MIR. In order.to
resolve this race, a latch was added to the "MRAM/MIR CONTROL
LOGit ~-F.24" schematic to £orce NMRXE to remain active until
after MIRCK has triggered the MIR clock.

This race was not detected on the Board implementation,
since. tbe difference between two equal-,depth paths of ALS SSI
logic gates is much less than th~ time it takes a tri-state
device·td disable. (In other words, the designer missed th~
race, but got lucky. No system ,failures, instabilities, or
manufacturability problems have resulted, since tri-state turn
off times combined with voltage bleed"'."off times for a. floating
bus are_ VERY long compared to· a gate delay.) _ ·

2.3.5.2 Changes in the Use of FASTC.
The sighal FASTC (Fast-Clock) was u~ed in the Boatd

implementation to ensure that the rising edges of RAM writes a.nd
SN74373 tran.sparent-~at~h clocks occurred before the rising
system clock edge disrupted the values on. the system -Data Bus •.
This was required_ because some static RAM devices and all '373
devices have a 5 to 10 ns data hold requirement after.the rising
clock.e4ge. · · ·

.. Since the RAM Compiler generated RAMs do not have a hold·.
requirement, FASTC is 'no. longer required f6r stack and Microcode
Memory-RAMs (although the schematic "MRAM/MIRCONTROL LOGIC -

. F.24~·still appears to use FASTC) •

. '.', :· "·'.· ' .. ··
... ·.·:. ' .. ··. ·.·

.· ,,·.

·._. ~ ..
. ·I•' .. , ..

;

i

,-, ..

As the SN74373 devices used on the Chips have a data hold
requirement, FASTC is still used for these devices.

Since some chips used for Program Memory may have a hold
requirement (or may be subject to propagation delays due to

12

.control circuitry), FASTC instead of CLOCK is used to condition
the signals NRAM, NDRB and NDRW just before the output pins for
these signals on the control chip (schematic ~WISC CONTROL
CHIP") •

13

3. THEORY OF HARDWARE OPERATION

This discussion of the theory of the hardware operation is
intended only to supplement the WISC CPU/32 Preliminary
Documentation. This. section discusses clock control timing,
amplifies upon the information about macro- instruction
proc~ssing, and discusses details of interrupt processing.

3.1 Slave Mode
__ Whenever. the .system_inputNMASTis_high,_the_systemi,s in __

Slave Mode. When idling in Slave Mode, DVOSC must be high and
NCYCL must be high. Of course, NDMA, NSMIR, and NDMIR must also
be inactive=high. When idling in Slave Mode, the system clock
(CLOCK -- for the purposes of Section 3 there is no difference
between CLOCK and FASTC) idles high. Since CLOCK is not cycling,
no micro-instructions are being executed, and the system is
halted.

3.1.1 Loading a Micro-Instruction
In order to acicompl~sh anything i~ Slave Mode, the MIR must

first be loaded with a valid micro-instruction. This is
accomplished by having the host interface. place a 32-bit value on
the· Data Bus while driving the signal NDMIR low. This same 32-
bi t value can be r-ead back to the host via the Data Bus by

·driving the NSMIR signal low. Since only 30 bits of the 32-bit
MIR field are actually used by the Chip, bits 14-15 of the read
back value will be forced to zero. This differs from the way the
Board works, since the Board stores but does not use ~11 32 bits
of the MIR value.

NSMIR and NDMIR must· be held low for a period at least as
long as the low part of the clock cycle in Master Mode. The
rising edge of.NDMIR causes the signal MIRCK to clock the data
value into the MIR.

Since the host must be able to read and write the MIR at
will, the MIR can not itself hold a SOURCE or DEST field that
specifies the MIR as a bus source or destination. This would
cause a chicken-and-the-egg problem of not being able to write
the MIR unless the MIR already had a DEST=MIRmicro-operaticn in
it. Instead, the NDMIR and NSMIR signals are used to over-ride
the bus source and destination fields in the MIR to read and
write the MIR upon demand in Slave Mode.

Since the MIR provides access t6 all system resources, a
~lobal reset pin is not required for the Chips. All
initialization can be performed by an.appropriate sequence of
micro-instruction loads and executions.

3.1.2 Executing a Micro~Instruction
Once the MIR is loaded with a valid value using the micro

assembler (e.g. ">> SOURCE=DS ALU=A+B DEST=DHI ;SET",) the
micro-instruction may be executed bysingle-:stepping the system

14

clock. The clock is cycled by driving the signal NCYCL low and
then driving it high. NCYCL must be held low for a period at
least as long as the low part of the clock cycle in Master Mode.
Th~ falling edge of NtYC~ must be delayed beyond the rising edge
of NDMIR, NSMIR, or the previous NCYCL rising edge at least as
long as the high period of CLOCK in Master Mode.

The main difference between Slave Mode operation and Master
Mode operation is that the signal MIRCK is not driven by CLOCK in
Slave Mode. This means that the MIR remains unchanged no matter
how···many times-NCYCLis cycled.----- ----- -- - - -- - .-----

3·~1.2.l Single Stepping the Clock
While NCYCL is low, the data bus is driven from whatever bus

source was specified in the micro-instruction. If no bus source
was specified, then the low=active value of signal NSPC indicates
that the host interface must drive BUS<0:31>. If NSPC is high,
or no Data Bus destination is specified, then the NCYCL merely
executes a single-step of the clock.

3.1.2.2 X@ Operations
If a bus source (and optionally, a.bus destination) are

specified, then the host may read the Data Bus while cycling the
clock (using the X@ micro..,..assembler command.) The data for X@
may be clocked into bost holding registers as NCYCL is released,
or may be examined 8 or 16 bits at a time by holding NCYCL low
for longer than the minimum clock low time, then examining the
Data Bus values as desired. In any ev~nt, NCYCL should be driven
high when the X@ operation is completed.

Since the X@ operation cycles the clock, a single micro
instruction may be repeated for operations such as popping
successive data stack elements without reloading the MIR between
operations.

3~1. 2. 3 X ! Operations
If a bus source is not specified, then the host is allowed

t_o drive BUS<0:31> with values using the X! micro-assembler
operation. While NCYCL is driven low as in the above operations,
the host drives BUS. As NCYCL is driven back high, whatever bus
destinations were specified are loaded with the BUS contents on
the rising edge of CLOCK (which is driv~n by the rising edge of
NCYCL.) . -

The data driven ont~ the bus must be.valid in time to make
it through the ALU and into the DHI register (and also set the
zero condition code.) This is the same time specified in Section.
4.1.2 on ALU critical path timing.

_If the host has less than a 32-bit data path, then th~ host
interface must build a 32-bit word .out of smaller pieces~ then
perform a single High-Low-High pulse of NCYCL with the complete .
32-bit data word driven onto BUS •. In practice, NCYCL may be held
low while :building the 32-bit_word, as long as a11·32 bits meet

15

the setup time before driving NCYCL high.
Since the X! operation cycles the clock, a single micro

instruction may be repeated for operations such as pushing
successive data stack elements without re-loading the MIR between
operations.

3.1.3 DMA Transfers
The DMA Transfer Mode is a special case of the Slave Mode.

In order to transfer a block of sequential Program Memory words
_ to_or_from __ thE!_host, first_theAddress Counter is loaded with the

address of the first word to transfer. Then, the MIR is loaded-·
with the micro-instruction: ">> DEST=RAM INC[ADC] ;SET" for a DMA
write-to-Program-Memory operation, or ">> SOURCE=RAM INC[ADC]
;SET" for a read-from-Program-Memory operation.

After the MIR has been properly set, the NDMA line is driven
low and held low for the duration of the DMA transfer. This ·
action causes the Address Latch to become transparent regardless
of the CLOCK value, in effect driving the RAM Address pins

· (RAD<0:22>) directly from the Address Counter. After waiting a
few nanoseconds after NDMA goe~ low for the address value to get
to the RAD pins, the DMA transfer may begin. ·

As far as the Control Chip is concerned, the DMA transfer is
no different than a sequence of X@'s or X!'s, with the exception
that the RAM Address pins are driven from the Address Counter •.
NCYCL performs a High-Low-High transition £or each 32-bit
transfer word. NCYCL must remain low long enough to read or
write program memory (depending on memory implementation, this
low period may be up to twice as long as the.required low period
at full speed, but most hosts are slower than this anyway.)

The DMA mode does not necessarily imply that DMA is being
performed to or from the host PC's memory. While DMA'ing out of
the host PC's memory and into the Chip's Program Memory is
obviously the fastest way to do a transfer, the host may also do
a ser~es of ~@'s or X!'s if the DMA circuitry to the host's bus
is not implemented~

3.2 Master Mode
Master Mode is the "normal" mode of Chip operation.

Whenever NMAST is active=Iow, the Chip is placed in Master Mode.
In this mode, DVOS<; supplies a one-third low, two-thirds.· high.
duty cycle oscillator, while NDMA, NSMIR, NDMIR, and NCYCL must
all remain high~ .

In Master Mode, CLOCK and FASTC are one-third hi~h/two
thirds. low; and MIRCK follows CLOCK with a delay of a few
nanoseconds to ensure ~hat system Data Bus values are
successfully cldcked in to registers or memory before the next
micro-instruction is executed. RALCK is essentially.an inverted
copy of FASTC, since the SN74373's used to implement the RAM
Address Latch allow data to pass when the input clock is high (in
this case, during the low period of FAS TC) • ·

0

)

16

3.2.1 Executing a Micro~Instruction
Each micro-instruction in Master Mode is executed during a

· single high-low period of CLOCK. All micro-instructions begin at
the beginning of the one-third high period, and end at the rising
edg~ of the next high period. ·

3.2.1.1 Hig~ Clock Period
The otie~third high ~eriod of the system CLOCK is the setup

..... phase.of- the micro-cycle. _____ Just :after. the rising .edge __ _of CLOCK. ______ _
the signal MIRCK rises, clocking the micro-instruction to be
executed in the current clock cycle into the.MIR ~egiste~.

When the new MIR value is loaded, the SN74138 decoders shown
in "BUS SOURCE & DESTINATION DECODERS _.,.. F.23" decode the.source
and destinations for the system Data Bus. Since this decoding
process can produce spurious values on the '138 outputs, all
clocking signals derived from the destination selectors (NDDP ••
NDMRA) are conditioned with.CLOCK to mask selections during the
high clock period.
_ Also during the high clock period, the stack and ~icro
program RAMs have a high chip enable input, allowing them to
precharge before use.

3.2.1.2 Low Clock Period
The two-thirds low period of.the system CLOCK is the

execution phase of the micro..:cycle. During this phase, the
current contents of the MPC; the two JMP=xxx bi ts·. from the MIR.,
and. the condition code mtil~iplexer output are ~11 used to address
the next micro-instruction in MRAM. ·.·

.Also during this phase, the Data .Bus source is allowed to
complete its ''turn-on" to drive BUS, while the selected
destination ·is driven from BUS. In all cases, ·write/ load signals .
to registers and me~ories are derived from.CLOCK. This ~eans · ·
that all clocks and transparency.enables (for.transparent
latches) are aisabled driring the high phase of CLOCK and enabled
during the low phase of CLOCK. At the· rising edge of CLOCK at
the end of the lowperiod, registers and.latches·grab the· Data
Bus value for retention into the next clo~k cycle. · ·

Th_e slight delay between the rising edge of CLOCK_, which
denotes.the end of the _current clock cycle, and the ·rising edge
of MU~CK; which cl.ticks in the next MIR value, ensures that no ·
control inputs w_ill change until after. the rising edge.· of CLOCK
has clocked in data, incremented counters; etc.

3.2.2 Executing a.Macro-Instruction . ..
The actions for~xecuting a Macro-Instruction are.discussed

from a register-transfer viewpoint in the WISC.CPU/32.Preliminary
Documentation. Since. the hardware actions dur,ing an interrupt· ... ·.
have been ~edified siightly by ari~ngineering·change; ~age~ 34 · ·
through 35 and.page Sl of the mamial have been modified and a]'.'e

. !

,,;,- -

17

included in Appendix D.
The preliminary documentation discusses macro-instruction

operation from a register transfer point of view. The following
sections discuss macro-instruction operation from a functional
point of view.

Sinte each each macro-instruction executed by the Chip
contains both a 9-bit opcode and a 23-bit memory address (with
the bottom two bits zero), each macro~instruction contains the
address of the next instruction to be executed. This makes every
macro-~n~truct~on (at this point in our discussion) an

· · uncond1t1ona l Jump~ - ···
Since the Chip uses a word-.ali~ned memory or~anization, all

instructions must begin on full-wora boundaries. Thus, the
bottom two bits of the 23-bit address are always zero when
addressing a 32-bit full-word in memory. Conveniently, this
a116ws the lowest 2 bits of a macro-instruction to be used as
control bits to specify an unconditional jump, subroutine call,
or subroutine exit (with jump and call addresses having an
implicit low order 2 bits of zero.)

3.2.2.1 Unconditional Jump . .
Whenever the bottom two bits of a macro-instruction are

"00", the Chip executes an unconditional jump. Unconditional
jump pro6essing is very straightforward. At the end of the' DECO
cycle, the pending instruction (whose 32 bits are contained in
the Instruction Latch and Next Address Register) begins the
sequence leading to its execution. At the rising edge of MIRCK
at the end of the DECO cycle, the 9 bits of the Instruction Latch
are clocked into the Micro-Program Counter to begin addressing
the first micro-instruction of the new opcode.

During.the DECl cycle of the unconditional jump (which
corresponds to the last micro-instruction of the macro
instruction currently executing, that is, the END micro
instruction) the MPC together with an JMP=OOO micro-operation,
implicitly invoked by END, address the first micro-instruction
for the new opcode in the MRAM. This new micro-instruction will
be available for use in the MIR during the next clock cycle.

Also during the DECl cycle, the contents of the Next Address
Register are driven out onto the RAM Address Bus. This begins
the fetch. ing sequence for the next macro-instruction. Note that
even while the next macro-instruction is being prepared for ·
execution via the MPC to MRAM to MIR pipeline, the macro
instruction subsequent to that is being fetched from Program
Memory via the Program Memory to Next Address Register pipeline.

· During the DEC2 cycle, the first micro-instruction br the
macro~instruction beginning execution is loaded into the MIR (at
the very beginning of DEC2 on the rising MIRCK edge) and
executed. Also, the Next Address Register continues to drive the
RAD pins, and the outputs of Program Memory on the RD bus are
clocked into the Next Addr~ss Register and Instruction Latch

(

l,.

0

")

'": ·, ..

18

(that is, the pending instruction position for the next macro-·
instruction) at the end of the. clock cycle.

When macro-instructions only require two micro-instructions
for· execution~ the DEC2 cycle of one macro-instruction overlaps
the DECO cycle of the next macro-instruction. Since the DECO
instruction actually does little more than prepare the system for
the macro-instruction decoding sequence, there is no conflict
between these two operations. The. Only exception is that the
Instruction Latch, which is being loaded by the DEC2 cycle, must
be tra'nsferred with 'its new contents directly to the MPC during

__ the .. DECO. cycle_. ____ To accomplish this, .:the IL __ is _ irnplemented_~_as _a______ _ __ _
transparent latch instead of a register to allow flow-through
operation during the low.clock cycle period.

3.2.2.2 Subroutine Call
Subroutine calT'S;-denoted by a "10" bit pattern in the low

order two bits Of a macro-instruction, are very ~imil~i to
unconditional branches. T.he only difference between cal ls and
jumps is that the address after the address of the calling macro
instruction iri fhe calling subroutine must be saved for an
eventual subroutine exit. This saving is accomplished via the
Address Couriter to Return Stack data path.

During all DEC2 cycles (including unconditional. jumps) the
Address Counter is clocked with the value on the RAM Address Bus.
This saves the address from which the. pending instruction has
been fetched. During the DECl cycle of that pending ·
instruction's execution initiation, the Address Counter is
incremerited by 4. If the pending instruction happens to be a
subroutine call, the Return Pointer is also decremented during
the DECl cycle. · · · . ·

During the DEC2 cycle of the pending call instruction's
e~ecution initiation, th~ Address.Counter contains the~value'of
the return.address, and the Return Stack·contains an allocated
word £or saving the return address. So, durihg the DEC2 cycle of
a call operation, the Address Counter is written to the Return ·
Stack. Call operations may occur repetitively, since the new.
Address Counter value.clocked i:r:i. during the DEC2 cycle destroys
the.old Address Cotinter value only .after it has i charice to be
written to the Return Stack. during the DEC2 cycle •.

It is very important that all microcode which does a
DEST=DECODE also saves the memory address from which the
instruction was ietched in the Address Counter, in case the
macro-instructi6n place~ in the pending,instr~ction registe~s
happens to ,be a subroutine call. . Thi~ i_s typically accomplished
by specifying a DEST=ADDREss..:..coUNTER insteaa of a DEST=ADDRESs-·
LATCH when setting ~p the memory address· prior to a "SOURCE=RAM
DEST=DECODE" operation. .

3.2~2.3 Subroutine Exit
. Subroutine exits-;-" denoted by a 11 01 11 bit pattern in the low.

'1·.;' ·.· .. ·'·

··•···.·.·. ~<·

·· ... ·.-.·

19

r order two bits of a macro-instruction, differ fro~ unconditional
branches in that the address for the next macro-instruction is
obtained from the Return Stack instead of the Next Address
Register. The address field of subroutine exit macro
instructions is unused.

Since a subroutine call places its return address on the top
of the Return Stack, the subroutine exit function routes the top
element of the Return stack through the Address Latch to fetch
the next macro-instruction in the calling routine. During the
DECl cycle of a subroutine exit, the Return Stack drives the RS
bus, and the Address Latch is made transparent. The Address
Latch.outputs are also enabled, -allowing the-return address on
the Return Stack instead of the Next Address Register to drive
the RAM Address Bus. At the end of the DECl cycle the Address
Latch control signal goes high, latching the return address for
use in the DEC2 cycle.

