
BINAR ™ Forth Floating Point Reference

Preliminary - Version 0.0
March 1, 1990

HARRIS SEMICONDUCTOR
PROPRIETARY INFORMATION

© 1990 HARRIS CORPORATION -ALL RIGHTS RESERVED

I

Released under Creative Commons CC0 1.0 Universal
by WISC Technologies

copyright assignee from Harris Semiconductor

1.0

2.0

3.0
3.1
3.2
3.3

4.0
4.1
4.2

s.o
5.1
5.2

i 5.3
5.4

6.0

i
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

CONTENTS

Introduction1

Getting started. .2

Examples of Floating Point Use.
Sample Problem
Solution
More Floating Point.

Numeric Form.ats

• •••• 3
•• 3

• 3
.5

.7
Single Precision Floating Point Numbers • • 7
Temporary Floating Point Numbers

Implementation Notes .•.••..
Pros and Cons of Radix 2 ..
Floating Point Accuracy.
Algorithms.
Notation.

Glossary •.

. 8

. 9
•••••••• 9

•• 9
...... 10

.10

.12

I

ii
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

This floating point package and its documentation are
derived from: Koopman, P., Forth Floating Point and Integer Math, Mountain View Press, 1985. That book and the
associated code were copyrighted and then placed into the
public domain. However, the code and documentation here are substantially refined, and are considered Harris
Semiconductor Proprietary Information. All rights to the
software and documentation are reserved.

1
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

1.0 Introduction

This document describes the floating point math package for
the BINAR processor. This is a preliminary software release
and, although the author is reasonably sure that the package
works, some minor bugs and documentation shortcomings are to
be expected.

In the spirit of FORTH, this package has no error checking.
This greatly enhances program speed and simplicity at the
cost of burdening the programmer with the responsibility for
preventing math overflows, underflows, and other errors.

2
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

2.0 Getting started

First, load the math package:
LOAD FLOAT.4

You must load the math package every time you cold-start the system. Now let's play with some math operations:
f# 1. f# 3. F/ F.
f# 123.331 f# 99.81 F+ F.
f# 10000.0 f# .00009 F* F.
f# 2. SQRT F.
f# 3. 1/X F.

. i

3
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

3.0 Examples of Floating Point Use

3.1 Sample Problem

You are working for the Forth Street Canning Company. Your
boss wants to minimize the amount of metal in his cans and
bring out a new product line that is cheaper to manufacture.
He wants you to enumerate all possible can sizes that the
plant machinery can manufacture so he can pick the ones with
the least surface area. The can-making machines can make
cans from 1 inch to 4 inches in radius in increments of 1/4
of an inch, and 1 inch to 5 inches in height in increments
of 1/2 inch.

3.2 Solution

First, let's review some formulas for cylinders:

V = (PI * (R**2)) * H
A = 2 * (PI * (R**2)) + 2 * PI * R * H

where:
V = volume of a can
A = surf ace area of a can
pr·= 3.14159 ••
R = radius of the base of the can
H = height of the can

now, let's define the evaluation function we are trying to
maximize:

X =VI A

where:
X = e'fficiency of the can design, the higher the better

By the way, ignore the wise-guy in the back who yelled out
something about "calculus". I don't happen to remember the
equations for that, nor do I care to fuss with making the
continuous equations fit into a quantized problem.

Now, let's implement the formulas we gave:

: VOLUME (fheight fradius -> fvolume)
**2 F* PI F* :

i
I

4
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

AREA (fheight fradius -> f area
FDUP **2 PI F* F2* F>R
F* PI F* F2* FR> F+ ;

EFFICIENCY
F/ ;

(fvolume farea -> feff iciency)

In these definitions, the "F" words are the floating point versions of integer operators. Also, PI is a constant that gives the trigonometric value pi, and **2 squares a floating point number.

Let's test the definitions:

f# 5. f# 2.5 VOLUME F.
f# 5. f# 2.5 AREA F.
f# 98.17478 f# 117.8097 EFFICIENCY F.

That done, we'll define a header word and the driving
routine in a straight-forward, brute force manner:

: TAB (#columns ->)
[SYSTEM] #c [FORTH]

.HEADER (->)
CR 11 HEIGHT"
10 TAB 11 RADIUS"
20 TAB II AREA"
30 TAB II VOLUME"

@

40 TAB 11 EFFICIENCY" CR CR ;

CAN (fheight fradius ->)
FOVER F.
10 TAB FDUP F.

0 MAX SPACES ;

20 TAB FOVER FOVER AREA FDUP F. F>R
30 TAB VOLUME FDUP F.
40 TAB FR> EFFICIENCY F. CR ;

CAN-HEIGHT (fheight ->
f# 1.0
BEGIN

KEY? ABORT" BREAK .•• "
FOVER FOVER CAN f# 0.25 F+
FDUP f# 4.25 F< NOT UNTIL

FDROP FDROP CR ;

RESULTS (->)
.HEADER
f# 1.0

\

5
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

BEGIN
FDUP
FDUP

FDROP ;

CAN-HEIGHT
f# 5.5 F< NOT

f# 0.5 F+
UNTIL

The word RESULTS displays the desired results the boss asked
for. The boss would pick a volume he wanted to make a can
for and find the highest efficiency size for that volume.
For example, a 50 cubic inch can (plus or minus two cubic
inches) could be 1 inch high by 4 inch radius, 1.5 by 3.25,
2.5 by 2.5, 4. by 2., or 5. by 1.75 . The best can would
be the 4 inch high by 2 inch radius can with an efficiency
of approximately 0.667 .

This application is I/O intensive -- most of the program's
time is spent displaying results. For those of you who
insist on using RESULTS as a speed benchmark against other
languages, please consider the following CALCULATIONS
benchmark as well. You will find that there is a tradeoff
between calculation speed and I/O speed in any floating
point package.

(Calculation speed and accuracy benchmark
(Adapted from BYTE magazine)
(Volume 10, No. 5, MAY 1985, page 280)
f# 2.71828 FCONSTANT FA
f# 3.14159 FCONSTANT FB

CALCULATIONS
f# 1.0

(. ->)

5000 0 DO FA F* FB
FA F/ FB

CR ." DONE" CR • 11 ERROR="

3.3 More Floating Point

F*
F/ LOOP

f# 1. 0 F- F. .
I

Floating point numbers are good at representing
APPROXIMATIONS of very large or small numbers. Try the
following example:

f# 12345678912343212. F.
f# .000000009876543213453454345 F.
f# 78.9 F.

As you can see, F. is "smart" in the sense that it
automatically displays very large or small magnitude numbers in scientific notation. You can also see that only seven
digits of the number are printed out, since this is an
approximation technique.

6
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

If you want to display a number in fixed point notation,
regardless of size, or you want to force a number to be
displayed in scientific notation, use F.E or F.X as shown in
the following examples:

f# 1.23 10 EXP
f# 1.23 10 EXP

F.E CR
F.X CR

f# 6.78 F.E
f# 6.78 F.X

The word EXP, when preceded by a single precision integer,
allows you to enter an exponent for a floating point number.

For the "nickel tour" of the transcendental and exponential
floating point features of this package, enter the
following:

f# 30. SIN F.
f # 1. 0 ATAN F.
f# 20. LOG F.
f# 1.30103 10** F.

