
Harris Real Time Express™

Background information on a
new concept for real time control, plus

descriptions of the RTX™ software development system,
development board, toolbox,
and the FORTH environment.

{II HARR.IS,

Real Time Express™, and RTX ™ are trademarks of Harris Corporation

HARRIS SEMICONDUCTOR
© 1988

Table of Contents
PAGE

Harris RTX: a new concept for real time control

What are the requirements for "real time" .. .

High speed microcontrollers - a new alternative . 1

RTX 2000- performance through simplicity/parallelism . 2

Substituting parallelism for pipelining . 2

Stack based processors .. : 3

RTX - providing flexible hardware/software partitioning . 3

RTX vs. conventional RISC processors... 3

RTX multi-tasking .. 4

FORTH: well suited for real time systems . 4

RTX compilers for other languages , . 5

RTX 2000 - well suited for real time Al . 5

RTX algorithmic coprocessors.. 5

Real time software development complexity . 6

Structured programming support . 6

High level language operation . 6

Software productivity. 7

Real time debug . 7

Rapid time to market . 7

RTX questions and answers . 8

Software development system . 12

Development board . 14

Toolbox .. 16

FORTH: a software development environment . 23

Harris Semiconductor sales headquarters .. 24

Real Time Express, RTX, RTX 2000, RTXDS, RTXDB, RTX Toolbox,
Harris RTX, and ASIC Bus are Trademarks of Harris Corporation

Harris Real Time Express
A New Concept For
Real-Time Control

WHAT ARE THE REQUIREMENTS FOR "REAL TIME?"

"How fast is fast enough for real time?" is a complicated
question because of the application specific nature of real
time computing. For example, an acceptable real time
response for a transaction processing system· might be a
half-second response to a query. For an avionic control
system, however, a half-second response to an external
event is likely to be too slow. For the former, conventional
data processing type processors are clearly an effective
solution to real time requirements, but in many applications
-- data acquisition, process control, robotics, local area
network controllers, digital sigf')al processing -- the
response within a critical time period is extremely important.
As a result, real time can only be defined within the context
of the end application. It is driven by the processing require­
ments to meet time critical external events.

Many computers need fast instruction execution speeds.
However, for real time applications interrupt latency and
context switch times are important specifications in addition
to the raw instruction execution speed of a processor.
Recent advances in hardware and software have reduced
response times for interrupts and context switches down an
order of magnitude for many processors, to the many tens
of microseconds or many hundreds of microseconds,
respectively. The RTX 2000 brings these response times
down another order magnitude to 400 nanoseconds for
interrupt response time,and two microseconds for context
switch time, while achieving an instruction execution rate
over 1 O MIPS.

A key consideration for real-time processing is
predictability. Most general purpose computers have
features to improve average instruction execution times.
Features such as pipelines, caches, on-chip registers, and
optimizing compilers all contribute to an improvement in
average execution rate. But, they also contribute to more
uncertainty with respect to critical timing predictability. As a
result, external logic, such as OMA controllers or 1/0
processors, must be provided to support all but the most
routine interface requirements with the externJ1 world. The
RTX 2000 significantly contributeS, to moving more
hardware into software as a result 'of high instruction
execution rate, rapid responses to external events and pre­
dictable timing of instruction execution.

HIGH SPEED MICROCONTROLLERS - A NEW
ALTERNATIVE TO CONVENTIONAL MICRO­
PROCESSORS FOR REAL TIME

Most conventional microprocessors are optimized for an
office automation computer or computer-aided workstation
compJting environment. Significant complexity is added to
these tnachines in order to support th~ memory manage­
ment and general purpose data processing requirements of
these applications. Microcontrollers, on the other hand, take
advantage of the increased circuit density made possible by
advances in silicon processing to enhance the device for
controller or othe,r specific applications. This has produced
a large variety of devices that are useful for specific applica­
tions as well as microcontrollers for more general purpose
use. However, microcontrollers have traditionally been
much slower than microprocessors and have not been
optimized to support real time applications.

Microcontrollers can be broadly classified as either applica­
tion generic or application specific. The generic products,
such as the RTX 2000, provide solutions for a broad variety
of applications. The RTX 2000, however, with its unique
ASIC Bus, provides the capability of optimizing the solution
by simplifying the partitioning between hardware and soft­
ware through the use of external ASIC peripherals. The
obvious extension to this philosophy is to incorporate those
peripherals on the ASIC Bus within the IC. Therefore, appli­
cation specific devices (both standard product or customer
specific) can be developed as a natural extension to the
core processor.

The emergence of high speed 16-bit microcontrollers provi­
des a new opportunity to replace hardware with software. A
major limitation to the ability to replace hardware with soft­
ware has been the performance constraints of software
solutions. Th~ RTX 2000's substantial increase in
performance provides new opportunities to replace random
logic with software providing significant improvements in
flexibility and time to market. For example, because of the
very high speed of the RTX 2000, a full duplex UART can be
emulated in software and requires less than 1 o/o of the pro­
cessor's bandwidth to perform the functionality of a 1 500
gate UART.

RTX 2000 - PERFORMANCE THROUGH SIMPLICITY/
PARALLELISM

The RTX 2000 achieves performance through simplicity.
The chip is designed for simplicity. It has no pipeline; no
microcode sequencer; and no microcode. All instructions
except memory access instructions execute in one cycle
(memory access instructions execute in two). The RTX
2000 minimizes address calculation delays by incorpora­
ting a simplified memory paging mechanism, and eliminates
the complexity of multiple addressing modes and memory
management. The RTX 2000 is a stack machine. Stacks fa­
cilitate the evaluation of expressions and minimize the con­
trol overhead needed to organize data. The stack uses only
a single pointer register to keep track of and access its data.
A stack machine not only uses a stack for temporary data
storage, but executes all operations on data from the stack.
The ALU thus finds all of its data in a pre-defined location,
and can get that data without an address specification. In
addition, no addresses need to be compiled for stack
access. The RTX 2000 also has a hardware return stack
which handles subroutine return addresses. This stack can
also be used for temporary data storage as well.

The RTX 2000 instruction set is sub-divided into six
instruction classes, with each section controlling a hard­
ware operation. Like horizontally micro coded bit slice
architecture instructions, multiple operations can be
compacted and coded within a single OP code to execute
in parallel. Four separate buses for the data stack, return
stack, memory and ASIC Bus and operate in parallel, signifi­
cantly increasing instruction execution efficiency. For
example, the OP code BE68 (8 G@ ;) simultaneously
references all four address spaces. It fetches a 16-bit data
value from the ASIC Bus, pushes it onto the data stack,
forces a subroutine return, which pops a 20-bit return
address from the return stack and fetches the next instruc­
tion all within a single clock cycle.

In a conventional processor, high-level structured
programs are converted from groups of procedures with
stack-oriented local variables to machine code. A
considerable change in the look and feel of the program
takes place as high-level language operations are
transformed into groups of primitive operations. While the
complex machine instructions that may support such stack
operations (such as frame pushes and pops) and even fetch
a variable (given a frame pointer and an offset) the paradigm
switches from variables and frames (in a high-level
language) to registers and memory pointers in machine
code. The means of passing information between many
high-level language procedures is the stack. The way of
passing information between conventional machine
language instructions is through registers or discrete
memory locations. The fundamental mechanisms are

2

completely different. Furthermore, conventional machines
do not support efficient subroutine calls. Many clock cycles
are required for managing the internal operations.

The RTX 2000 uses simple, and fast hardware to execute
high semantic content instructions that closely reflect the
structure of the program. Performance is not penalized for
organizing programs into small, compact, understandable
procedures. This results in compact program structures that
are composed of hierarchically arranged solutions to sub­
problems. Thus programs can be simultaneously optimized
for small memory space, fast execution speed, and low
development costs. This allows the hardware/software
environment to deliver cost effective solutions to the users
problems.

SUBSTITUTING PARALLELISM FOR PIPELINING
IMPROVES SPEED WHILE IMPROVING REAL TIME
RESPONSIVENESS

Pipelining is a common architectural strategy to increase
the speed for conventional processors. For example,
portions of a processor concentrate on fetching
instructions, fetching operands, computing values, compu­
ting next addresses, and storing results. This method is a
very efficient mechanism to increase speed for sequentially
executing programs at a relatively small cost of added hard­
ware complexity. However, pipelining impacts the timing of
instruction response to subroutine calls, interrupts, and
context switching, and the speed increases achieved by
pipelining can be lost for highly structured programs.

The RTX 2000 abandons the use of pipelining as a means
to increase circuit speed, and substitutes parallelism. The
parallelism comes from exploiting two fundamental charac­
teristics of the RTX architecture. The dual stack Quad Bus
architecture provides an efficient mechanism to increase
simultaneous operations. Harvard architectures have
become increasingly popular in many applications
because they effectively double the bandwidth of a micro­
computer bus system. However, this is at the expense of
increased interface requirements to separately address and
interface both the data and program memory spaces.

In the case of the RTX 2000, parallelism is achieved by
having on-chip stack memory for both parameters and re­
turn addresses, as well as an interface to main memory and
the ASIC Bus for hardware acceleration. Since the stack
buses are on-chip, 1/0 restrictions are eliminated. Also,
since stacks are implicitly addressable without requiring
address fields in the instruction, the number of functions
that can be included in each word is increased. This leads
to a significant improvement in performance due to the
increased amount of work that is done within every
instruction execution.

