Released under Creative Commons CCOII.O Universal
- by WISC Technologies

REPORT OF WISC CPU/32 CHIP IMPLEMENTATION EFFORT

SEPTEMBER 2, 1987

Phil Koopman Jr.
WISC Technologies
5551 Beacon St.
Pittsburgh, PA 15217

/

This document contains proprietary WISC Technology information
and is subject to the WISC/HARRIS non-disclosure agreement.

EXECUTIVE SUMMARY o |

This is a report of the summer 1987 effort to transfer a
discrete board implementation of the WISC CPU/32 processor to a
semi-custom CMOS chip implementation. This effort produced a
two-chip set which simulates correctly at a 10 MHz clock rate to
produce a 5 MOPS 32-bit stack-oriented processor. It is quite
likely that an optimized ‘second-pass version of the chip w111
operate ‘in the 15 MHz to.20 MHz range.

The most cr1t1ca1 problem encountered in the 1mp1ementatlon
effort was the unavailability of asynchronous RAM for use in the
stacks. This caused up to a 25 ns 1ncrease 1n the critical paths
of the chip set 1mp1ementatlon.

This report, when combined with the previously delivered

. WISC CPU/32 Preliminary Documentation manual, provides written
documentation for the chip set: hardware implementation and-
theory of operation, critical path analysis, performance
evaluation, software operation, firmware operation, system
testing, prototype test board schematics, and recommendations for
.future enhancements. o ’

ii

CONTENTS
EXECUTIVE SUMMARY ‘C..........0.......................0.....‘ i

lo INTRODUCTION‘...‘0....'..Q.....'Q.Q...'l-QQ.....'.....]—
11Purpose ...0....0.0....o.o.'o..CO.Q...O......0.0.......l

128C0pe oo‘-000ocooocnoo.ooooo.onoooo.oo...ooo-ooooo.ooool

1.3 Prev1ous1y Delivered Information R R TR

“’21'HARDWARE IMPLEMENTATION ooooc‘o‘o.ou'oooooo;ooocoooaoouo-oooz-—~~— -

2.1 Portion of Design Included On-=Chip «.eceeeecececccasens
2. 2 Chip Partltlonlng for Two-Chip Des1gn ceeeersesacessane

2.2.1 Data Chip ceeeeeeceececceesascassccscsasasaansosnsscse

2.2.2 ContrOl ChiP ceeeeeeceeesseceacsasssasssasssnasssss
2.3 Differences Between Discrete and Chip Implementatlonb..

2.3.1 Engineering Changes to Discrete Design ..eeeeeeee.

2.3.2 Changes to Eliminate Floating BuSSe€S ..cceaecccacs
2.1 Return Stack R R R R EE R R
2 RAM DAt eceeeeeecccceeccecsecescocccsanssossccsnse
3 Micro-Program Memory ceeccecesessisssasnenoan
4 System Data BUS ceeeveecsccacccsaccccacaanscnse
.2.4.1 Partially Driven Bus LinE€S ..eveeeeecenn
.3.2.4.2 Divide and Multiply Operations
.3.2.4.3 Unused/External Bus SOUrCeS ...eeeveeenn
hanges Due to Two-Chip Partitioning cesos
3.1 System Data Bus Direction Control ;.;........

2.3.
2.3.2.
2.3.2.
2.3.2.
2.3
2.3
2.3
C

2.3
' 1.1 Data Chip System Bus Drivingeeceee.
1.2 Control Chip System Bus Driving
1.3 Host System Bus Driving ...ceceeeececeaes
1.4 RAM Address Bus Driving ..eeeeeeeeeeeses

Clock LoglcQQ...C..l.........l.ll..l’..
ges Due to the RAM Compiler (.eeeeeececececeasal0

3
.3
3.
.3.

2.3

b[\)o-

2.
2
2.
2
2.3.4 C
: .3.
.3.
3 3 Micro-Program MEMOTYY «:eeeeeesceasssccceeessall

2
2
2.3
2.3.5 C
‘2.3.'"
2.3.

3.

ha

4

4.2 Return StaCK .ceveeecscscesscscssssacsanseseaall
4

h

5.1 MRAM Transceiver Vs. MIR-Clock Race1l1
5

o o () o

3. THEORY OF HARDWARE OPERATION»....}......................;.13
3.1 Slave Mode s
3.1.1 Loading a Micro-INnStruction ...eeeeeeeeaveeeeeeasal3
3.1.2 Executing a Micro-Instructionceceececeesaal3

3.1.2.1 Single Stepping the CloCK «.eeeieeeeeeeaneaal3
3.1.2.2 X@ Operations .eceececeeeesecacsssessoccscacald
3.1.2.3 X! OperationsS ceeeeecceccecssaececcaacenensald

3.1.3 DMA Transferseeeeeeeeeesesccsosansensasnnaaald =

.l Data StaCkoo....................10_

nges Due High Speed Operation ..v.eceeeeceeeeoall

2 Changes in the Use Of FASTC tveeevencocceoasll

iii

3.2 MASter MOGAE cveveeeeecenccocsossssossesseaasascaseassaassld
3.2.1 Executing a Micro-Instructionceceeeeeec...16
3.2.1.1 High CloCk Period «.eeeeeeeeceececsasnsseaaealb

- 3.2.1.2 Low Clock Period16

3. 2 2 Executing a Macro-Instruction ...cececeececececececas ..16
3.2.2.1 Unconditional JUMP ceceeeoccccccans ceececcons .17
3.2.2.2 Subroutine Call .i.eeeeeecccccccnccons ceeesalB
3.2.2.3 Subroutine EXit eeeeeececceccasanans cssssssslB

3.2.3 INtEIrTUPLS veieveeeaeeeecoaaacssosscsansoasssnanns 19

. .3.2.3.1 Interrupt CauSeS ..ccecccecccsccccasencansssld
3.2.3.2 Interrupt Synchronizationeeeeeeceesesss20
3.2.3.3 Interrupt Servicing .c.eceeeccceccccacccaessl0
3.2.3. 4 Restarting After an Interrupt ...ieeoc.. eeees20

- 4, CRITICAL PATH ANALYSIS & PERFORMANCE EVALUATION .ccceeeese22
' 4.1 Subsystem Timing AnalySiS .teeeecececcccccccccccnccsnsssll
.1.1 Bus Source/Destination Decoding ..cceceeccecocassssl3
ALU 4 tteecscccosssacossscssssscsssnsscsccsccsccccsosell
Data StaCK ceeeceescecscssenscsscaccsccscasocasssld
Return Stack ..ceeeecscccsocsoccccnns ceeccsscsseesld
Memory Addressing ceessccecscssscsecsssssseeld
Data Bus to Program MEMOYY eceeecececcssccsssseceeld
"Program Memory to Data BUS .eeeeecsccccsasccsssaalbd
Program Memory tO MPC tcveeeecceccsccocsascancssaselbd

QI QI QI O N SO N O NS

2
3
4
5
6
7
8
9
10 MRAM address valid at Data ChipP cccecevcecceceaecsalbd
itical PathS sueeeeeesecccessoscccsscssocsacsacnsescaslb
1 Data Stack Through ALU t.ceeacsccsccsaccss cecseeeadll
2 Return Stack Through ALU ..ceeeeceececccaccoccoceeal8
3 Return Stack to Data StacCKk ceeeeeeceoccncecns eeee28
4 Data Stack to Program MemoOYry eeeceeceoceeceass ceeeceessl8
5 Program Memory to Data Low Registerceceees...28
6 Macro-Instruction Fetching¢.cceececcees eesel9
7 Macro-Instruction FetChing ..eceieeeeeceeceaceessa29
~ommendations for Illegal Operations ..ceececececeesa29

TR R DD DD

4.2.2 Return Stack Through ALU ...eececescecscocaacaseea2d

4,.2.3 Program Memory Through ALU teveeevenvcanennnnaeess29
4.4 Performance Estimates ..f.............................30

5. DESCRIPTION OF SOFTWARE AND FIRMWARE i ceeecocecccccccccscs .31
5.1 MVP-FORTH/32 ¢eeceoccscoccscccnsosocsassessssassasssssseldl
5.1.1 Similarities to MVP-FORTH ..ccceeccceccacncecesscall

5.1.2 Differences from MVP-FORTH ...cccececceccse B X §

5.1.3 LIB-FORTH as a Base for MVP-FORTH/32 ..¢ctecceces 32

5.2 Microcoded Functiormns;.......32
5.2.1 Functions Identical to MVP-FORTH .¢.ccc.. ceseeeed32

'5.2.2 Functions Modified from MVP-FORTH ..ccececcecesss32

562.3 New‘Functio'nS:.."...."......."....I......I,.'..'32"‘

Inter—chip Data Bus Delay s..eeecescccsccssccnccsalb

iv

5.3 High Level FUNCLiONS teceeceesccococosassnsossscconscsesll
5.3.1 Functions Identical to MVP-FORTH ..cccceocncecessldl
5.3.2 Functions Modified from MVP-FORTH ...iccccvove...34
5.3.3 NeW FUNCLIONS teeeeeeeeesaosnsascoscsscsoascnanssaldd

'~5>4 Additional High Level Functionseeeeeceececcascess35

541Math Package otnoooooo---oooooo.nooo“oooaoocoooo..BS‘
5.4.2 Screen EAitOr t.ieieeseeeeeeeseecccacacccacennsnsalb
5.4.3 DOS File ITNterface .ceceeececessscscocscsacascsesaldb

.TEST _VECTORS . ® ® 8. ©® 0. 6 0 0. 0 o o 0 o ;,’_ e o o .:. o . @ @ o o o o o o ; e o o o o ® ® & o o o o . .: ..3_ '7””7
6.1 Main Slave Mode Test Vectors: HARRIS.BIN cececccccsscell.

6.1.1 Test Vector Generating Programceeeeececceccsceeld/
6.1.2 Clock Cycling INformation ..eeeeecsceceoscscssoceel?
6.1.3 Test Vector FOrmatsS c.eeceecescscscosacssosccsasasldl
6.2 Miscellaneous Slave Mode Test Vectors: CYCLE.BIN38
6.2.1 Clock Cycling Information RPN X
6.2.2 Test VeCtOr FOYrMALS «eeeeeeescccccscccscsaccansess3B

6.3 Master Mode Test Vectors: RUN.BIN ceeeeceecececoceceessslB

9.
9.
9.

6.2.1 Microcode Memory Set-UP «eeeieeesscaccscascassssslB
6.2.2 Master Mode Clock Cycling Information38
6.2.3 Test Vector FOrmats .c.eeeecececcccccscssscasessal3d

PROTOTYPE TEST BOARD «vveeveeearonacnceaanncasaasasncassesdl

7.1 Purpose and Limitationseceeieeececeanenn. ceeeeeesldl
7.2 Possible Expanded Versions ...ceeeececccsscccssseosassdl

RECOMMENDATIONS FOR FUTURE ENHANCEMENTS ...ccccecess41
8.1 Return and Data Stack MEMOTY «ceececececcccocccscas cee.dl
'8.1.1 Change to Subroutine Exit Operationcccc.c..41
1.2 Asynchronous RAM ..ceceecccccsscccscsscsccscaasesdl
1.3 Change to Stack Accessing Timing ceeeeececceccsessd2
.1.4 Elimination of Data Stack Transceivers42
.1.5 Stack Size ISSUES .eeeees ceccecases cecensseeconise .43

8.2 Bus Multiplexing ,..................;...;...,.........44
8.3 Microcode MEMOXY eeeeeececccccccccccssscccsss. P ¥
8.3.1 Microcode MEMOYY SiZE€ ceeeevcacccscscccsssnsccssndd
8.3.2 RAM VS. ROM .iceeeececocancacacsasassseasassacsessesdd
8.4 A Stand-alone Processor/Single Chip Version45
8.5 Uniform Software Environment for FORCE/WISC46

8.
8.
8
8

Synchronous Stack MEMOTY «eeceececccccssscocnscancascased?
Untested Library MacCros .eeceeeeee ceccccaiecssaascncsead?
3 Simulator Failing to Produce Complete Output Lists ...48

ROBLEMS ENCOUNTERED IN THE DESIGN PROCESS ceteecareaaeassd?
1
2

10. CONCLUSION ooooo..-._on....-on-oooo.uoooo.o.-oooooon.oooa-c.o49

APPE&DIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

SIGNAL DESCRiPTIONS FOR LUMPED SYSTEM ..ccecee.A-1

SIGNAL DESCRIPTIONS FOR DATA CHIP ..¢eeeeseees.B-1

SIGNAL DESCRIPTIONS FOR CONTROL CHIPC-1

CHANGES TO WISC CPU/32 DOCUMENTATION “e¢eeeees.D-1

SCHEMATICS FOR A PROTOTYPE TEST BOARD +........E-1

1. INTRODUCTION

1.1 Purpose

1.2 coge__mm;mwwwmrm"r,rﬂrr,' ' dﬁ

The Harris/WISC . CPU/32 project is aimed at ultlmately
reducing the multi-board WISC/CPU32 discrete component. _
implementation to a chip or chip set. This document provides

amplifying information for the WISC CPU/32 implementation

dellvered to Harris Semlconductor during July and August 1987.

This document concerns itself w1th ‘the de81gn and
implementation of the Harris/WISC CPU/32 chip. It provides
amplifying information and changes to the WISC CPU/32 Preliminary
Documentation (which describes the discrete component CPU/32
implementation) to build a complete plcture of the CPU/32 chip

_de81gn.

Areas covered include: hardware 1mp1ementatlon, theory of
hardware operatlon, critical path analysis, performance

- evaluation, software operation, firmware operatlon, test vectors,

prototype. test boards, recommendations for future enhancements,

‘and problems encountered in the design process.

This document is written for an engineer who has already
read the WISC CPU/32 Preliminary Documentation and who already

has. an orlentatlon to the purposes and methods of the Harrls/WISC‘

Chlp progect

1.3 Prev1ously Dellvered Informatlon'
Information previously delivered to Harris. Semiconductor
includes: the WISC CPU/32 Preliminary Documentation (2 copies)

with software and firmware, Collected WISC Papers, schematics for

the chip, and test vectors with associated software. Also, -
courtesy copies of LIB-FORTH with a55001ated documentatlon have
been prev1ous1y dellvered S :

TN

! 2. HARDWARE IMPLEMENTATION

‘Converting the des1gn of the WISC CPU/32 discrete component

" board set ("the Boards") to a chip set ("the Chips") involves
"partitioning the Board functions into areas that should be on the

Chips, partitioning the logic between the Chips to satisfy chip
area and pinout_constraints,-making changes to the design to
accommodate partitioning and fabrication technology requirements,
then generating test vectors to ensure correct functionality.

__This section discusses all these steps except test vectors, which
~are dlscussed in Section 6. ’

2.1 Portlon of Design Included On chlp

Due to the severe pinout problems a55001ated with two of f-
chip 32-bit stacks and an off-chip 30-bit microcode memory, the

- WISC Chips use on-chip stack and microcode memory. All

process1ngvloglc is also included on-chip. Since the size of the
stack memories and microcode memory is very large, the final

Chips will have most of their area devoted to memory cells.

As a trade-off between functlonallty and memory sizes, both
stack memories are 512 elements by 32-bits and the microcode
memory is 2048 elements by 32 -bits, g1v1ng a total of 256

"possible op-codes.

The logic not 1nc1uded on the ChlpS 1ncludes the: host

‘interface, program memory interface, program memory, and-

osc111ator synthe51s.

2 2 Chip Partltlonlng for Two-Chlp De51gn

Since initial estimates for combined stack and microcode
memory sizes indicated that a single chip 1mp1ementatlon could be
too large, a two-chip implementation was adopted. As is commonly

~the case, the cleanest way to divide the implementation was into

a data path chip and a control path chip. As it turned out, this

- division put-one of the stacks on each chip, and split up the

microcode memory (12 bits on the data chip, 18 bits on the

Control chip), thus glVlng a good partltlonlng 1n thls;memory—

cell 1nten81ve de51gn. T
Figures 1 and 2 show the partitioning between the two chips

‘at the block diagram level.

Appendlx A describes the pinouts for the "lumped system
that is, the. external interface of the Data Chip/Control Chlp
pair to the outside world. If the Data Chip and Control Chlp
were 1ntegrated into a single package, these are the only p1ns

“that would be requlred.

A

I

M

e

— LAAHS

LBEHT-Z0-0031L90

DT LPWEHDS - F9YWI MNAFHIS 53IHAY:

THATEA AT A

1987

~4
=

i

19—

DATE: S

FILE: PBELEL

=
ale

n
=

1V

HEE T

—
fon.

SCHEMATIC

ITHMAGE

CREEM

&

FHICS

PO

ZIGH BIT

ot] 0)
=ZERDT

[aTa CHI

Tl

L
i

1 .
[e R I

AT D

V215987

G

OG-

DATE

FRLED

]

Ik

1

He 1 WV

» S

SOHEMATIC

GE

Al

ER I

RE

FHICS SC

-
RS

po

]
1

RS o

=1 T

=T

an

P el 3

x

=

B xTIuH LATOH
11 BITS:

R

]
4

nn

HOTE

e

&

oo R SR M R R ORI D3RR R R WS e am S

ET 0 LnTh !41

=R R R R R R B W

== =

=

= =

i
, R}
= e E

i
I
M

_ =

i
M
—
i

= =

.
i

fer e e

=mem R R R B R E &

T] 8
—....l_.l. R [
D] #

it
i
W
= ..
S— - - T I :...;m_uﬁi e s ——— e
—c i] .
= = %
. -
) . R -
. . o

AT Y R e [£ OTLIYHARDIS — wwﬂszzmwium ST H

LBLT-E0-6013190 . EAE AT A

2.2.1 Data Chip

The Data Chip contains the ALU with its associated
multiplexer, the Data High Register, the Bus Latch into the B-

.. side of the ALU, the Data Stack and Data Stack Pointer, the Data

Low Register, and twelve bits of the Micro-program Memory/Micro-
Instruction Register structure (bits 8-9,12-13,16-23). These
twelve micro-program bits were chosen for placement on the Data
Chip because they directly control Data Chip resources (e. g. ALU
function). ,
. _The data chip may be thought of as "the part that got off- _
loaded from the main chip", since the Data Chip does not
interface with the outside world. ,

Appendix B describes the pinout for the Data Chip.

2 2.2 Control Chip

" The Control Chip contains everythlng in the system that
didn't get factored off onto-the Data Chip. This includes the
Return Stack, the memory addressing logic, the micro-instruction
addressing logic, and almost all of the control circuitry. The
Control Chip holds eighteen bits of the Micro-program
Memory/Micro-Instruction Register structure (bits 0-7,10-11,24-
31), Bits 14-15 of each micro-instruction are unused, and

- therefore omitted from Micro-program Memory.

"The Control Chip may be thought of as the "main" Chlp, since
it is the chip that controls all global actions and interfaces to

the outside world. Appendix C describes the pinout for the
Control Chip. '

2.3 Differences Between Discrete and Chip Implementation

There are five types of differences between the Chip
implementation and the Board implementation described in the WISC
CPU/32 Preliminary Documentation. These differences are due to
Engineering Changes to the Boards (which will appear in
subsequent versions of the Board documentation), changes to

- eliminate floating buses in the Board design, changes due to the

partitioning of the design into two Chips, changes due to the use
of synchronous stack and microcodée memories, and changes required
due the the- h1gh speed of operatlon in the CMOS chip (i.e. race
elimination.)