There are many more transcendental and exponential functions
in the package.

()

7
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

4.0 Numeric Formats

4.1 Single Precision Floating Point Numbers

Floating point numbers in this package exactly correspond to IEEE Floating Point Standard (Task P754) short floating point numbers in bit layout. However, NaN's, infinities, denormalized numbers, etc. are not supported by this implementation.

Floating point numbers range in value
from +/-5.9 * (10** -39)
to +/-6.8 * (10** 38)

with approximately six and two-thirds decimal digits of precision, plus a representation for exact zero.

The bit format of a floating point number is:

BIT 131130 .• 24123 01
+--+--------+------------------+ I s I EXPONENT I MANTISSA I
+--+--------+------------------+

Bit 31 is the highest order bit and bit o is the lowest order bit. s is the sign of the mantissa with O meaning positive and 1 meaning negative. EXPONENT is the 8-bit radix 2 exponent with a bias of 127 decimal (subtract 127 from this 8 bit value to convert it to a two's complement integer exponent)~ MANTISSA is an unsigned 23-bit mantissa with an implied high-order."phantom" 1 bit. The decimal point for the mantissa is to the right of the "phantom" 1 bit. This gives a 24-bit effective mantissa but only uses 23 bits of actual storage. s and MANTISSA together form a signed-magnitude mantissa, NOT a two's complement mantissa.

The value of a floating point number is:
(-1 * S) * (0 • 1 <MANTISSA>) * (2 ** (EXPONENT-127))

Zero is a special value represented by all bits being zero in .this scheme. "Negative zero" is not a valid representation.

: \.

' ..

8
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

4.2 Temporary Floating Point Numbers

Temporary floating point numbers correspond to IEEE extended
single precision floating point numbers, and are used to
improve the number of significant bits for intermediate
results, especially in transcendental functions. The
conversion from single precision ("F" format) to temporary
("T" format) is relatively expensive, so you may want to use
T format for intermediate results within a long calculation
as well.

The format for a temporary floating point number is a pair
of 32-bit words:

BIT 131 . . . 01 131130 01 +----------+ +--+---------------------+ I EXPONENT I IS I MANTISSA I +----------+ +--+---------------------+
EXPONENT is a two's complement integer with the radix 2
exponent of the number. s is the sign bit of the mantissa,
with o a positive sign and 1 a negative sign. MANTISSA is a
left-normalized unsigned mantissa, with bit 30 in the
MANTISSA 1 except for when the floating point number is
exactly zero. s and MANTISSA form a signed magnitude
mantissa. The sign bit is not forced to zero by temporary
operations, so it is possible to have the number -o. Also,
the exponent is not necessarily forced to zero when the
mantissa is zero. All T operations that check for zero take
this into account, and strip the sign bit as well as zeroing
the exponent when required (this is faster overall than
checking for these conditions after every operation). The
exponent is placed on top of the stack, and the mantissa is
kept as the second stack element when a T-number is place on
the stack.

i
1 ..

9
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
BARRIS SEMICONDUCTOR PROPRIETARY

s.o Implementation Notes

5.1 Pros and Cons of Radix 2

Radix 2 floating point numbers were chosen for this package due to their compatibility with the IEEE floating point standard and the 8087 chip. Below are some pros and cons of this approach compared with approaches using decimal encoding of some sort:

PROS:

1) The format is IEEE standard.

2) Radix 2 is well-suited to fast arithmetic. Normalization and alignment of decimal points is accomplished by bit shifting instead of multiplication and division by 10.

(. 3) Radix 2 numbers can easily be converted to any base. \. While radix 10 numbers can theoretically be converted to any base, in practice the necessary routines are usually not implemented. This package is implemented so that I/O of floating point numbers can be performed in any base, including base 10. ·

4) The 32-bit floating point format used here can use the Forth data stack. In particular, this package's floating point numbers are identical in size to single precision integers. Most radix 10 number schemes do not use 2 or 4 or 8 byte numbers, and require special stack operations or an entirely separate floating point stack.

CONS:

1) I/O is relatively slow for radix 2 numbers, since logarithms are used to convert base' 2 exponents to base 10 exponents.

5.2 Floating Point Accuracy

The 32-bit floating point numbers are accurate to about six and two-thirds decimal digits. The default value for SIGDIG is 7, so on occasion there may be slightly surprising results when printout floating point numbers. If fewer digits are desired for display in the F., F.E or F.X

10
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

formats, SIGDIG can be changed using SIGDIG!. This change will affect display only -- all calculations will still be done with all available bits of precision.

5.3 Algorithms

The transcendental approximation formulas used in this package were derived from various sources. Most are based on Chebyshev and Taylor polynomials. All polynomials used are designed to theoretically deliver at least 7 digits after the decimal point. Several "TEST" words are included at the end of the FLOAT.4 file to check these results.

Due to cumulative roundoff errors in calculations and conversions, the seventh digit of a transcendental function may, on occasion, be slightly off. If this causes a problem with displaying exact results, set SIGDIG to 6 and use the 7th digit as a guard digit to hide roundoff errors.

5.4 Notation

Each entry in the glossary includes the following information:

1) The name, stack notation before and after execution, and a designation with regard to its use.

2) The pronunciation of the ideogram.

3) The form of the use of the ideogram where appropriate.

4) The functional definition. This is a concise
description of what the word does.

5) An example, which may be an important or representative definition from the source code, a reasonable use, or in a few cases a contrived use. With each example is a short discussion of the example.

6) An optional comment, which tries to put that ideogram in some sort of perspective. It may discuss some of the quirks or subtle features of the word.

7) Occasional notes have been added at points of particular concern or where caution must be used.

-1

11
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

Standard Forth notation has been extended to include
floating point and temporary floating point numbers:

flag
n
d
f
t
un

- truth value. O=false, non-zero=true
- single precision integer (32 bits)
- double precision integer (64 bits)
- floating point number (32 bits)
- temporary floating point number (64 bits)
- unsigned single precision integer (32 bits)

Many word names were created by prefixing existing word
names with a "stroke" to denote that the newly defined word
has the same function as the old word, but works on a
different size of operand. The "strokes" are:

D - double precision integer
F - floating point number
T - temporary floating point number

Thus, a family of words: D+ , F+ , and T+ are all defined as
addition, but with each word requiring different types on
inputs from the stack.

**2

1/X

/

10**

12
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

6.0 Glossary

fl f 2 "squared"

Multiply fl by itself, squaring it.

Example:
F. f# 3. **2

Input, calculate and display 3 raised to the 2nd power, yielding 9.

fl -- f2

Computes the reciprocal f2 = l/fl .

Example:
f# 2. l/X F.

0.5 is the reciprocal of 2.

fl f 2

"one-over-x"

"ten-to-the-x"

Raises 10 to the power of the input number fl, giving the result f2.

Example:
f# 4.7 10** F.

Input, compute and display 10**4.7

Comment: This is a special case of the word ** which is commonly used when working with base 10 (decimal) logarithms.

2**

13
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl. f 2 "f-two-to-the-x"

Raises 2 to the power of the input number fl, giving the result f2.

Example:
f# 4.7 2** F.

Input, calculate and display 2 raised to the 4.7th power

Comment: This is the primitive word used by the temporary floating point package for exponentiation in all bases. ·

<ACOS> fl -- f 2 "bracket-arc-cosine"

Computes f2, the angle (in radians) whose cosine is fl. fl must be in the range of -1 to 1. f2 is returned in the range o to pi.