Another important difference between a conventional RISC
machine and a CISC machine is the large semantic gap
between high-level language source code and its corre­
sponding machine code. This results in creating a large
number of machine instructions for every high-level
language instruction. The RTX 2000 differs dramatically
from that mode of operation by having a single instruction
correspondence to most FORTH instructions and, in fact,
can pack up to three FORTH instructions in a single word.
This high semantic content in each instruction greatly
improves the effective operating speed of the processor.

Another limitation of pipelining in a heavily structured or
asynchronous real time environment is the inefficiency and
uncertainty of emptying and refilling the pipeline when bran­
ches or interrupts occur. The RTX 2000, by eliminating the
pipeline, significantly improves the utilization of all available
memory cycles and reduces the timing uncertainty of
instruction execution.

STACK BASED PROCESSORS - OPTIMUM FOR REAL
TIME STRUCTURED PROGRAMS

Conventional computers are optimized for executing
programs made up of streams of serial instructions.
Conversely, modern programming practices stress the
importance of non-sequential control flow, and small
procedures. The result of this hardware/software mismatch
in today's general purpose computers is a costly
sub-optimal compromise. In fact; the very philosophy of
conventional RISC architectures is to implement only the
most used instructions by studying software programs
which have been based on existing architectures. This is a
self-perpetuation of the programming style dictated by regi­
ster based Von Neumann machines. The RTX 2000 takes a
radically different approach by optimizing the instructions
set to the requirement of a particular high level language
(FORTH) which is well suited to real time control. However
the architecture is also well suited to other high level
languages. The objective is to promote the use of a highly
structured programming style for real time, without the
usual performance penalties. The RTX 2000 provides an
efficient procedure for subroutine call through the use of the
stack to store the parameters and a highly efficient
subroutine call itself. A subroutine call takes only one clock
cycle and the return can take zero clock cycles (since it can
be implemented within the last instruction of the subroutine
sequence).

RTX - PROVIDING FLEXIBLE PARTITIONING
BETWEEN HARDWARE AND SOFTWARE

While semicustom ICs provide an attractive performance
and integration alternative to standard microprocessors,
they are not amenable to dealing with change. Off the shelf
programmable ICs, with their support hardware and soft-

3

ware tools, offer far greater flexibility. Consequently, when
designers face requirements for both high performance and
adaptability, some are finding that a mixture of application
specific ICs and standard products is the optimum
approach. The ability to partition the task between hardware
and software is an important element in achieving total
system performance. The RTX 2000 significantly increases
the speed of solving hardware problems in software. In
some applications, however, only hardware is fast enough.
The ability to make an efficient partitioning between what is
implemented in hardware and what is implemented in soft­
ware is a key element in achieving system cost and
performance objectives. The RTX ASIC Bus is a unique
approach to assist developers in partitioning hardware and
software efficiently. Because the memory bus and ASIC
Bus run concurrently and the ASIC Bus can be operated on
directly by RTX instructions, hardware accelerators can
easily be added internally or externally to speed up
processing functions.

RTX vs. CONVENTIONAL RISC PROCESSORS

Traditionally, most embedded control processing functions
have been performed by general purpose microprocessors
such as the 8086, 80286 or 68000 family. With the
emergence of RISC computers, many manufacturers are
claiming that they are well suited for embedded control
applications. RISC processors are generally optimized for
the requirements of 32-bit workstations and super
microcomputers. While they are clearly capable of
providing computing power for embedded applications,
they have many specialized features that relate to
supporting the UNIX environment and the specific
requirements of computer aided engineering. While these
processors have a small simple instruction set to achieve
speed, they are hardly simple devices, most having in
excess of 200,000 transistors, extensive memory
management, and extensive pipelining. In addition, they
require complex compilers to create efficient optimized
code. As a result, the programmer loses visibility into the
actual operations of the machine, thus creating a difficult to
design environment for time critical functions. Since the
machine is dependent on the operation of this optimizing
compiler, programming in assembly language for those
time critical applications is prohibitive.

While on-board memory management is useful for comput­
er aided engineering functions in a multi-user environment,
most realtime applications run logical to physical, not using
virtual addressing at all. There's usually no need for virtual
addressing in realtime applications. While the protection
features of a memory management unit can be handy
during program development, they are usually not required
once the finished code is running.

Most RISC machines make extensive use of registers. As an
example, the AMO 29000 has 192 general purpose regis­
ters on board. While each task may not use all registers,
swapping out an extensive set of registers during a context
switch creates an excessive latency problem which is often
unacceptable. Allocation of a fixed number of registers to
each task becomes a confining condition for the compiler.

Several characteristics of FORTH facilitate a simple scheme
for context switching. Conventional architectures are not
fast at context switch because they use a large number of
registers. Saving or restoring a FORTH task in an RTX con­
text switch takes little time because FORTH uses as few as
three registers. The RTX 2000 core contains only eight
registers so that a complete context switch to store all of the
registers can be done very quickly.

RTX - EFFICIENT OPERATION FOR MULTI TASKING
REENTRANT PROGRAMS

Although all real time operating systems are multi-tasking,
not all multi-tasking operating systems are real time. Unix,
for example, takes far too long to answer interrupts and
make a context switch to suit real time applications. Its file
structure suits program development, but not online control.
Unix does not use reentrant code. If 16 users invoke an
editor, then Unix loads 1 6 copies of the editor, thereby
consuming large amounts of memory. Further, it has only
rudimentary facilities for inter-task communication
synchronization.

Another advantage of a stack oriented machine is the
capability to efficiently support reentrant code. Reentrant
code is useful in real time systems for two reasons: first, it
saves space, because many tasks can use the same
reentrant code simultaneously. The fastest real time
systems must keep all code in memory -- a practice that
puts a premium on compact coding style. Second, reentrant
code exactly suits multi-tasking since you can interrupt the
process using reentrant code at any point in the code
segment, and later resume the process with no adverse
effects. FORTH produces code that is inherently suitable for
reentrant programs. Other languages require discipline on
the part of the programmer. Making a routine reentrant
simply means that all variables must reside in an area
private to the task using the code, not in the code itself. The
penalty for using reentrant code can be increased overhead
or more CPU cycles for conventional processors, because
read and write operations are indirect rather than
immediate. Because FORTH promotes an object oriented
programming style, reentrant programs are more
manageable and comprehensible, especially in a multi­
tasking environment. Of all the languages commonly used
for real time control, only FORTH offers a straight forward
programming facility for building classes of objects.

4

FORTH - WELL SUITED FOR REAL TIME OPERATING
SYSTEMS

FORTH was originally developed for real time applications,
and from its inception it has included features designed to
simplify handling multiple concurrent tasks. Harris plans to
offer several real-time operating system solutions for the
broad variety of application requirements that the RTX 2000
will serve. FORTH, lnc.'s polyFORTH, for example, which
will be offered for the RTX 2000, includes a multitasking,
multiuser real time OS which has been widely used in
industrial and aerospace applications. polyFORTH uses a
proprietary multitasking algorithm which has been
benchmarked at between four and twenty times faster than
other real time OSs on CPUs of the 68000 and 8086
families (l&CS, October, 1987).

The secret to polyFORTH's speed is a "non-preemptive"
multitasking algorithm. This means that a task relinquishes
control of the CPU under well-defined, predictable circums­
tances, instead of having control taken away unpredictably
when a time interval is up or an external event requires
handling by a higher priority task.

In systems using preemptive multitasking, a task may be
suspended when it is partially through updating a variable,
for example. To avoid this, mailboxes or shared variables
may only be accessed through system calls, which resolve
potential conflicts at some cost in overhead. In polyFORTH,
however, such a situation cannot arise, and so a shared
memory region may be used to contain data of interest to
two or more tasks with no OS overhead involved.

The polyFORTH multitasker is a simple round robin, and
normally tasks don't have priorities. The non-preemptive
round robin algorithm ensures optimum performance to all
tasks. A task relinquishes the CPU whenever it performs
any kind of 1/0 operation (including "virtual 1/0" such as
writing into screen memory). When the operation is
complete, the task will wake up on its next turn. In most
real-time applications there is so much 1/0 being
performed that this is sufficient to guarantee rapid
turnaround. There are commands available to "tune" CPU­
intensive operations, if necessary. A real-time clock helps
you to monitor how long tasks have to wait to wake up, and
do whatever tuning is appropriate.

Another way in which polyFORTH ensures that all functions
are performed as fast as necessary is by having no OS
overhead whatever on interrupt servicing. Event response in
polyFORTH is a two-layer process: interrupts are serviced
instantly, with the hardware vector going straight into the
application service routine. This service routine handles the
most time-critical operations (reading a value and storing it
in memory, for example), then notifies the task responsible

for the interrupting device that the event has occurred. The
task will "wake up" on its next pass through the round robin
and handle the more complex aspects of processing.

The combination of low-overhead task management with
instantaneous interrupt servicing provides the ability to
handle extremely high data rates and complex real time
applications with ease.

RTX COMPILERS FOR OTHER LANGUAGES

While the RTX 2000 directly executes FORTH, efficient
compilers for other languages can also be developed. The
architecture for the RTX 2000 is well suited for providing
facilities for the efficient implementation of other languages
such as "C'', PROLOG and ADA. "C" compilers also use
stacks to create local variables and to pass run time
parameters among functions. "C" breaks tasks up into
functions. A "C" program consists essentially of a series of
functions with one beginning function specified as main ().
It is straight forward to implement a "C" language run time
allocation stack using the RTX 2000's fast access user
memory locations as pseudo-registers. Data can be
accessed by allocating one of the RTX 2000 pseudo-regis­
ters (first 32 words of memory) to create a pointer into the
stack. This stack can be used to file clusters of information
called frames. Offsets into the stack are addressed to fetch
as 2-part addresses. A routine to find data first asks which
frame and then which element in the fr.- e to fetch. A stack
frame is a miniature segmented memory with a 2-part ad­
dress.