2. 3 l Engineering Changes to Discrete Design '
‘Two Englneerlng Changes -have been made to the Board de31gn

~in order to obtain correct operation of interrupts._ The first

change is changing IC38 pin 10 on figure 59 from being connect to:

the signal INTR to simply being connected to IC38 pin 9. This

-change in effect makes NDEC2 and ND2CK the same signal. On the’

VCALL fllp—flops to be pulled high. This means that on figure 65,‘

Chip implementation all occurrences of ND2CK are changed to

'NDEC2, and the OR-gate is simply eliminated.

The second change is changing the CLR plns on the EXIT and

-IC57 pin 13 and IC58 pin 13 are dlsconnected from NINTR and

instead connected to PULLG, which is a pull-up resistor.

. - Both these changes are reflected in the new versions' of
figures 59 and 65 included in Appendix D. These changes

- accomplish the changes in functions to interrupt proce551ng

+ described on the new page 51 of the Board documentation given in

'Appendlx D.

2.3.2 Changes to Eliminate Floating Busses

. _Since floatlng tri-state busses are not tolerable on a CMOS
IC, each bus on the Board de51gn that had one or more bits that
were allowed to float is changed to be driven on every clock
cycle. This is accomplished by adding drivers for undriven bits,
by adding a default bus driving source when the bus is not in
use, or by adding pull-down resistors. ' : ’

2.3.2.1 Return Stack

The Return Stack bus (RS<0:31>) connecting the Return Stack,.
Address Counter, and Address Latch was allowed to float when none

of these resources was in use in the Board design. In the Chip

design, the signal NRSOE on the figure Return Stack Control Logic’
(F.60) is defined to let the Return Stack drive the bus when the

bus would 0therw1se be idle.

2.3.2.2 RAM Data ' : :

- The RAM Data bus (RD<0:31>) floats whenever a RAM access is
not being performed in the Board implementation. = Although
changlng logic to allow the Chip to drive this bus during unused
cycles is possible, software access to non-existent memory _
locations would allow the bus to float. Therefore, pull- down
resistors are installed in the pads for the RAM Data bus. These
pad drivers are shown in the Chip schematics figure entitled "BUS
PAD DRIVERS with PULL—DOWN". : :

2.3.2.3 Micro-Program Memo;y

, " The Micro-Program Memory bus is allowed to float when in
‘Slave mode in the Board implementation. In the Chip
‘implementation, the signal NMROE enables the Micro-Program Memory
outputs to drive the bus when it would otherwise have been idle.
The logic to accomplish this is shown in the schematics flgure
entltled "MRAM/MIR CONTROL LOGIC -- F.24".

2.3, 2 4 System Data Bus - ' ‘
' The system Data Bus (BUS<0:31>) can float ‘either due to
" being partially driven by system resources that are less than 32
bits wide (such as the Data Stack Pointer,) can float during the
Divide and Multiply operations, and can float if no external
source drives the bus during certain operatlons. On the Board:
implementation, this problem is handled by using pulldown-

resistors on all 32 Data Bus lines. Wh11e thlS is convenlent and

. space-effective on a discrete board implementation, it is not
~acceptable for a high-speed CMOS implementation where the unused
bits must be zeroed for correct program operation.

2.3.2.4.1 Partlally Driven Bus Lines
: In order to correct the problem of system resources less

than 32 bits wide not driving the Data Bus properly, all system
Data Bus sources less than 32 bits wide are expanded to 32 bits
using tri-state bus drivers that drive zeros onto the data bus.
. These_bus_drivers are found in schematics: "pulldwns" for
SOURCE=RAM-BYTE, SOURCE=FLAGS, SOURCE=RP, SOURCE=MPC and "DATA
STACK POINTER -— F.25" for SOURCE=DP.

2.3.2.4.2 Divide and Multiply Operations :

_ In order to correct the problem of the bus floating during
multiply and divide micro-operations, the DHI register is driven
~ to the bus during SOURCE=DHI as well as MULTIPLY and DIVIDE
micro-operations. The 3-input AND gate that accomplishes this -
generates the signal used to enable the SN74244 devices on the
‘schematic "Data High Register". This change does modify the
- functionality of the Chip compared to the Board in that during
- divide and multiply operatlons, the Board's Data Bus shows all
zeros, whereas the Chip's Data Bus shows the contents of the DHI
register. Because of this, the Data Bus values are "don't cares"
‘when testing a chip and using the MULTIPLY or DIVIDE micro-
operations. -

2.3.2.4.3 Unused/External Bus Sources -

In order to correct the problem of bus floating for Data Bus
source number 15, the implemented instruction set does not use
the SOURCE=FPU bit pattern. This precaution should be sufficient
for normal operation. However, to guard against a floating data
bus for illegal or improper micro-instructions which could
conceivably be generated due to programmer €rrors Or an
unfortunate power-on micro- -instruction bit pattern, the unused
source decoder SN74138 output pin (Y7 on the lower left '138 of
the SChematlc "BUS SOURCE & DESTINATION DECODERS -- F.23") should
be AND'ed with the '138 output that currently drives the signal
NSPC on that schematic to make the new NSPC signal. Making this
‘change will designate the PC host to drive the Data Bus for both
source number 0 and SOurce number 15, leaving no undefined bus
source s1tuatlons. : '

"'2 3.3 Changes Due to Two- Ch;E Partltlonlng

Other than the obvious changes of adding pad drlvers for .
- inputs -and outputs, the two-chip partitioning scheme requires
‘changing logic to correctly orchestrate the flow of bits on the
Data Bus, and requires replication and changing of the system
clock logic to avoid clock skew and reduce the number of pins
requlred on each chip.

2.3.3.1 Bus Dlrectlon Control :
"Since the System Data Bus may be driven from the Data Chlp,
the Control Chip, or the Host, special logic at each chip must be
used to control the direction of the pad drivers. Since some bus
- sources have different bits of the bus driven from different '
components of the system, groups of pads w1th1n each chip may be
driven in different directions during the same clock cycle.
' ' Also, since the RAM Data Bus has pad drlvers assoc1ated with

in the Control Chlp.

2.3.3.1.1 Data Chlp System Bus Dr1v1ng

The Data Chip's System Bus pads are driven by the gates
shown in the schematic "WISC DATA_ CHIP". These gates drive all
32 bits of the Data Bus-as chip outputs for micro-operations
SOURCE=DLO, SOURCE=DS, SOURCE=DP, SOURCE=DHI, DIVIDE, and
MULTIPLY. '

For the mlcro—operatlon ‘SOURCE=MRAM and the MIR source to
BUS input pin function (signal NSMIR,) bits 8-9, 12-13, and 16-23
are driven off the chip while all. other bits are driven onto the
chip. The bits driven off the chip correspond to the micro-
‘instruction bits residing on the Data Chip. -

For the MIR loading operation (signal NDMIR), all plnS are
‘conflgured to inputs" regardless of the current micro-operation.
If this were not done, any micro-operation specifying outputs
could block the new micro-instruction from being loaded. : :
(Optimization note: the use of the NDMIR signal to control pin o
directions appears redundant, since the schematic "BUS SOURCE & o

DESTINATION DECODERS -- F.23" shows that all bus sources are
disabled during the NDMIR operatlon, making these pins default t0»'
. inputs.)

For all other micro- operatlons, all 32 blts of the system R ‘§
Data Bus are configured as inputs. '

2.3.3.1.2 Control Ch;p System Bus Dr1v1ng o '

The Control Chip's System Bus pads are driven by the gates S
shown in the schematic "WISC CONTROL CHIP". These gates drive :
all 32 bits of the Data Bus as chip inputs for micro- operatlons
SOURCE=DLO, SOURCE=DS, SOURCE=DP, SOURCE=DHI, DIVIDE, and
MULTIPLY and for the default bus source designated by the NSPC
control 1line (the default bus source is from the host PC' s

~interface.) :
" For the micro- operatlon SOURCE= MRAM and the MIR source to
BUS input pin function (signal NSMIR,) bits 8-9, 12-13, and 16-23
~are configured as inputs to avoid a bus crash with these bits '
~from the Data Chlp. They are driven onto the Control Chip's BUS
- but-are not used. ‘All other bus bits are configured as outputs, = =
since they correspond to the micro-instruction bits" re51d1ng on -
the Data Chip. In this implementation the two unused micro-

1nstruct10n bits (14 15) are driven to ground whenever the MRAM
of MIR are read. =
For the micro-operation SOURCE= FLAGS bits 0-7 of the Data
-Bus are configured as inputs so that the host Service Request
. Reglster may be driven onto BUS from outside the chips. Bits 8-
" 31 are configured as outputs to drive the interrupt status flags . ;
and unused (forced to zero) bits onto BUS. i
For the MIR loading operation (signal NDMIR), all pins are P
conflgured ‘to 1nputs regardless of the current mlcro—operatlon.v o

could block the new micro-instruction from belng loaded.
For all other micro-operations, ‘all 32 bits of the system
Data Bus are configured as outputs. ‘

2.3. 3 1. 3 Host System Bus Driving :
: The external Host Interface is required to drive all 32 bits
of the system Data Bus when the NSPC control s1gna1 is active.
NSPC is generated by the default source micro-operation
(designated by the lack of/a SOURCE= or the use of SOURCE= HOST 1n»
a micro-instruction.) This function is used in Slave Mode so
that the X! operation can be used to drive BUS when no internal
bus source is. spe01f1ed In master mode, NSPC is used to 81gna1
the host to drive BUS in order to avoid letting BUS float. .
The external Host Interface is required to drive bits 0-7 of
the system Data Bus when the NSFLG control 51gna1 is active.
These 8 bits are driven from the host's Service Request Register.
The Service Request Register is an off-chip 8-bit register used
to communicate the type of service required when the host :
generates an interrupt to the Chlp.. :

2.3. 3 1.4 RAM Address Bus Dr1v149 ' ' o
' The RAM Address Bus is driven off- the data chip for the '
micro- operatlons. DEST=RAM, DEST=RAM-BYTE, and DEST=PAGE. The

RAM ‘Address Bus is also drlven off- Chlp for the micro-operation

. DEST=DECODE, except when a SOURCE=RAM is also used, to allow for

"the important capablllty’to perform a "manual" decode of an .
instruction from RAM as in the micro- 1nstruct10n "3 :: SOURCE=RAM i
DEST= DECODE B , I o

2.3.3.2 Clock Logic :
In the Board 1mp1ementat10n, the system clock was generated ‘
on one board, and coples were buffered on each circuit board to
generate local copies of the clock. . In the Chip implementation, - . i‘
" this method would cause a clock skew on the Data Chip, or would . a
lead to the use of delay inverters in the Control Chip.: To avoid |
this problem, copies of the clock generating logic are placed on _
. both the Data Chip (schematic "DATA CLOCK CONDITIONING") and the . o
‘ Control Chip (schematic "CLOCK CONDITIONING".). T
v . Instead of transmitting copies of FASTC and XCLK from a _
_central clock generator, the Data- Chlp and the Control Ch1p each)

10

use separate copies of the clock conditioning logic to synthesize
CLOCK and FASTC from the NCYCL, DVOSC, and NMAST inputs.

As an additional change, since CLOCK and FASTC are not
available off- -chip, the "WISC Control Chip" schematic shows three
OR gates to condition the signals NDRB, NDRW, and NRAM with FASTC
to generate RAM control signals synchronized with the system
clock and to eliminate spurious signals caused by decoding
glitches from the bus control demultiplexers. On the Board
implementation, the system clock was distributed to the memory

~boards to accompllsh this synchronization.

2.3.4»Changes Due to the RAM Compiler

- In the Board implementation, asynchronous 4K x 32-bit
memories are used for both stacks and the Micro-Program Memory.
Since Harris' RAM compiler allows the use of RAMs with an
individual output enable line instead of a combined CS/OE pin,
extra logic was generated to create the output enable function
(which will eventually improve system performance).

Unfortunately, the RAM compiler also requires the use of

synchronous RAM. This required the synthesis of a chip enable .
signal, all will significantly hurt performance as dlscussed in
Section 9.

2.3.4.1 Data Stack

The changes in the Data Stack control 51gnals are very
straightforward. The Data Stack memory's chip enable is tied to
the system clock. This means that the high part of the clock
cycle is used for precharge and the low part is used to _
read/write data. See Section 3 for a dlscu551on of the high/low
portions of the clock cycle.

The Data Stack output enable is activated whenever a
' SOURCE=DS micro-operation is used. ’

2.3.4.2 Return Stack

The Return Stack memory's chip enable is also tied to the
system clock. As in the Data Stack, this means that the high
part of the clock cycle is used for precharge and the low part is
used to read/write data.
’ The Return Stack output enable is activated whenever the
'Return Stack is read and whenever the RS.bus would otherwise be -
idle. This means that the Return Stack output enable is active:
‘when a SOURCE=RS micro-operation is used; during the first clock
cycle of a subroutine return; any time the following signals are
all inactive: NDADC, NDADL, NSADC, NDRS and NCAL2. (Note: NCAL2
is active during the DEC2 cycle of a subroutine call.)

2.3.4.3 Micro- Program Memo;y :

The changes in the Micro- Program Memory control signals are
very straightforward. The MRAM's chip enable is tied to the
system clock. ThlS means -that the hlgh part of the clock cycle

\

11

is used for precharge and the low part is used to- read/wrlte
-data.

The MRAM output enable always activated, except when a
DEST=MRAM micro-operation is used or a write to the MIR is
,performed (u51ng signal NDMIR).

2.3.5 Changes Due High Speed Operatlon

- Surprisingly few changes were required to compensate for
tlmlng differences between relatively slow ALS and LS logic used
~in-the- Board 1mp1ementatlon and the faster CMOS- process used by -
Harrrs. : : :

2. 3 5.1 MRAM Transceiver Vs. MIR—Clock Race

- The one required change to the design due to- the logic speed.

difference resolves a race condition between the signals MIRCK
"and NMRXE on schematic "MRAM/MIR CONTROL LOGIC —-- F.24". The

signal MIRCK is used to clock the value on the internal MRAM data

" bus into the Micro-Instruction Register. In Slave Mode, this
data bus is driven by SN74245 transcelvers from the system Data .
- Bus (see schematlc "Cmicro_ram".)

: The enable signal for those '245- transceivers is derived
from the signal NDMIR in the Board. 1mp1ementat10n. ‘But,. since
NDMIR is also used to generate MIRCK in Slave Mode (see schematic

"CLOCK CONDITIONING",) a race develops between the signal trying

to turn off the data transceiver and the signal trying to clock
. that output of the transceivers into the MIR. In order to
resolve this race, a latch was added to the "MRAM/MIR CONTROL

- LOGIC - F.24" schematic to force NMRXE to remain active until
after MIRCK has triggered the MIR clock. '

. This race was not detected on the Board 1mp1ementat10n,
since the difference between two equal-depth paths of ALS SSI
logic gates is much less than the time it takes a tri-state
device to disable. (In other words, the de51gner missed the
race, but got lucky. 'No system failures, 1nstab111t1es, or
manufacturability problems have resulted, since tri-state turn
off times combined with voltage bleed- off tlmes for a floating
bus are VERY long compared to a gate delay)

2.3.5. 2 Changes in the Use of FASTC

The signal FASTC (Fast-Clock) was used in the Board -
1mp1ementatlon to ensure that the rising edges of RAM writes and
" SN74373 transparent latch clocks occurred before the rising
"system clock edge dlsrupted the values on the system Data Bus. .
This was required because some static RAM devices and all '373
devices have a 5 to 10 ns data hold requlrement after the r1s1ng

clock edge. :

' Since the RAM. Compller generated RAMs do not have a hold
requlrement, FASTC is no longer required for stack and Microcode
Memory RAMs (although the schematic’ "MRAM/MIR CONTROL LOGIC -
,F 24" st111 appears to use FASTC)._ - _ .

N

As the SN74373 devices used on the Chips have ‘a data hold

- requirement, FASTC is still used for these devices.

Since some chips used for Program Memory may have a hold
requirement (or may be subject to propagatlon delays due to

_control circuitry), FASTC instead of CLOCK is used to condition

the signals NRAM, NDRB and NDRW just before the output pins for
these signals on the control chip (schematic "WISC CONTROL
CHIP"). ’ v

(D
—

)

13

3. THEORY oF‘HARDWARE OPERATION

This dlscu551on of the theory of the hardware operation 1s
intended only to supplement the WISC CPU/32 Preliminary :
Documentation. This section discusses clock control timing,
ampllfles upon the ‘information about macro- instruction

processing, and dlscusses details of 1nterrupt proce381ng.

3.1 Slave Mode

~ “Whenever. the. system 1nput 'NMAST._ is_high,_the. system is in
Slave Mode. When idling in Slave Mode, DVOSC must be high and

NCYCL must be high. Of course,- NDMA, NSMIR, and NDMIR must also
be inactive=high. When idling in Slave Mode, the system clock:
(CLOCK -- for the purposes of Section 3 there is no difference
between CLOCK and FASTC) idles high. Since CLOCK is not cycllng,
no micro- 1nstruct10ns are belng executed, and the system is
halted. :

3. 1 1 Loadlng a Mlcro~Instructlon

’ In order to accomplish anythlng in Slave Mode, the MIR must
first be loaded with a valid micro-instruction. This is
accomplished by having the host interface place a 32-bit value on
the Data Bus while driving the signal NDMIR low. .This same 32-
bit value can be read back to the host via the Data Bus by

'driving the NSMIR signal low. Since only 30 bits of the 32-bit

MIR field are actually used by the Chip, bits 14-15 of the read
back value will be forced to zero. This differs from the way the

Board works, since the Board stores but does not use all 32 blts

of the MIR value.
NSMIR and NDMIR must be held low for a perlod ‘at least as
long as the low part of the clock cycle in Master Mode. The

rising edge of NDMIR causes the 51gna1 MIRCK to clock the data

value into the MIR.

Since the host must be able to read and wrlte the MIR at
w111, the MIR can not itself hold a SOURCE or DEST field that
specifies the MIR as a bus source or destination. This would

- cause a chicken-and-the-egg problem of not belng able to write
“the MIR unless the MIR already had a DEST=MIR micro- operatlon in

it. Instead, the NDMIR and NSMIR 81gnals are used to over- rldeb

 the bus source ‘and’ destination fields in the MIR to read ‘and

write the MIR upon demand in Slave Mode.

Since the MIR provides access to all system resources,_a '
global reset pin is not required for the Chips. All ’
initialization can be performed by an approprlate sequence of
micro- 1nstruct10n 1oads and executlons. . S

3. 1. 2 Executlng a Mlcro Instructlon

once the MIR is loaded with a valid value u51ng the mlcro-’

assembler (e.g. ">> SOURCE=DS "ALU=A+B DEST=DHI ;SET",) the
o mlcro 1nstructlon may be executed by 51ngle—stepp1ng the system

/ N
\ ;

14

clock. The clock is cycled by driving the signal NCYCL low and
_then driving it high. NCYCL must be held low for a period at

least as long as the low part of the clock cycle in Master Mode.
The falling edge of NCYCL must be delayed beyond the rising edge
of NDMIR, NSMIR, or the previous NCYCL rising edge at least as

'long as the high period of CLOCK in Master Mode.