Example:
f# .5 <ACOS> RAD>DEG F.

Computes the arc-cosine of 0.5, which is 60 degrees.

Comment: This is the trigonometric inverse function to <COS>. <ACOS> is typically used for intermediate calculations to eliminate the radian to degree conversion overhead in ACOS.

<ACOT>
cotangent"

fl -- f2 "bracket-arc-

Computes f2, the angle (in radians) whose cotangent is fl. The value of fl is not restricted. f2 is returned in the range o to pi.

Example:
f# .8390996 <ACOT> RAD>DEG F.

Computes the arc-cotangent of .8390996, which is 50 degrees.

Comment: This is the trigonometric inverse function to <COT>. <ACOT> is typically used for intermediate calculations to eliminate the radian to degree conversion overhead in ACOT.

I

14
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

<ACSC>
cosecant"

fl -- f2 "bracket-arc-

Computes f2, the angle (in radians) whose cosecant is
fl. fl must be in the range of 1 to infinity or -1 to -
infinity. f2 is returned in the range o to pi/2 or -pi
to -pi/2 .

Example:
f# 1.414214 <ACSC>

Computes the arc-cosecant
degrees.

RAD>DEG F.
of 1.414214, which is 45

Comment: This is the trigonometric inverse function to
<CSC>. <ACSC> is typically used for intermediate
calculations to eliminate the radian to degree
conversion overhead in ACSC.

<ASEC> fl -- f2 "bracket-arc-secant"

Computes f2, the angle (in radians) whose secant is fl.
fl must be in the range of 1 to infinity or -1 to -
infinity. f2 is returned in the range o to pi/2 or -pi
to -pi/2.

Example:
f# 1.064178 <ASEC> RAD>DEG F.

Computes the arc-secant of 1.064178, which is
approximately 20 degrees.

Comment: This is the trigonometric inverse function to
<SEC>. <ASEC> is typically used for intermediate
calculations to eliminate the radian to degree
conversion overhead in ASEC.

<ASIN>

15
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl -- f2 "bracket-arc-sine"

Computes f2, the angle (in radians) whose sine is fl. fl must be in the range of -1 to 1. f2 is returned in the range -pi/2 to pi/2.

Example:
f# .5 <ASIN> RAD>DEG F.

Computes the arc-sine of 0.5, which is 30 degrees.

Comment: This is the trigonometric inverse function to <SIN>. <ASIN> is typically used for intermediate calculations to eliminate the radian to degree conversion overhead in ASIN.

<ATAN>
tangent"

fl -- f2 "bracket-arc-

Computes f2, the angle (in radians) whose tangent is fl. The range of fl is unrestricted. f2 is returned in the range -pi/2 to pi/2.

Example:
f# 1. <ATAN> RAD>DEG F.

Computes the arc-tangent of 1., which is 45 degrees.

Comment: This is the trigonometric inverse function to <TAN>. <ATAN> is typically used for intermediate calculations to eliminate the radian to degree conversion overhead in ATAN.

16
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

<ATAN2>
two"

fl f2 -- f3 "bracket-arc-tangent-

Computes f3, the angle (in radians) whose tangent is (f2/fl). The ranges of fl and f2 are unrestricted. f3 is returned in the range -pi to pi.

Example:
f# -1. f# 0 <ATAN2> RAD>DEG

Computes the arc-tangent of the x-y
which is 180 degrees.

F.
coordinate (-1,0),

Comment: This is the trigonometric inverse function to <TAN> with the special ability to return a result from -pi to pi. <ATAN2> takes into account the signs of fl and f2 and returns the result f3 in the correct quadrant if fl is interpreted as an x coordinate and f2 is
interpreted as a y coordinate on a Cartesian coordinate system. This word has obvious uses in graphics, and is used when doing rectangular to polar coordinate
conversion. <ATAN2> is typically used for intermediate calculations to eliminate the radian to degree
conversion overhead in ATAN2.

<COS> fl -- f2 "bracket-cosine"

Computes f2, the cosine of the angle fl. fl is.in
radians. The range of fl is unrestricted. f2 is
returned in the range -1 to 1.

Example:
f# 45. DEG>RAD <COS> F.

Computes the cosine of 45 degrees.

Comment: <COS> is typically used for intermediate
calculations to eliminate the degree to radian
conversion overhead in cos.

<COT>

17
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl -- f2 "bracket-cotangent"

Computes f2, the cotangent of the angle fl. fl is in
radians. fl must not be an even multiple of pi/2.

Example:
f# 60. DEG>RAD <COT> F.

Computes the cotangent of 60 degrees.

Comment: <COT> is typically used for intermediate
calculations to eliminate the degree to radian
conversion overhead in COT.

<CSC> fl -- f2 "bracket-cosecant"

Computes f2, the cosecant of the fl. fl is in radians.
fl must not be an even multiple of pi/2

Example:
f# 45. DEG>RAD <COS> F.

Computes the cosecant of 45 degrees.

Comment: <CSC> is typically used for intermediate
calculations to eliminate the degree to radian
conversion overhead in CSC.

<F.>

18
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

dl n2 -- addr count n3 "bracket-f-dot"

convert double precision integer dl representing a
mantissa and exponent n2 (defined in the same manner as
the outputs of the word F>ME) to a fixed point character
string. addr is the address of the first character in
the string, count is the number of characters in the
string, and n3 is the number of characters after the
embedded decimal point in the string (including trailing
zeros.) If n3 is less than 1, then there are no
trailing digits after the decimal point.

Example:
DROP TYPE f# 12.3 F>ME <F.>

Converts the number 12.3
prints it with trailing

to a character string and
zeros.

Comment: The format of the output character string is:
a negative sign (if the number is negative,) followed by
one or more digits, followed by a decimal point,
followed by enough digits after the decimal point to
form SIGDIG worth of significant digits (non-leading
zero digits in the case of a number less than one.)
Trailing zeros may be generated if SIGDIG is greater
than the number of significant digits in the value
converted to the character string. The word <F.> is
used by all fixed-point number display routines.

<FNUMBER> addr -- f "bracket-f-number"

convert the count and character string at addr to a
signed 32-bit floating point number using the current
base. If numeric conversion is not possible, an error
condition exists. The string may contain a preceding
negative sign.

Example:
: INPUT ." INPUT AN INTEGER: 11

QUERY BL WORD <FNUMBER> CR F.
This definition provides for a prompt and then a pause
for the operator to input the requested number. The
input character stream is parsed, converted to a
floating point value and displayed.

Comment: This ideogram will recognize two non-numeric
characters: a decimal point and a leading negative sign.
The position of the decimal point is recorded in the
user variable DPL.

I 4

I

19
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

<P>R> fradius fangle -- fx fy "bracket-p-to-r"

Performs polar to rectangular coordinate conversion.
The vector with length fradius and orientation fangle
(in radians) is converted to an x,y coordinate pair
(fx,fy).

Example:
f# 7.8 f# 30.

A vector with length
an x,y coordinate.

DEG>RAD <P>R> FSWAP F. F.
7.8 and angle 30. is converted to

Comment: <P>R> converts a polar coordinate pair
(radius, angle) to rectangular coordinates (x,y). In
addition to geometric calculations, <P>R> is useful for
complex number manipulations.