During the DEC2 cycle of a subroutine exit, the Address
Latch is still used to drive the RAD bus instead of the Next
Address Register. Also, the Return Pointer is incremented,
popping the return address from the Return Stack. As might be
expected, the Address Counter is clocked with the contents of the
RAD bus (which points to the macro-instruction being fetched) for
use in the case of a subsequent subroutine call, and the Next
Address Register and Instruction L~tch are loaded with the
pending instruction being fetched from Program Memory.

~

()··. 3. 2. 3 Interrupts
~- Interrupts on the CPU/32 are synchronized with the macro-

instruction decoding cycle. This greatly simplifies the
interrupt processing logic by eliminating the need for
restartable microcode and reducing the state of the machine that
must be saved when processing interrupts. Since interrupts only
occur between opcode executions, only the DBI, DP, RP, and ADC
registers need be saved for restarting after an interrupt. Of
course the Data and Return Stacks must not be corrupted during
interrupt processing, but this is an easy constraint to satisfy
for small interrupt service routines. For larger interrupt
servicing requirements such as true unsynchronized task swapping,
the Data and Return Stacks must be off loaded into Program Memory
to provide a fresh environment for the new task.

3.2.3.1 Interrupt Causes
Interrupts may be caused by stack pointer

overflows/underflows, a host service request (in which the host
loads the service request register with an 8-bit value), an
external interrupt source designated NPRTY (contemplated for use
with memory parity errors) , and software interrupt requests ·
caused by loading non-zero values into the interrupt flag .
register. Interrupts may be masked by loading a 1 .bit into the
highest bit of the interrupt flag register.

20

3.2.3.2 Interrupt Synchronization. .
If an interrupt, particularly a stack overflow/underflow

interrupt, is generated by the last two clock cycles of a macro
instruction' s execution, it will not be processed until after the
next macro-instruction, since such interrupts miss the window
during the beginning of the DECO cycle (described in the next
subsection) of the macro-instruction interpretation sequence. In
practice, this means that if a stack underflow occurs on a two
clock cycle primitive such as "DROP" in the sequence "DROP DUP
SWAP", the "DUP" macro-instruction will execute, and an interrupt
wi llDe processed instead of the- "SWAP"--rnacro;..;ifistrt.iction .- Since
the Data and Retur:n Stacks provide a buffer area above and below
the active st~ck area, this causes no problems as long as no
macro-instruction attempts to push or pop more than 32 of the 512
stack elements.

3.2.3.3 Interrupt Servicing
When an interrupt sets a bit in the flag register, no

interrupt is actually observed by the system until the next
DECODE/END sequence. When the next DECO cycle occurs, the
logical OR of all the interrupt bits is clocked into a flip-flop
to generate the INTR signal. ThisINTR signal generates an
interrupt condition during the DECl and DEC2 phases of the macro
instruction interpretation sequence.

During an interrupt, the input address to the MRAM is forced
to a value of opcode page 1, regardless of MPC contents. The
normal unconditional jump, subroutine call, or subroutine exit
actions continue during the DECl and DEC2 cycles. During the
DEC2 cycle, the first micro-instruction of the interrupt
servicing opcode (which must be opcode 1) executes. During the
DEC2 cycle, the interrupt servicing microcode must read the value
from the Address Counter and placed in the DLO register. This
step is vitalt as it captures the incremented value of the
address used to fetch the macro-instruction preempted by the
interrupt. This fetched value, when 4 is subtracted, provides
the restart memory address for the RTI instruction when interrupt
processing is completed. ·

The interrupt servicing microcode word must also capture the
values of the CALL and EXIT bits by reading the MPC value to undo
any Return Pointer manipulations done by the call or exit
hardware. Opcode 1 must also read the interrupt flags and save
th~ value, then mask interrupts b,y setting the highest interrupt
flag bit to avoid an infinite progression of successive
interrupts.

3 .2.3 . .4 Restarting After an Interrupt
Restarting after.an interrupt.is accomplished by reloading

the interrupt flag register with an unmasked value (taking care
to examine the register first for interrupts that have occurred

'· .. ,. · .. ·'

21

while processing the current interrupt), restoring the RP, DP,
and DHI values, placing the restart address in the Address Latch
and Address Counter, and then performing a macro-instruction
decode on the macro-instruction addressed by the restart address.

. . . ' . . .

····.,_: ·.·.

'._.J

22

4. CRITICAL PATH ANALYSIS & PERFORMANCE EVALUATION

The intent of this.section is not to simply provide a final
result for maximum system speed. Rather, it is intended to
pr6vide in£oimation about how to determine this speed after
changes and enhancemerits have been made to the Chip
implementation.

Timing results discussed in this section refer to non
optimized implementation simu.lation results obtained ih August
1987, and should be used as a rough guide to ~jstem performance

.·.· ____ £or. the .first-pass chip _design. Some _of_ the J:,imipg_s _g,i,vep CiX:f:. ______________ _
reconstructions and good estimates of simulation performance.
After all optimiiations have been completed, these ~easurements
sh.ould be repeated to obtain the anticipated maximum speed· of the
final impl~mentation. · ·

TABLE 1
Simulator Results for Critical Paths Within Subsystems

Time
-.(ns) Path

23 · .. Data Bus source select (Data Chip)
26 Data Bus destination select (Data Chip)
33 Data Bus through ALU before CLOCK goes high
27 DS.to Data Bus after CLOCK goes low
27 RS to Data Bus after CLOCK goes low
38 RS to RAM Address Pins after.CLOCK goes low (exit function)
13 .Data- Bus to RAM Address Pins after cr.;ocK goes low
11 Data Bus to RAM Data outputs
11 RAM Data input to Data Bus
12 RAM Data input to MPC
7 Inter~chip Data Bus delay

·.18 MRAM address valid at Data Chip after CLOCK goes .low

. 4 .1 Subsystem -Timing Analysis
. 'Since the CP{J/32 is organizea as a collection of subsystems

connected by a system-wide bus, the best way to analy~e syste~
performance is by looking at the times required to get values
from each. subsystem onto the data bus, ,and the time required to
get a ~alues from the data bus into each subsy~tem. Breaking the
analysis· into source and destina_tion halves eliminates the .
combinatorial·explosion associated with exhaustively examining
source/destin~tion pairs. Since bus sotirces and destinations are
driven by the· source/destination .decoding iogic, -it further makes ·:
sense to treat this: logic as a separate•entity ~ommbn to all

. transf.e:t paths.. · · ·· · · · ·
· As a result of th;is analysis, the fol lowing sections

.· ·":· . .. ·,

I
. I
f '

23

describe the critical path circuitry for bus source/destination
decoding, data bus sources, data bus destinations, Program Memory
addressing, and micro-instruction addressing and fetching. The
measurement methods given are obviously intended for use with a
simulator._ -

4 .1.,1 Bus source/Destination Decoding
Since all Data Bus transfers are ultimately controlled by

the bus source and bus destination fields of each micro~
.instruction (microcodebits.0~7),_the_source/destinationdec::oding

logic forms a critical path for all micro-instructions.
Since bus sourtes can not drive the bus until they have a

valid source select signal, the critical path controlling bus
sources is: MIRCK clocking bits 0-3 of the MIR (see schematic
"Cmicro-'-ram"); bits 0-3 of the MIR providing the SRC<0:3> inputs
to the 1 138 source decoders ("BUS SOURCE & DESTINA~ION DECODERS -
- F.23"); and these same '138 decoders providing control signals
NSPC .• NSMRA. Of course, for the Data Chip, these control
signals must also go through two pads to become available.
Therefore, source control signals should be measured at.the 1 138
outputs for the Control Chip and at the input side of the pads

_for the Data Chip.
Table 1 contains the simulated results for bus source

selection and other.values. Critical path measurements for bus
sources should measure the time between MIRCK and when the bus
source receives a signal to drive the bus.

Since bus destinations must have their clock inputs masked
until there is a valid destination select signal~ the critical
path controlling bus destinations is: MIRCKclocking bits 4-7 of
the MIR (see schematic "Cmicro ram"); bits 4-7 of the M~R
providing the DST<0:3> inputs to the '138 source decoders ("BUS
SOURCE & DESTINATION bECODERS ~- F.23"); and these same t138
decoders providing control signals NDDP •• NDMRA.

The critical path measurements shown in .Table 1 for bus
destinations measure the time between MIRCK and when the
subsystem control logic receives a valid signal designating it as
a bus destination. Since this signal must be further conditioned
with the clock and other signals, the minimum length of the high
portion of the clock cycle due to destination decoding is the
time from the rising CLOCK (which drives the rising MIRCK) to the
time the conditioned bus destination reaches the masking gate
with CLOCK or FASTC. In the case of the simulated hardware, this
path extended to the NRSWE signal.on "RETURN STACK CONTROL LOGIC
-- F.6on fo~ the Control Chip and the LATEN signal on "SHIFT
INPUT CONDITIONING" for the Data Chip. The number given in Table
1 represents the minimum tim~ between the rising value of CLOCK
and the falling value of FASTC based on the Data Ghip path.

4.1.2 ALU
Since data from the Data Bus is routed through-the ALU

24

before being clocked into the DHI register, the ALU data path
constitutes the only critical path for bus destination functions
during the low clock cycle period. The Data Bus is not driven
into the ALU until the low-going edge of FASTC to prevent false
triggering of the Bus Latch connected to the ALU B side. Thus,
the timing requirements for an ALU function involving the B side
are: the low-going edge of FASTC drives the high-going value of
LATEN ("SHIFT INPUT CONDITIONING"); the high value of LATEN
enables BUS data to flow through the 1 373 latches making up. the
Bus Latch .. ("ALU Data Latch''); the_ data flows.into the __ 13_ si,_de of
the 1 181/ 1 182 ALU complex ("ALU BYTE (0:7) -- Figure 42");
presuming that an arithmetic function involving a carry-in
propagated all the way to bit 31 of the ALU is involved, the
critical path takes a circuitous route through the 181/182.carry
lookahead logic to enter the CIN bit of the highest order '181,
producing bits ALU<28:31>.

At this point, the critical path splits. The actual
critical path depends on the final implementation. One critical
path is: bits ALU<28:31> ~re used to compute the signal NALUO
("ALU ZERO DETECT"); which is then transmitted to the Control
Chip and must meet setup time for the Condition Code Register
. 1 374 ("CONDITION CODE -- F.63"). This turned out to be the
critical path shown in Table 1, but only by a few nanoseconds.

The second possible critical path is from ALU<28:31> through
the ALU multiplexer ("MUX SHIFTER"); and then to meet setup time
for the Data High Register data inputs ("Data High Register").

The measurement for the ALU critical path may be thought of
as the time between when the Data Bus becomes valid from being
driven by the bus source and when the DHI register is clocked
with the output of the ALU and/or the condition code register is
clocked .with the output of the ALU zero detection logic.

4.1.3 Data Stack
The Data Stack becomes a critical path when it is a bus

source. The critical ~ath for SOURCE=DS is: the falling edge of
CLOCK.which drives the Data Stack RAM chip enc3_ble line ("DATA
STACK (0:31) -- SHEET 26 27 28 29 11); and the data pc3_th from the
Data Stack RAM through the T24S transceivers on that same sheet.

The critical path timing shown in Table 1 for the Data Stack
is the time at which the Data Stack data is valid on BUS<0!31>.
Special care needs to be taken when measuring stack timing with
the simul~tor, since the simulator assumes essentially ~ero stack
access time if the DP has not changed value since the previous
cycle. -The results in Table 1 were obtained by adding in the 25
ns RAM access time to simulated results.

If an asynchronous RAM were used for the.Data Stack, the
critical path might be controlled by the signal NSDS c9ntrolling.
the output enable of the stack RAM or the access time from a
change in DP through the.OS, instead of the stack RAM chip enable
signal.

25

4.1.4 Return Stack
The Return Stack becomes a critical path when it is a bus

source and when it, is used for a subroutine exit function. The
criti~al path for SOURCE=RS is: the falling edge of CLOCK which
drives the Return Stack RAM chip enable line ("RETURN STACK
(Oi31)"); and the data path from the Return Stack RAM through the
'245 transceivers on that same sheet.

The critical path timing shown in Table 1 for the Return
-Stack,source-is thetirne_at which the Return Stack data is valid

on BUS< 0: 3_1>. Special care needs to be taken when measuring
stack timing with the simulator, since the simulator assumes
essentially zero stack access time if the RP has not changed
value since the previous cycle. The results in Table 1 were
obtained by adding in the 25 ns RAM access time to simulated
results.

If an asynchronous RAM were used for the Return Stack, the
critical path might be controlled by the signal NRSOE controlling
the output enable of the stack RAM or the access time from a
change in RP through the RS, instead of the stack RAM chip enable
signal.

4.1.5 Memory Addressing
The worst ca~e delay path for memory addressing comes when

performing a subroutine exit function. The critical path for a
subroutine exit is: the falling edge of CLOCK which drives the
Return Stack RAM chip enable line (''RETURN STACK (0:31) "); Return
Stack access time, which is ·subject to the same measurement
problems as the SOURCE=RS path discussed in the previous
subsection; RS<0:22> flowing through the RAM Address Latch
SN74373's toRAD<0:22> ("RAM ADDRESS LATCH -- F.55"); and the pad
drivers to drive RAD off-chip.

The time for this path shown in Table 1 indicates the time
between the falling CLOCK edge and the time RAD outputs are valid
for successive subroutine return operations. This provides
information ab.out where in the clock cycle rnemory addressing for
a two-cycle memory fetch begins.

A second situation that occurs in memory addressihg is
sending the contents of the data bus through the RAM Address
Latch to the RAD pins. The path for this is identical to the
path for the Return Stack to RAD path, except that RS<0:22> are
driven from the Return Stack transceivers instead of the Return
Stack RAM.

4. l. 6 Data Bus to_ Program Memory
The Data Bus to Program Memory path is exercised when doing

a DEST=RAM operation or DEST=RAM-BYTE operation. This path is:
data valid on the -Data Bus; data flowing from BUS to RD via the
transceivers.in the 32-bit structure in "byteaddr DB" (see "RAM
DATA TO BUS (8...;:15)"); and the pad drivers for the-RD pins on the

r,

I

l.

control chip.
This time is measured bet~eeri the Data Bus becoming valid

and the RD pihs becoming valid on the Control Chip package;

4.1.7 Program Memory to Data Bus

26

The Program Memory to. Data Bus path is.exercised ~hen doing
a SQ{)RCE=RAM or SOURCE=RAM-BYTE operation~ This path is: data
valid on the RD pins of the control chip; data flowing from RD to
BUS via the trahscei vers in the 32-bi t structure in ''.byteaddr DB"

- (see - "RAM DATA -TO BUS----(8-15)-'' .----------,-'- -- ----- - -- -------, - ----, •. ->---, __ - .

This time is measured between the RD Bus becoming valid and
the Data Bus being driven from the transceivers. This
measurement may be a little tricky, because the source decoders
may block the si~nals in the transceive~s. Thi~ can be overcome
by executing two SOURCE=RAM micro-instructions in a row using
different RAM Data inputs. · ·

4.1.8 Program Memory to MPC
· The Program Memory to MPC path is exercised when doing an

instruction decode. This path is:. data valid on the RD pins of
the control chip; data flowing from RD through the Instruction -
Latch 373's ("INSTRUCTION REGISTER -- F~61"); and to the inputs
of the '161 MPC bn the same schematic.· ·

This time is measured between the RD Bus becoming valid and
the MPC data inputs becoming valid.

4.1.9 Inter-chip Data Bus Delay
The inter-chip data bus delay is the delay introduced when

transmitting a Data Bus signal from one chip to the other. This
may be measured by examining the time dif f eience between a bus
signal being asserted on the internal .Data Busses of each chip.

4.1.10 MRAM address valid at Data Chip _
The MRAM address becomes valid for fetching the next micro

instruction after· the MIR has been clocked and the conditional
branch. address has been generated. The path i_s.: CLOCK goes high;.
causing MIR to be clocked by MIRCK ("Cmicro ram") ;·MIR outputs

. drive the CONP<0:2> inputs·to the condition-code multiplexer '151
("CONDITION CODE ~- F.63"); the condition code mu1tip1~xer drives

MADO; and MADO is transmitted from the Control-Chip to the Data
Chip.

· This time is measured between the· rising edge of CLOCK and
the time MA~O bec6mes valid internal to'the Data Chip. ·

4.2 Critical Paths
Once.the critical path delays within the important

subsystems of the Chip implementation are identified, system-wide··
·critical paths may be found by taking the. slowest combinations of
slow subsystems~.· · While these times may be computed using· the
values in Table 1, the following subsections discuss how these

·.: ..

.(
)

times.maybe directly measured in a simulation.

Minimum
Clock.

TABLE 2
Simulator Results for Maximum Operating Speed

High Time Path . .

27

· 2 6 . Bus. d · - · 1 · · · h · · _________ --~--- .. ____ . e_st1nat1onc_se ect_ at_ Data c _1p ___ ----------·---------·C·---···-··--·---···--- ____ _

18 Micro-instruction address generation

Minimum
Clock.
Low Time
60
67
36
45

Minimum
time *
31

50

Path
Data St~ck Through ALU
Return Stack Through ALU
Return Stack to Data. Stack
Data Stack to Piogram Memory

Path
Data Hi to Address Latch/

(plus memory write)

Program Memory to DLO register (plus memory read)
Subroutine exit/

Macro:-instruction fetchin·g (plus memory read)

* - The minimum time given for RAM operations is measured from
the falling edge of the addressing clock cycle t6 the rising edge
at the end of the following RAM read/write cycle, and is
exclusive of the time required for the RAM to perform the read.