The main difference between Slave Mode operation’and'Master

'Mode operation is that the signal MIRCK is not driven by CLOCK in

Slave Mode. This means that the MIR remains unchanged no matter

-~ how- many- timeS’NCYCLi S-CycC ledi———) T T e o

3.1.2.1 Single Stepping the Clock _
While NCYCL is low, the data bus is driven from whatever bus

source was specified in the micro-instruction. If no bus source

was specified, then the low=active value of signal NSPC indicates
that the host interface must drive BUS<0:31>. If NSPC is high,
or no Data Bus destination is specified, then the NCYCL merely
executes a single-step of the clock. -

3.1.2.2 X@ Operations

If a bus source (and optionally, a bus destination) are
specified, then the host may read the Data Bus while cycling the
clock (using the X@ micro-assembler command.) The data for Xe
may be clocked into host holding registers as NCYCL is released,
or may be examined 8 or 16 bits at a time by holding NCYCL low
for longer than the minimum clock low time, then examining the

Data Bus values as desired. 1In any event, NCYCL should be driven.

high when the X@ operation is completed. .
: Since the X@ operation cycles the clock, a single micro-

" instruction may be repeated for operations such as popping

successive data stack elements without reloading the MIR between
operations. : '

3:1.2.3 X! Operations - - ,

If a bus source is not specified, then the host is allowed
to drive BUS<0:31> with values using the X! micro-assembler -
operation. While NCYCL is driven low as in the above operations,
the host drives BUS. As NCYCL is driven back high, whatever bus

destinations were specified are loaded with the BUS contents on

‘the rising edge of CLOCK (which-is driven by the rising edge of
‘NCYCL.) S cT o

The data driven:onto"the‘bus must be valid in time to make -
it through the ALU and into the DHI register (and also set the
zero condition code.) This is the same time specified in Section.

'4,1.2 on ALU critical path timing.

'If the host has less than a 32-bit data path, then the host
interface must build a 32-bit word out of smaller pieces, then
perform a single High-Low-High pulse of NCYCL with the complete

'32-bit data word driven onto BUS. In practice, NCYCL may be held -

low while building the 32-bit word, as long as all 32 bits meet

,r<:>hvif

‘the setup tlme before dr1v1ng NCYCL high.

Since the X! operation cycles the clock,'a 51ng1e micro-

~ instruction may be repeated for operations such as pushing

successive data stack elements without re-loadlng the MIR between
operatlons. ’ '

3.1.3 DMA Transfers '
The DMA Transfer Mode is a spec1a1 case of the Slave Mode.
In order to transfer a block of sequential Program Memory words

_to or from the host, first the Address Counter is loaded with the
address of the first word to transfer. Then, the MIR is loaded

with the micro-instruction: ">> DEST=RAM INC[ADC] ;SET" for a DMA
write-to-Program-Memory operation, or ">> SOURCE=RAM INC[ADC]
;SET" for a read-from-Program-Memory operation.

After the MIR has been properly set, the NDMA line is drlven.

low and held low for the duration of the DMA transfer. T This
action causes the Address Latch to become transparent regardless
of the CLOCK value, in effect driving the RAM Address pins

"(RAD<0:22>) directly from the Address Counter. After waiting a

few nanoseconds after NDMA goes low for the address value to get
to the RAD pins, the DMA transfer may begin.

-As far as the Control Chip is concerned, the DMA transfer 1s
no dlfferent than a sequence of X@'s or X"s, with the exception
that the RAM Address pins are driven from the Address Counter..

' NCYCL performs a High-Low-High transition for each 32-bit

transfer word. NCYCL must remain low long enough to read or
write program memory (depending. on memory implementation, this

-~ low period may be up to twice as long as the requlred low period

at full speed, but most hosts are slower than this anyway.)

‘The DMA mode does not necessarily imply that DMA is being
performed to or from the host PC's memory. While DMA' ing out of
the host PC's memory and into the Chip's Program Memory is .
obv1ous1y the fastest way to do a transfer, the host may also do
a series of X@'s or X!'s if the DMA c1rcu1try to the host's bus
is not 1mp1emented :

3 2 Master Mode ' '
Master Mode is the "normal® mode of Chip operatlon. _
Whenever NMAST is active=low, the Chip is placed in Master Mode.

~In this mode, DVOSC supplies a one-third low, two-thirds high.
. duty cycle oscillator, whlle NDMA, NSMIR, NDMIR, and NCYCL must

all remain high.
' In Master Mode, CLOCK and FASTC are one-thlrd hlgh/two-'

thlrds low,; and MIRCK follows CLOCK with a delay of a few-
' nanoseconds to ensure that system Data Bus values are

successfully clocked in to- registers or memory before the'next
micro-instruction is executed. RALCK is essentially an inverted-
copy of FASTC, since the SN74373 s used to implement the ‘RAM

Address Latch allow data to pass when the input clock 1s high- (1n;yf

thlS case, durlng the low perlod of FASTC)

-

O

16

3.2.1. Executlng a Mlcro Instruction

Each micro-instruction in Master Mode is executed during a

"single high-low period of CLOCK. All micro-instructions begln at

the beginning of the one-third high perlod, and end :at the rising
edge of the next high period. : :

3.2.1.1 High Clock Perlod

The one-third high period of the system CLOCK is the setup

- phase . of the micro-cycle. .. Just:after the rising edge of CLOCK . __ . ..

the signal MIRCK rises, clocking the micro-instruction to be
executed in the current clock cycle into the MIR register.
When the new MIR value is loaded, the SN74138 decoders shown
in "BUS SOURCE & DESTINATION DECODERS -~ F.23" decode the source
and destinations for the system Data Bus. Since this decoding

‘process can produce spurious values on the '138 outputs, all

clocklng signals derived from the destination selectors (NDDP ..

L NDMRA) are conditioned w1th CLOCK to mask selectlons durlng the

high clock period.

’ Also during the high clock perlod the stack and micro-
program RAMs have a high chip enable 1nput, allow1ng them to
precharge before use. : o

3.2.1.2 Low Clock Perlod

The two-thirds low perlod of . the system CLOCK is the
execution phase of the micro-cycle. During this phase, the
current contents of the MPC, the two JMP=xxx bits from the MIR,
and the condition code multlplexer output are a11 .used to address
the next micro-instruction in MRAM.

Also during this phase, the Data Bus source is allowed to

,complete its "turn-on" to drive BUS, whlle the selected

destination is driven from BUS. In all cases, write/load signals
to registers and memories are derived from CLOCK. This means
that all clocks and transparency enables (for transparent

- latches) are disabled during the high. phase of CLOCK and enabled

during the low phase of CLOCK. At the rising edge of CLOCK at
the end of the low period, registers and latches’ grab ‘the- Data
Bus value for retention into the next clock cycle.
The slight delay between the rising edge of CLOCK, which
denotes the end of the current clock cycle, and the rising edge
of MIRCK,; which clocks in the next MIR value, ensures that no . ,
control 1nputs will change until after the rising. edge of CLOCK S)
has clocked 1n data, incremented counters, etc. ’ .

3.2, 2 Executing a Macro Instructlon

‘The actions “for executing a Macro Instructlon are: dlscussed
from a reglster—transfer viewpoint in the WISC CPU/32 Prellmlnary
Documentation. Since the hardware actions during an interrupt

have been modified sllghtly by an engineering change,.pages 34
' through 35 and page 51 of the manual have been modlfled and are

17

included in Appendix D.

The preliminary documentation discusses macro-instruction
operation from a register transfer point of view. The following
sections discuss macro-instruction operation from a functional
point of view.

Since each each macro-instruction executed by the Chip
contains both a 9-bit opcode and a 23-bit memory address (with
the bottom two bits zero), each macro-instruction contains the

address of the next instruction to be executed. This makes every
macro-instruction (at thls p01nt in our dlscu551on) an
unconditional-jump. — T T T s e

Since the Chlg uses a word- allcned memory organlzatlon, all
instructions must begin on full-word boundaries. ~Thus,_ the
bottom two bits of the 23-bit address are always zero when

addressing a 32-bit full-word in memory. Conveniently, this
allows the lowest 2 bits of a macro-instruction to be used as
control bits to specify an unconditional jump, subroutine call,
or subroutine exit (with jump and call addresses having an
implicit low order 2 bits of zero.) '

'3.2.2.1 Unconditional Jump ‘ ‘

« - Whenever the bottom two bits of a macro-instruction are
"00", the Chlp executes an unconditional jump. Unconditional
jump processing is very straightforward. At the end of the DECO
cycle, the pending instruction (whose 32 bits are contained in
the Instruction Latch and Next Address Register) begins the
sequence leading to its execution. At the rising edge of MIRCK
at the end of the DECO cycle, the 9 bits of the Instruction Latch
are clocked into the Micro-Program Counter to begin addressing
the first micro-instruction of the new opcode.

During. the DECl1l cycle of the unconditional jump (which
corresponds to the last micro-instruction of the macro-
instruction currently executing, that is, the END micro-
instruction) the MPC together with an JMP=000 micro-operation,
implicitly invoked by END, address the first micro-instruction
for the new opcode in the MRAM. This new micro-instruction will
be available for use in the MIR during the next clock cycle.

, Also during the DEC1l cycle, the contents of the Next Address
Register are driven out onto the RAM Address Bus. This begins

‘the fetqhing sequence for the next macro-instruction. Note that
even while the next macro-instruction is being prepared for

execution via the MPC to MRAM to MIR pipeline, the macro-
instruction subsequent to that is being fetched from Program

Memory via the Program Memor¥ to Next Address Register pipeline.
-~ During the DEC2 cycle, the first micro-instruction of the

macro-instruction beglnnlng execution is loaded into the MIR (at
the very beginning of DEC2 on the rising MIRCK edge) and

executed. ‘Also, the Next Address Register continues to drive the
RAD pins, and the outputs of Program Memory on the RD bus are
clocked into the Next Address Register and Instruction Latch

o~

) .
e

18 -

(that is, the pending instruction position for the next macro--
instruction) at the end of the clock cycle.

When macro-instructions only require two micro- -instructions
for execution, the DEC2 cycle of one macro-instruction overlaps
the DECO cycle of the next macro-instruction. - Since the DECO
instruction actually does little more than prepare the system for
the macro-instruction decoding sequence, there is no conflict
between these two operatlons. The only exception is that the .
Instruction Latch, which is being loaded by the DEC2 cycle, must

" be transferred with its new contents dlrectly to the MPC during
~the DECO.cycle. _To accomplish this, the IL is 1mp1emented as. a_._

transparent latch instead of a register to allow flow-through
operation.during the low clock cycle period. = ' '

3.2.2.2 Subroutlne Call

Subroutine calls, denoted by a "10" bit pattern in the low

- order two bits of a macro-instruction, are very similar to

unconditional branches. The only difference between calls and
jumps is that the address after the address of the calling macro-.

. instruction in the calling subroutine must be saved for an

eventual subroutine exit. This saving is accomplished v1a the
Address Counter to Return Stack data path.

During all DEC2 cycles (including unconditional jumps) ‘“the
Address Counter is clocked with the value on the RAM Address Bus.
This saves the address from which the pending instruction has
been fetched. During the DEC1l cycle of that pending

“instruction's execution initiation, the Address Counter is

incremented by 4. If the pending instruction happens to be a

‘subroutine call, the Return Pointer is also decremented during

the DEC1 cycle.
During the DEC2 cycle of the pending call 1nstructlon s

“execution initiation, the Address Counter contains the value of

the return address, and the Return Stack contains an allocated
word for saving the return address. So, during the DEC2 cycle of
a call operation,; the Address Counter is written to the Return
Stack. Call operations may occur repetitively, since the new
Address Counter value clocked in during the DEC2 cycle destroys
the. old Address Counter value only after it has a chance to be

written to the Return Stack during the DEC2 cycle.

It is very important that all microcode which does a
DEST=DECODE also saves the memory address from which the

. instruction was fetched in the Address Counter, in case the

macro-instruction placed in the pendlng 1nstructlon reglsters

‘happens to be a subroutine call. This is typical lgEaccom lished

by specifying a DEST=ADDRESS-COUNTER instea of a ST=ADDRESS-

LATCH when setting yp the memory address prlor to a,“SOURCE RAM -
DEST= DECODE"'operatlon. , .

3.2.2.3 Subroutine Exit ‘
Subroutlne ex1ts, denoted by a "01“ bit pattern 1n the low.

19

order two bits of a macro-instruction, differ from unconditional
branches in that the address for the next macro-instruction is
obtained from the Return Stack instead of the Next Address
Register.. The address field of subroutlne ex1t macro-
instructions is unused.

: Since a subroutine call places its return address on the top
of the Return Stack, the subroutine exit function routes the top
element of the Return stack through the Address Latch to fetch

the next macro-instruction in the calling routine. During the
- DEC1 cycle of a subroutine exit, the Return Stack drives the RS

bus, and the Address Latch is made transparent. The Address

- Latch-outputs are also enabled,.allowing the return address on -

the Return Stack instead of the Next Address Register to drive
the RAM Address Bus. At the end of the DECl cycle the Address
Latch control signal goes high, latching the‘return address for
use in the DEC2 cycle. 3

Durlng the DEC2 cycle of a subroutlne ex1t, the Address

" Latch is still used to drive the RAD bus instead of the Next

Address Register. Also,-the»Return’Pointer is incremented,
popping the return address from the Return Stack. As might be
expected, the Address Counter is clocked with the contents of the

RAD bus (which points to the macro-instruction being fetched) for

use in the case of a subsequent subroutine call, and the Next
Address Register and Instruction Latch are loaded with the.
pending instruction being fetched from Program Memory.

3.2.3 Interrupts

- with memory parity errors), and software 1nterrupt requests - ‘

Interrupts on the CPU/32 are synchronlzed w1th the macro-

- instruction decodlng cycle. This greatly simplifies the -

interrupt processing logic by eliminating the need for

restartable microcode and’ reduc1ng the state of the machine that

must be saved when processing interrupts. Since interrupts only
occur between opcode executions, only the DHI, DP, RP, and ADC
registers need be saved for restarting after an interrupt. Of
course the Data and Return Stacks must not be corrupted during
interrupt processing, but this is an easy constraint to satisfy

for small interrupt service routines. For larger interrupt

servicing requirements such as true unsynchronized task swapplng,
the Data and Return Stacks must be offloaded into Program Memory

" to prov1de a fresh env1ronment for the new task

h 3. 2 3.1 Interrupt Causes

Interrupts may be caused by stack p01nter

‘overflows/underflows, a host service request (in which the host
‘loads the service request register with an 8-bit value), an

external interrupt source designated NPRTY (contemplated for use

caused by loading non-zero values into the interrupt flag
register. Interrupts may be masked by loading a 1 blt 1nto the

hlghest blt of the 1nterrupt flag reglster.v

20

2 3.2.3. 2 Interrupt Synchronlzatlon ‘
If an 1nterrupt, particularly a stack overflow/underflow
interrupt, is generated by the last two clock cycles of a macro-

instruction's execution, it will not be processed until after the

next macro-instruction, since such interrupts miss the window
during the beginning of the DECO cycle (described in the next
subsection) of the macro-instruction interpretation sequence. In

. practice, this means that if a stack underflow occurs on a two-

clock cycle primitive such as "DROP" in the sequence "DROP DUP

_WSWAP", the "DUP" macro-instruction will execute, and an interrupt :
will be processed instead of the "SWAP" macro-instruction. Since =~

the Data and Return Stacks provide a buffer area above and below
the active stack area, this causes no problems as long as no
macro-instruction attempts to push or pop more than 32 of the 512
stack. elements.

3.2.3. 3 Interrupt Servicing

" When an interrupt sets a bit 1n the flag register, no.
"interrupt is actually observed by the system until the next
DECODE/END sequence. When the next DECO cycle occurs, the
. logical OR of all the interrupt. bits is clocked into a flip- flop
to generate the INTR signal. This' INTR signal generates an
interrupt condition during the DEC1 and DEC2 phases ‘of the macro-
instruction 1nterpretat10n sequence.

buring an interrupt, the input address to the MRAM is forced
to a value of opcode page 1, regardless of MPC contents. The
. normal unconditional jump, subroutine call, or subroutine exit
actions continue during the DEC1 and DEC2 cycles. During the
DEC2 cycle, the first micro-instruction of the interrupt
servicing opcode (which must be opcode 1) executes.~ During the
- DEC2 cycle, the interrupt servicing microcode must read the value
from the Address Counter and placed in the DLO register. This
step is vital, as it captures the incremented value of the
~ address used to fetch the macro-instruction preempted by the
interrupt. This fetched value, when 4 is subtracted, provides
the restart memory address for the RTI 1nstructlon when interrupt
processing is completed. '

' The interrupt servicing mlcrocode word must also capture the
values of the CALL and EXIT bits by reading the MPC value to undo
any - Return Pointer manipulations done by the call or exit
hardware. Opcode 1 must also read the interrupt flags and save
the value, then mask interrupts by settlng the hlghest 1nterrupt
flag bit to avoid an 1nf1n1te progress1on of success1ve '
'1nterrupts. ‘ : : :

3.2.3.4 Restartlng After an’ Interrupt :
. ~ Restarting after an interrupt is accompllshed by reloadlng
‘ the 1nterrupt flag register with an unmasked value (taklng care

to examlne the reglster first for 1nterrupts that have occurred o

21

while processing the current interrupt), restoring the RP, DP,
and DHI values, placing the restart address in the Address Latch
and Address Counter, and then performing a macro-instruction
decode on the macro-instruction addressed by the restart address.

22

ﬁL'CRITICAL PATH ANALYSIS & PERFORMANCE EVALUATION

The intent of this section is not to simply provide a final

© result for maximum system speed. Rather, it is intended to

provide information about how to determine this speed after
changes and enhancements have been made -to the Chip
implementation. ’

Timing results discussed in this section refer to non-
optimized implementation simulation results obtained in August
1987, and should be used as a rough guide to system performance

__for the first-pass chip design. Some of the timings given are =~

reconstructions and good estimates of simulation performance.
After all optimizations have been completed, these measurements
should be repeated to obtain the anticipated maximum speed of the
final implementation. :

: TABLE 1
Simulator Results for Critical Paths Within Subsystems

- (ns) Path

23 - Data Bus source select (Data Ch1p)

26 ~ Data Bus destination select (Data Chlp)

33 = Data Bus through ALU before CLOCK goes high

27 DS to Data Bus after CLOCK goes low

27 RS to Data Bus after CLOCK goes low

38 RS to RAM Address Pins after CLOCK goes low (exit function)
13 Data Bus to RAM Address Pins after CLOCK goes low '
11 Data Bus to RAM Data outputs

11 - RAM Data input to Data Bus

12 RAM Data input to MPC

7 Inter-chip Data Bus delay

18 MRAM address valid at Data Ch1p after CLOCK goes low

4. 1 Subsystem T1m1ng Ana1y31s '

Since the CPU/32 is organized as a collection of subsystems
connected by a system-wide bus, the best way to analyze system
performance is by looking at the times required to get values
from each subsystem onto the data bus, and the time required to
‘get a values from the data bus into each subsystem. Breaking the
analysis into source and destination halves eliminates the -
combinatorial explos1on associated with exhaustively examining
source/destination pairs. Since bus sources and destinations are
driven by the source/destlnatlon decoding logic, ‘it further makes
sense to treat this loglc as a separate entity common to all
~transfer paths.

S As a: result of this ana1y51s, the follow1ng sectlons

23

describe the critical path circuitry for bus source/destination
decoding, data bus sources, data bus destinations, Program Memory
addressing, and micro-instruction addressing and fetching. The
measurement methods given are obv1ously 1ntended for use with a
simulator. S . '

4.1.1 Bus Source/Destlnatlon Decodlng
Since all Data Bus transfers are ultimately controlled by
the bus source and bus destination fields of each micro-

—instruction (microcode.bits..0-7), the source/destination decodlng -

logic forms a critical path for all micro-instructions.