<R>P> fx fy -- fradius fangle "bracker-r-to-p"

Performs rectangular to polar coordinate conversion.
The Cartesian coordinate pair (fx,fy) is converted to a
radius fradius and an angle fangle (in radians).

Example:
f# 3.1 f# -5.1

A vector with x-value
of 5.968249 and makes
with the x-axis.

<R>P> RAD>DEG FSWAP F. F.
3.1 and y-value -5.1 has a length
and angle of -58.70696 degrees

Comment: <R>P> converts a rectangular coordinate pair
(x,y) to polar coordinates consisting of the vector
length and an angle from the positive x axis to the
vector. In addition to geometric calculations, <R>P> is
useful for. complex number manipulations. <R>P> uses
<ATAN2> to compute fangle, so range restrictions are the
same as <ATAN2>.

I

20
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

<SEC> fl -- f 2 "bracket-secant"

Computes f2, the secant of the angle fl. fl is in
radians. fl must not be an odd multiple of pi/2.

Example:
f# 45. DEG>RAD <SEC> F.

Computes the secant of 45 degrees. '

Comment: <SEC> is typically used for intermediate
calculations to eliminate the degree to radian
conversion overhead in SEC.

<SIN>- fl -- f2 "bracket-sine"

Computes f2, the sine of the angle fl. fl is in
radians. The range of fl is unrestricted. f2 is
returned in the range -1 to 1.

Example:
f# 45. DEG>RAD <SIN> F.

Computes the sine of 45 degrees.

comment: <SIN> is typically used for intermediate
calculations to eliminate the degree to radian
conversion overhead in SIN.

<TAN> fl -- f2 "bracket-tangent"

Computes f2, the tangent of the angle fl. fl is in
radians. fl must not be an odd multiple of pi/2.

Example:
f# 60. DEG>RAD <TAN> F.

Computes the tangent of 60 degrees.

Comment: <TAN> is typically used for intermediate
calculations to eliminate the degree to radian
conversion overhead in TAN.

<TATAN>
tangent"

21
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

tl -- t2 "bracket-t-arc-

Computes t2, the angle (in radians) whose tangent is tl. The range of tl is unrestricted. t2 is returned in the
range -pi/2 to pi/2.

Example:
t# 1. <TATAN> TRAD>DEG T>F F.

computes the arc-tangent of 1., which is 45 degrees.

<TCOS> tl -- t2 "bracket-t-cosine"

Computes t2, the cosine of the angle tl. tl is in
radians. The range of tl is unrestricted. t2 is
returned in the range -1 to 1.

Example:
t# 45. TDEG>RAD <TCOS> T>F F.

Computes the cosine of 45 degrees.

<TNUMBER> addr -- t "bracket-t-number"

Convert the count and character string at addr to a
signed temporary floating point number using the current base. If numeric conversion is not possible, an error
condition exists. The string may contain a preceding negative sign.

Example:
: INPUT . 11 INPUT AN INTEGER: 11

QUERY BL WORD <TNUMBER> CR T>F F.
This definition provides for a prompt and then a pause
for the operator to input the requested number. The
input character stream is parsed, converted to a
floating point value and displayed.

comment: This ideogram will recognize two non-numeric characters: a decimal point and a leading negative sign. The position of the decimal point is recorded in the
user variable DPL.

<'DSIN>

22
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

tl -- t2 "bracket-t-sine"

Computes t2, the sine of the angle tl. tl is in
radians. The range of tl is unrestricted. t2 is
returned in the range -1 to 1.

Example:
t# 45 •. TDEG>RAD <TSIN> T>F F.

Computes the sine of 45 degrees.

?FNEGATE fl n f 2 "query-f-negate"

If n is less than zero, negate fl, otherwise do nothing.
Leave the result as f2.

Example:
f# 22 -5 ?FNEGATE F.

Place 22 on the stack and apply the sign of -5 to it,
giving the result of - 22.

Comment: This is a floating point version of the word
?NEGATE •

?TNEGATE tl n t2 "query-t-negate"

If n is less than zero, negate tl, otherwise do nothing.
Leave the result as t2.

Example:
t# 22 -5 ?TNEGATE T>F F.

Place 22 on the stack and apply the sign of -5 to it,
giving the result of - 22.

Collllnent: This is a temporary floating point version of
the word ?NEGATE •

23
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

ACOS fl -- f 2 "arc-cosine"

Computes f2, the angle (in degrees) whose cosine is fl.
fl must be in the range of -1 to 1. f2 is returned in the range O to 180.

Example:
f# .5 ACOS F.

Computes the arc-cosine of 0.5, which is 60 degrees.

Comment: This is the trigonometric inverse function to cos .

ACOT fl -- f2 "arc-cotangent"

ACSC

Computes f2, the angle (in degrees) whose cotangent is fl. The value of fl is not restricted. f2 is returned in the range O to 180.

arc-cotangent

Example:
f# .8390996 ACOT F.

Computes the arc-cotangent
degrees.

' of .8390996, which is 50

Comment: This is the trigonometric inverse function to COT •

fl -- f2 "arc-cosecant"

Computes f2, the angle (in degrees) whose cosecant is
fl. fl must be in the range of 1 to infinity or -1 to -infinity. f2 is returned in the range o to 90 or -180 to -90.

Example:
f# 1.414214 ACSC F.

Computes the arc-cosecant of 1.414214, which is 45 degrees.

Comment: This is the trigonometric inverse function to csc .

ASEC

24
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl -- f2 "arc-secant"

Computes f2, the angle (in degrees) whose secant is fl.
fl must be in the range of 1 to infinity or -1 to -
infinity. f2 is returned in the range o to 90 or -180
to -90.

Example:
f# 1.064178 ASEC

Computes the arc-secant
20 degrees.

F.
of 1.064178, which approximately

Comment: This is the trigonometric inverse function to
SEC •

ASIN fl -- f2 "arc-sine"

Computes f2, the angle (in degrees) whose sine is fl.
fl must be in the range of -1 to 1. f2 is returned in
the range -90 to 90.

Example:
f# .5 ASIN F.

Computes the arc-sine of 0.5, which is 30 degrees.

Comment: This is the trigonometric inverse function to
SIN .

ATAN fl -- f2 "arc-tangent"

Computes f2, the angle (in degrees) whose tangent is fl.
The range of fl is unrestricted. f2 is returned in the
range -90 to 90.

Example:
f# 1. ATAN F.

Computes the arc-tangent of 1., which is 45 degrees.

Comment: This is the trigonometric inverse function to
TAN .

ATAN2

25
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl f2 -- f 3 "arc-tangent-two"

Computes f3, the angle (in degrees) whose tangent is
(f2/fl). The ranges of fl and f2 are unrestricted. f3
is returned in the range -180 to 180.

Example:
f# -1. f# 0 ATAN2 F.

Computes the arc-tangent of the x-y coordinate (-1,0),
which is 180 degrees.

Comment: This is the trigonometric inverse function to
TAN with the special ability to return a result from -
180 to 180. ATAN2 takes into account the signs of fl
and f2 and returns the result f3 in the correct quadrant
if fl is interpreted as an x coordinate and f2 is
interpreted as a y coordinate on a Cartesian coordinate
system. This word has obvious uses in graphics, and is
used when doing rectangular to polar coordinate
conversion.