4.2.1 Data Btack Through ALU
The Data Stack through the ALU cri ti.cal path is measured

with a micro-ins~ruction of ~he form: "SOURCE=DS ALU=A~B+1
DESi=D»I". The time deiay b~tween.the rising edge of CLOCK to
iriitiat~ this micro-instruction and the time when the NALUO bit
is valid at'the inputs to the condition code register sets a
minimum clock cycle length. The DHI register should contain a
value ~hich is non-~ero in the highe~t four-bits, and the DS
register adde.d to the DHI v·alue -should be selected to give a·
result of zero·. Ari arithmetic test is· important to provide for
the s1owest mode of ALU operation. · -.·· ·

.The minimum clock period (wh~ch reflects the maximum
operating speed) for this path ahd the paths discussed in the
subsequent sub..;..sections is shown in Table 2. · ··.In order to ·get. an
accurate measurementi ari INC[DP] or DEC[DPJ shoul~ occur on the
micro-instruction before the SOURCE:Dsrriicro;...6peratioh, otherwise
the 25 ns RAM access··.:time must be added to the simulated critical

(
I

28

path time.

4.2.2 Return Stack Through ALU
The Return Stack through the ALU critical path is measured

·with a micro-instruction of the form: "SOURCE=RS ALU=A+B+l ·
DEST=DHI ''. The time delay between the rising edge of CLOCK to
initiate this micro-instruction and tp.e.time when· the NALUO bit
is valid-at the inputs to the condition code register· sets a
minimum clock cycle length. The DHI register should .contain a
value-'--which- is non-zero in- the highest four bits-, - and-- the RS - ---~- - -- ----
regis,ter added to the DHI value should be selected to give a
result of zero. An arithmetic test is important to provide for
the slowest mode of ALU operation. .As with the Data Stack, the
25 ns RAM access time must be added to the critical path time if
the RP did not change-just before execution of the micro
instruction.

The Return Stack through ALU critical path is slower than
the Data Stack critical path since the bus value must flow from
the Ccintrol Chip to the Data Chip~

4.2.3 Retuin Stack to Data Stack
The Return Stack to Data Stack critical path is measured

using a micro-instruction of the form "SOURCE=RS DEST=DS''. This
critical path measures the longest path (exclusive of ALU paths)
invol:ving inter".'"chip data transfer. The measurement is.made by
observing the time difference between the start of ·the clock
cycle at the rising edge of CLOCK and the time when data is valid
at the Data Stack RAM inputs (plus any set-up time if required.)

4. 2 .4 Data Stack to Program Memory
The Data Stack to Program Memory critical path is measured

using a micro-instruction of the form "SOURCE=DS DEST=RAM''. --This·
critical path measures the longest path for writing to Program
Memory, since it involves an inter ... chip data transfer. This
measurement is made by measuring the time difference between the
start of the_ clock cycle and the time the. Ram· Data bus contains
valid data from the Data Stack. For the purposes of computin9
required RAM chip speed, some reasonable time must.be added for
the data _to . go through buffers and reach·. the RAM chips used to
implement Program Memory. ·

____ .. In -addition, since memory accessing i.s a two-cycle
operation, all reads_ .or writes from/to Program Memory must ensure
that the memory. has· had a sufficient addressing time. _ The
addressing time for RAM read/writes ii:;; t.he time to transfer DHI

_to. the· RAD pins via the Address Latch plus the stable address
time required by the RAM •. This time starts at the falling edge
of CLOCK during, the RAM Address Latch write cycl·e.

• •• f.

4 .-2 .s Program Memory to Data Low R~gister
, _Since a memory read takes two clock cycles, a Pro_gram Memory .

i' .·. •' _.'

···, .. : .. :._,:.
'· ·,' . · .. : :

29

to DLO register transfer is accomplished in two micro

instructions: "SOURCE=DHI DEST=ADDRESS-LATCH" followed by

"SOURCE=RAM DEST=DLO". To compute the maximum clock speed for

this data path, begin with the time required for the Data High

register to flow through the Address Latch (which becomes

transparent on the falling edge of CLOCK), and drive the RAM

Address Pins. Then add to this the time required for RAM Data

inputs to reach the DLO register. This value gives a basis for

determining what RAM response speed is required to support a

· · giVen clock frequency;- ---- --- __

In general, this measurement does not limit the operating

speed of the Chip implementation of the CPU/32~ it simply

specifies the speed of memory required to make the system work at

full speed. Note that the memory speed specified includes time

spent on data buffers, decoders, and other devices, so actual RAM

chip speed must be faster than the specified RAM response times.

4.2.6 Micro~Instruction Fetching
Micro-instruction fetching is limited by the time required

to generate the address for MRAM for the next micro-instruction.

In the c~rrent design, this time must be less than the clock high

time. Th{s restriction could easily be removed by stret9hing the

MRAM chip enable high time as required.
This measurement is made by taking the time difference

between the rising edge of CLOCK and the time that MADO becomes

valid internal to the Data Chip.

4.2.7 Macro-Instruction Fetching
Macro-Instruction Fetching is a special case of Program

Memory reading~ In the slowest scenario, a subroutine exit is

being performed, meaning that the RS must supply the value to the

RAM Address Latch. On the other hand, the value read from RAM

need only get to the inp'lits of the MPC before the rising edge of

clock, so the intet-chip communication delay seen in the normal

RAM reading scenario in the previous subsection is eliminated.

The measurement in Table 2 indicates the sum of the addressing

time· and the time required to go from the RAM Data bus to the

MPC.

4.3 Recommendations for Illegal Operations
Since some operations have rather·slow maximum speeds but

are not very useful, some micro-operation combinations should be

disallowed for full-speed operation o.f the Chip set. This allows

running the Chip implementation at the fastest useful speed for·

maximum throughput.
·The recomm~nded illegal micro-operation combinations are:

1) SOU~CE=DS DEST=ADDRESS-LATCH (followed on the next cycle

by a RAM read.)
2) SOURCE=RS DEST=ADDRESS-LATCH (followed on the next cycle

by a RAM read.)

30

3) SOURCE=RAM DEST=xxx (where xxx is anything except DECODE
or DLO.)

4.4 Performance Estimates
The minimum high clock cycle time is 26 ns, controlled by

the bus destination selection logic.
Given that the illegal operations in the previous section

are not used, the critical path for minimum clock low time is
determined by the time to perform a SOURCE=RS ALU=xxx DEST=DHI
operation, where "xxx" is an arithmetic operation and the next
clock cycle uses the zero branching capability. This gives a
minimum clock low time of 67 ns.

In order to meet these minimums, the fastest clock speed
allowable is 10 MHZ (100 ns clock) with a 33%/67% high/low duty
cycle. This of course gives no margin, but it also does not
account for optimizations which will no doubt be made in the
implementation before producing silicon.

Program Memory speed requirements at 10 MHz are determined
by adding a clock high time to the subroutine exit time and
subtracting from 200 ns (two clock periods.) This gives a total
memory speed requirement of 117 ns, which might be achievable
with 100 ns static memory in a well designed system with a small
number of memory banks. 80 ns memory is probably more realistic
for larger static memory systems. Of course, dynamic memory may
be used by adding a wait-state to memory accesses.

The throughput of the system at 10 MHz is an average of 5
million stack macro-operations per second (5 MOPS), with
subroutine calls, exits, and unconditional jumps for free; and
combined stack primitives such as SWAP_DROP executing as a single
macro-operation.

Execution speed with 120ns 32k x 8 static CMOS memory (which
is common on the market) will probably be in the neighborhood of
8 MHz~

I
J

31

5. DESCRIPTION OF SOFTWARE AND FIRMWARE

This section amplifies the description and listings of
programs supplied in the WISC CPU/32 Preliminary Documentation.

5.1 MVP-FORTH/32
-- The MVP-FORTH/32 kernel supplied with the CPU/32 is a 32-bit
version of standard MVP-FORTH. For the purposes of this
document, MVP-FORTH is the language documented in All About
FORTH :H An Annotated Glossary, u2nd ed •. , - byHGlen _Haydon·- -

5.1.1 Similarities to MVP-FORTH
Wherever possible, MVP-FORTH/32 is functionally identical to

MVP--FORTH with the exception that all stack elements are 32-bits
wide. This means that words that expect a 16-bit integer or 16-
bi t address in MVP-FORTH expect a 32-bit integer_ or 32-bit
address in MVP-FORTH/32. All MVP-FORTH words included in MVP
FORTH/32 expect the same number, order, and type of parameters as
in the original MVP-FORTH. Double precision integers which take
two 16-bit cells in MVP-FORTH take two 32~bit cells in MVP
FORTH/32.

For the purposes of this documentation, identical
functionality means that the same input parameters produce the
same output parameters on both MVP-FORTH and MVP-FORTH/32. Thus,
a word such as -FIND is functionally identical, even though the
dictionary structures of the two Forths are slightly different in
that the LFA of the header in MVP-FORTH/32 comes before the NFA
instead of after the name text.

All words that function identically in the two Forth
implementations have the same names. All words that do not
function identically do not have the same name. Although two
words function identically, this does not necessarily mean that
they are imple~ented identically.

5.1.2 Differences from MVP-FORTH
Most.differences between MVP-FORTH and MVP-FORTH/32 have to

do with words that are added .or omitted. Words that are left out
of MVP-FORTH/32 include some of the disk-I/O words, since the
host PC performs the actual Disk-I/0.- Also missing are extended
PC addressing words such as c, and port addressing words such as
P@. In other words, the functions that are left out are the
functions that are hardware-specific to the host PC.

The additions to MVP-FORTH/32 are mostly low-.,.level words
that have little obvious use to the user. These words tend to be
microcoded speed-ups of inner loops and low-level specialized
utility words. Also, MVP-FORTH/32 has special words added, to
implement a compiler that compresses opcodes, subroutine
calls/exitst and unconditional jumps as well as words to deal
with interrupts and stack overflow/underflow paging.

I
j

32

5.1.3 LIB-FORTH as a Base for MVP-FORTH/32
All softwaredelivered to Harris Semiconductor has been

delivered for use with.the LIB-FORTH version of MVP-FORTH. LIB
FORTH is a source-code compatible, speed-optimized version of

MVP-FORTH for use under a PC-DOS environment. Among other
features, LIB-FORTH supports an assembler, editor, and math
package that reside outside the base 64k Forth dictionary, as

well as DOS file support for screens files. LIB-FORTH is an
tlnsupported public domain product that was used because it did
the job required. It is not part of the supported WISC software .

suite.

5.2 Microcoded Functions
In general, all functions that are coded in assembly

language· in the MVP-FORTH kernel are coded in microcode in MVP

FOR'.FH/32. Some functions have been modified, while others have

been added. Functions in MVP-FORTH not listed here are not
available in MVP-FORTH/32~

5.~.1 Functions Identical to MVP-FORTH
The following is a list of functions that operate

identically to MVP-FORTH functions of the same name, with the
exception of changing 32-bit to 16-bit integers:
! . + + ! -1 0 O< 0= OBRANCH 1 1+ . 1- 2* 2/ <
<+LOOP> <DO>. <LOOP> = > >R ?DUP @ ABS AND C! C@
D+ D= D@ DDROP DDUP DNEGATE DOCON DOVAR DOVER DR>
DSWAP DUP I I' J LEAVE LIT NEGATE NOT OR OVER. R>
ROT S->D SWAP ·TOGGLE U* U/MOD

D!
DROP

R@

The following functions are documented in the MVP-FORTH Math

Package; and are implemented identically to their MVP-FORTH
versions, with the exception of double precision integers being a
pair of 32-bit numbers instead of a pair of 16-bit numbers:
ADC ASR C+! D>R DLSL DLSR DROT LSLN LSR LSRN RLC RRC

5.2.2 Functions Modified from MVP-FORTH
·No MVP-FORTH/32 microcoded primitives differ in functions

from their MVP-FORTH counter-part words.

5.2.3 New Functions
Several microcode functions have been added that have no

counterparts in MVP-FORTH. These words may be divided into three
groups: those that are useful only as factors of high..,;.level MVP
FORTH/32 .system words, those that are combinations of normal MVP

FORTH words, and those new words that stand by themselves.
· Words that are used only as factors for MVP-FORTH/32 system

words are documented in the source screens. These words are:
%DPt% %DP@% %RP!% %RP@% <$=STEP> <<ABORT">> <<CM-STEP>
<CM-STEP> <COUNT-DOWN> <ENCLA> <ENCLB> <PICK> (ROLL>
<UDNORM> LOAD-DS LOAD-RS STORE-DS STORE-RS.

(

33

Words that are combinations of normal MVP-FORTH words are
self~documenting~ They accomplish the same actions as the pair
of words would if exe6uted separately. These words are:
O=_NOT 3_PICK -4* 4 PICK @+ DUPO<. R> DROP SWAP !
SWAP DROP

The final gtoup of new microcod~d words are those words
which perform useful new functions. These•words·are:

.. ---C.~ROT-~ .. "Backwards If stack __ rotation. __ Eg\l_j_y_~l_e11_t ____ t9 __ th~--"--~---~ _____ _ _ _ _
~equence: ROT ROT.

<INTERRUPT> - Opcode 1, performs interrupt processing as
des6ribed in Sectj_on 3.2.3.3~ · .

BYT~ROLL - Performs a byte rotate function of the top stack
element using the ROLL[ALU] micro-operation.

HALT - Stops the CPU/32 and returns control to the host PC
by placing a 1 in _the status register.

NOP -Opcode O, performs a no-operation.
RTI - Return from interrupt~ Performs the actions described

for returning from an interrupt in Section 3.2.3.4.
SYSCALL - Performs a "system service call" function by

writing the .input vah~e into the status register. ·Each value
from 2-255 requests a different service from'the PC host~

. WFILL - Word fill. Operates like the MVP-FORTH word FILL,
only does the filling 32 bits at a time.· Useful for initializing
blocks of memory. ·

5.3 High Level Functions .
_In general;' all functions that are coded in high level in

·the MVP-FORTH kernel are coded in high level in MVP-FORTH/32.
Some functions have been modified, while others have been added.
Functions.in MVP-FORTH _not 11sted here are not available in MVP'
FORTH/32.

~.3.l'Functions Identical to MVP-FORTH
. The. fol lowing is. a list of functions that operate.

identically to MVP~FORTH . .
functiohs of the s~me ria~e, .with the exception of changing 32-bit
to 16~bit integers:
I #> #BUF~· IS I '-FIND' '?TERMINAL 'ABORT 'BLOCK 'CR
'EMIT 'EXPECT 'INTERPRET '.KEY 'LOAD .'NUMBER . 'PAGE 'R/W 'S
I STREAM I T&SCALC 'VOCABULARY 'WORD (.. * .. * / */MOD +- . +BUF

.. +LOOP , -FIND -TEXT ,;_TRAILING n· .LINE .R .S ~SL .• SR·
.SS I /LOOP /MOD O> 2 2! 2+ 2- 2@ . 2CONSTANT 2DROP
2DUP. 20VER 2SWAP 2VARIABLE : ; <# <-FIND> <.">
<?TERMINAL;> . <ABORT") <:ABORT> <BLOCK> "<CMOVE · <CR> <DOES>
<EMIT>.. <'.EXPECT> .. <FIND>.·. <INTE~PRET.> (KEY>. <LINE>.·. <LOAD>
<NUMBER>·. <PAGE> <QUIT-ADDR> <R/W> <WHERE-ADDR> <WORD> .

. >BINARY .··· >IN . >TYPE ·.? .?COMP ?CSP .. ?LOADING ?PAIRS ?STAC:K .
?STREAM . ?TERMINAL. ABORT · ABORT" ·. AG~IN ALLOT BASE· BEGIN BL .

: _;··:· ·'. · ..

. ...
·,

- :_ ..

. ,. ' .

. - ; t
. .. ::._.·_:·_ ... '-_.,· ···

.. '-' ·.·
. '. • •·• ~ '!". •

34

BLANK BLK BLOCK BUF-SIZE BUFFER BUMP-BUFF BYE C, C/L CFA
CLEAR CMOVE COMPILE CONSTANT CONTEXT CONVERT COPY COUNT
CR CREATE CSP CURRENT D+- D, D- D. D.R DO= D< D> DABS
DCONSTANT DECIMAL DEFINITIONS DEPTH DIGIT DLITERAL DMAX
DMIN DO DOES> DOUSE DOVOC DP DPL DU< DUMP DVARIABLE
ELSE EMIT EMPTY-BUFFERS ENCLOSE EPRINr ERASE EXECUTE EXIT
EXPECT FENCE FILL FIND FIRST FLD FLUSH FORGET FORTH H
HERE HEX HLD HOLD ID. IF IMMEDIATE INDEX INTERPRET KEY
LATEST LFA LIMIT LIST LITERAL LOAD· LOOP M* M*/ M+ M/
M/MOD -MAX MIN -MOD-NFA NUMBER OCTAL OFFSET OUT PAD PAGE
PAUSE PFA PICK PP PREV QUERY QUIT R# R/W RO REPEAT
ROLL RP! RP@ SO SAVE-BUFFERS SCR SIGN SMUDGE SP! SPO
SP@ SPACE SPACES STATE TEXT THEN THRU TIB TRAVERSE TYPE
u. U.R U< UNTIL UP UPDATE USE USER VARIABLE VLIST voe~
LINK VOCABULARY WARNING WHERE WHILE WIDTH

5.3.2 Functions Modified from MVP-FORTH
COLD is the only MVP-FORTH/32 microcoded primitive that

differs in function from its MVP-FORTH counter-part. COLD works
almost the same as the MVP-FORTH COLD woid, but differs in that
it does not restore the dictionary pointer and user variables.
This is to allow the user to switch between MVP-FORTH and MVP~
FORTI:l/32 (which executes COLD every time it is restarted) for
screen editing without erasing the MVP-FORTH/ 32 dictionary. ·

5.3.3 New Functions
Several high level functions have been added that have no

counterparts in MVP-FORTH. These words may be divided into thtee
groups: those that are useful only as factors of high-level MVP
FORTH/32 system words, those that are combinations of normal MVP
FORTH words, and those new words that ~tand by themselves.