Stack frames store information on entry to functions. They
permit temporary storage of variables and parp.meters so
that subsequent routines can run without interfering with
other functions, variables and parameters. The RTX instruc­
tion set pseudo-register operations support the capability
to develop an efficient "C" compiler. Since instructions
execute at a high clock speed, the use of pseudo register
enables micro code-like performance of custom "C" run
time stack instruction sequences.

RTX 2000 - WELL SUITED FOR REAL TIME ARTIFICIAL
INTELLIGENCE

The recent flurry of activity in commercial expert system
development has all but bypassed the real time computing
community. Although it is desirable to incorporate expert
systems in some real time computing applications, the
amount of computing over symbols (reasoning) required by
an expert system is difficult to implement in real time.
General real time symbolic processing has remained an Al
research problem, however a number of applications have
been implemented which use FORTH. FORTH provides an
integrated environment for both conventional data
processing and Al with a FORTH Prolog compiler. This
technique has been applied in a diesel electric locomotive

5

repair expert system, an orbiting spacecraft command and
control system, a spacecraft trajectory processing data
error detection system, and a real time polysomographer
sleep disorder diagnosis system. Other applications
include utilization of expert system capabilities for such
applications as radar and sonar processing, image
compression and analysis, etc. A Prolog compiler is being
developed which provides a set of high-level artificial intelli­
gence programming tools (i.e., inference engine,
language parser, etc.) built from FORTH primitives to take
advantage of the high run time execution speed offered by
FORTH. In this implementation, the Prolog interpreter is
imbedded in a FORTH environment. Real time algorithms
stored in the knowledge base through this mechanism can
subsequently be executed on a logic driven basis by the
expert system.

RTX ALGORITHMIC COPROCESSORS IMPROVE
TOTAL SYSTEM PERFORMANCE

Designers of both microprocessors and peripheral
interfaces are struggling to minimize the traffic jam their
own success has created. New techniques in bus
management, heavy use of specialized memories like
caches and FIFO buffers, and a new reliance on distributed
1/0 processing are all strategies being used to resolve
microcomputer 1/0 bottlenecks. As these techniques are
more widely used they are changing the architecture of
silicon components, and they are equally affecting the
practice of microcomputer system design. The RTX 2000
provides a significant capability to attack the 1/0 processor
and coprocessor requirements to improve overall system
performance by distributing the processing. Of significance
is the development of a shared memory to provide an effi­
cient interface between an RTX coprocessor and host. The
ability to have a stored program controller as a coprocessor
provides the capability to compute complete algorithms
rather than just a single operation at a time. This provides a
major improvement in the system performance due to
elimination of heavy bus overhead and the inefficiency of
tying up the host processor to service the coprocessor.
Such applications as Local Area Network controllers and
virtual disks, demand that memory pages be swapped over
the network or disks for remote file service, but the
increased frequency with which packets arrive and depart
can cause a workstation to approach its memory bandwidth
limitations. Another example is when a microcomputer
forms the backend of the signal processing system. Data
may be required for the digital signal processing algorithms
at very high rates. Maintaining data flow through the system
may demand that the system microprocessor continue run­
ning at these high speeds until all data is processed.

The push to make individual components run faster soon
runs into complications. The utilization of coprocessing
controllers within the microcomputer environment is a

technique which can significantly increase performance of
the overall system by reducing the amount of bus interface
time for the host processor. A powerful strategy for breaking
up bottlenecks is to move the 1/0 driver code from the CPU
to the peripheral controllers. An obvious example is in serial
concentrators where the processor monitors the number of
serial lines, accumulating data until the entire block has
been received. In a multi-user UNIX system for example,
this function usually requires a serial concentrator to
perform basic UNIX line editing functions since these ope­
rations must occur before the end of line character comes in
from the terminal.

The strategy of removing the responsibility for device and
housekeeping off the CPU and on to the peripheral
controller dictates that the device controllers become
programmable to pick up many of the tasks formerly
executed by the device driver software in the host. Moving
these tasks to the controller not only removes slow dumb
tasks from the central resource, but also spares the central
processor the hail of interrupts, context switches,
commands and status bytes that are a necessary side effect
of centralized device drivers. This not only maximizes 1/0
speeds, but it also simplifies the user's programming
requirements. The 1/0 controller concept provides a system
design that emphasizes distributed processing with a high
degree of concurrency and parallelism. In addition, this
architecture provides an environment that reduces the data
movement within the system.

Currently, 1/0 processors of this class are based on bit slice
architectures in order to provide the performance necessary
to manipulate data on the fly. A standard product micropro­
cessor such as the RTX 2000, with a high level program­
ming language, helps users interface standard 1/0 ports to
the host processor. The result is an architecture optimized
for high performance, but with a high degree of modularity
and user programmability, saving developers both time and
expense. The utilization of 1/0 processors also helps avoid
arbitration between devices producing input and output
data streams. Since the RTX 2000 has all of the provisions
to support direct memory access management, the
processor has the capability to incorporate smart DMA,
which relieves the host of this burden.

REAL TIME SOFTWARE DEVELOPMENT IS MORE
COMPLEX THAN CONVENTIONAL PROCESSING

The characteristics of real time software systems that set it
apart from conventional data processing applications are
that real time systems must:
• Respond to real world stimuli.
• Within a finite period of time.
• By directly manipulating hardware resources.
• As a set of concurrent asynchronous processes.
• With a high degree of reliability.

6

The RTX family contains both software development tools
as well as fast hardware to operate in this environment. It
promotes an interactive programming environment which
has four primary attributes:
• A set of highly integrated tools.
• Which are low cost and simple to use.
• Which do not burden the target system with

unnecessary complexity.
• Which promote use of the underlying structure of the

program as an organizing tool.

STRUCTURED PROGRAMMING SUPPORT REDUCES
DEVELOPMENT /DEBUG COSTS FOR REAL TIME

Hardware that is fundamentally based on the concept of
modularity and programmer interactiveness will lead to
changes in programming style that will better support
efficient software development. The expense of using a
software programmable microcontroller to solve a problem
consists of not only the money for hardware, but also the
development costs of creating and debugging the code.
Previously the cost of solving problems with computers was
dominated by hardware costs, but as hardware costs have
plunged, software costs have grown by leaps and bounds.
This is nowhere more evident than real time control. Real
time control applications tend to be significantly more
complex than conventional programming and, ironically,
offer the least amount of high-level language support for
those time critical functions. The developer is caught in the
dilemma of trying to write most of the program in a high­
level language support such as C or ADA, only to have to
merge in assembly language programming for the most
time-critical applications. Worse, during the debug process
there is a poor correlation between what is written in the
high-level language and what appears in the machine
language, because the compiler has dramatically altered
the programming style of the program. The compiler
modifies content by providing optimization including the
unrolling of loops into in-line code, and expanding the
lowest level procedures as macros within the calling
routines.

RTX - MAINTAINING KNOWLEDGE OF HARDWARE
OPERATION WHILE EXECUTING A HIGH LEVEL
LANGUAGE

Since the RTX creates a virtual FORTH machine, the
correlation between the high-level FORTH language and
the operations executing in the FORTH engine are closely
coupled. Therefore, the uncertainty with regard to what the
compiler is doing to the source language of the real time
system is significantly reduced. Also, by providing symbolic
capabilities within the development system and operating
completely within the high-level language, software and
hardware debug and integration is significantly simplified.

Optimizing compilers obscure the correspondence
between source code and compiled object code. Programs
written in a high-level language that need to meet specific
response time specifications require the programmer to
switch on the compilers optimizer and then debug
optimized code. Among the many techniques optimizing
compilers employ is register allocation by coloring. Coloring
keeps the most commonly used values and registers at all
times. The compiler examines the entire subroutine to
determine which local variables and parameters are used
most often in a routine. It allocates them to registers.
Further, the register allocator can use data flow analysis to
find the lifetime of each variable. Using this information it
can increase the number of variables that get stored in
registers by using the same register for several variables in
the same subroutine.

A software developer must be very familiar with the
operation of the compiler in order to understand the
implications of what is happening in real time software. The
designer cannot be assured of just where program varia­
bles are as when programming in assembler language and
making the variable assignments explicit. A key feature of
writing in FORTH and executing in FORTH on the RTX
2000 is the close correlation between the high-level
language and the actual execution of the machine. Real
time programs which must respond in a critical time period
can therefore be more easily designed since the complete
operation of the machine is understood.

RTX IMPROVES SOFTWARE PRODUCTIVITY FOR
REAL TIME
According to the Defense Science Board Task Force on mil­
itary software, most software productivity gain has been
brought about by three factors. First is utilization of a high
level language. The removal of awkwardness of machine
language has been shown to increase software productivity
by a factor of 1 0. While the benefits of a high level language
have been available for low performance functions, many
real time applications heretofore have often been
programmed in assembly language. Even with high level
languages, slow turnaround, edit, compile, link, load, and
debug cycles contribute to a loss of mental continuity in the
development and debugging of software. An integrated,
interactive dev;elopment environment has been shown to
result in improvements in productivity from two to five.
Finally, compatibility of files, formats and interfaces among
the various tools has been demonstrated to increase prod­
uctivity by a factor of two. These are precisely the benefits of
FORTH that have been incorporated into the RTX family
development tools.