BASE! n -- "base-store"

Store a new value in BASE, properly updating BASE_VAL
for correct operation of floating point output
conversion.

Example:
: DECIMAL 10 BASE! ;

Comment: BASE! should always be used instead of BASE !
to ensure proper operation of the floating point
package. HEX and DECIMAL are redefined by the package
for automatic use of BASE!.

I
. I

26
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

BASE VAL -- addr "base-val"

cos

COT

Variable that contains BASE**SIGDIG for speeding up
output numeric conversions.

Example:
BASE! (n ---)

DUP BASE
1 SIGDIG @ 0 DO OVER * LOOP
BASE VAL ! DROP ;

Comment: This variable saves having to perform a
multiply loop every time F>ME is executed. Note that
DECIMAL and HEX are redefined to use BASE! instead of
BASE!. Also, SIGDIG! must be used to change the number
of significant digits for correct operation.

fl -- f2 "cosine"

Computes f2, the cosine of the angle fl. fl is in
degrees. The range of fl is unrestricted. f2 is
returned in the range -1 to 1.

Example:
f# 45. COS F.

Computes the cosine of 45 degrees.

fl -- f2 "cotangent"

Computes f2, the cotangent of the angle fl. fl is in
degrees. fl must not be and even multiple of 90.

Example:
f# 60. COT F.

Computes the cotangent of 60 degrees.

csc

D,

27
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl -- f2 "cosecant"

Computes f2, the cosecant of the angle fl.
degrees. The range of fl is unrestricted.
be an even multiple of 90.

Example:
f# 45. COS F.

Computes the cosecant of 45 degrees.

fl is in
fl must not

d "d-comma"

Allot eight bytes in the dictionary, storing d there in standard double precision format.

Example:
12. D,

Extends the dictionary space by eight bytes and places the number 12 in the allocated space.

Comment: This is a double precision version of the word II II ' .

DCONSTANT d "d-constant"

A defining word used to create a dictionary entry for <name>, leaving d in its parameter field. When <name> is later executed, d will be left on the stack.

Form: DCONSTANT <name>

Example:
33.33 DCONSTANT NEW-VALUE

Enter the value 33.33, which will be a double precision number, and store it in an ideogram named NEW-VALUE. Executing NEW-VALUE will then cause the 3333 to be placed on the stack, the location of the decimal point being lost.

Comment: This is a double precision·version of the word "CONSTANT".

'

i
! ~

I.

28
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

DEG> RAD fl -- f 2 "degrees-to-radians"

Converts the angle fl, in degrees, to the angle f2, in
radians.

Example:
f# 180 DEG>RAD F.

Pi is 180 degrees.

Comment: DEG>RAD is the inverse operation of RAD>DEG.
It multiplies the input angle in degrees by (2*pi)/360
to produce the output angle in radians.

DLITERAL

IMMEDIATE WORD

C, I
d
d

d
"d-literal"

(executing)
(compiling)

If compiling, compile a stack double number into a
literal. Later execution of the definition containing
this literal will push it to the stack. If executing,
the number will remain on the stack.

DVARIABLE

A defining word used to create a dictionary entry of
<name> and assign 8 bytes for storage in the parameter
field, When <name> is later executed, it will leave the
address of the first byte of its parameter field on the
stack.

Form: DVARIABLE <name>

Example:
DVARIABLE NEW-VALUE

Make a new ideogram referring to a double precision
variable. Its new value is not initialized.

Comment: This is a double precision version of the word
VARIABLE.

I

E**

EXP

F!

29
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl f 2 "e-to-the-x"

Take the inverse natural log of fl.

Example:
f# 12.3 E** F.

Input, compute and display the floating point value.

Comment: E** is the inverse function of LN.

fl n2 -- f 3 "exp"

Apply the exponent n2, using the current value of BASE,
to the floating point number fl, leaving the result f3.

Example:
f# 12.345 10 EXP F.

Display the number 1.2345 EXP 11.

Comment: This is a convenient way to enter exponents
for scientific notation entry. Using EXP multiplies the
top floating point number by BASE raised to the power of
the exponent n2. EXP may be used at any time, not
necessarily immediately after an f# command. Also, the
use of EXP after f# is optional, allowing input
flexibility.

f addr "f-store"

Store f as an integer.

Example: CAUTION: May corrupt or crash your system.
f# 3333 HEX 6A75 F! DECIMAL

Stores the number 333 in 4 bytes starting at memory
location 6A75.

Comment: This is a floating point version of the word
F! is an alias of ! .

f #

F*

F**

/' .

30
BINAR FORTH FLOATING POINT REFEREN_CE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

f "f-number"

IMMEDIATE WORD
Interpret the number immediately following in the input
stream as a floating point number.

Example:
f# 123 F.

This forces the normally single precision number to be
interpreted as a floating point 123.

Comment: This word forces input into floating point
format regardless of whether the number has a decimal
point. f# is "state-smart" and either leaves the number
on the stack or compiles it as a literal.

fl f2 f 3 "f-times"

Leave the arithmetic floating point signed product of fl
times f2, giving f3.

Example:
f# 3. f# -6. F* F.

Compute the product of 3 and -6, which is -18.

Comment: This is a floating point version of the word
*·

fl f 2 -- f3 "f-exponential"

Computes f3 = fl ** f2, raising fl to the f2 power.

Example:
f# 3.3 f# 10.7 F** F.

Raise 3.3 to the 10.7th power.

Comment: F** uses logarithms to accomplish
exponentiation.

·'
I

.,
!

F+

F+!

F,

31
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl f2 f 3 "f-plus"

Leave the arithmetic sum of fl plus f2 as the result f3.

Example:
f# 2.2 f# 3.3 F+ F.

Add the two numbers 2.2 and 3.3, giving a result of 5.5

Comment: A floating point version of the word "+".

f addr "f-plus-store"

Add f to the 32-bit value stored at addr, by the
convention given for F+.

Example: CAUTION: May corrupt or crash your system.
f# 2.2 30000 F+!

Increment the floating point number stored at memory
address 30000 by 2.2.

Comment: This is a floating point version of the word
+!.

f "f-comma"

Allot 4 bytes in the dictionary, storing f there in
standard floating point format.

Example:
f# 12 F,

Extends the dictionary space by 4 bytes and places the
number 12 in the allocated space

Comment: This is a floating point version of the word
I •

F-

F.

32
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl f 2 f 3 "f-minus"

Leave the arithmetic difference of fl minus f 2
result f3.

Example:
f # 22. f # 33. F- F.

Subtract 33 from 22, leaving -11.

Comment: A floating point version of the word

f "f-dot"

as the

Display f converted according to BASE in a free-field format, with one trailing blank. Display the sign only if negative.

Example:
f# 2.2 F.

Input and display the floating point value 2.2.

Comment: This is a floating point version of the word " " It is "smart" in the sense that it will either use scientific notation format for very large or very small numbers and fixed point format with trailing zeros suppressed for small numbers when outputting.

F.A

33
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl n2 "f-dot-a"

Adjust the number of digits and display fl converted
according to BASE in a fixed point format with n2 digits
displayed to the right of the decimal point and a single
trailing blank. Display a leading negative sign if fl
is negative. Negative values of n2 are forced to zero.