Words that are used only as factors for MVP:....FORTH/32 system
words are documented in the source screens. These words are:
'ISERVICE <$MATCH> DEFAULT-JUMP DO;...EXECUTE OS-ADJUST DS-AREA.
OS-LIMIT DS-PTR EXEC-ADDR INIT-DP INIT-RP INTERRUPT-DECODE
IS-A-CALL ISERVICE OPT-STATUS · RS-ADJUST RS-AREA RS-LIMIT
RS-PTR

The following words are self-explanatory:
4 4+ 4-

' '

The final group of new words are those words which perfotm
useful· new functions. These words are:

CALL, - Compiles a subroutine call. Used instead nf the
normal "l" to allow the optimizing compiler to work properly.
The input is the program field address of the subroutine •

. COUNT-DOWN - This is a new kind of count-down loop. Used
as a BEGIN ••• COUNT-DOWN structure, this word decrements the top
of the data stack and branches back to BEGIN if the valu~ is' not
-1. If the value is -1, the loop is terminated.and the count

value is dropped from the data stack. COUNT-DOWN only takes
three clock cycles to loo~, four to fall through •

. 'DON'T-DISTURB - Signals the optimizing compiler not to
attempt further optimization on the just-compiled dictionary
cell. - ·

DS-SIZE - Constant specifying the number of bytes in the
Data Stack overflow save area.

EXIT, - Compiles a subroutine exit. Used to all6w the
optimizing compiler to work properly.

INTERRUPT-SERV "'." Interrupt service routine. Thi's routine
· pag-es the nata stack-aricf Return-stack. Into- o"i: ol.i"t--o:f ___ Program

35

Memory if a stacik overflow or underflow occurs. Othei interrupts
cause program termination with a message describing the type of
interrupt.

OPCODE, - Compiles an opcode. The input is the opcode
desired (placed in the highest 9 bits of a 32-bit word.)_ This is
used instead of the normal "," to aliow the optimizing compiler
to ~ork properly.

--uPTIMIZE? ~Optimization flag. This variable, when non-·
zero;· signals the Compiler to perform opcode/subroutine
call/unconditional branch/subroutine exit compression.

· · POISON - A word that sets a header bit, much like IMMEDIATE:.
This header bit, when-set; signals INTERPRET to abort if the word
is executed in interactive mode. This prevents crashes caused by

_r, __) trying to execute dangerous wor.ds like OBRANCH, >R, and LIT from
- the keyboard. · ·

- RS-SIZE - Constant specifying the number of bytes in the
Return Stack overflow save area.

SPECIAL_- A word that sets a header bit, much like
IMMEDIATE. This header bit, when set, signals the optimizing
COIJlpiler .that the word in question is to be compiled as a stand
alone instruc.tion. ·This prevents opcodes Like R> from being
combined with subroutine calls,.which would lead to improper
program execution._ · ·

· WDUMP - This· works just like DUMP, except memory is
displayed in 32-bit chunks. This is very useful for examining
compiled high level word definitions in Program Memory.

5.4 Additional High Level Functions.
Some additional high level Forth functions have been added

to MVP-FORTH and/or MVP-FORTH/32. These functions are added for
corivenience,.andare not to be considered fully supported at this
time~ · These functions sbould be optimized and fully supported in
a firial ~~lease off the software for general distribution.

. .

5.4.1 Math Package
The MVP-FORTH Math Package as documented in Volume 3 of the

MVP-FORTH Series:.·· Forth Floating Point and Extended Precision
. Integer Math, by: Phil Koopman, is partially supported by MVP
FORTH/ 32:-Supported words function identically. to the words

. ,, ·.· ._···:,,.:._·. · ...

.· .. ,

- .. i

(

36

described in the book, except floating point numbers fit in a
single 32-bit stack element, temporary floating point numbers fit
in two 32-bit stack elements, and double precision integers are
two 32-bit stack elements. Most omissions involve lack of
support for quad precision integers, since 128-bit integers are
bigger than most users need.

The included math support words are:
2 1/X 10 2** 2*PI <?MODE> <ACOS> <ACOT> <ACSC>
<ASEC> <ASIN> <ATAN2> <ATAN> <COS> <COT> <CSC> <F.>
<FINTERPRET> <FNUMBER> <P~>R> <R->P> <SEC> <SIN> <TAN> -- .. - ---- - ~- --- -- - - ·- - - - - - - -

<TNUMBER> ?MODE ACOS ACOT ACSC ASEC ASIN ASRN ATAN ATAN2
CHKO . COS COT CSC D* D*/ . D*/MOD D+! D->S D/ D/MOD DO<
DO> D?· DADC DAND DASR DASRN DEG->RAD DINP# DLSLN DLSRN
DM* DM/ DM/MOD DMOD DMODE DOR DPICK DR@ DRLC DROLL DRRC
DU* DU/MOD DU> DXOR E** EXP F* F** F+ F+!. F+- F- F
>ME F->N F->T F. F.A F.AR F.E F.ER F.R F.X F.XR F/
FO< FO= FO> F2* F2/ F< F= F> F? FABS . FACTORIAL
FCONVERT FINP# FMAX FMIN FMODE FNEGATE FRAC FSGN FTERM
INT LN LOG LOG2 LOGB LSL N->F N->T P->R PI PI/2 PI/4
Q! Q+ Q+! Q+- Q- Q>R Q@ QABS QADC QAND QASR QDROP
QDUP QLSL QLSR QNEGATE QOR QOVER QR> QR@ QROT QSWAP
QXOR R->P RAD~>DEG REM . ROOT SEC SEPARATE2 SGN SIGDIG SIN
SQ~T T* T+ T+! T+- T- T~>F T->N T. T/ TO= T2** TABS
TAN TATAN TCONVERT TCOS TEMP-ADDR TEMP-CARRY TERM TFRAC
TINP# TLOG2 TLOGB

5.4.2 Screen Editor
A full-screen editor is included with LIB-FORTH. This is an

unsupported public domain screen editor. Documentation is
included in the LIB-FORTH package.

5.4.3 DOS File Interface
A DOS file. interface is included with LIB-FORTH. This is an

unsuppoited public domain f~le interface for PC-DOS.
Documentation is included in the LIB-FORTH package.

37

6. TEST VECTORS

Three sets of test vectors were supplied with the schematics
for the Chip implementation of the CPU/32. Each set tests the
system under different conditions. Togethet, the sets test all
possible data paths and control conditions for the CPU/32.

~.1 Main Slave Mode Test Vectors: HARRIS.BIN
-- Almost all the control signals and data paths can be tested
using single:-steppeq mic::r:9c9dg iri Slave Mode. The file
HARRIS.BIN contains information to p~rfoim approxi~~f~l~-~800
single-stepped micro-instructions to perform testing of the
entire CPU/32 system. These tests are a more thorough adaptation
of the single-step tests used to test the Board implementation.

6.1.1 Test Vector Generating Program
Since the desired single step tests closely resembled the

normal tests performed on the Board.implementation with existing
software, and since the hand calculation of 2800 te~t vectors is
rather tedious, the microcode assembler was modified to
incorporate a special simulating and test vector generating
functions. The input to the simulator program is standard
single-stepped miciocode on Forth screens. The output of the
simulator is the HARRIS.BIN test vector text file, as well as a
hexadecimal version of the test vectors in the file HARRIS.HEX.

The test vector generating/simulating program runs on a PC
AT with an installed CPU/32 Board set. It uses a combination of
·actual CPU/32 hardware and a functional simulation of the memory
address logic to create test vectors.

6.1.2 Clock Cycling Information
The clock cycle for each test v~ctor in HARRIS.BIN consists

of two phases. The first phase of the clock cycle loads a micro- ..
instruction into the MIR by pulsing the NDMIR signal low. The
second phase of the clock cycle cycles CLOCK by pulsing the NCYCL
signal low.

The outputs of th~ system are sampled just before the rising
edge of the NCYCL signal.· · ..

Be~ause of the limits of the SDA simulation software, a
rigid clock cycle format must be maintained. Therefore, the MIR
is loaded prior to each cycling of CLOCK, ~he~her or not the MIR
value needs to be changed. This is a very slight limitation in
practice, since the CYCLE micro-assembler directive has been
modified to re-load the MIR with the same value remaining from
the previous clock cycle.

6.1.3 Test Ve~tor Formats
Each of the approximately 2800 test vectors actually·

consists of two sets·of input vectors (one for the MIR load and
one for the CLOCK cycle) and one output vector.

The format for the MIR input vector and the CLOCK cycle
input vector is: DVOSC, NDMA, NDSRV, NMAST, NPRTY, NSMIR,
BUS<0:31>, RD<0:31>.

The format for the output vector is: NDRB, NDRW, NSINT,
NRAM, NSFLG, NSPC, BUS<0:31>, RAD<0:22>, RD<0:31>.

6.2 Miscellaneous Slave Mode Test Vectors: CYCLE.BIN

38

~- A few tests can not--i;e-performed in single step mode. These
tests, incorporated into CYCLE.BIN, are an MIR read-back test, a
DMA tr an sf er test, and an MRAM to MIR transfer test. . The MIR
read-back.test actually can be accomplished in single-step mode,
but not under the constraints of the clock cycle used by
HARRIS.BIN

6.2.1 Clock Cycling Information
No regularly oscillating clocks are used by CYCLE.BIN.

Instead, a separate control input file provides values at regular
intervals to change input clock signals. These input control
signals are sampled twice as fast as the input data. The output
data is sampled on every second input control signal.

6.2.2 Test Vector Formats
The format for the control input file is: DVOSC, NCYCL,

NDMA, NDMIR, NDSRV, NMAST, NPRTY, NSMIR.
The format for the data input file is: BUS<0:31>, RD<0:31>.
The format for the output vector is: NDRB, NDRW, NSINT,

NRAM, NSFLG, NSPC, BUS<0:31>, RAD<0:22), RD<0:31>~

6.3 Master Mode Test Vectors: RUN.BIN
While a Master Mode test run is not strictly required to

prove chip functionality, a full-speed Master Mode test was added
to build confidence and to provide a convenient vehicle for
measuring critical path delays.

6.2.1 Microcode Memory Set-Up
RUN.BIN is a two-part test. The first part, which takes up

the bulk of the test vectors, loads the MRAM with micro
instructions to be executed during. the full~speed run portion.
These micro-instructions are documented in the comments of the
test file, and exercise all the important data paths of the chip
as well as subroutine call and return logic.

6.2.2 Master Mode Clock Cycling Information
·The second part of RUN.BIN is ~ full-speed program execution

test. Since no software tools are appropriate to help build the
information used in this test, t6e test was created to be a
compact, hand~assembled program. This section of RUN.BIN is a
maximum clock.speed test. If the clock is cycled too quickly,
indeterminate values will show up on the system bus, and/or the
micro-instructions will be executed in improper order due to

39

improper bra~ch on zero conditions.
A problem with RUN.BIN is that it was not designed to

account for the stack RAM's providing almost instantaneous
response when the stack pointer has not changed from the previous
cycle. This problem means that RUN.BIN gives a maximum speed
that is too optimistic. However, the critical path analysis done
using the simulation results from RUN.BIN in Section 4 have been
corrected for this, and are correct speed estimates. For testing
production line chips, a more extensive at-speed test should be
devised.and captured with a logic analyzer from the pins of first
pass Chip hardware. · .

6.2.3 Test Vector Formats
The input and output formats as well as the sampling

strategy for RUN.BIN are identical to the ones used for
CYCLE.BIN.

The format for the control input file is: DVOSC, NCYCL,
NDMA, NDMIR, NDSRV, NMAST, NPRTY, NSMIR.

The format for the data input file is: BUS<0:31>, RD<0:31>.
The format for the output vector is: NDRB, NDRW, NSINT,

NRAM, NSFLG, NSPC, BUS<0:31>, RAD<0:22>, RD<0:31>.

40

7. PROTOTYPE TEST BOARD

When the Chip implementation is fabricated, a prototype test
board will be needed. This section provides a schematic design
for an IBM AT compatible plug-in board for this purpose.

7.1 Purpose and Limitations
The prototype test board design discussed in this section is

designed to be a bare minimum testing platform for fabricated
chips. - The design is mostly an extraction of appropria_t:¢.
portions of the Board implementation, and is only meant to
guarantee that Harris has enough information to construct a
testing platform. ·The prototype test board design uses only two
banks of_ static memory and does not attempt to solve the PC
address noise problem (which is not a problem on the PC-AT.)

The schematics for the prototype test board are given in
Appendix E. The actual chips used for the Chip implementation do
not appear on the schematics, since the pin number assignments
have not been established~ The pins on the CPU/32 chips should
simply be connected to all signals with matching mnemonics.

It is contemplated that WISC Technologies will design and
manufacture a more powerful test platform in cooperation with
Harris for use with the prototype chip ruri.

7.2 Possible Expanded Versions
Possible enhancements which may appear on a future prototype

board design include: a mix of fast static and slow dynamic
memory, a cure for. the PC address bus noise problem, interrupt
logic to interrupt the PC Host for service requests, and semi
custorn or programmable hardware to eliminate some SSI chips.

8. RECOMMENDATIONS FOR FUTURE ENHANCEMENTS

This section contains various recommendations for
erihancements that should be considered for current and future
generations of the CPU/32 Chip implementation.

8.1 Return and Data Stack Memory

41

As discussed in Section 9, the use of synchronous RAM for
the Return Stack and Data Stack exacts a significant performance
penalty •.. There are three stepsthatmaybe taken to reduce this
impact: make a slight change to subroutine exit operation,
provide asynchronous RAM, and change the timing of the stack
accessing. ·

8.1.1 Change to Subroutine Exit Operation
IF the RAM compiler actually produces memory that has

outputs valid essentially immediately after chip-enable goes· low
{When the stack pointer value has not changed from the previous
cycle,) then the Program Memory speed requirements for macro
instruction fetching can be eased by 19 ns.

The change required is in schematic "RETURN STACK CONTROL
LOGIC -- F.60". In this schematic, the NDEC<2> signal should be
disconnected from the NOR gate instance 12 pin 12, but left
connected to OR gate instance 6 pin12. Then, the signal NDEC<l>
should be connected to NOR gate instance 12 pin 12. This change
increments the Return Pointer at the end of the DECl cycle
instead of the DEC2 cycle, meaning that successive subroutine
exits will find the Return Stack valid for a clbck cycle before
Using it during the DECl cycle or a subroutine return. This, in
connection with modest microcode changes to ensure that the
Return Pointer is not changed during DECODE micro-instructions,
will eliminate subroutine exits as a critical path for Program
Memory access. The Program Memory critical path will then become
the data read path, which is 19 ns shorter~

This change is highly recommended ior immediate
implementation.

8.1.2 Asynchronous RAM
Providing asynchronous RAM will speed up all Return Stack

and Data Stac~ operations. Since the stack pointers provide
valid stack addresses approximately 5-10 ns ~fter the rising edge
of clock, asynchronous RAMs will substant+ally reduce or
eliminate the 27 ns period after the falling edge of CLOCK until
the stack contents become valid on the system Data Bus. This
will reduce the critical path for the RS through ALU case and DS
through ALU case, increasing the potential operating speed of the
Chip implementation. An operating speed of approximately 13 ~Hz
should be possible by making this change independent of other
optimizations.

Implementing this change will involve eliminating the chip

42

enable signal to the stack RAMs.
This change is highly recommended for implementation if and

when a suitably fast asynchronous RAM design is available.

8.1.3 Change to Stack Accessing Timing
A longer-range solution to the stack timing problem using

synchronous memory is to change the chip enable high time.to be
the third of the clock cycle before the high portion of CLOCK.
This would entail generating a different clock phase that is high
during-t,he_Jast third of the clock cycle. This clock phase would
be used as the clock input to RS~ :R:P,-[)s, and-DP~

With this scheme, stack pointers would be loaded,
incremented, or decremented at the rising edge of the new clock
phase. The stack RAM chip enables would also be driven by the
n~w clock phase. This would mean that a valid stack address
would be available at the rising edge of CLOCK, and the RAM
access .time would also start at the rising edge of CLOCK. In
this manner, stack· RAM values would be available to the data bus
and/or the RAD outputs one-third of a clock cycle earlier than
with the current design.

In order to make this scheme work, transp~rent latches for
RP and DP values as well as RS and DS values are needed to hold
the nold" values during the last third of the clock cycle when
these resources aie sourced to the system Data Bus.

This change requires·than any source writing to RS, DS, RP,
or DP must present valid data on the Data Bus before the rising
edge of the new clock phase. In practice this will probably not
be a limitation except on the RAM to DS and RAM.to RS paths,
which are too slow to be useful even in the current .
implementation~ This change will speed the system up even more
if used in conjunction with asynchronous RAM. There are no
required microcode chariges. The benefits of making this changer
are the capability for a substantially faster clock cycle
(especially if asynchronous RAM is used with this scheme) and
slower Program Memory RAM response time requirements for any
given clock speed than for the current design.

The only drawback to this change is that it would increase
the risk on the first-pass silicon by introducing operating ·
mechanisms different from the .. Board implementation. It will also
take a fair amount of engineering time and ~imulation time to
implement ~nd verify. For these reasons, this change is
recommended for incorporation into the second version of the Chip
. implementation.