‘ Since bus sources can not drive the bus until they have a
valid source select signal, the critical path controlling bus
sources is: MIRCK clocking bits 0-3 of the MIR (see schematic
"Cmicro _ram"); bits 0-3 of the MIR providing the SRC<0:3> inputs
to the T138 source decoders ("BUS SOURCE & DESTINATION DECODERS -
- F.23"); and these same '138 decoders providing control signals -
NSPC .. NSMRA. Of course, for the Data Chip, these control
signals must also go through two pads to become available.
Therefore, source control signals should be measured at the '138
- outputs for the Control Chip and at the 1nput side of the pads
for the Data Chip.

‘Table 1 contains the simulated results for bus source
" selection and other values. Critical path measurements for bus
sources should measure the time between MIRCK and when the bus
source receives a signal to drive the bus.

Since bus destinations must have their clock inputs masked
until there is a valid destination select signal, the critical
path controlling bus destinations is: MIRCK clocking bits 4-7 of

the MIR (see schematic "Cmicro_ram"); bits 4-7 of the MIR
providing the DST<0:3> inputs to the '138 source decoders ("BUS
SOURCE & DESTINATION DECODERS =- F.23"); and these same '138

decoders providing control signals NDDP .. NDMRA.

The critical path measurements shown in Table 1 for bus
destinations measure the time between MIRCK and when the
subsystem control logic receives a valid signal designating it as
a bus destination. Since this signal must be further conditioned
with the clock and other signals, the minimum length of the high
portion of the clock cycle due to ‘destination decodlng is the
time from the rising CLOCK (which drives the rising MIRCK) to the
time the conditioned bus destination reaches the masking gate
with CLOCK or FASTC. In the case of the simulated hardware, this
path extended to the NRSWE signal on "RETURN STACK CONTROL LOGIC
-- F.60" for the Control Chip and the LATEN signal on "SHIFT - .
INPUT CONDITIONING" for the Data Chip. The number given 'in Table
1 represents the minimum time between the rising value of CLOCK
. and the fa111ng value of FASTC based on the Data Chlp path.

4. 1 2 ALU
‘ Slnce data from the Data Bus is routed through the ALU

24

before being clocked into the DHI register, the ALU data path
‘constitutes the only critical path for bus destination functions
during the low clock cycle period. The Data Bus is not driven
"into the ALU until the low-going edge of FASTC to prevent false
triggering of the Bus Latch connected to the ALU B side. Thus,
the timing requlrements for an ALU function 1nvolv1ng the B side
are: the low-going edge of FASTC drives the high-going value of
LATEN ("SHIFT INPUT CONDITIONING"); the hlgh value of LATEN
enables BUS data to flow through the '373 latches making up the
_Bus Latch. ("ALU Data Latch"); the data flows into the B side of
‘the '181/'182 ALU complex ("ALU BYTE (0:7) -- Figure 42");
presuming that an arithmetic function 1nv01v1ng a carry-in
propagated all the way to bit 31 of the ALU is involved, the
critical path takes a circuitous route through the 181/182 carry-
lookahead logic to enter the CIN bit of the highest order '181,
producing bits ALU<28:31>. ’

At this point, the critical path splits. The actual
critical path depends on the final implementation. One critical
path is: bits ALU<K28:31> are used to compute the signal NALUO

("ALU ZERO DETECT"); which is then transmitted to the Control
Chip and must meet setup time for the Condition Code Register
'374 ("CONDITION CODE =-- F.63"). This turned out to be the

critical path shown in Table 1, but only by a few nanoseconds.

The second possible critical path is from ALU<28:31> through
the ALU multiplexer ("MUX_SHIFTER"); and then to meet setup time
for the Data High Register data inputs ("Data High Register").

The measurement for the ALU critical path may be thought of
as the time between when the Data Bus becomes valid from being .
driven by the bus source and when the DHI register is clocked
with the output of the ALU and/or the condition code register is
clocked with the output of the ALU zero detection logic.

4.1.3 Data Stack '

The Data Stack becomes a critical path when it is a bus
source. The critical path for SOURCE=DS is: the falling edge of
CLOCK which drives the Data Stack RAM chip enable line ("DATA
STACK (0:31) -- SHEET 26_27_28 29"); and the data path from the
Data Stack RAM through the '245 transceivers on that same sheet.

The critical path timing shown in Table 1 for the Data Stack
is the time at which the Data Stack data is valid on BUS<0:31>.
Special care needs to be taken when measuring stack timing with
the simulator, since the simulator assumes essentlally zero stack
access tlmellf the DP has not changed value since the previous
cycle. -The results in Table 1 were obtained by adding in the 25
ns RAM access time to simulated results.

If an asynchronous RAM were used for the Data Stack, the ‘
critical path might be controlled by the signal NSDS controlllng
the output enable of the stack RAM or the access time from a
change in DP through the DS, instead of the stack RAM Chlp enable
51gna1 : v

25

-4.1.4 Return Stack , : '

The Return Stack becomes a critical path when 1t is a bus
source and when it,is used for a subroutine exit function. The
critical path for SOURCE=RS is: the falling edge of CLOCK'which
drives the Return Stack RAM chip enable line ("RETURN STACK
(0:31)"); and the data path from the Return Stack RAM through the
'245 transceivers on that same sheet.

" The critical path timing shown in Table 1 for the Return
Stack.source-is the time_at which the Return Stack data is valld
on BUS<0:31>. Special care needs to be taken ‘when measuring
stack timing with the simulator, since the simulator: assumes
essentially zero stack access time if the RP has not changed
value since the prev1ous cycle. The results in Table 1 were
obtained by adding in the 25 ns RAM access t1me to simulated
results. :

‘ If an asynchronous RAM were used for the Return Stack, the.
critical path might be controlled by the signal NRSOE controlllng
the output enable of the stack RAM or the access time from a
change in RP through the RS, instead of the stack RAM chip enable
: 51gna1

4.1.5 Memory Addressing :

' The worst case delay path for memory address1ng comes when‘
performing a subroutine exit function. = The critical path for a.
subroutine exit is: the falling edge of CLOCK which drives the
Return Stack RAM chip enable line ("RETURN STACK (0:31)"); Return
Stack access time, which is subject to the same measurement
problems as the SOURCE=RS path discussed in the previous
subsection; RS<0:22> flowing through the RAM Address Latch
SN74373's to RAD<K0:22> ("RAM ADDRESS LATCH -- F.55"); and the pad
~drivers to drive RAD off-chip.

The time for this path shown in Table 1 indicates the time
between the falling CLOCK edge and the time RAD outputs are valid
for successive subroutine return operations. This prov1des
information about where in the clock cycle memory addressing for
a two-cycle memory fetch begins.

v A second situation that occurs in memory addre851ng is
sending the contents of the data bus through the RAM Address
Latch to the RAD pins. The path for this is identical to the
path for the Return Stack to RAD path, except that RS<0:22> are
driven from the Return Stack transcelvers 1nstead of the Return
Stack RAM.

4.1.6 Data Bus to Program Memory

‘ -The Data Bus to Program Memory path is exercised when d01ng
‘a DEST=RAM operatlon or DEST=RAM-BYTE operation. . This path is:
data valid on the Data Bus; data flow1ng from BUS to RD via the
transcelvers in the 32-bit structure in "byteaddr DB" (see "RAM _
DATA TO BUS (8 15)"), and the pad drlvers for the RD plns on the

26

control chip. -
This time is measured between the Data Bus becoming valid
and the RD plns becoming valid on the Control Chip package.

4.1.7 Program Memory to Data Bus '
The Program Memory to Data ta Bus path is exerc1sed when d01ng

a SOURCE=RAM or SOURCE=RAM-BYTE operation. This path is: data

valid on the RD pins of the control chip; data flow1ng from RD to

BUS via the transceivers in the 32-bit structure in “byteaddr DB"

- (see-"RAM DATA-TO BUS(8-15)"¢ - B
This time is measured between the RD Bus becomlng va11d and

the Data Bus being driven from the transceivers. This

measurement may be a little tricky, because the source decoders

may block the signals in the transceivers. This can be overcome

by executing two SOURCE=RAM micro- 1nstructlons in a row using

different RAM Data inputs. :

4.1.8 Program Memory to MPC
‘The Program Memory to MPC path is exercised when d01ng an

instruction decode. This path is: data valid on the RD pins of
- the control chip; data flowing from RD through the Instruction .
Latch 373's ("INSTRUCTION REGISTER -- F.61"); and to the 1nputs
of the '161 MPC on the same schematic.:

~ This time is measured between the RD Bus becomlng valid and
the MPC data inputs becoming valld

4.1.9 Inter- chip Data Bus Delay ,
The inter-chip data bus delay is the delay introduced when
transmitting a Data Bus signal from one chip to the other. This
may be measured by examining the time difference between a bus
signal being asserted on the internal Data Busses of each Chlp.

4.,1.10 MRAM address valid at Data Chip

The MRAM address becomes valid for fetching the next micro-
instruction after the MIR has been clocked and the conditional
branch address has been generated. The path is: CLOCK goes high,
" causing MIR to be clocked by MIRCK ("Cmicro_ram"); MIR outputs
" drive the COND<O0:2> inputs to the condition "~ code multiplexer '151
("CONDITION CODE -- F.63"); the condition code multiplexer drives
MADO; and MADO is transmitted from the Control Chip to the Data
Chip.
. This time is measured between the’ rlslng edge of CLOCK and
the t1me MADO becomes valid 1nterna1 to the Data Chlp. '

4.2 Crltlcal Paths ' | : . é

“Once the critical path delays within the 1mportant .
subsystems of the Chip implementation are identified, system—w1de ' 5
‘critical paths may be found by taking the slowest combinations of
slow subsystems. While these times may be computed using the
values in Table 1, the follow1ng subsectlons d1scuss how these

27

'times.may'be directly measuredlin a simulation.

50

TABLE 2
Slmulator Results for Max1mum Operatlng Speed
Minimum
Clock.
High Time Path
26 Bus destination_select at Data Ch1p e
18 Micro-instruction address_generatlon
Minimum
Clock '
Low Time Path
60 ~Data Stack Through ALU
67 'Return Stack Through ALU
36 ‘Return Stack to Data Stack ;
45 Data Stack to Program Memory (plus memory write)
Minimum
time * Path
31 Data Hi to Address Latch/
Program Memory to DLO reglster (plus memory read)
- Subroutine exit/

, Macro-lnstructlon fetchlng .(plus memory read)

* — The minimum t1me given for RAM operatlons is measured from

‘the. falling edge of the addressing clock cycle to the rlslng edge

"at the end of the following RAM read/write cycle, and is
exclusive of the time required for the RAM to perform the read.

4. 2 1 Data Stack Through ALU

- The Data Stack through the ALU cr1t1ca1 path is measured
with a micro-instruction of the form: "SOURCE=DS ALU=A+B+1 '

DEST=DHI".

~ The time delay between the rising edge of CLOCK to

initiate this micro-instruction and the time when the NALUO bit
is valid at the inputs to the condition code register sets a

minimum clock cycle length

The DHI register should contain a

value which is non-zero in the highest four bits, and the DS -
 register added to the DHI value should be selected to give a

result of zero.

An arithmetic test is- 1mportant to prov1de for

- the slowest mode of ALU operation. .
The minimum clock period (which. reflects the max1mum
operatlng speed) for this path and the paths dlscussed in the

subsequent sub-sections is shown in Table 2.

‘accurate measurement, an INC[DP] or DEC[DP] should occur on the

"In order to get an

mlcro-lnstructlon before the SOURCE=DS micro- operatlon, otherw1se"'
_the 25 ns RAM access tlme must be added to the s1mu1ated cr1t1ca1 .

28

path time.

4.2.2 Return Stack Through ALU

The Return Stack through the ALU critical path is measured
‘with a micro-instruction of the form: "SOURCE=RS ALU=A+B+l
DEST=DHI". The time delay between the rising edge of CLOCK to
initiate this micro-instruction and the time when the NALUO bit
is valid at the inputs to the condition code register sets a
- minimum clock cycle length. The DHI register should contain a.

"~ value which is non=zero in the highest four bits, and the RS~

register added to the DHI value should be selected to give a
result of zero. An arithmetic test is important to provide for
the slowest mode of ALU operation. As with the Data Stack, the
25 ns RAM access time must be added to the critical path time if
the RP did not change just before executlon of the micro-
instruction.

_ The Return Stack through ALU cr1t1ca1 path is slower than
“the Data Stack critical path since the bus value must flow from
the Control Chip to the Data Chip.

4.2.3 Return Stack to Data ‘Stack '

The Return Stack to Data Stack critical path is measured
"using a micro-instruction of the form "SOURCE=RS DEST=DS". This
critical path measures the longest path (exclusive of ALU paths)
involving inter-chip data transfer. The measurement is made by
observing the time difference between the start of the clock
cycle at the rising edge of CLOCK and the time when data is valid-
at the Data Stack RAM 1nputs (plus any set-up time if required.)

4.2.4 Data Stack to Program Memory

The Data Stack to Program Memory critical path is measured
using a micro-instruction of the form "SOURCE=DS DEST=RAM". - This
‘critical path measures the longest path for writing to Program
" Memory, since it involves an inter-=chip data transfer. This
measurement is made by measuring the time difference between the
start of the clock cycle and the time the Ram Data bus contains
valid data from the Data Stack. For the purposes of computing
required RAM chip speed, some reasonable time must be added for
the data to go through buffers and reach ‘the RAM ChlpS ‘used to
~implement Program Memory.v :

. In addition, since memory accessing 1s a two-cycle

- peratlon, all reads or writes from/to Program Memory must ensure
that the memory has had a sufficient addressing time. The ,)
‘addressing time for RAM read/writes is the time to transfer DHI , |
to the RAD pins via the Address Latch plus the stable address» o
- time required by the RAM. This t1me starts at the falllng edge I |
of CLOCK durlng the RAM Address Latch write cycle.

4.2. 5 Program Memory to Data Low Reglster

- Since a memory read takes two clock cycles,'a Program Memory:,47

29

to DLO register transfer is accomplished in two micro-
instructionsz,"SOURCE=DHI DEST=ADDRESS-LATCH" followed by
"SOURCE=RAM DEST=DLO". To compute the maximum clock speed for
this data path, begin with the time required for the Data High
register to flow through the Address Latch (which becomes
transparent on the falling edge of CLOCK), and drive the RAM
Address Pins. Then add to this the time required for RAM Data
inputs to reach the DLO register. This value gives a basis for
determining what RAM response speed is required to support a

“"given clock frequency. e e
In general, this measurement does not limit the operating

speed of the Chip implementation of the CPU/32; it simply ‘
specifies the speed of memory required to make the system work at

-full speed. Note that the memory speed specified includes time

spent on data buffers, decoders, and other devices, sO actual RAM
chip speed must be faster than the specified RAM response times.

4.2.6 Micro-Instruction Fetching ,)
Micro-instruction fetching is limited by the time required

to generate the address for MRAM for the next micro-instruction.

" In the current design, this time must be less than the clock high

time. This restriction could easily be removed by stretching the
MRAM chip enable high time as required. : » '

: This measurement is made by taking the time difference
between the rising edge of CLOCK and the time that MADO becomes
valid internal to the Data Chip. .

4.2.7 Macro-Instruction Fetching

Macro-Instruction Fetching is a special case of Program
Memory reading. In the slowest scenario, a subroutine exit is
being performed, meaning that the RS must supply the value to the
RAM Address Latch. On the other hand, the value read from RAM
need only get to the inputs of the MPC before the rising edge of
clock, so the inter-chip communication delay seen in the normal

'RAM reading scenario in the previous subsection is eliminated.

0

The measurement in Table 2 indicates the sum of the addressing

time and the time required to go from the RAM Data bus to the

MPC.

4.3 Recommendations for Illegal Operations)

Since some operations have rather slow maximum speeds but
are not very useful, some micro-operation combinations should be
disallowed for full-speed operation of the Chip set. This allows
running the Chip implementation at the fastest useful speed for
maximum throughput. o ' : '

'The recommended illegal micro-operation combinations are:

1) SOURCE=DS DEST=ADDRESS-LATCH (followed on the next cycle
by a RAM read.) , '

'2) SOURCE=RS DEST=ADDRESS-LATCH (followed on the next cycle
by a RAM read.) ‘ : , : '

30

3) SOURCE=RAM DEST=xxx (where xxx is anything except DECODE
"or DLO.) :

4.4 Performance Estimates ‘

The minimum high clock cycle time is 26 ns, controlled by
- the bus destination selection logic.

Given that the illegal operations in the previous section
are not used, the critical path for minimum clock low time is
determined by the time to perform a SOURCE=RS ALU=xxX DEST=DHI
. operation, where "xxx" is an arithmetic operation and the next

~clock cycle uses the zero branching capability. This gives a
minimum clock low time of 67 ns.

In order to meet these minimums, the fastest clock speed
allowable is 10 MHZ (100 ns clock) with a 33%/67% high/low duty
cycle. This of course gives no margin, but it also does not
account for optimizations which will no doubt be made in the
implementation before producing silicon. ‘

Program Memory speed requirements at 10 MHz are determined
by adding a clock high time to the subroutine exit time and
subtracting from 200 ns (two clock periods.) This gives a total
memory speed requirement of 117 ns, which might be achievable
with 100 ns static memory in a well designed system with a small
number of memory banks. 80 ns memory is probably more realistic
for larger static memory systems. Of course, dynamic memory may
be used by adding a wait-state to memory accesses.

The throughput of the system at 10 MHz is an average of 5
‘million stack macro-operations per second (5 MOPS), with
subroutine calls, exits, and unconditional jumps for free; and
combined stack primitives such as SWAP_DROP executing as a single
macro-operation.

Execution speed with 120ns 32k x 8 static CMOS memory (which
is common on the market) will probably be in the neighborhood of
8 MHz.

31

5. DESCRIPTION OF SOFTWAREdAND FIRMWARE

Thls section ampllfles the descrlptlon and listings of
programs supplled in the WISC CPU/32 Preliminary Documentation.

5.1 MVP-FORTH/32

The MVP-FORTH/32 kernel supplied w1th the CPU/32 is a 32-bit
version of standard MVP- FORTH. For the purposes of this
document, MVP-FORTH is the language documented in All About

FORTH: An Annotated Glossary, 2nd ed., by Glen _Haydon.

5.1.1 Similarities to MVP-FORTH
' Wherever possible, MVP- -FORTH/32 is functlonally identical to
MVP-FORTH with the exception that all stack elements are 32-bits
wide. This means that words that expect a 16-bit integer or 16-
bit address'in MVP-FORTH expect a 32-bit integer or 32-bit
address in MVP-FORTH/32. All MVP-FORTH words included in MVP-
FORTH/32 expect the same number, order, and type of parameters as
in the original MVP-FORTH. Double precision 1ntegers ‘'which take
two 16-bit cells in MVP-FORTH take two 32-bit cells in MVP-
FORTH/32.

For the purposes of this documentation, identical
functionality means that the same input parameters produce the
same output parameters on both MVP-FORTH and MVP-FORTH/32. Thus,
a word such as -FIND is functionally identical, even though the
dictionary structures of the two Forths are slightly different in
that the LFA of the header in MVP-FORTH/32 comes before the NFA
instead of after the name text.

All words that function identically in the two Forth
implementations have the same names. All words that do not
function identically do not have the same name. Although two
words function identically, this does not necessarily mean that
‘they are implemented identically.

- 5.1.2 Differences from MVP-FORTH : ,
Most differences between MVP-FORTH and MVP-FORTH/32 have to
do with words that are added or omitted. Words that are left out
of MVP-FORTH/32 include some of the disk-I/O words, since the
host PC performs the actual Disk-I/0. Also missing are extended
PC addressing words such as C, and port addressing words such as
P@. In other words, the functions that are left out are the
functions that are hardware-specific to the host PC.
' The additions to MVP-FORTH/32 are mostly low-level words :
that have little obvious use to the user. These words tend to be
microcoded speed ups of inner loops and low-level specialized
utility words. Also, MVP-FORTH/32 has special words added to
implement a compiler that compresses opcodes, subroutine
calls/exits, and unconditional jumps as well as words to deal
with interrupts and stack overflow/underflow paging.