Example:
f# 2.2 3 F.A

Input the floating point value and display it as 2.2000
• The value 3 for n2 forces extension of the number to
three digits after the decimal point.

Comment: This word is useful for forcing a set number
of digits to be displayed after the decimal point, and
is similar in effect to using the "FIX" function on many
calculators. The prescribed number of digits are
displayed past the decimal point using truncation or
right-padding with zeros as required.

F.AR fl n2 n3 "f-dot-a-r"

Adjust and Right justify the display of fl converted
according to BASE in a fixed format with n2 digits
displayed to the right of the decimal point, left
padded with blanks to be right justified in an n3
character field. Display a leading negative sign if fl
is negative. Negative values of n2 and n3 are forced to
zero.

Example:
f# 2.2 3 10 F.AR

Input and display the value " 2.200 11 • The value 3
for n2 forces extension of the number to 3 digits after
the decimal point. The value 10 for n3 forces 5 leading
blanks so that a total of 10 characters are printed.

comment: This word is useful for forcing decimal points
to line up in producing a column of right-adjusted
numbers. While this format would be good for printing
dollars and cents figures, DO NOT USE floating point for
monetary calculations since it will introduce round-off
errors.

F.E

34
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

f "f-dot-e"

Display f converted according to BASE in a free-field
scientific notation format, with one trailing blank.
Display the sign if negative.

Example:
f# -1452.2 F.E

Input and display the value "-1.452200 EXP 3 11 , which is
145.2 in scientific notation. The mantissa is -1.4522
and the exponent is 3.

Comment: This word outputs the number in scientific
notation, where the mantissa has an absolute value less
than BASE, and the total value of the number may be
computed by the formula: value = mantissa * (BASE **
exponent)

F.ER f 1 n2 "f-dot-e-r"

Display fl converted according to BASE in scientific
notation left-padded with blanks to be right-justified
in an n2 character field. Display the sign if negative.

Example:
f# .0312 20 F.ER

Input and display the value " 3.120000 EXP -2 11 ,
which is .0312 in scientific notation. The result is
left padded with blanks so that a total of 20 characters
are printed.

Comment: This word outputs the number in scientific
notation, where the mantissa has an absolute value less
than BASE, and the total value of the number may be
computed by the formula: value = mantissa * (BASE **
exponent)

I

I ,,

F.R

F.X

35
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl n2 "f-dot-r"

Display fl converted according to BASE, right adjusted
in an n2 character field (left-padded with blanks.)
Display the sign only if negative.

Example:
f# 2.2 10 F.R

Input and display the value 2.2 with 8 preceding blanks.

Comments: This is a floating point version of the word
.R . It allows formatted output for aligning numbers in
columns according to the output conventions of F ..

"f-dot-x"

Display fl converted according to BASE in a fixed point
format and a single trailing blank. Display a leading
negative sign if fl is negative.

Example:
f# 2.2 F.X

Input and display the value 11 2.200000 11 assuming that
SIGDIG is 7. The number printed is right-padded with
zeros to always have at least SIGDIG digits.

Comment: This word is useful for forcing fixed point
output format even for very large or very small numbers,
when F. would normally produce scientific notation
output.

(

36
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

F.XR fl n2 "f-dot-x-r"

F/

FO<

Display fl converted according to BASE in a fixed point
format left-padded with blanks to be right-justified in
an n2 character field. Display a leading negative sign
if fl is negative.

Example:
f# 2.2 10 F.XR

Input and display the value " 2.200000 11 assuming that
SIGDIG is 7. The number printed is right-padded with
zeros to always have at least SIGDIG digits and left
padded with blanks to total 10 characters of display.

Comment: This word is useful for forcing fixed point
output format even for very large or very small numbers,
and aligning the output numbers in columns.

fl f2 f 3 "f-divide"

Leave the arithmetic signed quotient of fl divided by
f2. f3 is the quotient with the sign as determined by
conventional division sign rules.

Example:
f# 25. f# 3. F/ F.

Divide 25 by 3, giving a quotient of 8.333333.

Comment: This is a floating point version of the word /
• Underflow is not checked for, and may yield
unpredictable results. ,

f flag "f-zero-less"

Leave a true (non-zero) flag if f is less than zero.

Example:
f# 2.2 FO<

Inputs the value and leaves a false flag of· o, since 2.2
is not less than o.
Comment: This is a floating point version of the word
O< • The test destroys the comparand.

. ' ..

·1
I

FO:

FO>

F2*

37
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

Leave a true

Example:
f# 2.2

Input, leave
not equal to

f flag "f-zero-equal"

(non-zero) flag if f is zero.

FO= •
and display a false flag of o, since 2.2 is o.

Comment: This is a floating point version of the word
O= • The test destroys the comparand.

f flag "f-zero-greater"

Leave a true (non-zero) flag if f is greater than
zero.

Example:
f# 2.2

Input, leave
greater than

FO> •
and display a true flag of 1, since 2.2 is o.

Comment: This is a floating point version of the word
O> • The test destroys the comparand.

fl f 2 "f-two-mult"

Multiplies the floating point input fl by 2 to give the
output f2.

Example:
f# 34.1 F2* F.

Input, multiply by 2 and display 68.2.

Comment: This is a high speed multiply accomplished by
adding 1 to the exponent of fl; no actual
multiplication takes place -- remember that the exponent
is kept in radix 2.

F2/

F<

F=

38
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl f 2 "f-two-divide"

Divides the floating point input fl by 2 to give the
output f2.

Example:
f# 34.1 F2/ F.

Input, calculate and display 17.05

Comment: This is a high speed divide accomplished by
subtracting 1 from the exponent of fl; no actual
division takes place -- remember the radix of the
exponent is 2.

fl f 2 flag "f-less-than"

Leave a true (non-zero) flag if fl is less than f2.

Example:
f# 4.4 f# 33. F<

Input, test and display a true flag of 1, since 4.4 is
less than 33.

Comment: This is a floating point version of the word <
The test destroys both comparands.

fl f2 flag "f-equal '';

Leave a true (non-zero) flag if fl is equal to f2.

Example:
f# 22. f# 3. 3

Input, test, display
equal to 3.3.

F=
a false flag of O, since 22 is not

Comment: This is a floating point version of the word =
The test destroys both comparands. The user should

beware of round-off error when making tests for exact
equality after calculations.

F>

F>D

39
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

f 1 f2 flag "f-greater-than"
Leave a true (non-zero) flag if fl is greater than f2.
Example:

f# 22. f# 3.3 F>
Input, test and display a true flag of 1, since 22 is greater than 3.3.

Comment: This is a floating point version of the word > The test destroys both comparands.

f d "f-to-d"

Convert the floating point input number f to the double precision integer output d. If the integer portion of f is too large to fit into d, then d will contain an overflowed value.

Example:
f # 3 F>D D.

Converts a floating point 3 to a double precision 3 and display it. Note that the sign of the number is preserved.

Comment: The number is truncated towards zero in the conversion. This is the inverse operation of D>F.

40
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

F>ME fl d2 n3 "f-to-m-e"

F>N

Float to Mantissa and Exponent converts the floating point input number fl to a double precision integer
mantissa d2 and a single precision integer exponent n3 using the current value of BASE. The integer d2
contains SIGDIG number of significant digits with an implied decimal point after the highest order digit.