REAL TIME DEBUG DEMANDS SPECIAL CONSIDERA­
TIONS TO OPERATE AT FULL SPEED

In a typical software development environment (the host
and target method), programmers use a general purpose

7

host such as a DEC VAX, a GAE workstation, or an IBM PC
AT to generate application code. After they write the code,
programmers must transport it to the target for final testing.
Unfortunately, for most embedded microprocessor
development the target system does not offer enough
programming and test resources to support the total
development process. In order to debug the hardware, an In
Circuit Emulator (ICE) is the most traditional vehicle for
testing programs written for embedded processors. While
an ICE is a powerful tool for software and hardware integra­
tion, its high cost may be difficult to justify for an application
specific device. Of more importance, the cabling require­
ments and timing constraints for a 10-MIP processor
provide a significant performance limitation in the feasibility
of debugging the system at full speed for realtime applica­
tions. The Harris approach provides a real time
debugging monitor in the target system and is an excellent
alternative to ICE. Because the RTX is fully static and
eliminates pipelining, the problem of getting the hardware to
work initially can be solved through single step operations
using low cost logic analyzers and the host development
system. Then the full capabilities of the integrated
hardware/software development system can be used to
provide a cost effective and high performance approach to
achieving hardware/software integration.

RTX - OPTIMIZED FOR RAPID TIME TO MARKET

Time to market is becoming an increasingly important
criteria for the makers of electronic systems. The problem
has been intensifying as product lifetimes have
progressively shortened. Makers and users of semicustom
chips feel the pressure even more because of the need to
generate prototypes before a system can be debugged and
demonstrated, much less marketed. The RTX 2000
provides a cost effective means of implementing a core
based processor in a semicustom environment. Because it
is a standard product with an ASIC Bus designed to
accommodate application specific peripherals, prototypes
can be rapidly developed with a standard product. This sig­
nificantly lowers the risk of development for a complex
microcontroller based on a core processor. Because the
ASIC Bus can be integrated on-chip, future versions can
incorporate not only the core processor, but the external
peripheral logic and memories all on one chip.

In almost every project -- military or commercial -- the
faster the prototype is up and running the more likely the
system will meet the market window. Shorter prototyping
time means getting to market faster, with less risk. Realtime
systems tend to have complex relationships with external
hardware. A hardware prototyping vehicle is a useful
mechanism to validate real time performance and is compli­
mentary to the use of simulation.

RTX Questions and Answers

Q. What is Real Time Express (RTX)?

A. The Real Time Express is the new name for our FORTH­
based RISC computer technology we previously called
FORCE. RTX is an acronym for Real Time Express.

Q. What is RTX 2000?

A. RTX 2000 is the first standard product based on RTX
technology. It is a high performance 16-bit
microcontroller with on-chip timers, interrupt controllers,
and 16x16 multiplier. A unique feature of this processor
is the high performance ASIC bus which provides for
architectural extension using off-chip hardware
acceleration logic and application specific 1/0
devices. The RTX 2000 has been designed and fabri­
cated using the Harris standard cell library and compilers
and can be incorporated into customer ASIC designs.

Q. What is the RTX Family?

A. The RTX Family will include a broad variety of general
purpose microcontrollers, standard product application
specific products (such as LAN controllers) and custom­
er specific ASIC's.

Q. Why did you change the name from FORCE to Real
Time Express or RTX?

A. FORCE (FORTH Optimized RISC Computing Engine)
was an accurate description of the product, but it did not
focus on the primary strength of the product - real time,
and fast time to market. While the architecture is FORTH
optimized, it supports C well and we expect many other
languages to be supported in the future. Also, we wanted
to avoid confusion with FORCE Computers - a board
computer company.

Q. What type of applications are best suited for RTX?

A. The RTX 2000 is best suited for applications requiring:

• extremely high speed instruction execution rates

• very high speed fixed point arithmetic requiring 16 bits
or less precision (including 1 OOns 16x1 6 multiply)

• moderate speed floating point (speed similar to 8087)

• fast response to interrupts (400ns)

• rapid context (task) switch (2-5µsec)

• rapid decision times (1 OOns)

• high integration with peripherals on chip

• form factor/minimum chip count

• extremely low power dissipation at high speed
(300 MW typ.@ 10 MIPS)

• full static CMOS with near zero power at idle

• memory requirements <1 Mbyte

• path to semicustom

• embedded expert systems (artificial intelligence)

• multi-processor configurations

8

Q. What type of equipment requires this type of pro­
cessing capability?

A. Computer 1/0 controllers (LAN, graphics, disk, DMA,
etc.), computer peripherals (laser printers, line printers,
FAX, copiers, disk drives, optical storage), communica­
tions (PBX, T-1 multiplexers, statistical multiplexers,
fiber optic links), robots, machine vision, medical, avion­
ics (1553 communications, display drivers, closed loop
control systems, countermeasures, radar, sonar, etc.
etc.) missiles (similar to avionics}, process control, instru­
mentation and test equipment, machine controllers,
commercial aviation.

Q. Can RTX serve digital signal processing (DSP) appli­
cations?

A. Definitely. While there are some competitive products
which are optimized for specific DSP operations, the
RTX offers excellent general purpose DSP capability due
to its high instruction execution rate, on chip 16 x 16
multiplier and stack architecture. A significant advantage
is the ability to achieve high speed while programming in
a high level language. In addition, RTX can implement
the data acquisition and control algorithms offering very
high integration. DSP peripherals can be attached to the
memory or ASIC bus to further accelerate DSP functions.

Q. Why 16 bits, when others are introducing 32 bits?

A. The RTX packs more work in its' 16 bit instructions than
32 bit RISC processors due to its' innovative architec­
ture. Most real time controller systems interface with 8 -
1 O bits (video) or 1 2 - 16 bit (sensor) analog/digital
converters which don't require 32 bits of precision. Also,
data handling for LAN, graphic and other computer
peripherals is done with 8 or 16 bit words. 32 bits
creates larger, more expensive die, requires more exter­
nal memory and bus drivers, and dissipates more power.
32 bit processors also restrict the amount of on chip
peripheral functions which can be integrated at the same
cost and create added complexity for interfacing to 8
and 16 bit peripherals common in real time control.

In summary - for most real time applications, 16 bits
does the job, at the same or superior performance as 32
bits, with lower price, with lower power, with more on
chip functions.

Q. Does that mean RTX can't do 32 bit arithmetic?

A. No. The RTX performs 32 bit arithmetic and shifts.
However, in applications requiring extensive 32 bit oper­
ations, a 32 bit processor may outperform us.

Q. What about those applications where 32 bits seem
necessary?

A. Do you need to address a much larger memory space?
Do you have extensive 32 bit data precision operations
or require the highest performance possible in floating
point? Do you really want to pay more for equivalent
performance? Have you considered the added cost of
memory for 32 bit high speed systems and the uncertain
timing of cached, pipelined systems? Most 32 bit
processors are > 1 OX power and require 4X the
peripheral circuits. However, if you really need 32 bits -
we are developing an RTX 32 which will be announced
later this year.

Q. Can RTX 2000 do floating point?

A. Yes. The RTX 2000 performs 32 bit floating point in soft­
ware at about the same speed as an 8087 and in some
cases as an 80287. Our compiler will have a full set of
floating point functions. If faster speeds are required,
floating point accelerators or ASICs can be attached to
the ASIC bus to speed up floating point operations. A
future product containing internal floating point is
planned. However, some applications requinng
optimization for highest speed floating point may be
better served by other processors.

Q. Are there evaluation boards?

A. Yes, we have a development board which contains the
RTX 2000, 16K bytes of EPROM, 32K bytes of RAM,
three parallel input ports, three parallel output ports, a
UART and user breadboard space and memory expan­
sion space. This is available for $1,500. A technical
backgrounder (Harris RTXDB Real Time Express Devel­
opment Board) describes the capability of the board. Ask
your sales rep.

Q. Are there software and hardware development
tools available?

A. Yes, a complete software and hardware development
system (RTXDS) can be purchased for $3,000. This in­
cludes the development board above plus software
development programs and a hardware de-bugger. A
description of this capability is contained in a Technical
Backgrounder (Harris RTXDS Software Development
System). Contact your rep.

Q. Why is RTX well suited for real time control?

A. Fast instruction execution, fast interrupt response time,
fast context switch, fast branching, fast subroutine call/
returns, predictable timing, FORTH language. For more
information see Technical Backgrounder: Harris Real
Time Express (RTX): A New Concept for Real Time
Control.

9

Q. How is this microcontroller different from all the
other newly announced RISC processors?

A. The AMD 29000, Motorola 88000, MIPS and SPARC
RISC computers are 32 bit processors which have been
designed to be the central processor for computer aided
engineering workstations and large general purpose
computers. They are optimized for supporting multiple
users solving large computational problems requiring
large memories. They require significant support logic to
implement a complete computer.

The RTX is optimized for embedded real time control.
RTX eliminates the complexity required for large multi­
user general purpose processors and increases the
functionality and performance for real time applications.
A minimum system based on the RTX requires far less
support products than other RISC processors.