8.1.4 Elimination of Data Stack Transceive~s
A minor changethat will help. the DS through ALU critical

path by a few nanoseconds. is the elimination of the SN74245's on
the schematic "DATA STACK (0:31) - SHEET 26 27 28 29". This
change is feasible if the Data Stack RAM tri-state outputs are
powerful enough to drive the system Data Bus directly. Of

I
/

43

course, this change should not be implemented if the extra load
on the Data ~us slows the bus down more than the elimination of
the 1 245 components speeds it up.

Since this change will not significantly affect chip
operating speed, this change this change is recommended fdr the.
second-pass implementation.

8.1.5 Stack Size Issues
The current stack size. of 512 elements for both the Return

Stack and Data ~stack is· somewhat arbitrary, but is a gooc1 size
for the first version of the Chip implementation. Actual run
time analysis in a variety of operational environments is highly
desirable before changing these values for a second-pass design.
The following paragraphs contain some subjective observations
about appropriate stack sizes that should be considered when
considering stack size changes.

For most standard Forth programs, 512 elements is extremely
large, with probably 128 to 256 elements being quite sufficient.
In most Forth applications, the Data Stack tends to grow faster
than the Return Stack, since most Forth words take one or more
input parameters while requiring only a single return address
value. Therefore, for standard Forth applications 128 elements
on the Return Stack and 256 elements dn the Data Stack should be
quite sufficient.

For deeply recursive applications, such as expert systems in
any language, or implementations of Prolog or LISP, deep stacks
are very important. How deep the stack should be depends dn the

. dynamics of stack usage, but 512 elements is probably a usable
minimum size for both the Data Stack and Return Stack. The
appropriate stack size in a highly recursive environment can be
experimentally found by looking for the smallest stack size that
provides a minimum amount of thrashing to and from the stack
overflow image stored.in Program Memory. The optimal stack size
may be rather application dependent, and will definitely be
extremely· sensitive to the aggressiveness of the compiler writer ..
in using the hardware stacks vetsus software stacks residing in
main memory.

For conventional languages such as c, the optimum depth of
the stack ~ill depend on how successfully dynamically activated
subroutine parameter lists can be maintained on the hardware
stacks. If most subroutine para~eters can be held in hardware
stacks, then deep stacks are desirable. If the mechanics of
maintaining parameters on hardware stacks are so inefficient that
parameter lists are instead maintained in Program Memory, then
small stacks of the size required by normal Forth applications
are sufficient.

Obviously there is a trade-off to be made between stack
size, execution speed, and chip area available for microcode
memory or other functions.

44

8.2 Bus Multiplexing
The current Chip implementation uses several tri-state

busses. Sine~ multiplexers are more appropriate for a CMOS semi

custom approach, the following small buses should be converted to

multiplexed data paths as soon as possible: RS bus, RAD bus, RD

bus.
The system Data Bus presents a harder problem. Since it has

so many sources and destinations, it presents a speed problem.

At the same time, however, the Data Bus would require truly

massive multiplexers to become a multiplexed selector instead of_

a tri-state bus. A partial solution is suggested: divide the bus

resources into time-critical and non-time-critical groups. Then

connect the time-critical groups to a central data bus while

grouping and buffering non-time-critical groups to reduce the

load on the central data bus.
The only time-critical data paths for bus destinations are:

DEST=ADDRESS-LATCH and the input to the B side of the ALU through

the Data Latch.
The non-time-critical paths for bus sources are: SOURCE=HOST

(signalled by NSPC), SOURCE=DP, SOURCE=FLAGS, SOURCE=RP,

SOURCE=ADDRESS-COUNTER, SOURCE=MPC, SOURCE=MRAM, and the MIR

source signalled by NSMIR.
Optimizations to improve the speed of the data bus are

recommended for the first chip version if time and resources

allow. They are highly recommended for inclusion in the second

chip version.

8.3 Microcode Memory
Microcode Memory takes up more than half of the Chip

implementation. Therefore efficient usage and size requirement

estimation is imperative for cost-effective production of CPU/32

chips.

8.3.1 Microcode Memory Size
Microcode Memory is currently 30 bits wide. The two unused

bits are not included in the RAM storage cells. If a direct

control bit were required for some reason future versions of the

chip, MRAM width could be increased to 31 or 32 bits to provide

one or two additional control signals with minimal hardware

changes. Of course, this techniqtie would increase instead of

decrease the silicon area used by MRAM.
The number of words in Microcode Memory is an issue worthy

of study. 2048 words giving up to 256 opcodes is certainly

enough for Forth or any other single language environment.

Probably a reasonably efficient second language implementation

could co-inhabit the 2048 words, but there would be little if any

room left for application-specific microcode.
A fairly effective way of squeezing more service out of a

given amount of Microcode Memory is to scatter long, non-looping

microcode definitions sudh ~s U* and U/MOD in the unused micro-

45

instructions of opcode pages containing short macro-instruction

implementations. For example, the last six micro-instructions of

U* could occupy off sets 2 through 7 in the same page as the DUP

opcode, since DUP only.uses offsets 0 and 1. This· technique

could give an estimated 10% to 20% compaction of microcode.

Another useful technique (if efficiently supported by the

RAM compiler) would be to populate the first 64 to 128 opcodes

with only two micro-instruction RAM words per page, the·second 64

·to 128 opcodes with only four micro-instruction RAM wor~s per

page, and the remaining MRAM locations with the full eight micro

instruction RAM words per page. This scheme takes advantage of

the fact that approximately 25% of opcodes written to date

require only two micro-instruction words and 25% of opcodes

written require three or four micro-instruction RAM words.

8.3.2 RAM Vs. ROM
A more straightforward way to reduce MRAM space requirements

is to ROM part of the MRAM contents. Many opcodes such as DUP,

SWAP, and U* will never change, and are applicable to many

language environments. These words can and should be ROM'ed in

the second or subsequent chip versions.

In some dedicated application versions of the chip, the

entire instruction set can be ROM'ed after development.with a

RAM-based version of the chip. Except for dedicated

applications, however, it is important that some amount of RAM

based Microcode be left on-chip to accommodate software changes

and allow for users to obtain significant speed increases by

microcoding frequently used subroutines. Th~ minimum amount of

RAM that should always be left on chip is subject to debate, but

probably should exceed 64 opcodes (512 words).

8.4 Ji Stand-alone Processor/Single Chip Version

A potentially important version of the Chip implementation

is a stand~alone processor version. This version of the Chip

implementation will need to either have control circuitry on-chip

to perform initialization and microcode loading from non-volatile

memory at power-up time, or will need to have EEPROM or 6ther

non-volatile programmable microcode memory. A modest amount of

support circuitry should allow booting up from a ROM-based

program memory in a stand-alone mode.

If a stand-alone single-chip processors is created, a

significant number of pins may be saved by eliminating the 32-bit

system Data Bus from the pinout. This will necessitate

- perf~rming memory-mapped I/O to communicate with the outside

world, or will require the addition of serial ·communications

control circuitry and a serial-I/O pin to the chip. ·

An important consideration for the second-pass version of

the design 1 is the availability of a full 32-bit RAM Address Bus.

Such a bus should allow un-paged linear data memory accessing

over 4 gigabytes, and paged program memory addressing in 8 or 16

(

46

megabyte page increments. This can be accomplished by bringing

all 32 bits of the RAM Address bus out onto pina, and by
expanding the RAM Address Latch to a full 32-bit width (and

therefore using the Page Register only in ccinjunction with the

Next Address Register.) . .
Another possible enhancement is the use of the c~rrently

unused micro-condition codes 5 and 6 to test external status pins

or internal data bits. A particularly interesting possibility is

using a condition code to test the highest bit of. the DLO

register for 32-bit floating point normalization._

8.5 Uniform Software Environment for FORCE/WISC
The software environment for the CPU/32 is in a'well-tested

but preliminary state. While the current software could be
polished for use with th~ final product, this is probably not the

best way to proceed.
Harris Semiconductor, as the potential industry leader ~or

Forth~related business, should make an attempt to standardize its

own Forth-related products. In particular, the language and

support tools for FORCE should have the same "feel" as the
language and support tools for the WISC product when executing a

Forth environment. This. will reduce the burden on Harris

employees by controlling the proliferation of multiple software

environments for support of the chips, and will give the
impression of having a family of stack-ori~ntea processors - both

16-bit and 32-bit.
This does not mean that Harris should necessarily develop

identical compilers for both products on its own. What it does

mean is that Harris should make every attempt to encourage
software developers to make available consistent software for

both systems. This means that screen editors for both systems

should use the same keystrokes to accomplish similar actions, the

supported instruction sets should both make the same assumptions

about things like how division and PICK work (Forth-79 vs. Forth-

83), and at least one dialect of Forth should be available in

highly consistent form on both machines. Harris and WISC should

work together to create a consistent software environment on both

machines.
As an observation: whether Harris Semiconductor wants to

become involved or not, and regardless.of any Forth "standard"

efforts, the software tools used on the FORCE and WISC chips will

probably play a large role in setting the de facto standard for
Forth software in the corning years. This will happen because ·

engineers out in the "real world" who are not steeped in the
politics and traditions of the Forth community will use whatever

software tools are most convenient to get their systems employing

the FORCE and WISC chips to operate. Harris should take
advantage of. this opportunity to make life easy for software
suppliers and its own support engineers by encouraging the

development of a consistent, useful software environment.

47

9. PROBLEMS ENCOUNTERED IN THE DESIGN PROCESS

As ma~ be expected, several problems w~re encountered in
transferring the CPU/32 design from a discrete imple~entation to
a semi-custom chip implementation. The following ~ections
discuss only the major problems that had or could have had a
large impact on the effort.

9.1 Synchronous Stack Memory
.... The most severe problem in.transferring .. the .technology J;:o

the Chip.implementation is the lack of an asynchronous RAM
compiler for stack memory. The·use of synchronous RAM instead of
the asynchronous RAM used in the Board implementation entailed
making several design changes to ~enerate a chip enable signal
for the synchronous RAM macros.

The worst problem with using synchronous RAM is that it
lengthens the critical paths of the Chip implementation by up to
the access time of the RAM array·(25 ns.) This happens because
in the Board implementation, stac){ memory add;resses are valid a

. few gate delays after the rising edge of CLOCK, so the
asynchronous RAM begins its access period near the beginning of
t}1e high CLOCK p.eriod. Depending on the operati.ng frequency and.
:RAM speed~ the stack data output is available for reading at or
shortly after the falling ~dge of .CLOCK. _

With-synchronous RAM, the high CLOCK period must be used as
the chip enable signal, so the acce~s delay does not b~~in until
after the falling edge of ·CLOCK, essentially adding the entire
access delay into the critical path. As seen in earlier
sectioris,.this delay affects both the data flow critical path· (RS
and DS through the ALU) and the program meMory access critical
path (RS to RAD. for subroutine exits.) While some work-arounds
are suggested in section 8.1.1, the availability of an
asynchronous RAM. compiler w9uld have reduced the design changes

. nece~sary (and therefore reduced risk,1 .and would have produced a
faster component £or the .first p~s~. ·

9 • .2 Untes·ted Library Macros
. During the si~ulation of 'the Chip implementation, it was
discovered that the SN74181 macro-cells did not work at all.
This was not a ·c~se oi a single missed test vettor when the
macro-cells were developed; they had clearly riever been tested at
all. Furthermore, when a corrected.version was entered into the
system·, there. was still an error .that was only ca\,lght by an added
lait-minute set of test vec~ors. . ·

Requests for a 100% coverage test vector set for the '181
macro were never satlsfied~ While ft is likely that the test
vectors supplied. in the file HARRIS.BIN prove correct ·
functionality for the macros used for.the ALU; this can not be
guatanteed without a 1 181.test vector set to incorporate ihto·

.HARRIS.BIN.· It ·is possible that some. combination.of input data

48

and functions will not produce correct results.

It is even more possible, and perhaps probable, that the

test vectors in HARRIS.BIN will not find some manufacturing

defects that may occur in the ALU area, since the current tests

are aimed at proving functionality, not aimed at testing gates.

The issues to be resolved are: how can Harris be sure that

there are no latent bugs in other macros in this and other

designs that weren't caught by the CPU/32 te~t vectors. Also,

how can Harris be sure that fabricated silicon has no defects,

especially-in the~ALU's,~that will only be uncovered when the

user runs real data in real programs? While total 100% test

coverage of the chip may not be practical (although with the

CPU/32 design, it should be relatively easy) , starting with one

or more unproven macros and progressing to a test environment

where fault coverage is computed after the fact (as opposed to

set as a goal at design time) is a scary prospect.

9.3 Simulator Failing to Produce Complete Output Lists

A problem that was uncovered only after the end of the

summer consulting period was fhe fact that the SDA software was

producing an incomplete test vector output file without any

noticeable warnings. This situation was apparently due to an

iriput command that did hot allocate enough disk space for some

- f step of the simulation process. This problem was further

compounded by the fact that the SILOS-CHECK automatic test vector

output checking program did not flag the fact that there were

fewer output vectors in the simulation run file than were

expected.
These problems together led to a situation where the

simulation appeared to be working correctly, but actually had

problems in the second half of the output vector file.

Fortunately, this problem was caught and is now being corrected

b~ manually checking to ensure all output vectors are in the

"store.out" file. Potentially, this could have lead to a non-

functional chip. ·

The recommended corrective action is to get the CAD.tools

fixed so that they produce error messages on the screen when

running out of disk space or when the test vector simulation file

is shorter than the expected result file.

49

10. CONCLUSIONS

The effort to convert the discrete Board implementation of
the CPU/32 to a semi-custom Chip implementation appears to be a
success. The combination of hard work by Harris employees and a
set of CAD tools for the implementation effort which behaved
reasonably well enabled the project to go "from 0 to 32 bits in
31 days."

A major limitation of system speed is the unavailability of
asynchronous- RAM ·for use in the stacks. -Even so, successful
simulation runs indicate that the Chip set will function
correctly at approximately 10 MHz. -

Once the first set of chips is fabricated, studies should be
made to determine optimum stack memory and microcode memdry sizes
and implementations for future versions of the chip. The
development of a self-booting stand-alone v~rsion of the Chip
with a ·partially .ROM 1 ed microcoded instruction set is a worthy
goal for the second implementation cycle.

A-1

APPENDIX A. SIGNAL DESCRIPTIONS FOR LUMPED SYSTEM

The Lumped System is a conceptual package containing both
the Data. and Control chips as a single entity.. This would be the
result of mounting both chips in the same package or integrating
the logic from both chips into a single piece of silicon. For
the two-chip implementation, the Lumped System is the chip set as
it appears to the outside world.

The Lumped System has·101 pins plus power and ground.

INPUTS:

DVOSC
NCYCL
NDMA
NDMIR
NDSRV
NMAST

.NPRTY
NSMIR

Divided oscillator input. 1 in slave mode
NOT-Cycle clock (single step in slave mode)
NOT-DMA transfer mode ·
NOT-Dest MIR
NOT-Dest service request register
NOT-Master mode
NOT-Parity error input
NOT'."""Source MIR

BIDIRECTIONALS:

BUS0:31
RDO :31.

OUTPUTS:

NDRB
NDRW
NS INT
NRAM

· NSFLG
NSPC
RAD0:22

System data bus
RAM Data bus

NOT-Data bus dest is ram(byte)
NOT-Data bus dest is ram(word)
NOT-Interrupt to host (status reg has changed)
NOT-Enable RAM to/from RD bus
NOT-Data bus source is flag register
NOT-Data bus source is PC interface
Ram Address 0-8Mbytes

B-1

APPENDIX B. SIGNAL DESCRIPTIONS FOR DATA CHIP

The Data Chip has 66 pins plus power and ground. All pins
are connected to pins of the same name on the Control Chip, and
do not go elsewhere (except the data BUS, which is also connected
to the external host interface.)

INPUTS:

DVOSC
MADO:lO
NCYCL
NMAST
NMRCE
NM ROE
MRXDR
NDDP
NDDS
NDIV
NDMIR
NMRXE
NM ULT
NS DH I
NSDLO
NSDP
NSDS
NSMIR
NWMRA

Divided oscillator input. 1 in slave mode
Microcode memory address
NOT-Cycle clock (single step in slave mode)
NOT-Master mode
NOT-MRAM chip enable
NOT.-MRAM output enable
MRAM xceiver direction control
NOT-Data bus dest is DP
NOT-Data bus dest is DS
NOT-Division select
NOT-Dest MIR
NOT-MRAM xceiver enable
NOT-Multiplication select
NOT-Data bus source is DHI
NOT-Data bus source is DLO
NOT-Data bus source is DP
NOT-Data bus source is DS
Not-Data bus source is MIR
NOT-Write·MRAM

BIDIRECTIONALS:

BUS0:31

OUTPUTS:

ALU31
DLOLO
NACOT
NALUO
NDPER

System data bus

Sign bit of ALU output
Lowest bit of DLO register
NOT-ALU carry-out bit
NOT-ALU output equal to 0 condition bit
NOT-DP error (underflow/overflow)

C-1

APPENDIX C. SIGNAL DESCRIPTIONS FOR CONTROL CHIP

The Control Chip has 130 pins plus power and ground. The

control chip may be thought of as the "main" chip, since it

controls all interfacing with the outside world.