32

5.1.3 LIB-FORTH as a Base for MVP-FORTH/32

: A1l software delivered to Harris Semiconductor has been
delivered for use with the LIB-FORTH version of MVP-FORTH. LIB-
FORTH is a source-code compatible, speed-optimized version of
MVP-FORTH for use under a PC-DOS environment. Among other

. features, LIB-FORTH supports an assembler, editor, and math

package that reside outside the base 64k Forth dictionary, as
well as DOS file support for screens files. LIB-FORTH is an
unsupported public domain product that was used because it did

- the-job- required:—- It--is not part.of-the supported WISC software

suite.

5.2 Microcoded Functions

In general, all functions that are coded in ‘assembly
language in the MVP-FORTH kernel are coded in microcode in MVP-
FORTH/32. Some functions have been modified, while others have
been added. Functions in MVP-FORTH not listed here are not

 available in MVP-FORTH/32.

5.2.1 Functions Identical to MVP-FORTH

The following is a list of functions that operate
identically to MVP-FORTH functions of the same name, with the
exception of changing 32-bit to 16-bit integers: . B
! + +! - -1 0 0< 0= OBRANCH 1 1+ 1- 2% 2/ <
<+LOOP> <DO>. <LOOP> = > >R 7?DUP @ ABS AND c! c@ D!

‘D+"D="D@ DDROP DDUP DNEGATE DOCON. DOVAR DOVER DR> DROP

DSWAP DUP I 1I' J LEAVE LIT NEGATE NOT OR OVER R> R@
ROT S->D SWAP "TOGGLE U* U/MOD

The following functions are documented in the MVP-FORTH Math

‘Package, and are implemented identically to their MVP-FORTH

versions, with the exception of double precision integers being a
pair of 32-bit numbers instead of a pair of 16-bit numbers:
ADC “ASR C+{ D>R DLSL DLSR DROT LSLN LSR LSRN RLC RRC

5.2.2 Functions Modified from MVP-FORTH
“No MVP-FORTH/32 microcoded primitives differ in functions
from their MVP-FORTH counter-part words. ‘

5.2.3 New Functions v : .

— Several microcode functions have been added that have no
counterparts in MVP-FORTH. These words may be divided into three
groups: those that are useful only as factors of high-level MVP-

a‘FORTH/32.system words, those that are combinations of normal MVP-

FORTH words, and those new words that stand by themselves. -
‘Words that are used only as factors for MVP-FORTH/32 system
words are documented in the source screens. These words are: -

'¢DP!% 3$DP@% %RP!% S3%RPE@% <$=STEP> <<ABORT">> ' <KCM-STEP>

<CM-STEP> <COUNT-DOWN> <ENCLA> <ENCLB> <PICK>: <ROLL>

<UDNORM> LOAD-DS LOAD-RS STORE-DS STORE-RS

33

Words that are combinations of normal MVP-FORTH words are
self-documenting. They accomplish the same actions as the pair
of words would if executed separately. These words are:
~ 0=_NOT 3_PICK 4* 4_PICK @+ DUP_0< R> DROP SWAP_!

SWAP_DROP ‘ ' ' :

The f1na1 group ‘of new mlcrocoded words are those words
which perform useful new functions. These words are:

~-.—ROT - "Backwards" stack rotation. Equlvalent to the -

sequence. ROT ROT.

<INTERRUPT> - Opcode 1, performs 1nterrupt proces51ng as
described in Section 3.2.3.3.

BYTEROLL - Performs a byte rotate function of the top stack.
element using the ROLL[ALU] micro-operation..

. HALT - Stops the CPU/32 and returns control to the host PC

by placing a 1 in the status register.

NOP - Opcode 0, performs a no-operation. '
‘ RTI - Return from 1nterrupt. Performs the actions described
for returning from an interrupt in Section 3.2.3.4. :

SYSCALL - Performs a "system service call" function by
writing the input value into the status register. ~Each value

- from 2-255 requests a different service from the PC host.

WFILL - Word fill. Operates like the MVP-FORTH ‘word FILL,
only does the filling 32 bltS at a time. Useful for 1n1t1allzlng‘
blocks of memory. :

5.3 ngh Level Functlons

' -In general, all functions that are coded in hlgh level in
"the MVP-FORTH kernel are coded in high level in MVP-FORTH/32.
Some functions have been modified, while others have been added.
Functions in MVP-FORTH not listed here are not avallable in MVP-
FORTH/32. : :

5 3 1 Functlons Identical to 'MVP-FORTH

. The follow1ng is a list of functions that operate
identically to MVP-FORTH
functions of the same name, w1th the exceptlon of changlng 32 bit
to 16-bit integers:
$# #> #BUFF #S ' '-FIND "?TERMINAL 'ABORT, fBLOCK 'CR

'EMIT 'EXPECT 'INTERPRET: 'KEY 'LOAD 'NUMBER 'PAGE 'R/W 'S

'STREAM 'T&SCALC 'VOCABULARY 'WORD (* */ */MOD +- +BUF
+LOOP , ~-FIND -TEXT -TRAILING . ." .LINE .R .S .SL .SR-
.8s '/ /LooP /MOD 0> 2 2! 2+ 2- 2@ 2CONSTANT 2DROP

© 2DUP. 20VER 2SWAP 2VARIABLE : ; <# <=FIND> <.">

<?TERMINAL> <ABORT"> <ABORT> <BLOCK>"<CMOVE <CR> <DOES>

' <EMIT> <EXPECT>. <FIND> <INTERPRET> ' <KEY> <LINE> <LOAD>
<NUMBER> <PAGE> <QUIT-ADDR> ' <R/W> <WHERE-ADDR> <WORD>
>BINARY >IN >TYPE ? ?COMP ?2CSP ?LOADING ?PAIRS ?STACK-
?STREAM ?TERMINAL . ABORT 'ABORT": AGAIN ALLOT BASE BEGIN BL

- 34

BLANK BLK BLOCK BUF-SIZE BUFFER BUMP-BUFF BYE C, C/L CFA
CLEAR CMOVE COMPILE CONSTANT CONTEXT CONVERT COPY COUNT

CR CREATE CSP CURRENT D+- D, D- D. D.R DO= D< D> DABS
DCONSTANT DECIMAL DEFINITIONS DEPTH DIGIT DLITERAL DMAX
DMIN - DO DOES> DOUSE DOVOC DP DPL DU DUMP DVARIABLE

ELSE EMIT EMPTY-BUFFERS ENCLOSE - EPRINT ERASE EXECUTE EXIT
EXPECT FENCE FILL FIND FIRST FLD FLUSH FORGET FORTH H
HERE HEX - HLD HOLD ID. IF IMMEDIATE INDEX INTERPRET KEY
LATEST LFA LIMIT LIST LITERAL LOAD LOOP M* M*/ M+ M/

- M/MOD.. MAX.. MIN _MOD.. NFA NUMBER OCTAL OFFSET OUT _ PAD _PAGE __ _

PAUSE PFA PICK PP PREV QUERY QUIT R# R/W RO REPEAT
ROLL RP! RP@ SO SAVE-BUFFERS SCR SIGN SMUDGE SP! - SPO
SP@ SPACE SPACES STATE TEXT THEN THRU TIB TRAVERSE TYPE
U. U.R U< UNTIL UP UPDATE USE USER VARIABLE VLIST VOC-
LINK VOCABULARY WARNING WHERE WHILE WIDTH

5.3.2 Functions Modified from MVP-FORTH

© COLD is the only MVP-FORTH/32 microcoded primitive that
differs in function from its MVP-FORTH counter-part. - COLD works
almost the same as the MVP-FORTH COLD word, but differs in that
it does not restore the dictionary pointer and user variables.
This is to allow the user to switch between MVP-FORTH and MVP-
FORTH/32 (which executes COLD every time it is restarted) for
screen editing without erasing the MVP-FORTH/32 dictionary.

‘5. 3 3 New Functions

Several hlgh level functions have been added that have no
- counterparts in MVP-FORTH. These words may be divided into . three
groups: those that are useful only as factors of high-level MVP-
FORTH/32 system words, those that are combinations of normal MVP-
FORTH words, and those new words that stand by themselves.

Words that are used only as factors for MVP-FORTH/32 system
words are documented in the source screens. These words are:
'ISERVICE. <S$MATCH> DEFAULT-JUMP DO-EXECUTE DS-ADJUST DS-AREA
DS-LIMIT DS-PTR "EXEC-ADDR .INIT-DP INIT-RP - INTERRUPT-DECODE
IS-A-CALL ISERVICE OPT-STATUS ' RS-ADJUST . RS-AREA RS-LIMIT
RS—PTR ' ' .

The follow1ng words are self -explanatory:
4 4+ 4-

The final group of new words are those words whlch perform
useful new functions. These words are:

CALL, - Compiles a subroutine call. Used 1nstead\of“the
normal "," to allow the optimizing compiler to work properly.
The input is the program field address of the subroutine.

COUNT-DOWN - This is a new kind of count-down loop. Used
as a BEGIN ... COUNT-DOWN structure, this word decrements the top
of the data stack and branches back to BEGIN if the value is not
-1. If the value 1s —1, the loop is termlnated and: the count

35

value is dropped from the data stack. COUNT-DOWN only takes
three clock cycles to loop, four to fall through.

- 'DON'T-DISTURB - Signals the optimizing compller not to
attempt further optimization on the just-compiled dlctlonary
cell.

DS-SIZE - Constant spe01fy1ng thevnumber of.bytes in the
Data Stack overflow save area. ’

EXIT, - Compiles a subroutine exit. Used to allow the
optimizing compiler to work properly. '

- INTERRUPT-SERV - Interrupt service routine. This routine
pages the Data Stack and Return Stack into or out of Program

Memory if a stack overflow or underflow occurs. Other interrupts
cause program termlnatlon with a message describing the type of

interrupt.
, OPCODE, - Complles an opcode. The 1nput is the opcode .
desired (placed in the highest 9 bits of a 32-bit word.) This is.

used instead of the normal "," to allow the optimizing compiler

to work properly. ‘ ’ o
"OPTIMIZE? - Optimization flag. This variable, when non-'

zero, signals the compiler to perform opcode/subroutlne '

~call/unconditional branch/subroutine exit compression.

POISON - A word that sets a header bit, much like IMMEDIATE.

This header bit, when set, signals INTERPRET to abort if the word

is executed in interactive mode. This prevents crashes caused by
trying to execute dangerous words 11ke OBRANCH, >R, and LIT from

‘the keyboard.

RS-SIZE - Constant spe01fy1ng the number of bytes in the
Return Stack overflow save area.

- SPECIAL - A word that sets a header bit, much 11ke>
IMMEDIATE. This header bit, when set, signals ‘the optimizing
compiler that the word in question is to be compiled as a stand-
alone instruction. This prevents opcodes like R> from being:
combined with subroutine calls,. which would lead to 1mproper
program execution.

WDUMP - This works just like DUMP, except memory is- :
dlsplayed in 32-bit chunks. This is very useful for examining
complled high level word definitions in Program Memory.

5. 4 Addltlonal ngh Level Functlons

Some. additional high level Forth functlons have been added

to MVP-FORTH and/or MVP-FORTH/32. These functions are added for

conVenience,rand~are not to be considered fully supported at this
time. These functions should be optimized and fully supported in
a: flnal release off the software for: general dlstrlbutlon.’v :

5. 4 1 ‘Math Package
'~ The MVP-FORTH Math Package as documented in Volume 3 of the

MVP-FORTH Series: Forth Floatlng Point and Extended Precision

Integer Math, by Phil Koopman, is partially supported by MVP-
FORTH/32; Supported words functlon 1dent1ca11y to the words’

36

described in the book, except floating point numbers fit in a
single 32-bit stack element, temporary floating point numbers fit
in two 32-bit stack elements, and double precision integers are
two 32-bit stack elements. Most omissions involve lack of
support for quad precision integers, since 128-bit integers are
bigger than most users need. '

. The included math support words are:
¥%2 1/X 10%** 2%%x 2%pT] <?MODE> <ACOS> <ACOT> <ACSC>
<ASEC> <ASIN> <ATAN2> <ATAN> <COS> <COT> <CSC> <F.>

<FINTERPRET> <FNUMBER> <P->R> <R->P> <SEC> <SIN> <TAN>
<TNUMBER> ?MODE ACOS ACOT ACSC ASEC ASIN ASRN ATAN ATAN2

CHKO . COS COT (CSC D* D*/ D*/MOD D+! D->S D/ D/MOD DO<
DO> D?° DADC DAND DASR DASRN DEG->RAD DINP# DLSLN DLSRN
bM* DM/ DM/MOD DMOD DMODE DOR DPICK DR@ DRLC DROLL DRRC
DU* DU/MOD DU> DXOR E** EXP F* F** F+ F+! F+- F- F-
>ME F->N F->T F. F.A F.AR F.E F.ER F.R F.X F.XR F/

FO< FO= FO0> F2* F2/ F< F= F> F? FABS FACTORIAL
FCONVERT FINP# FMAX FMIN FMODE FNEGATE FRAC FSGN FTERM
INT LN LOG LOG2 LOGB LSL N->F N-=>T P->R PI PI/2 PI/4
Q! QO+ Q+! Q+- 0O- Q>R Q@ OQABS QADC QAND QASR QDROP

. QDUP QLSL QLSR QNEGATE QOR QOVER QR> QR@ QROT QSWAP

QXOR R->P RAD->DEG - REM ROOT SEC SEPARATEZ2 SGN SIGDIG SIN
SQRT T* T+ T+! T+- T- T=->F T->N T. T/ TO= T2** TABS
TAN TATAN TCONVERT TCOS TEMP-ADDR TEMP-CARRY TERM TFRAC

- TINP# TLOG2 TLOGB

5.4.2 Screen Editor

A full-screen editor is included with LIB-FORTH. This is an
unsupported public domain screen editor. Documentation is
included in the LIB-FORTH package.

5.4.3 DOS File Interface

. A DOS file interface is included with LIB-FORTH. This is an
unsupported public domain file interface for PC-DOS.
Documentation is included in the LIB-FORTH package.

37

6. TEST VECTORS -

. Three sets of test vectors were supplied with the schematics
for the Chip implementation of the CPU/32. Each set tests the
system under different conditions. Together, the sets test all
.p0551b1e data paths and control conditions for the CPU/32.

6.1 Main Slave Mode Test Vectors: HARRIS.BIN
Almost all the control 51gnals and data paths can be tested
~using single-stepped microcode in Slave Mode. The file -

HARRIS.BIN contains information to perform approximately 2800 -

single-stepped micro-instructions to perform testing of the
“entire CPU/32 system. These tests are a more thorough adaptation
of the single-step tests used to test the Board implementation.

6.1.1 Test Vector Generating Program

Since the desired single step tests closely resembled the.
normal tests. performed on the Board implementation with’ ex1st1ng
software, and since the hand calculation of 2800 test vectors is
rather tedious, the microcode assembler was modified to

- incorporate a special simulating and test vector generating

functions. The input to the simulator program is standard

single-stepped microcode on Forth screens. - The output of the

simulator is the HARRIS.BIN test vector text file, as well as a

hexadecimal version of the test vectors in the file HARRIS.HEX.

, The test vector generating/simulating program runs on a PC-
AT with an installed CPU/32 Board set. It uses a combination of
actual CPU/32 hardware and a functional simulation of the memory
address loqic to create test vectors. : :

6.1.2 Clock Cycling Informatlon : -

, The clock cycle for each test vector in HARRIS.BIN consists
‘of two phases. The first phase of the clock cycle loads a micro- .
" instruction into the MIR by pulsing the NDMIR signal low. The
second phase of the clock cycle cycles CLOCK by pulsing the NCYCL
signal low.

The outputs of the system are sampled just before the rising
edge of the NCYCL signal." '
Because of the limits of the SDA simulation software, a
rlgld clock cycle format must be maintained. Therefore, the MIR
is loaded prior to each cycling of CLOCK, whether or not the MIR
value needs to be changed. This is a very slight limitation in

- practice, since the CYCLE micro-assembler directive has been
" modified to re-load the MIR with the same value remaining from
‘the previous clock cycle. :

6.1.3 Test Vector Formats

Each of the approx1mately 2800 test vectors actually
consists of two sets of input vectors (one for the MIR load and
one for the CLOCK cycle) and- one output vector.

38

The format for the MIR input vector and the CLOCK cycle
input vector is: DVOSC, NDMA, NDSRV, NMAST, NPRTY, NSMIR,
~BUS<K0:31>, RD<0:31>.

The format for the output vector is: NDRB, NDRW, NSINT,
NRAM, NSFLG, NSPC, BUS<0:31>, RAD<0:22>, RD<0:31>.

6.2 Miscellaneous Slave Mode Test Vectors: CYCLE.BIN

A few tests can not be performed in single step mode. These
tests, incorporated into CYCLE.BIN, are an MIR read-back test, a
DMA transfer test, and an MRAM to MIR transfer test. The MIR
read-back test actually can be accomplished in single-step mode,
but not under the constraints of the clock cycle used by
HARRIS.BIN '

6.2.1 Clock Cycling Information

' No regularly oscillating clocks are used by CYCLE.BIN..
Instead, a separate control input file provides values at regular
intervals to change input clock signals. These input control
signals are sampled twice as fast as the input data. The output
data is sampled on every second input control signal.

'6.2.2 Test Vector Formats

The format for the control input file is: DVOSC, NCYCL,
NDMA, NDMIR, NDSRV, NMAST, NPRTY, NSMIR.

The format for the data input file is: BUS<0:31>, RD<0:31>.

The format for the output vector is: NDRB, NDRW, NSINT,
NRAM, NSFLG, NSPC, BUS<0:31>, RAD<KO0:22>, RD<0:31>. '

6.3 Master Mode Test Vectors: RUN.BIN ,
While a Master Mode test run is not strictly required to
prove chip functionality, a full-speed Master Mode test was added
to build confidence and to provide a convenient vehicle for

measuring critical path delays. '

6.2.1 Microcode Memory Set-Up : :

RUN.BIN is a two-part test. The first part, which takes up
the bulk of the test vectors, loads the MRAM with micro- :
instructions to be executed during the full-speed run portion.
These micro-instructions are documented in the comments of the
test file, and exercise all the important data paths of the chip
as-well as subroutine call and return logic.

6.2.2 Master Mode Clock Cycling Information

"The second part of RUN.BIN is a full-speed program execution
‘test. Since no software tools are appropriate to help build the
information used in this test, the test was created to be a
compact, hand-assembled program. This section of RUN.BIN is a
maximum clock speed test. If the clock is cycled too quickly,
indeterminate values will show up on the system bus, and/or the
micro-instructions will be executed in improper order due to

39

improper branch on zero conditions.

A problem with RUN.BIN is that it was not designed to
account for the stack RAM's providing almost instantaneous
response when the stack pointer has not changed from the previous
cycle. This problem means that RUN.BIN gives a maximum speed
that is too optimistic. However, the critical path analysis done
using the simulation results from RUN.BIN in Section 4 have been
corrected for this, and are correct speed estimates. For testing
production line chips, a more extensive at-speed test should be
devised and captured with a logic analyzer from the pins of first
pass Chip hardware. '

6.2.3 Test Vector Formats
The input and output formats as well as the sampling
strategy for RUN.BIN are identical to the ones used for
CYCLE.BIN. ‘
The format for the control input file is: DVOSC, NCYCL,
NDMA, NDMIR, NDSRV, NMAST, NPRTY, NSMIR.)
The format for the data input file is: BUS<0:31>, RD<0:31>.
The format for the output vector is: NDRB, NDRW, NSINT,
NRAM, NSFLG, NSPC, BUS<0:31>, RAD<0:22>, RD<0:31>.