Q. Why can't other RISC processors meet the time crit·
ical requirements for real time control?

A. Other RISC processors (and even complex instruction
set {CISC} processors) have timing that is difficult to
predict due to the use of caches, pipelines, and
optimizing compilers which make actual performance
extremely variable. Also, interrupts, branches, and con­
text (task) switches can take up to an order of magnitude
more time under worst case conditions than the RTX
because pipelines and caches may need to be emptied
and refilled.

Q. Why did Harris build a processor which directly exe­
cutes FORTH?

A. We licensed (and subsequently have purchased) the
core processor technology from Novix. Our first reason
for selecting the processor was not FORTH. We
recognized Novix achieved a major breakthrough - a
processor which achieved performance through simplic­
ity. A processor which could meet the requirements of
real time control. A processor small enough to integrate
into a CAD system and have enough space to integrate
memory and 1/0 without creating large chip sizes and
expensive die.

It turns out also that FORTH is a language well suited for
real time embedded systems. FORTH creates compact
code. FORTH is fast. FORTH simplifies real time devel­
opment. FORTH is capable of primitive operations yet it
is extensible (actually FORTH is an application specific
language - we'll have more on that later). Because the
RTX directly executes FORTH primitives, the combina­
tion of hardware and software is extremely fast. But of
even more importance for time critical applications - the
programmer can program in a high level language and
know what the processor is doing. No surprises from an
optimizing compiler. And best of all - no assembly
language. The RTX 2000 runs FORTH as fast as assem­
bly language (i.e. FORTH is the assembly language).

For more information on FORTH - see Technical
Backgrounder: FORTH: A Software Development Envi­
ronment.

Q. Why is RTX well suited for embedded artificial intel­
ligence (Al)?

A. FORTH is a "threaded" language. That means it can
implement decision trees -- which are the heart of Al
processing -- efficiently. A Prolog compiler is under
development which will allow customers to incorporate
rule-based expert systems into their applications easily.

Q. Who needs that?

A. There are significant opportunities in pattern recognition,.
threat identification, operator assistance, and error re­
covery. This is an emerging technology, but becoming
very important. We will have extremely high performance
and low cost. Our RTX 32 will be even better.

Q. Is it practical to put more functionaliy on chip?

A. Yes. The RTX 2000 is extremely small. 107K MILS2 for
the processor, stacks, multipliers and peripherals. Most
RISC processors are two to three times as big with less
peripheral functions. So, we can easily add more
functionality including on chip ROM and RAM. When we
migrate to our 1.2 micron process next year, we will be
able to put even more on chip.

Q. Is there an In Circuit Emulator (ICE) available?

A. One of the beauties of the RTX is that it is static and has
no pipeline and no cache. That means that it's easy to
get the system up and running with single step opera­
tions and low cost logic analyzers. The hardware
debugger contained in our development system con­
tains the capabilities normally found in an ICE, but it
allows operation at full speed and it is much lower cost
than an ICE.

Q. Don't you require high speed memories to achieve
1 O MIP performance?

A. All processors operating at >5 MIPS require high speed
memory. However, RTX requires far less fast memory
than other processors due to the extremely compact
code which results from having an efficient subroutine
call and a FORTH programming style. This is important
for small systems which only use fast storage. For those
applications requiring larger (and slower) memory, the
fast subroutine call allows the user to put all frequently
used subroutines and instructions in fast RAM, thus
eliminating the complexity of cache memories required
by other high speed processors.

Q. What about memory requirements >1 Mbyte?

A. RTX creates extremely compact code, as much as an
order of magnitude, less than other processors. If addi­
tional memory is required, external logic can be used to
extend the address space beyond 1 Mbyte at a small im­
pact on system performance.

10

Q. How does the RTX compare to other micro­
controllers?

A. The RTX has 1 OX - 20X (sometimes 1 OOX) the perform­
ance of other microcontrollers (such as Intel's 8051,
8096, 80196, National's HPC, NEC, etc.). These are 16
bit controllers. We can substantially upgrade perform­
ance or use our speed to eliminate external logic.
Conventional controllers are lower priced but Harris
offers more performance/buck. If your application can
benefit from increased speed or reduction of peripherals,
then you should consider RTX.

Q. Where can you substitute RTX for CISC micro­
processors?

A. Many CISC microprocessors such as 68020, 68030,
801 86, 80286, 80386 are used as embedded control­
lers, because microcontrollers are too slow. For
example, many LAN's are controlled by 68020. We offer
higher integration, fewer peripherals, faster speed, lower
systems cost, lower power, high level language pro­
gramming, and superior overall performance.

Also, we are a great coprocessor for other CISC
microprocessors. We can offload the time critical
functions from a CISC, leaving it to do more central pro­
cessing functions.

Q. Can you substitute RTX for bit slice?

A. Yes. For those applications where bit slices are not being
used for instruction set compatibility (such as minicom­
puters) or highly specialized architectures (such as
systolic signal processors) we can offer a major
improvement in speed, power, integration, cost, software
development tools, etc. etc.

Q. Is RTX 2000 an alternative to semicustom?

A. Semicustom is used for many applications which require
speed and integration. However, semicustom creates
hidden costs in time to market, lack of flexibility for
change, non-recurring expense to correct system errors,
and cost of lost inventory if a system bug is discovered
after parts are ordered. In some cases, RTX can meet
performance, cost and integration requirements. RTX
provides a significant opportunity when possible to dis­
place semicustom because its speed is 1 OX convention­
al microcontrollers - allowing logic to be implemented in
software. Also, a combination of RTX and simple
semicustom ASICs may provide a favorable alternative to
one complex semicustom ASIC.

Furthermore, RTX provides a superior approach to
developing semicustom ASICs. Since it is based on
proven macrocells, has robust hardware and software
development tools, and is fully integrated into a CAD
system, it can reduce risk and add flexibility to full
semicustom designs.

Q. Will Harris offer a military version of the RTX?

A. The RTX is designed to be fully 883C compliant. We will
introduce an 883C compliant product during 04 of
1988.

Q. What about rad hard?

A. Since the RTX is developed in our standard cell library,
migration to a rad hard process is straightforward. A rad
hard product will be announced in 1989.

Q. How do I learn to use the development tools and
learn the details of the RTX 2000?

A. A 3 - 4 day training program will be available starting
in September which will provide customers with in­
depth training of RTX development tools and the RTX
chip set.

Q. Do you have a second source?

A. We have not selected a second source. However, we
have several interested second sources. Harris plans
to announce a second source by the first quarter
of 1989.

11

Q. Is Harris committed to this product family?

A. Definitely. We expect to use it broadly as a standard
product, semicustom, and custom product. In both divi­
sions. Note - RTX (FORCE) was featured on the cover of
the Harris Corporation FY'87 Annual Report for the
whole $2.1 B corporation. This is a major initiative.

Q. What are your next products?

A. Harris is developing a pin for pin compatible version of
the RTX 2000 but without multipliers and smaller stacks.
This product is well suited for LAN controllers and other
computer 1/0. It will sell for less than $100 in a PLCC. A
1553 LAN processor incorporating a Mil Std 1553
interface and an RTX core processor is in development.
Also planned is a unit with internal floating point acceler­
ation. Other products will be announced later.

Q. How do I learn more about RTX?

A. Contact your local sales office and ask to be placed on
the RTX mailing list. If you have specific technical
questions, they can refer you to an RTX applications
engineer.

Harris RTXDS Software Development
System

RTXDS, the Harris Real Time Express Development System
is a set of integrated tools for use in the development of soft­
ware for the Harris RTX processor. RTXDS is part of the
Harris RTX Toolbox, a complete hardware and software
system for breadboarding and debugging RTX-based
products and semi-custom integrated circuits.

The RTXDS system consists of two subsystems. The "Host"
portion runs on an IBM-PC/XT/AT family computer and
provides an interactive software development environment.
The "Target" portion resides on the user's RTX-based
application board and provides run-time debug support for
applications code.

The RTXDS system gives designers the power and
advantages of using a high-level language - FORTH - in an
interactive environment, without the need for developing a
full FORTH implementation for each new application
system.

The static nature of the RTX architecture and its lack of
instruction pipelining eliminate the need for a hardware
In-Circuit-Emulator (ICE) and its associated speed
limitations. This means that an application program can be
run at full speed for testing time-critical code sections, or
single-stepped under hardware or software control for
debugging problem areas. The RTXDS system supports
both modes of operation, allowing operator interaction at
the single instruction level, or letting a program run
undisturbed until the operator decides to intervene.

RTXDS provides the following tools:

• a Host/Target Monitor for debugging applications on an
RTX-based target system

• A PC-based FORTH development system, including
editor and 8086/286 FORTH compiler

• an RTX FORTH cross-compiler

• Disassembler for displaying compiled RTX machine
code as individual RTX instructions

• a DOS File Interface utility for saving/loading RTX code

RTXDS allows a user to develop an application in FORTH
on a PC, using a full-screen editor and file and printer
utilities. Non-hardware specific functions and algorithms
can be tested and debugged in the PC environment,
with no target hardware present. When the target
system becomes available, the application can be cross­
compiled with the TFORTH compiler to generate RTX
machine code.

The compiled code may be debugged using the Interactive
Host/Target Monitor system. This system provides an
interface between the Host Monitor on the PC and the
Target Monitor running on the RTX target system. Operator
commands at the PC are transmitted through a serial link to
the RTX target system. The target system's responses are
formatted and displayed at the Host PC. The Monitor
provides commands for downloading RTX code from the
PC to the target system, examining and changing target
memory locations, registers and 1/0 ports, executing code,
setting breakpoints, and monitoring memory accesses.
Debugging through the Host Monitor is done at the
symbolic level, using actual FORTH names from an
application, rather than referring to numeric memory
locations.