INPUTS:

ALU31·
, DLOLO

DVOSC
, NACOT
· NALUO

NCYCL
NDMA
NDMIR
ND PER
NDSRV
NMAST
NPRTY
NSMIR

Sign bit of ALU output
Lowest bit of DLO register
Divided oscillator input. 1 in master mode

NOT-ALU carry-out bit
NOT-ALU output=O bit
NOT-Cycle clock (single step in slave mode)

NOT-DMA transfer mode
NOT-Dest MIR
NOT-DP error (underflow/overflow)
NOT-Dest service request register
NOT-Master mode
NOT-Parity error input
NOT-Source MIR

BIDIRECTIONALS:

BUS0:31
RD0:31

System data bus
RAM Data bus

OUTPUTS:

MADO :10
MRXDR
NDDP
NDDS
NDIV
NDRB
NDRW ·
NMRCE
NMROE
NMRXE
NM ULT
NRAM
NS DH I
NSDLO
NSDP
NSDS
NSFLG
NS INT
NSPC
NWMRA
RAD0:22

Microcode memory address
MRAM xceiver direction control
NOT-Data bus dest is DP
NOT-Data bus dest is DS
NOT-Division select
NOT-Data bus dest is ram(byte)
NOT-Data bus dest is ram(word)
NOT-MRAM chip enable
NOT-MRAM output enable
NOT-MRAM xceiver enable
NOT-Multiplication select
NOT-Enable RAM to/from RD bus
NOT-Data bus source is DHI
NOT-Data bus source is DLO
NOT-Data bus source is DP
NOT-Data bus source is DS
NOT-Data bus source is flag register
NOT-Interrupt to host (status reg has changed)
NOT-Data bus source is PC interface
NOT-Write MRAM
Ram Address 0-8Mbytes

C-2

(

D-1

APPENDIX D. CHANGES TO WISC CPU/32 DOCUMENTATION

The following pages are important changes to the WISC CPU/32
Preliminary Documentation. Each page should be direct~
substituted for the existing page in the document. These changes
reflect hardware engineering changes made to the discrete Board
implementation, and therefore to the functionality of the Chip.

PRELIMIN~)RY l.i.JISC CPU/32 DOCUMENTATION UPDATE 9/1/87 · 34

The DECO cycle, initiated by the DECODE micro-operation~
must .:11 ways oc:cLu~ in the nE·>; t-to-1 ast mi cro-·i nstn..i.c:ti on executed
within a microcoded word. During the DECO cycle, the interrupt
flag registers are examined fer p~nding interrupts, ~nd the MPC
is clocked with the value of the Inst~uction Latch <IL>. ·If a
nan-masked interrupt is pending, the MPC value is forced to 1
instead cif the tL value, causi~g ~n interrupt service word to
i:;tart ~~:-:ecut:i.on.

· ---------------The - DEC :I. -.c::ycLE"~ ,---dEmoted--by-tbe--EWD____f(1i.cr:o:---assemb lei-: .. .wo1r:..d, ___ _: ____ _
must al~ays 6ccur in the last micro-instruction e:-:ecuted within a
microcoded word. During the DEC1 cycle, the ADDRESS-COUNTER is
incremented to form a subroutine return ~ddress pointing to the
next sequential word. If a subroutine call or ~nccnditional
.branch is specified by the instruction in the IL, the NAR outputs
are enabled to driv~ the RAM addres~ bus. If a subroutine call ·
is h~ing processed, th~n an INC[RPJ is a~tomatically performed.
If a subroutine exit is being processed, then the ADDRESS-LATCH
is loaded from the RS, ahd the ADDRESS-LATCH outputs are used ta
.drive the RAM address bus. The END micro-assembler ~ord forces a

;JMP==OOO micro"-operatj.an ta ensure that the Oth offset micrc:i
instruction .is the first mic~o-instruction e:-:ecuted by the hext.
opcode. ·

The DEC2 cycle occurs during executioh of the first micro-
instn.tction of. the word that was held in the IL during the DECO
cycle. Durin~ the DEC2 cycle, if an interrupt is not being
processed, the ADDRESS-COUNTER is 1 oaded f·r<:)m whatever value is
pre~ent on the RAM .address bus, and the IL and NAR are loaded
with whatever value is on the program RAM data bus. All these
lo,ads occur at the end of the clock cycle •. Additionally, if an
unconditional branch i~ being processed, the NAR.is used to drive
the RAM addn?ss bus. If. a subroutine cal 1 is being pr·otessed ~·
t.:he NAR j_ ~ used to drive the RAM address bus and the RS is
writ ten with the. contents of the ADDRESS..:·COUNTE:H. . If a
subrciLtti ne. e>(it is being processed, then the contents of the
0DDRESS·-L.ATCH register are used to clri ve the RAM address bus and
the RP is incremented.

Each microcoded iMstruc~ion must be at least two clock
cycles long. Sin~e the IL is a transparent latch that contains
v~lid data before the end of .a clock cycle, the. op~ode may be
~ead ~ram RAM du~ing the DEC2 cycle and clocked into the MPC in
t.fre same clock cycle if des3.red. This means tha.t the DEC2 cycle
o-fi one instruction may occur simultaneciusly with the DECO cycle
of the ne>(t inst1~uct:i.on. · ·

. ·.,·Ir~ th.e

b~ e>:e~!..lted
'insti~LlCt ion deCt:•d f ng p~oce$s, the !J§lli; i n{;:;truct i Or1 to .

~eirig 1oade~ into NAR arid IL"~~ the ~irst mi~~o~.
the Sl:.:!!:!:§D:t' ·i1:1struC:ti on •.. is cif

F'REL. IM I NAffv' WI SC CPU rQ DOCUMENT ?-IT I ON UF'DP1TE 9 I :I. I 87

the micro-operation DEST=DECODE allows changing the contents of
the NAR, IL., and subroutine control bits during the middle of a
microcoded word, just as if those registers had been loaded with
the normal decoding sequence~ The MVF'-FORTH/32 word OBRANCH and
other words exploit this fact.

There are some micro-operations that, while prohibited under
most circumstances, are essential for efficient program execution
for special cahes. Be very careful when exploiting these special

- --i::aS:es-; <::•.rid dC:i 6i-.::·-E--,~:1:01·;--r~i1:·1 i::\-i'~,ilci·;ile-t:t"::!~st -tci f:~h~';t:\r~:? c:or-r-ect
operations, since some violations of usage rules manifest
themselves as relatively infrequent random failures~

:I.) SOURCE=ADDRESS-COUNTER may be used during the DEC2 cycle to
·fetch the contents about to be saved on the RS if the instruction
being executed is g~§C§Dt~£0 to be a subroutine call. This is
accompli~,ed by having a special compiling word for the
microcoded word in the Forth kernel.

2) SOURCE=RS? DEST=RS, SOURCE=RP, DEST=RP may all be used duri~g
the DEC2 cycle if the instruction being e~ecuted is g~~c~nt§§~ to
be an unconditional jump. This is accomplished by denoting the
microcoded word as SPECIAL with the micro-assembler.

Each CF'U/32 opcode is implemented as a series of two or more
micro-instructions. Each opcode starts on the MRAM page number
corresponding to the opcode number 0-5:1.:l.. Each opcode may take
one to sixteen consecutive MRAM pages as required.

Within each page, the order of the micro-instructions is
unimportant? except that the first micro-instruction on the
opcode's f1rst page must be located at offset 0. The micro
as;st~mb 1 er·· a.ssumes th.~~t i n~-:;t1,··uct j_ ons ar·e ·to bE~ pt·-c)cessf?d in
sequential order (i.e. o,:t,2,3,4,5,6,7) unless instructed
otherwise with the JMP=xxx micro-instruction.

The Jl'--"IF':::r.:<:-::-: rnic1~0-inE=.t1~uct:i.on, ~'JhE:t·-e the 11 :-:x:-: 11 roa.y be
replaced with a large variety of binary bit patterns, allows non
sequential conditional branching within and between micro-program
memory pages. As an example, consider the microcode sequence:

3 :: ALU=A+l DEST=DHI g;
4 ·· ALU=A+:l. DEST=DHI JMP=110 ;;

PRELIMINARY WISC CPU/32 DOCUMENTATION UPDATE 9/1/87

GY[b~
DECO

DECl

DEC2

B[I!QU
Clock interrupt register at falling clock edge
IF interrupt, then clock MPC with value 1

ELSE clock MPC with IL value ENDIF

Increment address counter on rising clock edge
Enable next address register outputs to RADxx
IF ~EXIT, then clock Ram Address Latch from RS

and enable RAL outputs in~tead of
Next Addr Reg ENDIF

IF CALL then decrement RP ENDIF

<Note: DEC2 from one instruction may occur simul
taneously with DECO of the next instruction)

Enable Next Addr Reg outputs to RADxx
IF EXIT, then enable RAL outputs and increment RP

END IF
IF CALL, then write address counter to RS on

rising clock edge ENDIF
Clock next address register and instruction latch

from RD bus contents.
Clock address counter from address bus

51

PRELIMINARY WISC CPU/32 DOCUMENTATION UPDATE 9/1/87

If an interrupt occurs, then the MPC is loaded with a

reference to instruction # 1 <interrupt handler) on DECO. The

c::-.-,
.J.1::.

:i. nte:·r·r··upt handling mi cr-cic:oc:IE· e:«t opc:oc:l.E· l. i !:; E·:-:pecti:~·cl to SC:•.VE' the.

contents cif the address counter during the DEC2 cycle, which will

point to the word AFTER the restart word for returning from the

interrupt. Opcode 1 is also expected to save the contents. of the

MPC/IL <specifically, the CALL and EXIT bits) and to set the

intel'0rupt m<:•.sk bit •.. IMPOl::;:TANT: The inter-l'"Upt. hi:!UJC:lling \AJcn-dmt..ts"t,

wait one clock cycle after setting the interrupt mask before

doing its own DECODE!!! ·
Since CALL and EXIT functions are allowed to proceed during

an interru~t, the interrupt handling high level code must un-do

~he return stack pointer actions caused by aborted CALLs and

EXITS.

IHI · h:Qt~I!~UI§
24 DATA STACK POINTER ERROR
25 RETURN STACK POINTER ERROR
26 HOST SERVICE REQUEST CHOST WROTE TO SERVICE REQ REG>

27 DYNAMIC RAM PARITY ERROR <UNIMPLEMENTED>
28 Software interrupt #2
29 Software interrupt #1
30 Software interrupt #0
31 . INTERRUPT MASK Cl=ENABLE O=MASK>

Dt~TE :: 09··· .. 02·· .. · :!. 9El7

GRAPHICS SCREEN IMAGE GHEET·· .. H:: :!.

FIGURE 65

r ... -... _ _ - ... -.. -................. r -................. -........... .
I I ... , I
' (i.J I .. ;:::, I

•;\I '1: .. .:0, OJ '.~'.::! i ,;~::; :,,;::: .····.. I
1 •••• .1 Ml.. •• •••• ••• I .. ·.·.-.. ·! ' I 1:::::1 ., , I.I'".! l

S1 -~~-. 2 1--~~i~·-; 11 g@ I .. , .. , .. I 1c::; c::;
1
. ··:·.•,·· .

1
1c::; c::; I I c• F: 1 l :::.::: Ld I

i:::::· 1 ;~~::i ;:::~i ,:::, ff: '1 i::::~ 11 ;~~~;~ ;:::::; ,:::::, :~:: I 1,. ~::i::l ;~:;~; t~:;: I
..... ir:, ! -·······r.·:r.... r,,r······ .. r-.... T i:-:rI 1::1... •

r ,===~-i-~~~]l.j g ~ L __ "'.__
I ' .. 01 i ~::::: ::...:i
l I OJ 1'('! ! ':':' 1,1.f I 1,· ::::::: l_:::'.I".:::\ I ::::::: l(_... ,I. ;::~:: r '.::~:1 '.::~:::.1... 'I
I , ,

1
1i:::::; c::; l

I !.1.• 1 I !..-.. ,! ;:t I
l '1 :·.,·.::·:'i i::i:':~ ••. " .• , ·,~::.·-~.-.·:, II ., ,I cu ·· ... :· 1::1::: " .. I c! ij ,:::::, ::::::: 1

..... I r.·•""" ... , ,. ,,.,, . ..J
I i-•"I ,:' \ !::::! ••-••••·•"""''-''' I I' ('I I'

1 • ("•,.11 '1""01 ('1.J fl''', I I I :::;~:·1, !. ·:,:;··· '1 .;.:.:;, ., , ! ., :::::{::;!

1
I :~:::: }~l _J.......................

1
1 !"' - .. ·-t::::::::1 ~::::~ J.

, , '-.1 .. 'j 1.1.•I I I
I I "::i" f""""···j·;:::::;··· .. ···;::'.:;""""""11 I-··-·-·----' I ~: ,__ I

I '1 i:::::· 1 ~;::::~ :;:.::; ····· i;;i::: ,1 I i~;i~~ Vi~i I
I I ~::::~;ii·;::;~:,·.::.;~;=ii-::'.::;:;:~::;:I I ;:::::: "'°J 1.0 I r··:1l=====--r_i ~ ~ ·,I. ·:;:i- r-· .. ··-··1;::::;-.... ··;:::::; ,

1 .. :::1 '1 _' . ::::::: (\.;i!i'. I ... 'I' ·;,;) I<:. 1....;~,::~~?::,'.L.!:~.~~ 1,::t...I
.... ..1 .::.::. • , / \ .I.• 11 ·,··· 1 ,! ,··, 11 ·1··'

((.) 1• II !' '1 ·:::" I Ii ..• ... ·1·····

::::::, I c::i 1 T 1 i::::i :i·i: ::~::~:· ·:5{ 'J"··i I l .. 1

1:L I ;~:::! ''""'! .. '• ' ' I i i::;;:i

_,I ;~ '~. ·~~.1'.~-~~r 1_1.····· ~::::::::J '.!~:::il::· .. -···-····--····..1
r:'.:::::~:: l'. , \

II~=·· 1 I
-=::i·· 1 i:-·-:i,11 "' 1i1

::::.. I ;::::~: ~~::;l ,:::::, ~::::::
I.I) ... ,::! ;::~::: :::-::: i::1::1 :::::: I

I .. ,.. :;::::: :;"';. !'.:! •••
i'.'.'.'.:;

l... , ... _ ... _ .. ,_ .. -.............................. -..1

t =A t =H -i33HS 8IiVW3H8S - 38VWI N33d8S S8IHdVd8

l. t::5 l:i "I: ····· ;::i; () i:~~ () :: ::::I .. L ~_._; (J. ~;;,;.J..ND~::l :: 3···1 I.:::!

,,..,---
(

E-1

APPENDIX E. SCHEMATICS FOR A PROTOTYPE TEST BOARD --- --
The following pages are schematics for designing a prototype

test board for evaluation of the first Chip implementation. The
WISC Chip set is not included in the schematics, since the pinout
is unknown. The WISC chip pins should be connected to all
signals with identical names in these schematics.

co
OJ
fr-,,..,
!

':::!
1;::r
i

t<:
.=:::= ..
UJ
i-
<I:
!~

,,..,
i-
0
O:'.

.Ct..

..
ill
J ,,
lL

-,,

-~---

I I..

... ··:37:3
·-t i 1 ·-· Pr·A·:· .:i 1r P 1 '-:-,,_ ----"----- '!""" _____ 1 ·,

c.=:.-:·-.;' 4·· I _ _! •: !c I
I •1::1-:l'+ 7:+-1 i:'.D 1:1::· , .,,I F·LR5 ::,=-ti :::D ,_ :-. --- ·
PC86 ':(;.:,14 D IJ3 ~· Pf'H··,-·::lc:-n q:;-------·-·
e:.::: ... { 14'1 ·-:' ... 1 G!4 r.':-:· :::--------
' LH·::· i ~ t-.Il 1 .-. F'f":H···q J.•~ 7T-. ;71t:: l *C:.

I
. - .. 1C::I :~~!1 ~··:·1:-1·::-l:j-----, ; 1 '-·'-' j.Jf-, "°.·- ~ IL · fl. !Mp• . l 1 · ··- .. · l T - -H

I
r--1--- .L,i', ! ~ Q7 ~ s ~;x.,_6 ___ CL.L

I
, . .., 1:0N QR [j9 k ..-.---
! J_ I ••.::J'

I -:- .. --. I 3' T +-
,• ,.t • .-l -~~ q ~ '

I
.-.I ! .-, . I ·-. g

F·r ... ·-1 ·:lJ 1 · 1-· • · c. I .. ::i:i.-J _..;;;,Lo

I p{~1 ~ ·:=!B ~-:.~ ~ PCADt1 ~ ,.-· ,,,,..--

PH I l KOOPMAN .JF.: • 1
H0:3T ADDRESS DECODEF..:

r:i_11IT c11-·_:,11c I ,_l .r:1 i 1_. J:t _ .. _1

I (FILE: PROT1)
I

I l PCA2

1
!~Jn '~c ~ PCAD1. l z.· _ I
'

1
' I I"-' !..+:' . ,.--- 1- ("

I
. ..-: §f: ;~;~' µ, § PCAD2 1 ;1 '\~I . , oD -· 2 ~ r...----:---.;_~

l ' '7D lL1 .. I ./ I I ·- it:" ---·

! ' • I :::D (.)0::: u. ._! I ... L I 111 ,_,_.I ..
· HLE " l :JE Q? i 1,6 ,Lb

.L. ,

1
-·t• - r, o • A> 1~i e-.LJJT··-... 2

,;·, ''at'· L ~ · v_,-
t

_!__

::;ELECT Cir1E F~'.OM EACH JUMPER PA I~'.

FOR ADI!F.'.ES::;ES :3i3i3-:3(1? HD<:
USE .JUMPEF.:::; .JV .J:J• ._15, .J?

';,'"

Q)
!l'J
O-
T-!

I
iq
C•
I

I'')
() ..
LJJ
!
<!
Cl

("'~
l
o
u::
CL.

..
w
_J
H

LL

NIOt~

741:38 I 7

. IC:6

~;---::o 4 ~--t------ Ti ~~-'--H+-==1J
NSEL -t-ttt------4 .J G2A

G2B

PCJm.J

741:::~:

I8

i=

IC'G ·

tHOR -2-{?>~-L,---+-"--~ij

u1. t"i::<RI1€1
'l16J4 NRD1
\'2m·_:. NRD2 1,}l'j

1 ·-· • 'r'4 .
• .. •c:; ~-1.
l ·-· 1-i .
'y'f. : .. :
··r'?p-'-..v.