40

7. PROTOTYPE TEST BOARD

When the Chip'impleméﬁtation is fabricated, a prototype test.
board will be needed. This section provides a schematic design
for an IBM AT compatible plug-in board for this purpose.

7.1 Purpose and Limitations .
. The prototype test board design discussed in this section is
designed to be a bare minimum testing platform for fabricated -

"chips. - The design is mostly an extraction of appropriate ...

portions of the Board implementation, and is only meant to
guarantee that Harris has enough information to construct a
testing platform. The prototype test board design uses only two
banks of static memory and does not attempt to solve the PC
address noise problem (which is not a problem on the PC-AT.)

The schematics for the prototype test board are given in
Appendix E. The actual chips used for the Chip implementation do
not appear on the schematics, since the pin number assignments
have not been established. The pins on the CPU/32 chips should
simply be connected to all signals with matching mnemonics.

, It is contemplated that WISC Technologies will design and
manufacture a more powerful test platform in cooperation with =~
Harris for use with the prototype chip run. :

7.2 Possible Expanded Versions , : o
Possible enhancements which may appear on a future prototype
board design include: a mix of fast static and slow dynamic
memory, a cure for the PC address bus noise problem, interrupt
logic to interrupt the PC Host for service requests, and semi-
custom or programmable hardware to eliminate some SSI chips.

41

8. RECOMMENDATIONS FOR FUTURE ENHANCEMENTS

ThlS section contains various recommendations for
.enhancements that should be considered for current and future
" generations of the CPU/32 Chip implementation.

8.1 Return and Data Stack Memory ‘ .

As discussed in Section 9, the use of synchronous RAM for
the Return Stack and Data Stack exacts a significant performance
-penalty..-There. are. three steps-that may be taken to reduce this.
impact: make a slight change to subroutine exit operation,
provide asynchronous RAM, and change the timing of the stack
accessing. '

8.1.1 Change to Subroutine Exit Operation

IF the RAM compiler actually produces memory that has
outputs valid essentially immediately after chip-enable goes low
(when the stack pointer value has not changed from the previous
cycle,) then the Program Memory speed requirements for macro-
instruction fetching can be eased by 19 ns.

The change required is in schematic "RETURN STACK CONTROL
LOGIC -- F.60". In this scheéematic, the NDEC<2> signal should be
disconnected from the NOR gate instance 12 pin 12, but left
connected to OR gate instance 6 pin 12. Then, the signal NDEC<K1>
‘should be connected to NOR gate instance 12 pin 12. This change
increments the Return Pointer at the end of the DEC1l cycle
instead of the DEC2 cycle, meaning that successive subroutine
exits will find the Return Stack valid for a clock cycle before
using it during the DEC1 cycle or a subroutine return. This, in
connection with modest microcode changes to ensure that the
Return Pointer is not changed during DECODE micro-instructions,
will eliminate subroutine exits as a critical path for Program
Memory access. The Program Memory critical path will then become
the data read path, which is 19 ns shorter.

This change is highly recommended for 1mmed1ate
1mp1ementat10n.

8.1.2 Asynchronous RAM

Providing asynchronous RAM will speed up all Return Stack
and Data Stack operations. Since the stack pointers prov1de ,
valid stack addresses approximately 5-10 ns after the rising edge
of clock, asynchronous RAMs will substantially reduce or
e11m1nate the 27 ns period after the falllng edge of CLOCK until
- the stack contents become valid on the system Data Bus. This
will reduce the critical path for the RS through ALU case and DS
through ALU case, increasing the potential operating speed of the
Chip implementation. An operating speed of approximately 13 MHz
should be possible by making this change independent of other
optimizations.

Implementing thls change w111 1nvolve ellmlnatlng the Chlp

42

enable signal to the stack RAMs.
This change is highly recommended for 1mp1ementatlon if and
when a- sultably fast asynchronous RAM design is available.

8.1.3 Change to ‘Stack Accessing T1m1ng

A longer-range solution to the stack timing problem using
synchronous memory is to change the chip enable high time to be
the third of the clock cycle before the high portion of CLOCK.
This would entail generating a different clock phase that is high

‘during the last third of the clock cycle. This clock phase would °~

be used as ‘the clock 1nput to RS, RP, DS, and DP. .

With this scheme, stack pointers would be loaded,
incremented, or decremented at the rising edge of the new clock
phase. The stack RAM chip enables would also be driven by the
new clock phase. This would mean that a valid stack address
would be available at the rising edge of CLOCK, and the RAM
access time would also start at the rising edge of CLOCK. In
this manner, stack RAM values would be available to the data bus
- and/or the RAD outputs one-third of a clock cycle earller than
with the current design.

In order to make this scheme work, transparent latches for
RP and DP values as well as RS and DS values are needed to hold
“the "o0ld" values during the last third of the clock cycle when
these resources are sourced to the system Data Bus.

This change requires than any source writing to RS, DS, RP,
or DP must present valid data on the Data Bus before the rising
edge of the new clock phase. In practice this will probably not
be a limitation except on the RAM to DS and RAM to RS paths,
which are too slow to be useful even in the current
implementation. This change will speed the system up even more
if used in conjunction with asynchronous RAM. There are no
requlred microcode changes. The benefits of making this changer
are the capability for a substantlally faster clock cycle
(especially if asynchronous RAM is used with this scheme) and
slower Program Memory RAM response time requirements for any
given clock speed than for the current design.

The only drawback to this change is that it would increase
the risk on the first-pass silicon by introducing operating .
mechanisms different from the Board implementation. It will also
take a fair amount of engineering time and simulation time to
implement and verify. For these reasons, this change is
recommended for incorporation into the second version of the Chip
71mp1ementat10n.

8.1.4 Elimination of Data Stack Transceivers

A minor change that will help the DS through ALU critical
path by a few nanoseconds. is the elimination of the SN74245's on
‘the schematic "DATA STACK (0:31) - SHEET 26 27_28_29". This
change is feasible if the Data Stack RAM tri-state outputs are
powerful enough to drive the system Data Bus directly. Of

43

course, this change should not be 1mp1emented if the extra load
on the Data Bus slows the bus down more than the elimination of
‘the '245 components speeds it up.

Since this change will not 51gn1flcant1y affect chip
~operating speed, this change this change is recommended for the
second—pass implementation.

8.1.5 Stack Slze Issues

The current stack size of 512 elements for both the Return
. Stack.and Data _Stack . is- somewhat,arbltrary,wbutrls.awgood_slze
for the first version of the Chip implementation. Actual run-
time analysis in a variety of operational environments is highly
desirable before changing these values for a second-pass design.
The following paragraphs contain some subjective observations
about appropriate stack sizes that should be considered when
considering stack size changes.

For most standard Forth programs, 512 elements is extremely
large, with probably 128 to 256 elements being quite sufficient.
In most Forth applications, the Data Stack tends to grow faster
than the Return Stack, since most Forth words take one or more
input parameters while requiring only a single return address
value. Therefore, for standard Forth applications 128 elements
on the Return Stack and 256 elements on the Data Stack should be
quite sufficient.

For deeply recursive appllcatlons, such as expert systems in
"any language, or implementations of Prolog or LISP, deep stacks
are very important. How deep the stack should be depends on the
,dynamlcs of stack usage, but 512 elements is probably a usable
minimum size for both the Data Stack and Return Stack. The
appropriate stack size in a highly recursive environment can be
experlmentally found by looking for the smallest stack size that
provides a minimum amount of thrashing to and from the stack
overflow image stored in Program Memory. The optimal stack size
may be rather appllcatlon dependent, and will definitely be
extremely sensitive to the aggressiveness of the compiler wrlter\
in using the hardware stacks Versus software stacks residing in
main memory. .

' For conventlonal languages such as C, the optimum depth of
the stack will depend on how successfully dynamically activated
subroutine parameter lists can be maintained on the hardware
stacks. If most. subroutine parameters can be held in hardware
stacks, then deep stacks are desirable. If the mechanics of .
maintaining parameters on hardware stacks are so inefficient that
parameter lists are instead maintained in Program Memory, then
small stacks of the size required by normal Forth appllcatlons
are sufficient.

_ Obviously there is a trade- -off to be made between stack
‘size, execution speed, and chip area avallable for microcode
memory or other functlons. :

44

8.2 Bus Multiplexing

The current Chip implementation uses several tri-state
busses. Since multiplexers are more appropriate for a CMOS semi-
custom -approach, the following small buses should be converted to
multiplexed data paths as soon as possible: RS bus, RAD bus, RD
bus. ,

The system Data Bus presents a harder problem. Since it has

‘so many sources and destinations, it presents a speed problem.

At the same time, however, the Data Bus would require truly

- massive multiplexers to become a multiplexed selector instead of
" a tri-state bus. A partial solution is suggested: divide the bus

resources into time-critical and non-time-critical groups. Then
connect the time-critical groups to a central data bus while
grouping and buffering non-time-critical groups to reduce the

~load on the central data bus.

The only time-critical data paths for bus destinations are:
DEST=ADDRESS-LATCH and the input to the B side of the ALU through
the Data Latch. , ’ ’ ‘

The non-time-critical paths for bus sources are: SOURCE=HOST
(signalled by NSPC), SOURCE=DP, SOURCE=FLAGS, SOURCE=RP,
SOURCE=ADDRESS-COUNTER, SOURCE=MPC, SOURCE=MRAM, and the MIR
source signalled by NSMIR. - ’

Optimizations to improve the speed of the data bus are
recommended for the first chip version if time and resources
allow. They are highly recommended for inclusion in the second
chip version. - : .

8.3 Microcode Memory

Microcode Memory takes up more than half of the Chip
implementation. Therefore efficient usage and size requirement
estimation is imperative for cost-effective production of CPU/32
chips. . : ’

8.3.1 Microcode Memory Size
— Microcode Memory is currently 30 bits wide. The two unused
bits are not included in the RAM storage cells. If a direct

- control bit were required for some reason future versions of the

chip, MRAM width could be increased to 31 or 32 bits to provide
one or two additional control signals with minimal hardware =
changes. Of course, this technique would increase instead of
decrease the silicon area used by MRAM. -

The number of words in Microcode Memory is an issue worthy
of study. 2048 words giving up to 256 opcodes is certainly
enough for Forth or any other single language environment.

' Probably a reasonably efficient second language implementation.

could co-inhabit the 2048 words, but there would be little if any
room left for application-specific microcode.) ' ‘

‘A fairly effective way of squeezing more service out of a
given amount of Microcode Memory is to scatter long, non-looping

~ microcode definitions such as U* and U/MOD in the unused micro-

. 45 .

instructions of opcode pages containing short macro-instruction

implementations. For example, the last six micro-instructions of

U* could occupy offsets 2 through 7 in the same page as the DUP

‘opcode, since DUP only uses offsets 0 and 1. This' technique

could give an estimated 10% to 20% compaction of microcode.
 Another useful technique (if efficiently supported by the

'RAM compiler) would be to populate the first 64 to 128 opcodes

with only two micro-instruction RAM words per page, the second 64

‘to 128 opcodes with only four micro-instruction RAM words per
page, and the-remaining MRAM locationsﬂwith.the.full_eight‘microf -

instruction RAM words per page. This scheme takes advantage of
the fact that approximately 25% of opcodes written to date
require only two micro-instruction words and 25% of opcodes

written require three or four micro-instruction RAM words.

8.3.2 RAM Vs. ROM S ‘ : .

A more straightforward way to reduce MRAM space requirements
is to ROM part of the MRAM contents. Many opcodes such as DUP,
SWAP, and U* will never change, and are applicable to many

‘language environments. . These words can and should be ROM'ed in
the second or subsequent chip versions. B

‘In some dedicated application versions of the chip, the
entire instruction set can be ROM'ed after development with a
RAM-based version of the chip. Except for dedicated :
applications, however, it is important that some amount of RAM-
based Microcode be left on-chip to accommodate software- changes .
and allow for users to obtain significant speed increases by
microcoding frequently used subroutines. Theé minimum amount of
RAM that should always be left on chip is subject to debate, but
probably should exceed 64 opcodes (512 words) . o

8.4 A Stand-alone Processor/Single Chip Version

~ TA potentially important version of the Chipbimplemehtation
is a stand-alone processor version. This version of the Chip

“implementation will need to either‘have'control‘circuitry.On—chip

‘to-perform,initialization and microcode loading from non-volatile

memory at power-up time, or will need to have EEPROM or other
non-volatile programmable,microcode'memory. A modest amount of
support circuitry should allow booting up from a ROM-based

- program memory in a stand-alone mode. -

- If a stand-alone single-chip processors is created, a :

significant number of pins may be saved by eliminating the 32-bit

system.Data'Busffrom~the pinout. This will necessitate

~performing memory-mapped I/0 to communicate with the outside

‘world, or will require the addition of serialfcommunications
~ control circuitry and a serial I/0 pin to the chip. '

" An important consideration for the second-pass version of

' the design’is the availability of a fu11_32—bit.RAM"Address.Bus.. 7"

Such a bus should allowiun4paged linear data memory accessing _
over 4~gigabYtes,,and,paged program memo;y‘addressing'in“B-or 16

S’

46

megabyte page increments. This can be accomplished‘by bringing

“all 32 bits of the RAM Address bus out onto pina, and by

expanding the RAM Address Latch to a full 32-bit width (and
therefore using the Page Register only in conjunction with the
Next Address Register.) :

Another possible enhancement is the use of the currently
unused micro-condition codes 5 and 6 to test external status pins
or internal data bits. A particularly interesting possibility is

using a condition code to test the highest bit of the DLO

~register for 32-bit floating.point normalizationgwm“””

8.5 Uniform Software Environment for FORCE/WISC

The software environment for the CPU/32 is in a 'well-tested
but preliminary state. While the current software could be
polished for use with the final product, this is probably not the
best way to proceed.

Harris Semiconductor, as the potential industry leader for
Forth-related business, should make an attempt to standardize its
own Forth-related products. In particular, the language and

support tools for FORCE should have the same "feel" as the

language and support tools for the WISC product when executing a
Forth environment. This will reduce the burden on Harris

" employees by controlling the proliferation of multiple software

environments for support of the chips, and will give the
impression of having a family of stack-oriented processors - both
16-bit and 32-bit. : ,

This does not mean that Harris should necessarily develop
identical compilers for both products on its own. What it does
mean is that Harris should make every attempt to ehcourage
software developers to make available consistent software for
both systems. This means that screen editors for both systems
should use the same keystrokes to accomplish similar actions, the
supported instruction sets should both make the same assumptions
about things like how division and PICK work (Forth-79 vs. Forth-
83), and at least one dialect of Forth should be available in
highly consistent form on both machines. Harris and WISC should

- work together to create a consistent software environment on both

machines. : S :

As an observation: whether Harris Semiconductor wants to
become involved or not, and regardless.of any Forth "standard"
efforts, the software tools used on the FORCE and WISC chips will
probably play a large role in setting the de facto standard for

" Forth software in the coming years. This will happen because

engineers out in the "real world" who are not steeped in the
politics and traditions of the Forth community will use whatever
software tools are most convenient to get their systems employing
the FORCE and WISC chips to operate. Harris should take
advantage of this opportunity to make life easy for software
suppliers and its own support engineers by encouraging the
development of a consistent, useful software environment.

47

9. PROBLEMS ENCOUNTERED IN THE DESIGN PROCESS

As may be expected, several problems were encountered in
transferring the CPU/32 design from a discrete implementation to
a semi-custom chip 1mp1ementat10n. The following sections
- discuss only the major problems that had or could have had a

large impact on the effort

- 9.1 Synchronous Stack Memory

- The most severe problem din. transferrlng the. technology to,rhumtﬁn

the Ch1p implementation is the lack of an asynchronous RAM
compiler for stack memory. The use of synchronous RAM instead of
the asynchronous RAM used in the Board implementation entailed
making several design changes to generate a Chlp enable signal
for the synchronous RAM macros.

The worst problem with using synchronous RAM is. that it
lengthens the critical paths of the Chip implementation by up to
the access time of the RAM array (25 ns.) This happens because
in the Board 1mplementatlon, stack memory addresses are valid a
few gate delays after the rising edge of CLOCK, so the
asynchronous RAM begins its access period near the beginning of
" the high CLOCK period. Depending on the operating frequency and
RAM speed, the stack data output is available for readlng at or
shortly after the falling edge of CLOCK.

’ ‘With synchronous RAM, the high CLOCK period must be used as
the chip enable signal, so the access delay does not begin until
after the falling edge of CLOCK, essentially addlng the entire
access delay into the critical path. As seen in earlier :
sections, this delay affects both the data flow critical path- (RS
and DS through the ALU) and the program memory access critical
path (RS to RAD for subroutine exits.) While some work-arounds

- are suggested in section 8.1.1, the availability of an
asynchronous RAM compiler would have reduced the design changes
‘necessary (and therefore reduced risk,) .and would have produced a
faster component for the first pass. :

9.2 Untested L1brary Macros ‘ ‘

_ ‘During the simulation of 'the Chip 1mplementatlon, it was
discovered that the SN74181 macro-cells did not work at all.
This was not a case of a single missed test vector when the
macro-cells were developed; they had clearly never been tested at
all. Furthermore, when a corrected version was entered into the

system, there was still an error that was only caught by an added B

last-minute set of test vectors.

Requests for a 100% coverage test vector set for the '181
‘macro were never satisfied. While it is likely that the test
vectors supplied in the file HARRIS.BIN prove correct
functionality for the macros used for the ALU, this can not be
guaranteed without a 1181 test vector set to incorporate into
'HARRIS. BIN., It 1s poss1b1e that some. comblnatlon of 1nput data

48

and functions will not produce correct results.
it is even more possible, and perhaps probable, that the

'test vectors in HARRIS.BIN will not find some manufacturing
.defects that may occur in the ALU area, since the current tests

are aimed at proving functionality, not aimed at testing gates.
' The issues to be resolved are: how can Harris be sure that
there are no latent bugs in other macros in this and other
designs that weren't caught by the CPU/32 test vectors. Also,

~ how can Harris be sure that fabricated silicon has no defects,
'especiallyfin-the-ALUls,wthatfwillmonlyvbe.uncovered”whenmthe o

user runs real data in real programs? While total 100% test
coverage of the chip may not be practical (although with the
CPU/32 design, it should be relatively easy), starting with one
or more unproven macros and progressing to a test environment
where fault coverage is computed after the fact (as opposed to
set as a goal at design time) is a scary prospect. -

9.3 Simulator Failing to Produce Complete Output,Lists e
A problem that was uncovered only after the end of the

‘summer consulting period was the fact that the SDA software was
producing an incomplete test vector output file without any

noticeable warnings. This situation was apparently due to an
input command that did not allocate enough disk space for some -

step of the simulation process. This problem was further

compounded by the fact that the SILOS-CHECK automatic test vector
output checking program did not flag the fact that there were
fewer output vectors in the simulation run file than were
expected. ' o ‘ S ‘ :

These problems together led to a situation where the
simulation appeared to be working correctly, but actually had
problems in the second half of the output vector file.
Fortunately, this problem was caught and is now being corrected
by manually checking to ensure all output vectors are in the
"store.out” file. Potentially, this could have lead to a non-
functional chip. . ' S - S

The recommended corrective action is to get the CAD tools

fixed so that they produce error messages on the screen when

running out of disk space or when the test vector simulation file
is shorter than the expected result file. : '

49

10. CONCLUSIONS

The effort to convert the discrete Board implementation of
“the CPU/32 to a semi-custom Chip 1mp1ementatlon appears to be a
success. The combination of hard work by Harris employees and a
set of CAD tools for the implementation effort which behaved:
reasonably well enabled the project to go "from 0 to 32 bits in
31 days."