The Target monitor provides a FORTH-like terminal
interface for applications programs to print debugging and
status information while running. Unlike traditional
debuggers, which typically only report breakpoints and
possibly a register dump, the RTXDS system allows a
programmer to perform any FORTH operation as part of an
embedded debugging command. For example, an applica­
tion program might, as part of a debugging statement, read
an input port, test a bit, then perform different actions
based on the state of the bit. In addition, these debugging
commands may be left in the source code, but not compiled
into the final application, so that they may be used when
modifying the code at a later date.

12

Highlights

Debug Monitor
• Dual window system - Host window running PC-based

FORTH for operator interaction and Target window for
displaying data generated by target system.

• Fully interactive - the operator may define new com­
mands at any time

• Real time debugging - the application system can run at
full speed

• Symbolic Debugging - application subroutines and vari­
. able names may be referred to by name or address

• Source code and compiled code available for viewing at
all times

• User-programmable diagnostics - application program
may display status information and perform any FORTH
functions

• Debugging features

~ Download program code

~ Examine/change memory, registers, 1/0 ports

~ Execute code

~ Set breakpoints

~ Monitor memory accesses

• Application programs may run unattended, freeing the
PC for editing, listing, etc.

TFORTH compiler

• FORTH-83 compatible

• Generates ROMmable code

• Optimizes code to take advantage of RTX architecture

• Extensions for RTX features

~ Memory mapping

~ On-chip controllers - timers, interrupt controller, stack

~ Hardware multiplier

• Compiled code may be formatted for programming into
RO Ms

Hardware Requirements

The RTXDS system will run on any IBM-PC/XT/AT compatible with the following:

• 256K of memory • Serial port addressable as COM1

• Two floppy disks or a hard disk (preferred) • DOS 2.1 or later

13

Harris Real Time Express
Development Board

The Harris Real Time Express Development Board (RTXDB)
is a ready-made RTX 2000" Microcontroller system which
is configured for immediate operation when used with the
RTX Development System (RTXDS") software. The RTXDB
provides a development environment for real-time evalua­
tion of the RTX 2000 and eliminates therequirement for user
designed prototype boards.

Real- Time Control Automation:
The Determining Factors
In real-time control automation, the quality of a control
system is dependent upon many factors. Fast and
predictable interrupt response, context switching, and
instruction execution rates are primary factors in the ability
of a microcontroller to meet critical timing requirements in a
real-time environment.

The RTX 2000 Advantage
As a microcontrollet designed for real-time applications, the
RTX 2000 offers a combination of features and advantages
which make it unique. Where many modern RISC
architectures rely on pipelining and caching, the RTX 2000
does not. The unpredictability introduced by pipeline
flushing or cache-miss related reloads causes these
features to become a hazard in speed intensive tasks.
Instead, the RTX uses a dual stack, highly parallel
architecture with the Harris ASIC Bus'", which allows the
RTX to achieve a very high level of predictability and speed.

By integrating these hardware features with software which
uses an optimized instruction set, the RTX 2000 can
produce fast and predictable interrupt responses of 400
nanoseconds, context switching times of less than 20
microseconds, and an instruction execution rate of over 1 O
MIPS. With these characteristics, the RTX 2000 exceeds
the real-time response capabilities of conventional general
purpose processors by a full order of magnitude or more.
This exceptional performance can provide the critical edge
needed for success in meeting severe real-time
system requirements. In fact, the RTX 2000 is the first
microcontroller which can be programmed in a high level
language while still retaining this capability.

14

The RTXDB: A Convenient
Development Environment
The primary function of the RTX 2000 Development Board
is as a design and development tool through which users
can define and prototype the RTX 2000-based control
system which best suits their needs. As a test vehicle, the
RTXDB provides the means to validate the performance
capabilities of the RTX 2000 Microcontroller. In addition, the
RTXDB can be utilized as a demonstration device and as a
training/learning tool with which the user can learn and
evaluate the RTX 2000 Microcontroller in a real-time
application environment.

The RTXDB offers its user a complete development
environment with extensive breadboarding and debugging
capabilities. This flexibility allows application specific
hardware and software to be fully integrated, developed,
and tested before fabrication. The net result of utilizing
such an environment for system development is a
significant reduction in time and costs.

The RTX Development Board
The RTX Development Board utilizes the Harris RTX 2000
Microcontroller as its processor and a Crystal Clock
Oscillator for its time base. The on-board memory provided
with the RTXDB is composed of 32K bytes of high speed
static RAM, 16K bytes of System EPROM, and sockets for
up to 16K bytes of User EPROM. The System EPROMs
contain the Host communications protocol and debug
utilities. The two User EPROM sockets can accommodate
2K by 8, 4K by 8, or 8K by 8 user provided EPROMs to hold
application software. The RTXDB includes an RS-232 serial
port and the buffering and decoding circuitry necessary to
support memory and 1/0 operations. Two input ports and
two output ports can also be added to the defined circuitry
by installing the necessary ICs into the locations provided.

In addition, a breadboarding area and a memory expansion
area are provided on the RTXDB to allow expansion
or modification to the board configuration. Using these
areas, physical memory mapping, external interrupt
configurations, Wait State generation, 1/0 functions, and
memory capacity can all be user defined to meet the needs
of a specific development application.

~5
::> t:: ~ 0;;:
ffi Cl)

Cl

~5
8 t:: !--.
Ill;;: w Cl)

Cl

TCLK
GR/W*

GIO*

4 WAIT PCLK

0:
~o
o~ UDS .___. ICLK LOS 0 ...J
...J -oo

(/)
0

MR/W*

RTX

(/)
I-c..
:)
0:
0:
UJ
I-
~

!:::
:)

0
0:
0

tu
(/)
UJ
0:

NMI r-.
EIS r-.
El4 r-.
El3 r-.
El2 r-.
El1 r-.

RESET f--. RESET

RST-

I
~ WAIT

T - ~ STATE .
I

~1 r GENERATOR
PROM

DECODE ~
EPROM

ll' .
I~ -,
Ill

I~ ..
M~

MEMORY
'"IAA1e~ ADDRESS - BUFFER

.. r
. . .

RAM . RAM
~ . DECODE

I I I

.
~ . 11

.
. READM'RITE .
- CONTROL

~
. RAM
-r

DATA .
TRANCEIVER ..
~

MD15- MDOO

GD15- GDOO

'~....._..------=a
~~ =--

1/0 READ ,. l;;--

1
______{ DECODE ------· I OUTBOUND
.~ ... ---.. DATA BUFFER

GA2- GAO 1/0 WRITE
DECODE._~!~~~-(11111111--·

IN PORTS

I I •
~

OUTPORTS

I UART I

I HOST PC I

-, * Represent Active Low Signals.

RTX 2000 DEVELOPMENT BOARD FUNCTIONAL BLOCK DIAGRAM

15

.... ""

.
F

) ..

Harris RTX Toolbox
The Problem Being Addressed

Designers of real-time systems have until now faced three
choices: building around a standard microprocessor, a
microcoded engine or recently, Reduced Instruction Set
Computers (RISC).

The appeal of a standard microprocessor has been related
mostly to the proliferation of hardware and software
development systems and the comfort of writing the
application software in either a high-level or native assembly
language. Application software written in high-level languages
assures the ease of portability of the code onto a newer design,
preventing obsolescence. These advantages are often
outweighed by the relatively low timing performance of the
design, which is closely related to the average performance of
the general purpose processor.

Microcoded bit slice designs usually offer considerably better
speed performance than standard microprocessors.
Unfortunately the amount of time involved in writing the
applications code often by far exceeds the hardware design
cycle and may make the product designer miss the market
window entirely. The code written for a particular engine is
totally non-portable, making the design relatively short-lived
unless an upgraded version is periodically developed.

The introduction of RISC processors in the past few years has
addressed many problems associated with general purpose
and bit slice machines but may not provide an optimal solution
for real-time control systems.

Real-time can mean two things. First, the processor is fast
enough to process data and provide control signals to the
target system "on the fly" or in "real-time". Second, and just as
important, is "Time-to-Market" or the concept of a real-time
product. This means that the best solution to'any problem is a
timely solution.

Most general purpose RISC processors use a reduced set of
low-level instructions that help the chip optimize throughput.
Often programs are big and development time is long.

16

In addition many RISC engines require large areas of silicon
and burn prodigious amounts of power, which precludes
inclusion of application specific hardware on the same chip.
Integrating large amounts of application specific logic at the
board-level can be expensive and more important, time
consuming.

The Harris Solution

Harris has developed a comprehensive solution to the problem
of developing an ultra-high-performance, real-time control
system called the Harris Real-Time Express (RTX) Toolbox. It
is comprised of a FORTH Optimized RISC Engine, a family of
support macrocells, an integrated computer-aided design
(CAD) environment, a comprehensive set of Harris and
third-party developed software and hardware development
tools and Harris' advanced CMOS technology.

Harris' RTX is the first microcontroller to directly execute a
high-level language, the first processor to eliminate assembly
language programming for real time applications, the first
processor with an ASIC Bus, the first algorithmic co-processor
architecture, the first RISC core for the ASIC market and the
first dual stack-four bus architecture with such performance
capabilities.