PC I OR

:r4-
~I ---- 10 PC-RE·=· ::-..o I • NRL"O:--· •, ._1 .---- •,!_._l

... ...,4 IC'T . .. (..

:1.11 CLC::: _ ~- ... -.-i: •
u r: 1-1 t·1A.:· I F, I.(;, ..

7+-; I;··. 1) ~ NMAST.
:!:+d PF.:

J_

+5t,J

'l · R't 2.
i 'N~···-+: NPRTY

1k

PHIL KOOPMAN .JR.
READ.l~JRI TE DECODER
8-BIT PC-BUS HOST

(FILE: PROT2)

(0
(0

. 0--
..-1

I .
.+·
,~·

l
t·")
0 ..
LI.I
1-. <!
Cl

!'-"!
I-•.
Q

·CC
0..

..
w
....I
l""4

LL

.;

NHR6": '.j -\1~ .·· • . · . 174 <
· NRE• ... ·· _·: ·.·:·: i;.;.·_-·:. ·. •· · ··. •··. 13 .·· .·· .. Ij ,o.·· ···! · . CLR· j

· NPCllK.• . 1 ~~9 ••.••..••.. I pf11i [• }1~0 ~ [i a •. ··. . NOOR
i>r.tc• · V · j ········. · 1° NWRS . PR .· DMA , . •. ·.• .. · .. ·." . . ; " ·. ' . '

. . . _,/·

L

4

NSEL• ~13 ~r-;~131······· .. ·.···.·.···•··•·· 3 •
. . PCIOL~ ~r ·...,,, t · .. ~ . . 8 r-:->.,IJ •.. ·. . .

QO QG.,./ j~ ·.· · 0 < ·) IO • NXEtlB
": .- . PCIO ~-- . :._ . . · · · 111 (>·~ .. \i-. ·. . . · L....- .

f L DMC. ·· .. ··••. i:S ;_. NilWR0 .• !!If
. . .· · .• 1r' 3 ' , " . I '':\ :3 . .

. -4_.-. . . . ·. ·. j . • t·fi.JF.:0 . .. c. . . J 2 .. ·. .
PCIOH . . •· :./ ·· · t-J~_..Hi;:·VI . - . · "· · ·· . . .

. . . - Ila.~.!·-·· _.· · --~

C'

·-·

PHIL KOOPMAN .JR.
DMA CONTROL.LOGIC
8'.'"J::I T pc.:. BtlS HOST . PCIOR

.·.A

5

. IS . . 114-:: "

.. '\ 6·· 4 fI'_~\ 6 · .• N~·n0 }' .. · - .s .·. } ... ·. . ..,-.... . . ·. NXRD~j . E. . . L..;..,.::./
. <FILE: PF.:OT:3)

..,. - .-- -~-- -

,_:. - .. , .-

....

- -:-:

•:,.
_} ·I .. ·-.

-·- -·

··:J

.. ,.;

. 1 ·.
... - .. ~ .

I.

·---:·
->.;

•.
·:I' ·::::-,::''

·'
. ' ~

•.

...

NSELl

NSEL2

1
PULL><
N><IJR0

NIJR1 4
NDIJR0 S

NSEL3

PHIL.KOOPMAN JR.
HOST TO DATA BUS

. DATA IJIDTH CONVERSION
8-BIT PC-BUS HOST

CFILE: PROT4>

I '°l

PC0
PCl
PC2
PC3
PC4
PC5
PC6
PC7

13

10

NDMIR
l'lSPC

I 1$
.1373 c{_:,_______.,..

Q1 2 BUS0 1D 5 2D Q2 BUSl
3D Q3 ~ BUS2 4D
SD Q4 12 BUS3
6D QS 7D 15 BUS4

11
an Q6 16 BUSS

1
E Q7 Pl BUS6
CON Qa BUS7

I I ID
,1373

Qt 2 BUSS 1D 5 2D Q2 BU59
~B Q3 ~ BU510
SD Q4 12 BUSll 6D QS 7D 15 BU512

11
an Q6 16 BU513

1
E Q7 19 BUS14
CON Qa BU515

I 17
.1373

Gil 2 BUS16 lD 5 2D Q2
6 BUS17

3D Q3 BUSlB 4D 9 SD Q4 12 BUS19
6D Q5 7D 15 BUS20 ·

11 SD Q6 16 BUS21
E Q? 19 Bus.22

1 CON Q8 BUS23

Ilg
.1373

Gil 2 BUS24 lD
2D Q2 5 BUS25
3D Q3 6 BUS26 . 4D 9 · .. BUS27 5D Q4
6D Q5 12 BUS2B 7D 15 BUS29

11
SD Q6
E Q? 16 BUS30 1 CON Q8 19 BUS31

FILE: PROT6

I
I

.. -.. . .,,

......
r
fT1

"1J
:::0
l=I
--1
(T·. ._ ..

D~1 TE: <:>:3-04-· 1. 1~88

~ l
r}-1
........................

,_.
"iJ
8 \N vJ
•::r

,_'-f)~

i:;:;:I
::r::-...... ,
J::· -,~,

(""') ::i: r=r:::= ,_, :z.._. r -11::::1
:::0-1 A C•:C •=1 ,-

f=J
1-:-,1 -Cl 1-c· ::::: l=•=-2: :r:· i::;-, .. ,= -~

1-11'T'j:..

i:-:i:::rJ (.....
(1:1 :::o
•=f
::-.:!:

M
I, .I 1-1 ··· ... _,.-"-_ ... ···

:-

.. 1)

4.?'K

-0 ,-
F' r
::·::

--~I
:z
~ er·.

,J-1• •.j)
_11.,fi.i!.........L.........Ji.-..L......-L......1-..L.....L...,

r:·:i r '· .• 1'11 ri1 1:::1 ("') ti:• :r~=·
,- 1:::1 :::r.:: "'ti -1
;-o

·· ~
er·

.......
N

-N

i'-
1-
0
0:::
C!...

..
LLl
_)
1-1

LL.

/'245

L

130

PHIL KOOPMAt-1 .JR.
HC~ST DAiA BU'.:; BUFFEP

:::~B·IT PC-:BUS HOST .
(FI LE: P~~OT7)

I
I

co
l
o
0:::
0..

OS1

j 1

+5'...'

ti
. 1L. F.' 3:> ,::. . ~
2

o.c . PULL UP

I'J I
/1.61

I6

i....+-4:..-_ l :r f ~>o ilZ •. Df.,.1(1SC .·
·:1 ·-·

~--,~'"'---· ~:·----~-,--~--

0-
1-
0
0:::
CJ..

_,. __ . __ .

STATUS REG
-l.:..."""4 112... ,'
~.;:;..- ·_ ~

·./

\

~-

SERt~.tICE REQUEST.REG:·.
. •·"'"?4' -- . 13 J .

J'·.;;u '

.·· .

· ... ·
.·•I

__ ·.·

PHIL KOOPMAN. -JR. · · , --
STATUS_· f;,:E1J I STER a: ~--...

SERl;• ICE REQUEST REGfaTER .. -
·· · -- --•<F-ILD. PF.:or9/ :c? '

-- ·-1

-: :- :: ·. -~-- . . : .. : -:: .· .

. :-- .. :.
·:_._

. ;_·-.

FILE: PROTlO

-1)
::'D ::z
i=I 1::;"1

--1
l:-:1

1:::::1 . :i::·
·· ... ·· . .,,

(I':•

DATE:03-04-1988

·l~.·.ro-

~

,.
:::5 .

1:-)

l+ _ __,u-+-::iu- +
....... ·i:..n .. :=

OJ
OJ
!1'-
..-1

I
G"
()
I

t2 ·-· ..
w
1-
<I:
0

..-!

..-!

l
o
0:::
CL

..
w
..J
;-.;

LL.

RAD0
RAD1

tWF.:B

127
... ··1:3•3

.-.,-:. .:»:.! 'lfi
S1 ''F'''li ~··:. "t=· IO

I! · " d nrn v3 4

\
i____..-,-

NDRl-l~,!24 I " . . .

· I 34-

,, f '' Y~ I! ni.~E0
. I

._ ... -···

I J'4-·
·-....... 1 .-

,, c:. ,, 1 t• t·'l 'C" 1
I I I !! 1.·.J. ...

__ ···

I 34"

I '3 t

NDPJ)~· ~' .. ·· .· ~L~B··.
..... i . . L_gzJ· f3

.. ~--···'_...........--.-'- . MOE ·

k'.AD17 ,,_ I . . I 4- . . . !I k'.AII 17 . (= MEttE:H)

.!_}J···. 12
--· - ~] •••• ::~---11 MEMBi

~KOOPMAM .JR •
I . ··-RAM ENABLE I

L. (FILE: PROT11) J
----------~--~·--------

co
OJ
0-
~

I
¢
0
I

t·')
() ..
tLI
I-
<E
Q

(\I
~

l
o
IX
LL.

..
LL!
_j
......
LL.

I

R:AD2 i RAD:3 a I R:AD4 e I RAD5 e
RAD6
RAD?
RADB
RAD'3

R:AD10
RADi 1 •
R:AD12
F~AD1:3--
RAD14 . . I

RAD15 : . ···. l1 i
RAD16 I

MOE~
t-ii-JDJ" . 1· I

i

PAD17 .--rn
·. . L.Lt· . y

H~1f ·:··:·.: ··. I 3> 5 -•1...1...·-•b

A0
Ai
A2
A·:· ...
A4
A5
At·
A?
f:(' ::t
A'3
A10
Al 1
A12
A13
A14

·-· RD0
· .. = RDi
:.= RD2
~ = Rit:3

... = F.:D4
' · C•T1!:' ; .· r=.::: .'":J

• :. F.'.llf::.
·:RD?

t·11.•r1 11 · I
lr.f-.i.

HM62256

PHlL KOOPMAN .JR,
· 1' (~l.;..1 :-i y R'H'" t·1 i::H"· Nl{ i::-1 ·- _ -· . - .• , .1r._ .-

II (f:"I. LE. p·r:·i-1T 1 ·=· .. , I •,I' ii_ . _p;,1_ 1- !.- •• }

OJ
OJ
0-.....
I

<::!"

·-· I
t·")
. :::1 ..
w
1-
<r:
Cl

t<•
l-g
!.!..
LL.

..
w
...1
t-1

lJ..

HMi=;·:·-:·c:-c. I 3 1
-L-L-·-'O r ,

F.:AD2 1 A€1 D0 ; ·-· F.:D 16
RAD:3 A1 D1 i ••• : F.:D17
RAI14 . A2 D2 . : RD1:3
RAD5 • ,., A:3 D:3 • ·. : ·F.:D 1 '3
RADE. .. I A4 D4 r..: RD20
F.'.AD7 .. A5 D5 .~: F.:D21
RAD8 • A6 I;6 "' : : Rit22
RAD'3 A7 · D7 . : RD2:3

RAD10 A8
RAD11. ·· A'3
F.'.AD12 ? Ait1
RADi:::: I •..; A11 I I
R'.ADl 4- I A1.2 I RAD15 . Ai~:
RAD16 A14

·:a2
NOE ._., OE
t·U.JE2 ~ t~E t"it,JE:3

- ··1

HMi=;·:··:·c:-i:: I 2 13· ' '1-·L...!....•..,i._r ../
~ ,

D0 '._. RD24
D1 ~: Fm25

·112 .. Vil26
Ii:3 R:D27
D4 RD28
D5 _ RD29
""1 ·• !£+· l:•T1·:i·-1
l t•1 l "£ F-.J.. ·-·•.:.
D7r: Fm::::1

c:•hD 1., - ri:-

"" , -- :=lJ 111111 I .
· ~.I.I

~'JI
__ ---:-'J

PH IL KOOPMAN .JR. .
06-::::t::i RAM BANK 0

(FILE: F~~~or1·~!-)··

OJ
OJ
O'
.......
I

<::i"
·~.
I

t··:i
::) ..
w
l
<r:
Q

<::i"
.......
l
e
Lt'.
LL

..
w
....!
1-1

lL

RAD2
RAD:3
RAD4
RAil5
F.:8D§
RHII/
F.:ADB
RAD'3

F.:~~D 11)
RADll
RAD12
F.:ADl::::
F.:AD14
F.:AD15
F.:AD16

MOE
t'U·JE0

MEMB1

~

-

II--

II-

!!!--

-~

II-

~

~

-

~

~

-

. i
I

. H'i
··..;
:t::t
·'-' ·7 ..
):,·

l "!'")

i i :.:+
I i ·:·.::
I _:-l

~~ ~-·
-~-::-:
~-I . T • :.• I ,-r,

. .J
T .-,.-, .c.c.

~-'.··

I 20,, . . .

I
i

' .. .

Ht·1r= .-,.-.C' ·· I 2 () I _1C,C,._if:: ../ -,

'
A0 D(1~ RD0
Ai Di ._: RD1
A2 D2 , . : F.:D2
A·:· n·:·,_ ~: Prr:· ·-· -

D4,...r-;i:: F.'.D4 A4
AC' D5,_~: F~D5 ·-' A6 D6 -'-ij: RI16
A7 D?-'-4: RD7 ..
A8
A'3
AW
A11
A12
A1:3
A14

OE
l:JE rn.JE1
CE

.1 fi
_ . . 1oo:1 ..

.r·
.. ··

I h
:-,

I A· ...
I

....
~-'!"';i

I ~-'.4

I
~-·1
'I" I r.-.
i-'~·

HMF:=··:·C' ·· I40 _._._._,t• ..

A0
Al
f:(' c.
A:3
A4
AC' ·-' A6
A7
A8
A'3
A10
A11

D0
Di
D2
D::::
D4
D5
It6
D7

Fm:::·
F.:11'3
RD10
RD11 .·
F.:Dl2
RI11:3
Ril14
F.:1115

1 I I~
A12
AP .·.

¢i14

OE ·-i ...
· l·JE

Pf.'1 .
I I • 1CE· __J

I
mi 1'

IJJ
I (0-15) .. RAM BAMK. 1
I i'tIL' [• C•l;:•f!T14"1 •,t . U J 1•,•- I , 0'

0)
0)
0-
..-4

I
~
0
I

M
c~ ..
Ill
i
<I
Cl

i.f)
..-4

l
o
a:::
CL

..
Ill
..J
LL

~'.AD2
RAD3
F.'.AD4
F.'.Ail5
RADE.
F.'.~iII?
RADE:
F.'.AD9

F.'.ADl0
F.'.Ail11
F.'.ADl2
RADB

. F.'.ADl4
RAI!l5
RADl6

MOE
Hl·JE2

HEMBl

HME.2256 I<} I
. i c1 ... 4 ·RDft. e- : A~7i D0 -

- ·~ Al Dl """~=F.'D17
I •'••l D2 ... ~~- F.'.ni!:: T ... i;:~

D3 ~: RD19 ' i M H . .:•
I!- • T ~ A4 D4 ~ ..,: F.'.D2t1

• I 'c:' D5 ""~= RD21 I!- ,. 4 ~~
I ·-· At• D6 "'"i&=F.:D22

. ~·- A7 D7 -z...-+: RD2:3 I ,-. 1 ., r.
'I ;~·4 8·:·

.. · · ·. 'l A9
,-:. ·" 1 f.1 -~ ·._,·~· H ~
i.i ,·"11

I i:' H1.

.. T ~h Bl? .··

I 1 f:H:.::
- I I l ~ - m4

1 ci:L _E - T I i ._,_, U
Mi-iE3 ~ = I I I .:., - l-~E

I .c:Y l I I . -·::;CE
..

·.

...

..• 1171 . .·
.. ·-1- A0 D0
·.·. .·. Ai D1

·~ A2 D2 r·-· ' f-•. H·.:• I.,:.
I . "' . A4 D4

·' '·c:' De:'"' ··. . 4 . 1:1":' .•. ·-!
.• Ab · . Db

.1 • - f'""' r ··~ti;;: Fl/ J/ . !' •I t""· 1::
._ ! .. ~-:4 l;:I::~ I I ;-·] H:=' I '•;)•.• A10

I ~-;· A11 I ±A12 ·.· . · ' At·::
I . A14

I I ·:··=·
I 1 ;-·> OE r , ~ i-JE

. ·~ 20. CE

. ·.

-- --·-~ ---

RD24
RD25
F.'.1126

. F.:I127
RD2:::

. F.'.D2§.
RK:0
F.:D:31

I <l6-:J1) · .. F.'.AM ·BArn:::_ 1
(FILE: PF.'.OT15) ·

PCD7
PCD6
~D5
PCD4
PCD3
PCD2

AEt-1

PCA'3
PCA~::
PCA?
PCA6
PCA5
PCA4
PCA3
PCA2
PCA1
PCA~3

COM PONE MT ::; I DE
PC EDGE

COMMECTOR A
EJ _

+5t.,.1 ::;OLDEF.'. SI DE
PC EDGE

CONt·lECTOR :B
~GND I EL.

F•r-p1::-.:· :;i;p.j i:;:.i:-c·:::-..,..1
-· ·.s....•-' · .. :j ,_._ri._

;------~ +5f.)
:..:t.. ~i:;:.rr:· ;:;11, .. ; .. 1-

:+:t={ -~U
:..!;;l n~·b·=· . .s;;.J-':i'.::;fi .

ll j™~~!~
Ii' f1jl~t"iII

· f~ t·iEMl·~
. f~MEMF:

mm-~ ... ~ rm.J
MIOF.'. 1<e;i IOR

Nf.:'cm::: i~ DA1)::::
PUIRG! f~' . DF.'.I;.!:=:

r1···1-·t.·· 1 1.;;;j .i..-H-·f"··-
r ;~i DF.'.G! 1

t·1i:::·EF ,;!!-! ,.., C"'·'n "'.. ·::i1f .L.:H _.t· .. .:.
'1ti CLK
~ IPG!7
~ IF.:G!6
~ IR05
~ IRG!4

I-~ IR1}3
·-,. DACK2

PCTC ·-· T.····c
ALE ._; ALE

. ~· +51.,J
:111 o::;c. I I r-.H IL L'T1nr:·MAN IF.· l!!------1 GMD r ' , ... - _,, , ·- ..•

. HOST EDGE CONNECTO~'.