Example:
7 SIGDIG! f# 123.4 F>ME • D.

Sets the number of significant digits for output
conversion to 7 and converts the number 123.4 to a
mantissa 1234000 (with an implied decimal point between the 1 and the 2,) and the exponent 2. In other words,
the result is 1.234000 times 10**2.

Comment: This primitive is used for all floating point output formatting to get the number into a form that can be used with double precision integer output words.

f n "f-to-n"

Convert a floating point number to a single precision number. overflow is not checked.

Example:
f# 34. F>N •

Convert the floating point 34 to single precision and display it.

Comment: This is the inverse operation to N>F. The sign of the operand and the correct value are both
preserved if the floating point value is within the range of single precision numbers, otherwise an
overflowed value will result.

F>R

F>T

F?

41
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

f "f-to-r"

Transfer f to the return stack. Every F>R must be
balanced by a FR> in the same control structure nesting
level of a colon-definition.

Example:
: TEST

f #
F>R FDROP FR> ;
333;33 f# 444.44 TEST F.

The word TEST deletes the second floating point number
on the stack by temporarily placing the top stack word
on the return stack. The example drops 333.33 from the
stack, leaving 444.44. Note that f# is necessary with
each value if you are not in f#. F>R works the same way
as.

f t "f-to-t"

Convert a floating point number to a temporary floating
point number.

Example:
f# 34. F>T f# 12. F>T T+ T>F F.

Convert the floating point 34 and 12 to temporary
precision, add them, and print out the result.

Comment: This is the inverse operation to T>F.

addr "f-query"

Display the floating point number at addr, using the
format of F .•

Example:
4000 F?

Displays the floating point number in the four bytes of
memory starting at address 4000.

Comment: This is a convenient substitute for the
sequence F@ F. , and is a floating point version of the
word ? •

F@

42
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION O.p
HARRIS SEMICONDUCTOR PROPRIETARY

addr f "f-,fetch"

Leave the contents of the four consecutive bytes
starting at addr on the stack as a floating point number
f.

Example:
31000 F@ F.

Fetches the floating point number at location 31000.

comment: This is a floating point version of the word @ F@ and F! are complementary functions.

FABS fl f 2 "f-abs"

Leave the positive floating point number f2i which is
the absolute value of the floating point number fl.

Example:
f# -2.2 FABS F.

Input, convert and display 2.2 •

·Comment: This is the floating point version of the word ABS.

FCONSTART f "f-constant"

A defining word used to create a dictionary.entry for
<name>, leaving f in the four bytes starting at <name>'s parameter field. When <name> is later executed, f will be left on the stack.

Form: f#.7.3 FCONSTANT <name>

Example:
f# 56. FCONSTANT

creates a floating point
assigns a value of 56 to

NEWCONSTANT
constant called NEWCONSTANT and
it.

Comment: This is a floating point version of the word CONSTANT. It allots four bytes after the parameter field starting address and stores the floating point number in the same format used by F! •

43
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

FCONVERT fl addrl -- f 2 addr2 "f-convert"

Convert to the equivalent stack number the text
beginning at addrl+l with regard to BASE. The new value
is accumulated into floating point number fl, being left
as f2. addr2 is the address of the first non
convertible character.

Example:
HEX f # 0 6AC2 CONVERT DECIMAL

Place a floating point value of O on the stack and then
an address in memory at which the ideogram is to begin
its conversion.

Comment: This is a floating point version of the word
CONVERT.

FDROP f "f-drop"

FDUP

Drop the top floating point number on the stack.

Example:
f# 2. FDROP

Inputs and then drops the number 2. from the stack.

Comment: This is a floating point version of the word
DROP. Drops the top floating point number or any other
two cells from the stack. FDROP is an alias for DROP.

fl fl fl "f-dupe"

Duplicate the top floating point number on the stack.

Example:
f# 1. FDUP F. F.

Input, duplicate and display both copies of the value.

Comment: A floating point version of the word DUP.
FDUP is an alias for DUP.

FLITERAL

44
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

I
f
f

f
"f-literal"

(executing)
(compiling)

If compiling, compile a stack floating point number into a literal. Later execution of the definition containing this literal will push it to the stack. If executing, the number remains on the stack unchanged.

Example:
: FTEST [f# 3. f# 2. F-]

FLITERAL F. ;
FTEST

When executed, FTEST will print out the result of 3 - 2 which is 1. The subtraction is performed at compile time, not execution time.

Comment: This is a floating point version of the word LITERAL. Using FLITERAL allows compiling floating point constants computed at compile time.

FMAX fl f 2 f 3 "f-max"
Leave the larger of the two floating point numbers fl and f2 as the result f3.

Example:
f# 2.2 f# 3.3 FMAX F.

Input values, test, and display the maximum.

Comment: This is a floating point version of the word MAX.

FMIN fl f2 f 3 "f-min"

Leave the smaller of the two floating point numbers fl and f2 as the result f3.

Example:
f# -2.2 f# -3.3 FMIN F.

Input values, test and display the minimum.

Comment: This is a floating point version of the word MIN.

FOVER

45
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl f2 fl f2 fl "f-over"

Leave a copy of the second floating point number on the stack fl, and place it on top of f2.

Example:
f# 33.44 f# 44.44 FOVER

Input values, execute function,
on the stack.

F. F. F.
and display all values

comment: A floating point version of the word OVER. FOVER is an alias for OVER.

FPICK nl -- f 2 "f-pick"

Copy the contents of the nl-th floating point stack value, not counting nl itself, to the top of the stack. An error message is issued if nl is less than 1.

Example:
f# 333.3 f# 444.4 2 FPICK F. F. F.

Copies 333.3 to the top of the stack.

Comment: This ideogram is a floating point version of the word PICK. It assumes that all words on the stack between the number from which f2 is copied and nl are floating point numbers. The combination 2 FPICK is equivalent to FOVER, and 1 FPICK is equivalent to FDUP. FPICK is an alias of PICK.

FR>

FR@

46
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

-- f "f-r-from"
Transfer f from the return stack to the data stack. Every FR> must be balanced by a F>R in the same control structure nesting level of a colon-definition.
Example:

: TEST F>R FDROP FR> ;
f# 333.3 f# 4444. TEST F.

The word TEST deletes the second floating point number on the stack· by temporarily placing the top stack word on the return stack. The example drops 333.3 from the stack, leaving 4444.

CAUTION: This ideogram must be used with care to avoid crashing the system. It is useful for accessing buried numbers (although FPICK and FROLL are less dangerous) and for temporarily getting numbers out of the way of stack operations until needed later. FR> is identical to R>.

-- f "f-r-fetch"
Copy f from the top two 16-bit words on the return stack.

Example:
: TEST F>R FR@ FR> ;
f# 333.3 TEST F. F.

The word TEST is equivalent to an FDUP command, but is only useful for illustration of the FR@ command. The example duplicates 333.3 on the stack.

Comment: This ideogram allows access to floating point numbers placed on the stack with F>R. It does not alter the values on the return stack.

47
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

FRAC fl -- f 2

This word returns the fractional part of fl as f2.

Example:
f# -87.123 FRAC F.

he fractional part of -87.123 is -.123

Comment: The fractional part of the number is given the
same sign as the original number, and constitutes all
the digits to the right of the decimal point.