A major llmltatlon of system speed is the unavallablllty of
“asynchronous RAM for ‘use in the stacks.- Even so, successful--
‘simulation runs indicate that the Chip set will functlon
correctly at approximately 10 MHz.

Once the first set of chips is fabricated, studies should be
made to determine optimum stack memory and microcode memory sizes
and implementations for future versions of the chip. The -
development of a self- -booting stand-alone version of the Chip
~with a partially ROM'ed microcoded instruction set 1s a worthy
goal for the second 1mp1ementatlon cycle. :

A

INPUTS:

APPENDIX A. SIGNAL DESCRIPTIONS FOR LUMPED SYSTEM

‘The Lumped System is a conceptuai package containing both

the Data and Control chips as a single entity. This would be the

result of mounting both chips in the same package or integrating

_the logic from both chips into a single piece of silicon. For

the two-chip implementation, the Lumped System is the Chlp set as
it appears to the outside world. :
" The. Lumped- System has 101 pins ‘plus power and ground

DVOSC Divided oscillator input. 1 in slave mode

NCYCL = NOT-Cycle clock. (single step in slave ‘mode)
. NDMA NOT-DMA transfer mode .

‘NDMIR . NOT-Dest MIR

NDSRV - - NOT-Dest service reguest reglster

NMAST ~ NOT-Master mode

'NPRTY . NOT-Parity error input

NSMIR' = NOT-Source MIR

BIDIRECTIONALS: |

BUS0:31 System data bus

‘RD0:31 RAM Data bus

OUTPUTS: -

NDRB NOT-Data bus dest is ram(byte)

NDRW NOT-Data bus dest is ram(word) '

NSINT = NOT-Interrupt to host (status reg has changed)
- NRAM . NOT-Enable RAM to/from RD bus

"NSFLG ~ NOT-Data bus source is flag reglster

"'NSPC : NOT-Data bus source is PC 1nterface

RADO:22 Ram Address 0-8Mbytes

.

APPENDIX B. SIGNAL DESCRIPTIONS

FOR DATA CHIP

The Data Chip has 66 pins plUS power
are connected to pins of the same name on

‘do not go elsewhere (except the data BUS,

to the external host interface.)

and ground. »All’pins

‘the Control Chip, and
which is also connected

INPUTS:
DVOSC Divided oscillator input. 1 in slave mode
MADO:10 Microcode memory address
NCYCL .NOT-Cycle clock (single step in slave mode)
NMAST NOT-Master mode ‘
NMRCE NOT-MRAM chip enable
NMROE NOT-MRAM output enable
MRXDR MRAM xceiver direction control
NDDP NOT-Data bus dest is DP '
- NDDS - NOT-Data bus dest. is DS
NDIV NOT-Division select
NDMIR NOT-Dest MIR _
NMRXE NOT-MRAM xceiver enable
NMULT NOT-Multiplication select
NSDHI NOT-Data bus source is DHI
NSDLO NOT-Data bus source is DLO
NSDP - NOT-Data bus source is DP
NSDS NOT-Data bus source is DS
-NSMIR Not-Data bus source is MIR
NWMRA NOT-Write: MRAM
BIDIRECTIONALS:
BUSO:31 System data bus
~ OUTPUTS:
ALU31 . Sign bit of ALU output
DLOLO Lowest bit of DLO register
NACOT NOT-ALU carry-out bit
NALUO NOT-ALU output equal to 0 condition bit
NDPER

NOT-DP error (underflow/overflow)

APPENDIX C. SIGNAL DESCRIPTIONS FOR CONTROL CHIP

The Control Chip has 130 pins plus power and ground. The
control chip may be thought of as the "main" chip, since it
controls all interfacing with the outside world.

INPUTS:
, ALU31 - Sign bit of ALU output
* DLOLO Lowest bit of DLO register .
DVOSC Divided oscillator input. 1 in master mode
. NACOT . NOT-ALU carry-out bit o
- NALUO NOT-ALU output=0 bit , . ‘
NCYCL NOT-Cycle clock (single step in slave mode)
NDMA NOT-DMA transfer mode
NDMIR NOT-Dest MIR
- NDPER NOT-DP error (underflow/overflow)
NDSRV NOT-Dest service request register
NMAST NOT-Master mode
NPRTY NOT-Parity error input
 NSMIR - NOT-Source MIR
BIDIRECTIONALS:

BUSO:31 System data bus
RDO:31 RAM Data bus

OUTPUTS:

MADO0:10
MRXDR
NDDP
NDDS
NDIV
NDRB-
NDRW
NMRCE
NMROE
NMRXE
NMULT
NRAM
NSDHI
NSDLO -
NSDP
NSDS
NSFLG
NSINT
NSPC
NWMRA
RADO:22

Microcode memory address

MRAM xceiver direction control
NOT-Data bus dest is DP
NOT-Data bus dest is DS
NOT-Division select

NOT-Data bus dest is ram(byte)

- NOT-Data bus dest is ram(word)

NOT-MRAM chip enable
NOT-MRAM output enable

. NOT-MRAM xceiver enable

NOT-Multiplication select

NOT-Enable RAM to/from RD bus
NOT-Data bus source is DHI

NOT-Data bus source is DLO

NOT-Data bus source is DP

NOT-Data bus source is DS

NOT-Data bus source is flag register

‘NOT-Interrupt to host (status reg has changed)

NOT-Data bus source is PC interface

‘NOT-Write MRAM

Ram Address 0-8Mbytes

-
’

APPENDIX D. CHANGES TO WISC CPU/32 DOCUMENTATION

‘The following pages ére'important changes to the WISC CPU/32

Preliminary Documentation. Each page should be directly

substituted for the existing page in the document. These changes
reflect hardware engineering changes made to the discrete Board
implementation, and therefore to the functionality of the Chip.

PRELIMINQRY MLSC LPU/*” DOCUMENTATION UPDQTE /1787 x4

The DECO cycle, initiated by the DECODE mi4::r“(:;—x:3pcr"‘tmﬁ.3
'vmuﬁt alwaya'accur in the next-to-last micro-instruction executed
within a microcoded word. During the DECO cycle, the interrupt
flag registers are examined for pending interrupts, and the MPC
is clocked with the value of the Instruction Latch (ILJ. I+ &
non-masked interrupt is pending, the MPC value is forced to 1
netead of the IL value, causing an interrupt service word to
start emecutionn

e Thie - DECL cycle, denoted by the END micro-assembler word,

must alwavs occur in the last micro—-instruction executed within a
microcoded word. During the DECL cycle, the ADDRESGS-COUNTER is
1nrrﬁmmnt@d to form a subroutine return address pointing to the
®t sequential word. If a subroutine call or unconditicnal
_branch is specified by the instruction in the IL, the NAR outputs

- are enabled to drive the RAM address bus. If a subroutine call

is being processed, then an INCIRFI is avtomatically performed.
If a subroutine exit is being processed, then the ADDREES-LATOH
’is 1Qaded from the RS, and the ADDRESS-LATCH outputs are used to
drive the RAM address bus The END micro-assemblsr word forces a
ARF=000 micro-operation LQ ensure that the Oth offset micro-
instruction is the {xreL micro-instruction executed by the next
cpoode. o :

‘ ‘The DECZ cycle occurs during execution of the first micro-
Cinstruction of the word that was held in the IL dwing the DECO
cycle. During the DECR cycle, if an interrupt is not being
processed, the ADDRESS-COUNTER is loaded from whatever value is
present on the RAM address bus, and the IL and NAR are loaded
with whatever value is on the program RAM data bus. All these
lpads occur at the end of the clock cycle. Additionally, if an
unconditional branch is being processed, the NAR is used to drive
the RAM address bus. I a subroutine call is being processed,
the NAR is used to drive the RAM address bus and the RS is
“written with the contents of the ADDRESS~COUNTER. I a
subroutine exit is being processed, then the contents of the
ADDRESE-LATCH register are used to drive the RAM address bus and
the RF is incremented. - :

B Each microcoded instruction must be at least two clock
cycles 1ung"' Since the IL is a transparent latch that contains
wvalid data before the end of a clock cycle, the opcode may be
raad frcm RaM, during the DECZ cycle and clocked into the MPC in
the same clock cycle if desired. This means that the DECZ cycle
- of one instruction may ocour simultaneously with the DECO cycle
o thé mevt inmtruction. : ‘

In thﬁ 1nhtruutjon d@amdlng proces the,gggg 1nctrucL1on to

 ;;5e (=3 ecutad is b91ng]Daded 1ntD NQR and Il as the first mlcrm—'
- USE of

FRELIMINARY WISC CRU/ZZ2 DOCUMENTATION UPDATE 9/71/87 A5

the micro-operation DEST=DECODE allows changing the contents of

the MAR, IL, and subroutine control bits during the middle of a

microcoded word, Just as if those registers had been loaded with
the normal decoding sequence. The MYF-FORTH/32 word OBRANCH and
other words exploit this fact.

There are some micro-operations that, while prohibited under
most c1rcum5tanLe%q are sssential for efficient program sxecution
for speci Be very careful when u“plazt1ng these special
T cases, and do not rely on & single test to ensure corvect T T T
pperations, since some viclations of usage rules manifest
themselves as relatively infreguent random failuwres:

al

1) SOURCE=ADDREGE-COUNTER may be used during the DECE cycle to
Fetch the contents about to be saved on the RE if the instruction
being executed is guearantesd to be a subroutine call. This is
accomplished by having a special compiling wnrd for the
microcoded word in the Forth kernel.

E: SOURCE=RS, DEBT=RE, SOURIE=RF, DEST=RE may ail e uwsed during
the DECZ cyala it the 1n5tru:t1mn being executed is guaranteed to

be an unconditional Jjump. This is accomplished by denoting the
microcoded word as SFECIAL with the micro-assembler.

Micro-Instruction
Each CPU/ZR opcode is implemented as & series of two or more

micro-instructions. Each opcode starts on the MRAM page numbear
corresponding to the opocode number 0-8511. Each opcocode may take
one to sixtesn consecutive MRAM pages as regquired.

Within each page, the order of the m1LFD"1F”tYUCLJDHE i
unimportant, except that the first micro-instruction on the
opcode s first page must be located at offset 0. The micro-
assembler assumes that instructions are to be processed in
sequential order (i.e. 0,1,2,2,4,5,6,7) unless instructed
"ptherwise with the JMP=xkx micro-instruction.

The JHF M mi cro-instruction, where the Tuuu " may be
Fpplared with a large variety of binary bit patterns, allows non-
sequential conditional branching within and between micro-program
‘memory pages. As an example, consider the microcode seguences:

I s ALU=A+1 DEST=DHI g3 A
4 33 ALU=A+L DEST=DHI JMF=110 ;;

FRELIMINGRY WISEO CPU/Z2 DOCUMENTATION UPDATE %/1/87 Gl

kodinterrupt regi%tér at falling cloock edge
interrupt, then clocok MPOC with value 1
ElLSE clock MPC with Il value ERDIF

DECL Inecrement address counter on rising clock edge
Eriable next address register outputs to RADMx
IF EXIT, then clock Ram Address Latch from RE.
' and enable RAL outputs instead of
Mext Addr Reg ENDIF
IF CALL then decremsent RF ENDIF

DEDZ (MNote: DECZ from one instruction may ocowr simul-
taneously with DECO of the next instruction)
Friable Mext Addr Feg oubputs bto RADHx
IF- EXIT, then snable RAL outputs and increment RP
» ENDIF :
IF Call, then write address cournter to RE on
rising clock edge ENDIF
Clock next address register and instruction latoh
from RD bus contents.
Clock address counter from address bus

FRELIMINARY WISC CPU/3Z DOCUMENTATION UFDATE 9/1/87 53

INTERRUPT HANDLING ALTIONS

If an interrupt occcurs, then the MPC is loaded with a
reference to instruction # 1 (interrupt handler) on DECO. The
interrupt handling microcode at opcode 1 is expected to save the
contents of the address counter during the DECZ cycle, which wWill
point to the word AFTER the restart word for returning from the
interrupt. Opcode 1 is also expected to save the contents of the
MEE/IL (specifically, the CALL and EXIT bits) and to sat the
~winterrupt~ma5hmbitwmmIHPORTQNT;”TME,interﬁupt,haﬁdliﬁg.WDfdmmHSt,,
wait one clock cycle after setting the interrupt mask before
doing its own DECODE!'!! ‘ o

Since CALL and EXIT functions are allowed to proceed during
an interrupt, the interrupt handling high level code mnust un—do
the return stack pointer actions caused by aborted CAlls arnd
EXITS.

: RETURN STACK FOINTER ERROR :

& HOST SERVICE REGUEST (HOST WROTE TO SBERVICE REG RED)
27 DYNAMIC RAM FARITY ERROR (UNIMPLEMENTED)

28 Coftware interrupt #2

249 Software interrupt #1

KA Software intarrupt #0

A1 INTERRUFT MASBE (1=ENARLE O=MASK)

FILE 2 ADD

oen, sotss

u{ ,:

DaTE s 09 -1

EHE

s

| P PO PO P L,.i::i 5;::1%. i il fﬁ.:. t
AR SR B K] ;

R

]
iy P e

| P PR PP PO D A Fl PO
LR T I R X]

et Bt 14780 f o L

» "..!-E.i:h.‘l‘l!‘ |

4 g i
DS I I o N
L LRI S A o

66 TUNHII

FIGURE 65

] 1
b’ ! ur ’l

] 1 o i

APPENDIX E. SCHEMATICS FOR A PROTOTYPE TEST BOARD

The following pages are schematics for designing a prototype
test board for evaluation of the first Chip implementation. The
WISC Chip set is not included in the schematics, since the pinout
is unknown. The WISC chip pins should be connected to all
signals with identical names in these schematics. '

DATE : O5-04-1 988

FROTL

FILE:

oorbe froete froote ot 1070 2, | fotae 1000

EX- LY ¥ §

-
b

. D Dy AT
1. £ N s e T

EN R o N P AT 1)
- .

it s Y

FHIL KOOPHAN JR.

HOET ADDRESS DECOLER

8-BIT PC-BUS-

: ﬁILE:FEGT1l~

) 3

o

baid

N s

HI
i

:l:|

ot

e

i

e [0

S S M :':'.1'_'1 J::r-. :l:z‘_'n lrv_:n_

L SR SR TS A R i) I]
. ()) .

W

P

FoADe
FoAant
pPCang

x:_ﬂ) [X)

[N}

1 'x:h

fin | T LJ' ‘Fr!-':r -

: ;r-% a
[
: &K| &
fote Lt
T3 T

S
s

SELECT OME FR

FOR ADDRESSES 2G8-367

M EACH JUMPER PAIR

HE - :

CUSE - BIMPERS e d3s 05 37

106

FCALS

]

e e

FLADL

d

R s et]

- PCabz

K?4IE?,

CLE

Pl

2 %i;#

K —E MOSTR

o F e Nt
L R e

i SR 3

- MSEL ®

—= PLION

Jo (100

i

Do}

1 HasT.

.ﬁ

&

T

DATE: OE-04-1988

—= PLICR

et el anel el ool sl el el
e 0T P e P

MRS

FR

s

IRLS |
Pswes Ry
ik

FLRES =

PHIL KOOPMAN JR.
READ-URITE DECODER

CB=BIT PC-EUS HOST

FROTZ

ILE:‘

F

CCFILE: PREOTZD

DATE: 03-04-1988

e

FROTE

FILE:

HPCIH =—

CPCTC =

13

1

. HuF='*-

|7—

@ ;ff§*>? HDftH ;:,7*7*“

L

1o

- MSEL®

.f:‘

FxIHh-4

|
PLIOR +

: l!
T
1

FHIL EOOPMAH JR.

OMA COMTROL LOGIC
8-BIT PC ~BLIS HOST

(FILE: PROTE)

s DMC

e

CPLION ==

.

113

10 ' i
e NMEME

PCIOR =

i

: 3. ,

II4*

PR
-..

Gy

| HHRDE =

6 e
+—~——4 MRD®

e gﬂ.z. SR
E-__{:-Z’—a F{:{z?ﬁfﬂ! |

L. o S ,373 o
o — BUS®

BUS1 -
CBUS2

msa
BUS4
BUSS
BUS6 -
BUS?

a2
03
g4
es

NGB WN—®
. I. -
. BOUBDOUY

Nylslel

YT
33 30000

o
Ldcon a8

p
0O M O\ WM+

[l & RV

T NP g) R Y P P S

S A
373
5 |
@2
S Q3

Q5
ee
-7
ON Qs}

BUSS
BUSS
BUS1@
BUS11-
BUS12
BUS13
BUS14
BUS15:

U1-BW
BUDBDDED

=I-T=T=Tololnnlno

[Vl N]

| AN
, seetul
D M ONOULAWN-

o Is . l
NSEL1 &——T1— . '

- 8 29 117
"NSEL2 = 1o ‘ . . ,373
Q1
Q2
@3
R4
Qs

BUS16
BUS17
BUS1S
BUS1O

@SpC BUs2e
‘@6f > BUS2L . -
@7po Buse2

ON @81’ BUS23

NP

1.20

=R

=TTl Toln it

O o0 U

Q) M ONOULD W

z %

£ 5 ‘

28 ‘
[N jole
k’,\J .
2=k

Lo M

: 373

BUS24
BUS25
BUS26
BUS27"
'BUS28
BUS2S
BUS30 -

=TSO T 1S
Py
w

™ O NOWI-A Wy~

f NN N N AV W PN P

O o U O

- BUS31

- PHIL KOOPMAN JR.

_ HOST_TO DATA BUS. | i
" DATA WIDTH CONVERSION ~ NDMIR =

8-BIT PC-BUS HOST | nspc—2
" FILE: PROT4> |

(SI0Nd f311dy
LSOH SNg-3d L118-8

NOISY3IANDD HLTIM YLea
“"1S0H 0L SnE uied

“¥ NOWJOO0X TIHd

224
92d
83d
$2d
£9d
20d
194
@dd

1T
Szl

qz1

£]80 8o
<0 #19
{90 a8 8
=50 F5E185S
sv0 48 S
: ep O¥ 9
b1 ac S
ST G e
IJl.ﬁG a -
S bbRs
+z1
{80 seop~
3 8T |
=140 $19P3
90 a8}y, £25N8
[4 [%a) (194 .—ﬁﬁﬁu s
Slon G2 issans
el ab &6 1Sne
57150 ael8 sisng
O G2 c15ng
2l QI 918N
81 e
bhes
271
89 8cH
€ PET]
s mm vmw il sisng
Z azkt pisng
3 SO as I e1sng
po @Sl 21sng
STl - aphkt 11snd
i G Al
91 wca mﬁ_ 8sng
81
b2/
271
—1{89 8gH
3 61
2% P
T 150 5! ésng
bo aéf! pSnd
el Ty B! £S04
7160 gel8 2snd
Hao @32 fend
Illg QIfE @snd
81
bbas

&l

.