The Engine

The Harris RTX processor is the heart of the toolbox. It
executes in hardware a FORTH-language virtual machine (see
FORTH: A Software Development Environment). This machine
directly executes FORTH, which is a high-level language
optimized for real-time control applications.

Because the Harris RTX processor executes a high-level
language it is capable of providing several key benefits to the
user of this processor. First: software development time is
greatly reduced. Second: software documentation and
maintenance requirements become easier. Third: processor
throughput as measured in equivalent MIPS (Millions of
Instructions Per Second) can actually exceed the clock rate of
the processor.

The third point requires further explanation. The Harris RTX
processor is based on a RISC architecture. Adding to this is a
massively parallel design philosophy which enables the
processor to execute multiple operations within a single clock
cycle. This compares to general purpose or microcoded bit
slice designs which may take five or more clock cycles to
accomplish the same task. The Harris RTX processor achieves
this with a low gate count and without resorting to extensive
pipelining or instruction queues, as in other high performance
machines.

The absence of an instruction queue enables the Harris RTX
processor to handle interrupt routines and return to its main
program flow with only three clock cycles of overhead. This
feature is critical to real-time control systems. The ·
performance obtained by this feature can exceed that of many
general purpose processors by an order of magnitude or
greater.

Low-interrupt overhead and efficient subroutine calls
encourage modular/structured programming techniques,
recognized as contributing to rapid, efficient code
development which is highly testable and maintainable.

Because this processor is fabricated in CMOS technology,
power consumption is directly related to the clock frequency
used. With the ability to achieve the same performance as oth­
er architectures operating up to 50 MHz, power consumption
of RTX based processors can be as much as five times less
than other architectures fabricated in an equivalent CMOS
technology. Static circuit design in the Harris RTX
processor means the clock can be stopped or slowed
whenever the processor is idle, resulting in near zero power
consumption levels. This feature will be important in military
and industrial applications where power consumption can be a
major concern.

Just how fast is the Harris RTX processor? Simulations and
characterization of a pinned-out bare-bones proce~sor
indicate that performance levels in the 10 to 15 MHz range are
possible. Equivalent MIP performance will be
application-dependent, but a realistic estimate is in the 10-20
MIPS range, with peak execution for simple repetitive
operations up to 30 MIPS.

17

Support Macrocells

A major feature of the Harris RTX toolbox is Harris' ability not
only to put the Harris RTX processor core on a single piece of
silicon but also to customize standard application-specific
integrated circuit (ASIC) products by adding other logic
functions to the processor core.

Harris currently has an industry-standard library of 7400
series logic functions as well as macrocells developed as part
of its 80C88/80C86 family. These functions include timers,
interrupt controllers, clock generators, parallel 1/0 controllers,
UART's, LAN controller support cells (MIL-STD-1553) and
many others. In addition Harris has developed Harris RTX
specific macrocells designed for optimum performance in
real-time control system applications. The first two of these are
a 16-input interrupt controller and an integrated stack
controller which includes variable depth RAM capability
on-chip or off-chip. Stand-alone silicon has been produced
on these two devices and pinned-out packaged units are
currently available in a development board environment. It is
anticipated that these pinned-out macrocells will be used for
internal Harris development activities as well as made available
to third party hardware/software development system
suppliers and end users of Harris' RTX Toolbox.

Other macrocells which have been developed include a family
of industry-standard and proprietary 16 X 16 bit multipliers.
They will accelerate math intensive operations considerably
over the already fast capability of the Harris RTX processor
core - due to their ability to perform 1 6 X 16 multiply
operations in one clock cycle of the processor.

How many macrocells can be integrated onto a single piece of
silicon with the Harris RTX processor? It will depend on several
factors, including the size of the particular macrocells used, the
number of pin-outs, process and yield considerations,
maximum permissible power consumption/frequency
considerations and testability issues.

As an example, it is well within the capabilities of the
technology to include the processor core, a 16 X 16 bit
multiplier, an interrupt controller, a stack controller with

on-chip RAM, as well as several timer/counters, on a single
piece of silicon. Harris is developing such a real-time control
processor (RTX 2000) with these and other macrocells, for
introduction this year.

Integrated Design Environment

The Harris RTX Toolbox is a synergistic set of macrocells
implemented in standard cell technology, as well as an
integrated Harris-SDA computer-aided design (CAD)
hardware-software system which permits extremely efficient
design, simulation, place and route, design rule check and
pattern generation tape capability in an integrated design
environment.

This means Harris can provide RTX-based standard products
rapidly and efficiently once the architecture and capabilities of
the product are determined. Initially Harris will utilize this
capability internally for standard product generation. It is
anticipated that strategic business partners with expertise in
real-time control and DSP applications will be invited to use
this ultimate system design capability to generate products
specific to their own businesses. Finally, a semicustom
capability will be offered to Harris' customer base in 1988 for
generation of customer specific integrated circuits (CSIC).

System-Level Development Tools

Another important component in the Harris RTX Toolbox is
Harris and third-party developed tools for both software
generation and hardware evaluation and development.

Traditional microprocessor, bit slice and RISC architecture
machines are heavily dependent on software compilers,
operating systems, in-circuit emulators and the availability of
high-level languages as the tools needed to get a working final
product to the market. A Harris RTX-based product in many
respects is no different in its need for software/firmware and a
means of developing and validating an end-use product.

The Harris RTX core processor directly executes FORTH. A
high-level language conceived expressly for real-time control
applications, FORTH is an integrated software development
environment (see: FORTH, A Software Development

18

Environment). The Harris RTX processor executes the FORTH
language directly, with no intervening generation of assembly
code or microcode and their inherent generate, debug, validate
and document problems.

FORTH code generated on an industry-standard PC using the
Harris TFORTH target compiler generates directly executable
code in real-time within our customers' time-to-market
window. The TFORTH compiler has already been used to
generate test vectors for debug and test of the Harris RTX
pinned-out core. The code generated can be downloaded to a
target system, or a PROM/EPROM programmer or evaluation/
development boards developed by LOI of Ft. Lauderdale,
Florida and Silicon Composers of Palo Alto, California.

Used in conjunction with Laboratory Microsystems Inc.
PC/FORTH this software with a PC and LDl's development
board provides a powerful, low-cost software/hardware
development system.

As development of the Harris RTX Toolbox proceeds in the
next 12 months, it is anticipated that additional third party and
Harris developed tools will be available. Compilers for other
languages are being developed. "C", "PROLOG" and "ADA"
have been targeted for compiler development this year.

Because of the FORTH language, the Harris RTX toolbox and
the ready availability of standard PCs, Harris expects that
development systems costing $50K - $1 OOK will be
associated only with general purpose and microcoded bit slice
machines. The efficiency of Harris RTX and the FORTH
language can make development costs small in terms of time
and money.

Design Example

As a simplified example, we will consider using a Harris RTX
processor core with seven macrocells to generate a general
purpose real-time control processor (see: Figure 1).

The stack controller consists of four sections expanded out for
clarity in the figure. The return stack control consists of a stack
pointer controller and an associated RAM based return stack.
Similarly the parameter stack controller provides control of the
RAM-based parameter stack.

REAL TIME CONTROL PROCESSOR

STACK
POINTER

CTR LR

RETURN
STACK RAM

PARAMETER
STACK RAM

STACK
POINTER

CTR LR

CLOCK
GENERATOR

HARRIS RTX
CORE

16 x 16 BIT
MULTIPLIER

INTERRUPT
LOGIC

DATA
RAM HOST INTERFACE

PROGRAM
ROM

FIGURE 1.

The FORTH language and the Harris RTX processor are
stack-based. The Harris RTX core will always require some
type of stack controller whether on-chip or off-chip. In this
example, 32-word deep stacks would be sufficient for many
applications. It would be quite simple to scale the depth of the
stack to 64, 128 or even 1 K words on-chip. This capability is a
result of the standard-cell nature of the Harris RTX Toolbox
macrocells and the compilable RAM feature available as part of
the toolbox.

Similarly, off-chip RAM could be used with appropriate stack
expansion signals. These could be industry-standard static
RAM.

The clock generator macrocell shown could be the crystal
controlled Harris 82C84A macrocell or the designers' own
clock generator circuit using available 7400 series cells.

The data RAM and program ROM can be on or off-chip with a
2K byte RAM and 8K byte ROM easily implementable on-chip
using the toolbox RAM/ROM compiler. Larger sizes are

19

feasible even on-chip, depending on die size/cost constraints.
Off-chip memory could be configured up to 16M bytes using
address extension capabilities already defined in the toolbox.

The host interface macrocell is application-dependent and
might be custom designed for the particular application in
mind. Harris is currently developing a universal host interface
which permits the processor either to operate as a standalone
processor or as a high performance co-processor loosely
coupled to a general purpose processor such as an 80386 or
68020. This interface would permit either processor to access
common memory and permit the host processor access to the
Harris RTX co-processor on-chip data RAM.

Of course, the Harris RTX co-processor could include on-chip
program RAM, in which case the HOST processor could
program the Harris RTX co-processor to execute tasks it
cannot handle due to speed requirements.

Next, almost all control system processors would require an
interrupt controller. Harris has developed a 16-input controller
which has undergone validation or, if the application requires,
a custom interrupt controller.