B-BIT PC-BUS HOST
(FI LE: PF.'.OT16)

14~ PlN

10(§88
11888

CONT:OL CHIP

0884
8885
88@6
888'7
GBGs
G@G9
GB® 10
@@@ 11

12 888 8@@ 12

13 888989888800)808 .13

14 888898888@88888 14

15 888888888GS888® 15
A B c D E F G

PIN
H J

SIDE
K L

UP
M N p Q

ppoT- t7/Jr

(- . .

EBHARRIS ·· STANDARD CELL DEVELOPMENTGROUP C2-Cf.

Wisc Processor Control Chip Pin List

PIN NAME PACKAGE
PIN#

RAD[0:8] . 1:9

vss ~-LO--~·-------·--'-- ..
. RAD[.9:20] 11:22

~-~Y-~~-. ~---------~--~-:-!~•-:-- C:.o .. ---"···Z.3.. c ---·-- --··--- ·

RAD[2 l:22] . 24:25
RD[0:9] 26:35

----voD --·-----------36------------·--·········
. vss .. 37.

·------··-,-· .. :.:..:..- ·-~ -
RD[l0:21] 38:49
vss 50 • ·- ____ ._'.., ... -~~-~-----" "'·'··;;-•·•- ~ . -~r·-··-·-"'--•-.-...... ~._ • ...,..,. .. ~.-,. ~.~· ., .. ~. -·•·'· ·~-.

RD[22:3 l] 51 :60
. • NDIV

NODS
NDDP
NMROE
MRXDR
vss
.,.NSMIR
NPRTY
NMAST
NDSRV
ND PER
VDD
NDMIR ..
NOMA
NCYCL
NALUO

_NACOT
DVOSC
_DLOLO
ALU31
BUS[0:9]
vss
BUS(I 0: .19]
vss
BUS[20:24]
VDD

61
62

- 6.~,_
64
65
66
67 . ., ,.,., .. .-
68

70

···------···,}J ·---·--
72

_73

74
..... 75

76
77

78

79
80
81:90

. 91'"

92:101
102
103:107 . --- ... __ .. ___ ,,,, ... ---..-.
108

vs 5 -- (r]'\ p

BUFFER TYPE

SC7200 - OUTPUT IOOfp/IOns
SC7900 - DOUBLE VSS PAD
SC7200 - OUTPUT IOOfp/IOns
SC7900 "". DOUBLE VSS PAD
SC7200 - OUTPUT 100fp/10p.s
SC7270 - BIDIRECTIONAL TTL INPUT W/PD
SC79 l 0 - DOUBLE vob PAD
SC7900 - DOUBLE VSS PAD
SC7270 - BIDIRECTIONAL TTL INPUT W /PD
SC7900 - DOUBLE VSS PAD
SC7270 .. BIDIRECTIONAL TTL INPUT W/PD
SC7200 - OUTPUT IOOfp/IOns
SC7200 - OUTPUT IOOfp/lOns
SC7200 - OUTPUT IOOfp/IOns
SC7200 - OUTPUT IOOfp/IOns
SC7200 - OUTPUT I OOf p/ I Ons
SC7900 - DOUBLE VSS PAD
SC7150 - TTL INPUT
SC7150 - TTL INPUT
SC7 l 50 - TTL INPUT
SC7 I 50. - TTL INPUT
SC7 l 50 - TTL INPUT
SC79 I 0 - DOUBLE VDD PAD
SC7 l 50 - TTL INPUT

. SC7 l 50 - TTL INPUT
SC7 I 50 - TTL INPUT
SC7 I 50 - TTL INPUT
SC7 l 50 - TTL INPUT
SC7 I 50 - TTL INPUT
SC7 I SO - TTL INPUT
SC7 I 50 - TTL INPUT
SC7250 - BIDIRECTIONAL TTL INPUT
SC7900 - DOUBLE VSS PAD
SC7250 - BIDIRECTIONAL TTL INPUT
SC7900 - DOUBLE VSS PAD
SC7250 - BIDIRECTIONAL TTL INPUT
SC7910 -;.·DOUBLE VDD PAD

PP-OT - 11 C:.
. I

WHARRIS STANDARD CELL DEVELOPMENT GROUP

Wisc Processor Control Chip Pin List continued

·PIN NAME PACKAGE
PIN#

BUS[25:29] 109:113
vss . . 114

··---:______..~~~-... ~~,--... ~-~-~~--~-.. ···--·-·....,;.._~._,,~""""~,;.,.,.,:.., :_.,_:_~,._ .. ,:
BUS{30:31] 115:116
NMRCE . 117 '--.:. .. -.--~-·~·-c·-···~·-···'-•··• --·'"~·--··-·· .. ··---··-·-.-··••
NWMRA 118

--------2:N§.~C _ - ·-····· ;... ... 119.~-···"-"···
NSFLG 120
NSDS 121. .

-.r.•=·~·,.-.-··~·•-'d>•~•~'-' .. '·' ...;<-·~'-"'. ,.,... ••<·~", .•. , .. - • ·'••·• ••,·• ,,,._.;,_ .• ,.,. __ ,~,,< - •".'"'"~'•-•w,,,,,.., ',>''·~

NSDP 122

NSDHI 124
__ .l'{M.UL.I _ "_ ... _., _____ .;. .. 1.25 :.,.,..
NMRXE 126

......... YSS.~-~-.............. -.................................. 127- -· · ·
NSINT 128

·---~RAM -···-·.--···--····129
NORW
NDRB

.. .,.---···· .. -----···-'-··
MAD(lO}J
vss
MAD[2:0]
VDD

130
......... .131-··

132:139
140

' 0 •"'',A.'""'' 'o.','o•"•"~--·- •r,~--.-.,..,.,~,~''•

141:143
144

v 55-:::: G-tJJJ

·BUFFER TYPE

SC7250 - BIDIRECTIONAL TTL' INPUT
SC7900 - DOUBLE VSS PAD
SC7250 - BIDIRECTIONAL TTL INPUT
SC7200 - OUTPUT IOOfp/ lOns
SC7200 - OUTPUT lOOf p/ l Ons
SC7200 ;,. OUTPUT 100fp/10ns

. SC7200 - OUTPUT 100fp/10ns
SC7200 - OUTPUT 100fp/10ns
SC7200 - OUTPUT IOOfp/lOns
SC7200 - OUTPUT 100fp/10ns
SC7200 - .OUTPUT l OOf p/ 1 Ons
SC7200 - OUTPUT 100f p/ 1 Ons
SC7200 - OUTPUT .1OOfp/1 Ons
SC7900 - DOUBLE VSS PAD
SC7200 - OUTPUT 100fp/10ns
SC7200 - OUTPUT 1OOfp/1 Ons
SC7200 "'" OlJTPUT 100fp/10ns
SC7200 - OUTPUT 100fp/10ns
SC7200 - OUTPUT 100fp/10ns
SC7900 - DOUBLE VSS PAD
SC7200 - OUTPUT 100fp/10ns
SC7910 - DOUBLE VDD PAD

!

:·: :·: + ...

c· ·-·
:·: :·: •.• :·: :·: :·: :-:

01 ,-,
C.•

:·: :·:

:·:

A'""' e
:·:

:·: :·:
'.:!? '-··-·

:·:

:-:

:·:

(if

:·: :·: :·:

:·: :·: :·: :·:

1·0 f (J' f

~o °' v t}

:·: :·: ...

:-:

:·:

:·:
,ii~

..... -·

:-: :·:

=·= :·:

:-: :-:

q,-.
•' .::i

:·: :-:

0£
:·:

(f.l

-<
3:
IJ:I
0
r

.. ··· ..
"1J
r
OJ
4:> · ·

- '·' ;

; < ~ :.:::::::;ti::;'.>· : : +:;:;:;::_. ~:_ .. {:: , .. --- · :- '?_b __ ._-._-._;~_'le_::.• __ -_•_.~_i_ ._o,••-~---·_._• ___ -_;_,'_-_·-_.--.-,--,--'.·'_¥_•-•~--·--·_·_· ___ .•• _e_•· .••. ::t.;>•.:\K:.:;'.'" >>" ;:, ' <\ .. }: L /'. f< ,·· .. ·,· ;;;·;/'mlfARRIS< sf~~pAkbcELL,PEVEl,OP~fE'l'tr Qf{()Q-p· .• ' ·.· .··:_ ,,·_. : yJ·);·_;_:',::.·'
· ;·:~·;;::;;;-':·y :_":: -·;-. . ;.··.~·-.:·.· ,. : •' . . - , .. <i: .. ., - ··,.

• ·: .. -:;;_. :---_-_· :· ·. · '••w;i~c;,~~~;~~~~o~.:~ata•CJ1ij, PinListO'.• •....... -:{i ···--··
. :· ',:,,.\;\;-.' ; . ·_·····.· i,><~,>····.··' "• .·. .,. ' ._).'

PIN~+~ ·. ·· •,; ::.~~G:E · elJFFER TYPE ;··.· .•....
; \~--. ' ·'~ :·· . ." , ·_:\ .. ·,."'.. · .. · .

. ·. · .,,_ :'•: ~KfRCE.-:;> .. h .7l~+::~·-··;::' .}: sc11so ~ rti./INPlJT .
,· NWMRA :' ''. 2 ' E: SC7150 "".TTL INPUT: :.·: ~·

. NSMIR,. < \ .~:.:./ ' ~l.:.;-~~,!;, .. ~'..:~_:_ > . . ·
:"·_.':-.- ... - ·' - ... , ' ."'·: .. -. __ -_-.·:

>NSDP : , . . .)_:4 . . ·' _ ._ .. __ _
Nstis .: .. < . _ s, · · .. -·,_ ·. -. ·sen so - rti· INPUT · .

. ·".. :~N~S~-D!?_H1:-Pic~_-.,..,~~+~-": ~~:.~.--.;:~~";: .. --~·-~;.;: .. > ; . ' . ; ·. ' . ;.·. SC7 l 50 ~ TTL INPUT . . · . · >7 .. · ·. ·· SC7l50 ~ TTL INPUT .·.·
·.· NMULT' .' :·.' ', . 8' ' > .· SC7l50-'- TTL -INPuT

. · ... ; .·.·-· .
. ; .. ".

SC7 l 50 - TTJ:; INPUt .
. ·sc11so. ~- rrL INPut (·

SC7 l 50 - TTL INPUT. I • ;~~MRX,~_~:.:~-~,, .. ::.,_.,~., ... ;;, __ ~-~---'··<·-~ : ·.
t NDIV -· .·. 10
i. · ··-vDD 11

.··• SC7150 -TTL iNPUT . - ' .
. ··:\ .. ~:· '.i·:: ;:.

. ' . '. · .. ·· ... -~··- .. · ,,.~Q~·--c·":: /~~:.~:~;,, ___ :c_c_,,.:,,J.~"°'·-· .. ·
_SC79l0 - DOUBLE 'VDD PAD .

, SC7900 ~UBLE-VSS ~AD . . . ' . y55, 13'
:Ni>Ds···

. ·_Nobr:.:.c .. L.;,~--·
i_ .. -NMROE ..

--·-···MRXDR _· ... ·

is
)6 .
·-17·

: 'O.Y:9§g __ ._,; .. , .. , , __ ,).8 .. ·.•"'
· ..• NCYCL . ·- 19
. NDM:IR _., 20.

·NMAST '· 2l
· v-0:0·'. :· · 22

vss 23
_-·.Bv~q:J1. _,,: •..... --~>- :.~-~;~1 · ..

. · YDD . 32
. ! · NC 33

··VSS 34_ ·L -.· .. _,,_ ·-·------- ·
.. : _· .·_ B_US[8:15]·' 35;42

j. \'SS :.· _ .·---.· 43
· ·· i Bl!~i6:2_3f ·

vss.
voo·· ·

.'NC·· . , ,..
·· · BUS[24:3I]··.
·vss ·
VDD--•·_.· _ . -- . -~-~--~ -

·MAD[0:7].

.44:51 ,'
··" ' sic""

'53
··. :~:4. ;. .. -:,_,. ~ . .

55:62'
63_
64 . .

... ' -. ·----65:72~---

. . ' . . :

. scnso - .TTL INPUT
. '. SC7150 - TIL INPUT

.SC7 l SO ..; TI'L. INPuT
SC7 l 50 ' - TIL INPUT'
·sc11 so ... TTL INPUT .
' . . ·-

SC7150 .:. TTL INPUT
' . '

SC7 l 50 ... TTL INPUT
SC7 l 50 - TTL INPUT·
sc1910 - DOUBLE VDD PAD·•·

' .

.. SC7900 - DOUBLE VSS.PAD
scnso·- BIDIRECTIONAL TTL INPUT'',
SC7910 - DOUBLE VDD PAD

scnso'"" DOUBLE ·vss .PJ\b ·
SC7250 - BIDIRECTIONAL TTL INPUT
SC7900 - DOUBLE YSS PAD ._ .• ·. '
SC7250 ..,: BIDIRECTIONAL TTL INPUT· . - ..

SC7900 - DOUBLE vss PAD .
SC7910 .. DOUBLE VDD. PAD

. . i_·. • · .. • . ' ::· -_ '... • ·. · .•.

,' SC7250 - BIDIRECTIONAL TTL INPUT- . '
SC7900 - DOUBLE vss PAD ' .
SC7910 ":'. DOUBLEVDD PAD .
SC7 l 60 - CMOS INPUT

- EeHARRIS . STANDARD CELL. DEVELOPMENT GROUP

Wisc Processor Data Chip Pin List conti~ued _

PIN NAME PACKAGE
PIN#

--v-ss~--------'·-------------,13------------ ---
MAD£8J 74
NC - 15 __
.~,__,,. .. ,,.~ ... --p·~~~ _.., __ ··-····-····~- ~ . --···-·---- -VDD _ ----:7'(,---"'·--·-
MAD[9: l O] 77:78

NDPER _____ 7-~~------------- .. ,. . . --NALUa-·· -·--·- ~-, 80.

NACOT 81 ·
DLOLO 82

r -Ai:ul"i _______________ ---- -·--8"3" ________ --- - -

vss 84

-BUFFER TYPE

SC7900 - DOUBLE VSS PAD
SC7160 - CMOS INPUT -

SC7910 - DOUBLE VDD PAD
SC7160 ·"'. CMOS INPUT
SC7200 - OUTPUT 100pf/10ns
SC7200 - OUTPUT 100pf/10ns
SC7200 - OUTPUT 1OOpfI1 Oris
SC7200 - OUTPUT 100pf/10ns
SC7200 ~OUTPUT 100pf/10ns
SC7900 - DOUBLE VSS PAD

--_ PJ20T !BC

OJ
OJ
0-
.......
I

<:t
()
I

r-·:1
0 ..
w
1-
.::r
Cl

0-
.......
l
o

" LL.

..
w
....I
1-1

LL.

c21
4~3 PIN

·:-:.
•.)

·:5
RAD2 l7 RAD4 ·9
RAD6 =11
RADS =t13

RADW ·15
RAD12 ~17 RAD14 · 19
RAD16 ·21
RAD18 :23
R"\D'='r".'i ·--·s n i..;.i:;; I c._

RAfl22 ~-27 RAD24 ·29
RAD26 :31
RAD28 ··~:3
RAD30 ±~:5
tiDRB ·37
I :3•3

21
4i
~~

~'
10~
1 ~. c·
14 1

16 1

1R~
2~l
~~
24l
26 1

28 1

30l
32 1

34a
36l
~~.
~o·

40 1

MF.'.AM
RAD1

· RAD3
F.:AD5
RAD7
RAD9
RAD11
RADU
RAD15
RAD17
RAD1'3
RAD21
RAD2:3
RAD25
RAD27
RAD29
RAD31
t·mF.:~i

I __ _

PH IL KOOPMAN .JF.'..
ADDR TO F.'.AM RII:BON CABLE 11 A11

(FILE: PROT19)

.,...., (1) 1i·:r r··._ (r·,, c•-:i 1.r:r r···~ .::r·, _.....
·r·-t C1:t IJ°') f···- (f·, ·····-c -r-1 -.--1 -1 OJ CU CU (l.J OJ (1')

t=I 1=t i:::.:i i:::.:i 1:::::i t=:::i1=t i::-.:i r=t H H 1=t ~:=i H ~=r t='-4
D:~ Ct:: Ct:: 0::: o::: Ct:: 0::: r::i::: r.i::: c~ c~ 0::: c~ 0::: Ct:: Ct.~

l·-
1-•
$ _..: ..
:z::

·-------·---~-----~

______ , _____ J
L86 l -60-- l l :: ::u 'd(]

fJ
I

I

PROT0-32 V1

111 +5
. $ GND

.,
z: .
([
:c a..
0
0 :..:
..J

~[-
gt.:
[

©E

;C
I

n..-20..-07 I. 0 t<
+5 {RI}

. GNf~~ .

f
139

·~ 140

f
141

d 142

L

C20

I 9 '"'-C1 ..,...
BANK 1 .

BANK 0

It 135

I f
13G

rf 137

M 138

---~----··~-----·- ---~------- .~---- ··-------· --------· ---~·----· --~-~-· --· --····-- . __