€13SN
+{ = 2713SN
.« 1713SN
L
CRECTR
1Q3N
3 9, aaun
] . T
vl

—-04-1988

OX

"
"

DATE

FROT&

FIL

MR

[

Jomde
[
N

~

MR 1

|
HRETE
HREDL

T ey

Foa

[

A0 AT 0 ey o
m
i3

:...“"
"T.
oY
£
-
pcn)

v
I b T

+51

i1

1 PULL:
R

fooke
L)
ni

e be— NSELG
5 vl pE— HEEL

e ndica -
EME Ya = HEEL S

R O—

4. 7k

129

W
LDy

VB e
ml& MOYCL

PHIL KOOPMEM .
) WIMIE D6TH WIDTH COMVERSTON
Lm CONTROL LOGIE
- {FILE: PROTE:

S AW x)

o
:|:;..-.

kxd
03 D) e

S

kxd kb el

(O Fou R0y 8 SN O] v T

DU Y R S

e e e e e e

ol
(RN TR R

foet
J
]

=11

Joosste

e
o
kst
b}
Dot}

Tk O X O O T T T T

141988

DATE : Ot

oy
T
T

b o e v |
U |

D]

LS B
O I e T
¥ B S T I R S

T
Do)
[y

-1
P
3

)

FROT7

FILE:

~04-1988

-
wd

4]

DATE:

- E;g*iﬁ B;Cg PULLG?_‘H,'fV'-

I A
SED

w0

 } 1031' ';,JC}fHQQIT‘; f f,- L
———— T 1 et g g oe—
S CCRYSTAL | PINE® wl~_ 10 1z| }LL+~f+—*i+‘

s

e BT L £

BEIE OB OE R

R | 3 00 1;._:;..' %

A R N
)
J

e TP RS
X
kad

.Lﬁﬂufu
[SN
-
D]

i

1
)] %
B R == T

e

Tl

A
v I

.

HASTR * | PHIL kooPmed R. |
, ~BYSTEM CLOC

FROTS

CFILE:

S| eneerotsy)

i“riﬂ'

% i
= A b
il EB ceo i A« i b
4 o .':Ii T e | S TRy
"me' r 3

]

LTI

35 ﬁﬁ“%

B v Do T s e Do T o D' T g B
Y D Ty I NN g b eticn)

n f m ll‘ll‘} g r

‘ .:“D::f‘
hIl pll 11— ‘”}
: F!ﬁ{ e

] l.- s
o A b

) b
Il

lz_. ,I,. T._. - lr LR :In;n 1_{1:.
B DY] |:I'f.4 i)} rl_;l o B L

Ron R

N)

oy

o

L Lfl

:-’-'_"

T

oy

ar*ﬁ:%ﬁﬁyzgﬁafqﬂqu |
l::l
poa}

Pan]

oy
)

E-04-1988

DATE: O

©PHIL KOOPMAN JR.

STATUS REGISTER %

ffF”IlE FEﬁUE_T PEEIQTEF

FROT®

FILE: =

'FILE F‘;x ‘;':4 I Gt B £

 FILE: FROT10 DATE:03-04-1988

14

HER:

C5dHD DHITNDI3T |
|TEM HEWAOOH TIHd |

BTLOMd

. DATE: 03-04-1988

o P—Ee

Az b g I

. V4
- FaDa s——-*—-’\-g— o8-
1

15
3 'T‘I‘i !
™

| F et

sl e | R
o —4ee SPT] | ae

i

gz

Lo HUET

.
o

HIRH = : SN G
o 3 FH_— -,
CNIRE=———H

* RADI7 (= MENBB) o
- | PHIL KOOPMAN JR. |
 RAM EMABLE

RATIF ~

e = HENEL

PROTL1

FILE:

| GFILE:s PROTILM

DATE: O3-04~-1988

s
o
e

Dl

—
W,
W..

.....
LU

?ﬁlﬁﬁﬁﬁTaﬂ

T T L)
BOOE- L N

X S O -

o y)
'

f1oeeet

Xy
)

hoT

-1
X
=t
ke -
) ‘.':"" et -
BopRip.omp R omopopop oo ow oy

HOE =

™. B

HWER

Frio hdng s &“-:r i

o~
2!

~ RAD7 *

e e) :I;__j e e T 5

L)

X !’l

- fli%
Tk

§&

jeomt v

[I o R el
O
l-—". .

IR)

T e T T T e e T X e T e T e e L
PV OETITTT - tste oot roste st s 8, 517000 0 J T4 0 a0 37 D N

Ao g

"l
Yoaste

FH T 4

L

- EEEERE

LA AR AN
BRI e ol e e | v e e i RO

B e e e e LA 00N} s ' 4
B A B OR T WD S .

. _r_'..l:,-_jlf'ljl-_—nxl R

PROT12

FILE:

~PHIL KOORHAN JR.
(=153 RAM BAMK &
(FILE: PROTIE} |

b]

;—h
2

b

I

N

[re L e

w4

==

Tl 1
s Lo

Qoo el

=

PO ek et e e,

DOk EEntica T w D or ¥ Do i

?ﬁ#%%??fjﬁ?ﬁb

T

3 el
o R LT

1,
A

i, et Lo b

¥

iAo

L
L]

éf;

. e e e e T
[e e e e w T

]

%
[% T &)

)

)

o

¥

DATE: 03—04—1988

-r

L e e T X
TTT ITHTY oo bt ook oo o, |7}

T)

HMezess |
ol DiF

42

1,

oyt
e

I SR E Rl o)

I
> |

A Do T 1

wu

E Pﬁli:l:{x,é:r ,;Fﬁl-:gﬁ‘v;{ ot

T Al wlon b e e B

[e T]

R N R R R R G R

e 101

i1

R o !':.E'Tl ;’..".

i e i B

PHIL KooRreH R |
£-313 RAM BAMK @)

FROT13

FILE:

PROTIZ) |

 DATE: 03-04-1988

boieati,
ot
-

£t

=
i
o
DRG]

AT o s

T

WXL w o

T

LT

s sl o by T

PN

Al

ol B W

b, e e e e T T e - .; : :~' a

1y l-—;l"l;!ﬁ: |"_|_; 5,

R N T W P o}

HOE =

X

)

HiED

P

b e e o e e T T e e e e e

) o P]] L [ien]

,.._.
i
i

o)

o4

o
st

 HEMED —

L R I T R B e e el et et LD R

Foo oo Fedroinanonan

I W)
s h

Wt

.

B T L R e et RS RN Do LD B AN} g]

| 43
ey oE

S B

"
2.
) L
iHe pmz |
I-J?‘
ol
WY

P N A

Tronaki frosnte frseste frmaads frnande froeote 8, 1) 17170
N LTy o o

| e-1m

RAM BAME 1|
C(FILE: PROTI4Y |

FROT14

FILE

Tt

JOURS

Tﬁﬁvifx,yf-f,'”y

M

I

T

i

D]

4 TR A)

: '“1‘;:- A ~Q;rv;ihgiij.,:ih; ATV R T ;nu_.',

62
5

o 00 2 e e

Doy

N

PR T i T T T RS S

B T T R e e e TR

EIAIAIAIA)AIANAY

O XA LY D)

m

RO T N Lt e B
g g
a

' y)
I

1.8
b,
B o o R e e e e o e ol |

e B

.|:|

—
Fﬁl‘"‘l B o L L B D Tl f B 2 T el PR o

U]

b Y]

AT P bbb et b bt

i

3-04-1988

L9

] T~ R

B
™

- DATE:

. FROTL1S

FILE:

t':fPHIL ﬁﬂﬁPmﬁH;JE}} ”fjfgf??fi e
Cjassy w0
S GFILEs PROTISY |

041988

-r

DATE: O

FROT16

FILE:

DT TR

COMFOMENT SIDE

__PFC EDGE
CCOMHECTOR &

roon | B

=3

e e e e e

P L DI L D D T]

T et P10 0 o £ FLT

AEH = AER

A e o e e
%

2
DRI R gRink)
",
T e e T T T T T T T T T T T T TR b et e e 3

1,
=
RN
i bete 100000 i A TR0 7o LTI 0 10 bt Bt Bt ke oo ol ks o ek
D T s T 0 S R T I

SRR

b o S o o o v
i
I

5L

SOLDER SIDE

FE EDGE
OHHECTOR B

F’i:EYEf.

=GR EZ-,-
S BreeT

Loobd

+51]
IRaz
..r-g i
Fﬁnc

IO
HIOR
HPCTE,
FLIRG

NREF

FCTE
ALE

pii}ﬁﬁzr?3&d¢ﬁ$\$j$gﬁmigj% B
gucpect g B

ety oty ot oty
i

o o Y
o]

roeety foosty

s

ol é{ﬂii

PHIL KOOPHAM JR.
HOST EDGE LDHHE!"TRF
8-BIT FC-BUS HOST
fFILE: PROTIG:

'_-WW'WA ;

145'P1N'”5 CONT™OL CHIP

. — 8 3 4 5 /o 7 8 O./. 111111

o......@@.@....@a_

2@OEOOOOEEEE®O®®E®
N0®0@0000@00.000N
JololcN ®EO®= ||
LOO® | @Q.é,m
SEEE - QOO~
SRR BNOloloRI=
E20:0:0 | | HO®®= |
SO . HE®®o__ |
- OIO- Ol - ...F 7|
130003 0 0 0 2
FWO®EREOOOOO®OOO®®®.

Solelelololelololelelelolelolok

Aa...@@00® BHEOO®«

— 0 ™M <t @

9
%

1

2
3
4
S

—f < <«

NI

EHARRI S STANDARD CELL DEVELOPMENT GROUP

" PACKAGE

Wisc Processor Control Chip 'Pin_ List

P IQOT

| maﬁf

B

 BUFFER TYPE

. PIN NAME _
e o PIN # ,
_ RAD[0:8] 19 | SC7200 - OUTPUT 100fp/10ns
VSS 0 SC7900 - DOUBLE VSS PAD
RAD[9:20] - 11:22 ' - SC7200 - OUTPUT 100fp/10ns
~VSs 23 SC7900 - DOUBLE VSS PAD = -
~ RAD[1I: 221 2425 SC7200 - OUTPUT 100fp/10ns
CRD[09] 2635 SC7270 - BIDIRECTIONAL TTL INPUT W/PD .
“vbbp 7736 SC7910 - DOUBLE VDD PAD .
VSS 3T SC7900 - DOUBLE VSS PAD
RD[10:21] 38:49 SC7270 - BIDIRECTIONAL TTL INPUT W/PD
VS 80 SC7900 - DOUBLE VSS PAD
'RD[22:31] ~ 51:60 SC7270 - BIDIRECTIONAL TTL INPUT W/PD
ONDIV. 6L SC7200 - OUTPUT 100fp/10ns
NDDS 62 SC7200 - OUTPUT 100fp/10ns

NDDP .63 . SC7200 - OUTPUT 100fp/10ns

NMROE 64 SC7200 - OUTPUT 100fp/10ns
MRXDR 65 .. SC7200 - OUTPUT 100fp/10ns
vVSST 66 SC7900 - DOUBLE VSS PAD
CNSMIR 67 SC7150 - TTL INPUT
NPRTY 68 SC7150 - TTL INPUT
- NMAST , 69 SC7150 - TTL INPUT
NDSRV 70 SC7150 - TTL INPUT
NDPER 70 . 'SC7150 - TTL INPUT
VDD . 72 SC7910 - DOUBLE VDD PAD
 NDMIR . oo T3 SC7150 - TTL INPUT
NDMA 74 'SC7150. - TTL INPUT
NCYCL . 75 SC7150 - TTL INPUT
NALUO 76 SC7150 - TTL INPUT
_NACOT 77 SC7150 - TTL INPUT
DVOSC 18 SC7150 - TTL INPUT
.. DLOLO 19 SC7150 - TTL INPUT
ALU3I1 80 SC7150 - TTL INPUT
~ BUS[0:9] ' 81:90 SC7250 - BIDIRECTIONAL TTL INPUT
vss o e SC7900 - DOUBLE VSS PAD
BUS[10:19] . 92:101 SC7250 - BIDIRECTIONAL TTL INPUT
VSS T 102 SC7900 - DOUBLE VSS PAD
BUS[20:24] . 103:107 SC7250 - BIDIRECTIONAL TTL INPUT
VDD 108 SC7910 = DOUBLE VDD PAD '
VsS= NP

/ZOT' !7C

mHARRIS STANDARD CELL DEVELOPMENT GROUP

Pl Wisc Processor Control Chlp Pm Llst corgtin'ued
PIN NAME T PA‘CK‘AGE* S ":”BUFFER .TYPE
R © |
BUS[25 29] 109 113 © 5C7250 - BIDIRECTIONAL TTL INPUT
. Vss - 14 R SC7900 - DOUBLE VSS PAD
| B’”ffspo 311 105116 . SC7250 - BIDIRECTIONAL TTL INPUT
. NMRCE our - SC7200 - OUTPUT 100fp/10ns -
: - NWMRA s - 8C7200 - OUTPUT 100fp/10ns -
~———f>Nspc R | | 'SC7200 - OUTPUT 100fp/10ns
’ ~ NSFLG o120 - SC7200 - OUTPUT 100fp/10ns
_NSDS a1 ~ SC7200 - OUTPUT 100fp/10ns
" NSDP 122. SC7200 - OUTPUT 100fp/10ns
NSDLO 123 SC7200 - OUTPUT 100fp/10ns
NSDHI 124 SC7200 - OUTPUT 100fp/10ns
NMULT. 125 .. - SC7200 - OUTPUT 100fp/10ns
NMRXE - 126 SC7200 - OUTPUT 100fp/10ns
XSS i A QT SC7900 - DOUBLE VSS PAD
NSINT o128 - SC7200 - OUTPUT 100fp/10ns
NRAM . 129 ’ SC7200 - OUTPUT 100fp/10ns
| NDRW 130 SC7200 - OUTPUT 100fp/10ns
NDRB. 13l SC7200 - OUTPUT 100fp/10ns
“"MADI[10:3] 132:139 | SC7200 - OUTPUT 100fp/10ns
vVss . 140 SC7900 - DOUBLE VSS PAD
" MAD[20] 14l 1143 : SC7200 - OUTPUT 100fp/10ns
VDD 144 SC7910 - DOUBLE VDD PAD

vss= eNI

i

‘?,zld"]) (/.‘/#D " {/,/

f-‘jn
=

ol

e

Y]
R e]

[an]

(a3 _
yn] B

-
)

(e N]
e}

o

) _j.
0l

e

[Xw]
[x¥]

[0
Daxd] NN

x|

DL

DOk D}
i o

o
B]

1
)

[l
W

Dan)
(I

ui

[Fd

=0 RaLed S8 0FIAS

<
i

88&T-10-

'NDDS .- 4 :
NDDP._. 15
. NMROE _
~ NCYCL. - |
NDMIR
NMAST
BBy
CBUSGT]
VDD
CBussis]
_BUS{16:23]
VDD -
| BUS[24:31]
vss
VDD
MAB

\/SS

33
34

43

63

(mﬂ

SR scnso TTL INPU’I';‘_ :
~SC7150 - TTL INPUT
. SC7150 - TTL INPUT -
" SC7150 - TTL INPUT = -
~'SC7150 - TTL INPUT'_'_
~SC7150 - TTL INPUT
- SC7150 - TTL INPUT
- 'SC7150 - TTL INPUT

- 8C7150 - TTL INPUT

- SC7150 - TTL INPUT
, sc7910 DOUBLE VDD PAD

4451

P

T
55162

T 6572

s SC7900 DOUBLE VSS PAD
'SC7150 - TTL INPUT
~SC7150 - TTL INPUT
SC7150 - TTL INPUT

' SC7150 - TTL INPUT .
SC7150 - TTL INPUT
'SC7150 - TTL INPUT

SC7150 - TTL INPUT
SC7150 - TTL INPUT

SC7910 - DOUBLE VDD PAD
SC7900 - DOUBLE VSS PAD e
- SC7250 - BIDIRECTIONAL TTL INPUT i
5C7910 - DOUBLE VDD PAD

SC7250 - DOUBLE VSS PAD e
SC7250 - BIDIRECTIONAL TTL INPUT
SC7900 - DOUBLE VSS PAD |
5C7250 - BIDIRECTIONAL TTL INPUT
SC7900 - DOUBLE VSS PAD' |
SC7910 - DOUBLE VDD PAD

- 8C7250 - BIDIRECTIONAL TTL INPUT; :
'SC7900 - DOUBLE VSS PAD :
. SC7910 - DOUBLE VDD PAD

. SC7160 CMOS INPUT '

@HARRIS STANDARD CELL DEVELOPMENT GROUP T
 Wisc Processor Data Chip Pin List continued

PINNAME PACKAGE BUFFER TYPE
| » PIN # : D |
- \Vss““*~~~*73 S SC7900 - DOUBLE VSS..PAD
MADI8] 4 SC7160 - CMOS INPUT
N s | e B

VDD 16 , ' SC7910 - DOUBLE VDD PAD
MAD{9:10] 77:78 -~ SC7160 - CMOS INPUT
NDPER . SC7200 - OUTPUT 100pf/10ns
NALUO 80 | ~ SC7200 - OUTPUT 100pf/10ns
NACOT 81 - | 'SC7200 - OUTPUT 100pf/10ns
,boo & SC7200 - OUTPUT 100pf/10ns
"ALU3I 83 ~ SC7200 - OUTPUT 100pf/10ns
VSs 84 . SC7900 - DOUBLE VSS PAD

V$5= MY

c27
48 FIN

F—-04-1988

-

2)

DATE

L5

RADE —
- ERDZ
RADG —
EAlE —
RalE
FREIH -

M o

T I

= =
P P

: 00
Illllll

s s

I;. .

aLew]

o T,

T
[

HBFE

1

L EEEEEEEEEEEE
a0 I I T T I U 0 bte oot ot oot gt s, 3 oo 0, S0

o D DR T w R Ty DN T

VLTI 1 b b b et

D e ol O)

T o P O L OO T e

RS
H
H
3
i+
B3
B3
B
k2
]
RS
Bz
2
4
4
-
-]
44
5
B

e
-
—

o i;-

PHIL EOORMEH JR.

ADDE TO FEAM RIBEOM CABLE "a"

JFILE: PROTIS:

FROT1?

FILE:

s

-

PRI

c2g

5]

§
4

&

8

i
ok

i

1i
i3

PHIL KO

b=

s
i

P] Tl R
T

v OO
xR0

r-ll']

I

T
N0 5 " Sl S 0 5
I il l 1.1
L EEEEEEEEEEEE. LR

DU R b RO D T R N DR X DA DR
Kb e B L DR IR LR Ex]

oot AT et S (T e R T
AT m»-m--hnqw-.--u IJllJl lJ(lJi |_|«-, ¥ t

LBLHT-H0-TTHRLYA O LOMA =

PROTO-32 VI 11/2e,87 10K g
® . el IR e (-]j:m TR RN o k [
‘ , ::' . —— BAKOe | QPNMLKIHGFEDCBA -

-

=0 ept {134 || 111

‘cet.
it

D ores J61

TP 18 {(’(| o Soctex R q [
eI Y

Py
-~

(C>. 1987 PHIL' KOOPMAN JR.

RN - 2

S50 e |p 1m .
o) me—) SR R] R S EECE—— —=
g .:“ | — . : = : ~ — - ‘ ..“;CQQ ! 3:11’5." 37_ 3: N 121_‘-"’_';2‘41(7}“.;,

1
~F~H¢-#‘Q¢\IC\MAme

R SR T

[2 0 O SR .
BUGGEGO= =

SR

‘ '%gg

= P P2 R

poaee 374 |]

e 273 (P e 244 |F

c13 vil S
1.0

[

!
4

DraLs373, |

Tis —
ik

w3 b

AT

T e

15 373

: 1 142 P 0138 : : : BN | S
® |+s : ;rn T , _ - : : b 1e. 373 |0 124 244