Finally, no real-time control/DSP engine would be complete
without a hardware multiplier. The 16 X 16 bit multiplier
currently available operates in less than 40ns so that a
multiplication operation can be executed in less than one
processor clock cycle. If high speed math is not required, the
multiplier could be left off. The core itself is capable of
executing a fixed point 16 X 16 multiply in 20 clock cycles and
a 32-bit square root with a 16-bit answer in less than 25 clock
cycles. Both result from special on-chip hardware embedded
in the core.

A chip similar to this example is being developed for
introduction in 1988 as a standard product. Useful as a
technology evaluation tool, it can also find use in such
state-of-the-art applications as digital filtering, robotics,
graphics and other real-time and DSP applications.

How Will Harris RTX Be Offered?

The Harris RTX core has completed development along with
many of the macrocells. Other components of the Harris RTX
Toolbox are similarly well along in development. Harris will be
using the toolbox to generate Databook Standard Products
during the coming months. Pinned-out versions of the
macrocells will be used for validation, or as tools for
development of new concepts and for third party software/
hardware development tool vendors.

Selected customers will also have access to these pinned-out
macrocells. A complete Harris RTX Toolbox capability for
the semicustom market is expected to be available by
mid 1988.

RTX PROCESSOR

RETURN STACK

RS

MAIN
MEMORY ASIC BUS

A G TOP

20

PARAMETER STACK

PS NEXT

Y BUSS

RTX SINGLE TASK STACK CONTROLLER WITH 64 X 16 RAM

RESET--9----

SELOFFB _.;;5-iX"'l

WEG-~--C>I OFFSET
REGISTER

COMPARE

17
OVER

18
UNDER

CLOCKI

CLOCKO
19-21, 23-25
~==~') STACK ADDRESS

<0-5>

9
RESET 4

STACK ACTIVE --<1>--+-----1~
1

RW __,._.-+-----DI_ __ __,

RAM
'"----!~CONTROL

LOGIC

ADDRESS
GENERATOR

VCC - PIN 44
GND - PIN 22

RTX INTERRUPT CONTROLLER

SELINTB ::.9-------------------~
INTA ~~4-_-39---....-----------------.r . .-"

IGB < 10:15 > -----+------~

1, 65-73, 79-83
IR< 1:15 >=====:-:>I

2
IRNM1-----

CLOCK .:.4--e--­
RESET _5_-+-...... --1

SAMPLE
REGISTER

MASK
REGif!TEl=i

PRIORITY
RESOLVER 1---t--"'J

64 x 16
RAM

DQO - DQ15

26-27, 29-38, 40-43

VCC - PINS 11, 64
GND - PINS 32, 75

40-49, 57-62

63
INT

WE~ '
SEi..llliASKB -8-----;vt, ____ J '-----------.:.3 J'-. NMI

21

RTX 16 X 16 MULTIPLIER

TCXIN XIN ROUND TCYIN YIN

XIN(0:15) YIN(0:15)

REGISTER Y

CLKC::::>-....-~.,--t-t----~-++-t--------'

ENXBL_..-'--+---4---t--+---I

X(0:15) Y(0:15)

M16 x TCX RND RND TCY y
CTRL

PRODUCT

PRODUCT
FA FA OUTPUT REG

FT FT
CLK MSP ENP LSP

MSP LSP

MSPSELB C::::>-------+I MSPSEL MUX

RESULT

PRODUCT PRODUCT LSP

22

FORTH: A Software Development
Environment

FORTH Introduction
FORTH is a fully integrated development environment,
designed to speed software generation. Unlike most
software development packages, FORTH is a complete
development environment system: not simply a compiler or
assembler.

Traditional computer systems consist of an operating
system (such as VMS, MS-DOS), assembler (macro,
ASM-80), linker/loader (LINK), high-level language
(PASCAL, C, FORTRAN), a debugger and utilities. FORTH
contains these in a single environment, including an
operating system, compiler, assembler and programmer's
toolbox.

This frees the programmer from having to learn a special
language syntax for each step of development. FORTH can
satisfy all programming needs, ranging from assembly to
data base support.

The standard non-FORTH method for developing software
consists of the following iterative cycle:

1) Edit a source code file with an editor program.

2) Assemble or compile the source code program with a
compiler or assembler program.

3) Link the object code generated by the compiler program
with a linkage program.

4) Invoke the Loader program to load the executable image
generated by the Linker.

5) Run the program under the control of a debugger
program, which provides some interaction to the
programmer during the test phase.

6) Return to step 1 if the programmer finds an error.

The above sequence requires intimate familiarity with the
syntax of each program needed to design and execute the
program being developed - and the operating system,
which controls each program. Many such programs have

an exhaustively detailed set of instructions and options.
Realistically, a programmer needs a considerable amount
of time to learn and master them.

FORTH provides all of the separate development programs
in a single, well-integrated package with a single syntax.

The average programmer using FORTRAN will create
approximately 40 meaningful programs in his or her career.
FORTH was designed to increase the programmer's prod­
uctivity by as much as 10 times. Without the need to spend
time manipulating a great many individual programs in the
software creation cycle, the programmer has more time to
actually solve problems.

FORTH is highly interactive. Unlike most other languages,
FORTH lets the programmer interact directly with the
execution of the software application - allowing fast
prototyping and testing of new solutions to problems. This
reduces the likelihood of incorrect solutions going
undetected until the application is complete.

23

Interactivity also allows smaller sections of the program to
be debugged. Fewer paths go untested, insuring accuracy
of the solution. The interactive environment makes the
program development cycle more intuitive. The program­
mer's concentration isn't interrupted between creation and
execution. This prevents the programmer from losing a train
of thought during long compilation and link times.

FORTH uses stacks to communicate parameters between
routines and the outside world. It uses postfix (RPN)
notation for math operations. Because FORTH is a
stack-based virtual machine, the most natural syntax for
communication is postfix; 2 X 3 becomes 2 3 X.

FORTH encourages modular programming by relying heav­
ily on subroutine calls. In FORTH, these subroutines are
called words. FORTH also consists of a dictionary divided
into vocabularies. When a word (subroutine) is defined it is
placed into a vocabulary in the dictionary, helping create
application-oriented solutions.

FORTH can create readable code devoid of any implemen­
tation syntax. It communicates the problem's solution,
not the implementation. This encourages easily read and
maintained code.

FORTH produces compact reentrant code. Common code
is actually reused, compacting the application into less
space than normal machine language. Typically, the larger
the application, the better the compaction.

FORTH also gives the programmer complete control
over the . architecture. Critical applications requiring
machine program language routines can be coded directly
in line. A programmer no longer needs elaborate schemes
to link machine language routines to high-level code. ·

FORTH is fast. It executes. at approximately 80 percent
of machine code. This ability to produce high-speed
compact applications makes FORTH ideal for real-time
control applications. FORTH provides complete control of
the machine.

FORTH, unlike other high-level languages, doesn't require
an operating system. This allows complete software control
of the hardware and eliminates difficult system-level calls
and programming tricks designed to fool the resident
operating system. By avoiding these pitfalls, applications
perform more efficiently and predictably.

FORTH is available for every commercial CPU from the
ILL/AC to the 68000. This means that no matter what
the target system, the tools are available. This eliminates
wasting time relearning tools before programmers can
become productive.

FORTH provides many of the system primitives needed
for the development of a multi-tasking system. Because
FORTH is based on a software architecture model, it easily
lends itself to system reconfiguration. This means that
an application that is currently performed in a single task
environment can be separated into functionally autonomous
tasks. This process allows a programmer to independently
think and code functions using a simpler, more modular

Sales Offices

approach. If the particular FORTH in use is not currently
multi-tasking, a programmer can provide the super-struc­
ture needed.

This ability to modify FORTH's inherent structure is called
extensibility. This is one of the most powerful features of
FORTH, that few other languages provide. FORTH's
extensibility feature is actually a description of machine ar­
chitecture in software, called the "Virtual Machine" concept.
The overall operation of FORTH code is controlled by this
software description.

Since this is a software implementation of a machine, it may
be altered by the programmer to perform differently,
depending on the application. This modification may range
from simply adding a new control structure to the language,
to making FORTH a multi-tasking operating system. No
longer does the fixed architecture of a traditional machine,
or instruction set of a high level language determine the
implementation of a solution. Now, the solution determines
the implementation. This is a powerful tool in the hands of a
software engineer.

FORTH History

FORTH was invented by Charles Moore, a programmer
focusing on real-time applications, who created it via the
traditional program development cycle. This vicious cycle of
complex instruction sets, utility syntaxes and operating
system knowledge prompted Moore to develop FORTH,
supplanting the great array of program development tools
and associated instructions.

FORTH first appeared on the IBM 1130 and was first
used at the National Radio Astronomy Observatory in 1971
to perform radio-telescope data acquisition. Today's mod­
ern FORTH, with dictionary, compiler, assembler and multi­
tasking capability first appeared on a PDP-11 at
Kitt Peak Observatory. FORTH Inc. introduced its first
FORTH development system in 1976. Today, FORTH is
available for practically all CPUs from a multitude of soft­
ware vendors. m

U.S. HEADQUARTERS
Harris Semiconductor
2401 Palm Bay Road
Palm Bay, Florida 32905
TEL: (407) 724-7418

EUROPEAN HEADQUARTERS
Harris Semiconductor Ltd.
Semiconductor Sector

FAR EAST HEADQUARTERS'
Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

Eskdale Road
Winnersh Triangle
Wokingham RG11 5TR
Berkshire
United Kingdom
TEL: 0734-6987?7

24