FRO LL n -- "f-roll"

FROT

Extract the n-th floating point stack element to the top
of the stack, not counting n itself, moving the
remaining values into the vacated position. An error
message is issued if n is less than 1. All values on
the data stack between the n-th nunmber and the value n
itself are assumed to be floating point numbers.

Example:
f# 33.3 f# 444.4 f# 44.4 3 FROLL F. F. F.

Moves 33.3 to the top of the stack.

Comment: A floating point version of the word ROLL.
The combination 2 FROLL is identical in function to
FSWAP, and 3 FROLL is identical to FROT. FROLL is an
alias for the word ROLL.

fl f 2 f3 -- f2 f 3 fl "f-rote"

Rotate the top three floating point values on the stack,
bringing the deepest to the top of the stack.

Example:
f# 11. f# 22. f# 33. FROT F. F. F.

Rotates the 11 to the top of the stack and prints.the
numbers out in the order 11-33-22.

Comment: This is a floating point version of the word
ROT. FROT is an alias for the word ROT.

48
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

FSWAP f 1 f2 -- f2 fl "f-swap"

Exchange the top two floating point numbers f 1 and f 2 on
the stack.

Example:
f# 324. f# 523.432 FSWAP F. F.

Put two floating point numbers on the stack and swap
their order.

Comment: This is a floating point version of the word
SWAP. FSWAP is an alias for the word SWAP.

FVARIABLE "f-variable"

INT

Usage: FVARIABLE <name>

A defining word used to create a dictionary entry <name>
and assign four bytes for storage in the parameter
field. When <name> is later executed, it will leave the
address of the first byte of its parameter field on the
stack.

Example:
FVARIABLE NEW-VALUE
f# 123.34 NEW-VALUE F!
NEW-VALUE F@ F.

This create a floating point variable called NEW-VALUE.

Comment: This is a floating point version of the word
VARIABLE. The initial contents of the variable are
unspecified. FVARIABLE is an alias for VARIABLE.

f 1 f 2

Truncate fl to the next lower integer, giving f2.

Example:
f# 5.8227 INT F.

Input, truncate and display the input down to 5.

Comment: INT is used to extract the integer portion of
a number. Numbers are truncated towards zero.

LN

49
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

f 1 -- f2 "natural log"

Computes the natural log of fl, leaving the result f2.

Example:
f# 5.1 LN F.

Computes the natural log of 5.1
I

Comment: This ideogram takes the base e log of a
number. It is the inverse operation of E** .

LOG f 1 -- f2

LOG2

Computes the common log (base 10) of fl, leaving the
result f2.

Example:
f# 5.1 FLOG F.

Computes the common log of 5.1 .

Comment: Decimal logarithms are the most commonly used
logs. This is the inverse operation of 10** .

f 1 -- f2 "log-two"

Computes the log (base 2) of fl, leaving the result f2.

Example:
f# 5.1 LOG2 F.

Computes the log base 2 of 5.1 .

Comment: This is a faster logarithm than other base
logs, since the floating point packaged uses base 2 logs
for internal calculations. This is the inverse
operation of 2** •

50
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

LOGB f 1 f2 -- f3 "log-b"

N>F

N>T

Computes the log (base f2) of fl, leaving the result f3.

Example:
f# 5.1 f# 7. LOGB F.

Computes the log base 7 of 5.1 •

Comment: This is a generalized logarithm to any base.
It is the inverse operation of ** .

n f "n-to-f"

Convert a single precision integer to a floating point
number.

Example:
34 N>F F.

Convert the integer 34 to floating point and display it.

Comment: This is the inverse operation to F>N.

n t "n-to-t"

Convert a single precision integer to a temporary
floating point number.

Example:
34 N>T T>F F.

Convert the integer 34 to temporary floating point and
display it.

Comment: This is the inverse operation to T>N.

P>R

PI

R>P

51
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fradius fangle > fx fy "p-to-r"

Performs polar to rectangular coordinate conversion.
The vector with length fradius and orientation fangle
(in degrees) is converted to an x,y coordinate pair
(fx,fy).

Example:
f# 7.8 f# 30. P>R FSWAP F. F.

A vector with length
an x,y coordinate.

7.8 and angle 30. is converted to

Comment: P>R converts a polar coordinate pair
(radius,angle) to rectangular coordinates (x,y). In
addition to geometric calculations, P>R is useful for
complex number manipulations. P>R is the inverse
operation of R>P.

-- fl "pie"

A constant that leaves the floating point value of the
trigonometric constant pi on the stack as fl.

Example:
PI F.

fx fy -- fradius f angle "r-to-p"

Performs rectangular to polar coordinate conversion.
The Cartesian coordinate pair (fx,fy) is converted to a
radius fradius and an angle fangle (in degrees).

Example:
f# 3.1 f# -5.1 R>P FSWAP F. F.

A vector with x-value 3.1 and y-value -5.1 has a length
of 5.968249 and makes and angle of -58.70696 degrees
with the x-axis.

Comment: R>P converts a rectangular coordinate pair
(x,y) to polar coordinates consisting of the vector
length and an angle from the positive x axis to the
vector. In addition to geometric calculations, R>P is
useful for complex number manipulations. R>P uses ATAN2
to get the polar angle, so range restrictions are the
same as for ATAN2.

52
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

RAD> DEG fl -- f2 "radians-to-degrees"

REM

ROOT

Converts the angle fl, in radians, to the angle f2, in
degrees.

Example:
PI RAD>DEG F.

Pi is 180 degrees.

Comment: RAD>DEG is the inverse operation of DEG>RAD.
It multiplies the input angle in radians by 360/(2*pi)
to produce the output angle in degrees.

fl f2 -- f3

Computes the remainder f3 when fl is divided by f2. The
remainder has the same sign as fl.

Example:
f# 4.124 f# 3. REM F.

The remainder of 4.124/3 is 1.124

Comment: REM is an exact result of the floating point
remainder after division. It is very useful for
argument range reduction for trigonometric and other
functions.

fl f2 -- f3

Computes f3 =fl** (1/f2), taking the f2'nd root of fl.
The sign of fl is stripped to force it to a positive
value.

Example:
f# 3.12 f# 10.6 ROOT F.

Take the 10.6th root of 3.12 •

Comment: ROOT uses logarithms to accomplish its
function. Note that SQRT is much more efficient for
taking the 2nd root of a number.

SEC

53
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl -- f2 "secant"

computes f2, the secant of the angle fl. fl is in degrees. fl must not be an odd multiple of 90.

Example:
f# 45. SEC F.

Computes the secant of 45 degrees.

SIGDIG -- n "sig-dig"

SIN

SIGDIG is a variable that contains the number of
significant digits to be made available for displaying floating point numbers.

5 SIGDIG! PI F.
7 SIGDIG! PI F.

Example: Use five significant digits for floating point output operations (used by F>ME for numeric conversion.)

Comment: SIGDIG! must be used to change the number of significant digits for correct operation. The sequence SIGDIG ! does not properly set the variable BASE_VAL. Floating point calculations are always carried out with all available precision; SIGDIG only affects output
operations. SIGDIG should not be set too high, or false precision will be displayed. For base 10, SIGDIG should be set to 7 or less.

fl -- f2 "sine"

Computes f2, the sine of fl (in degrees.) The range of fl is unrestricted. f2 is returned in the range -1 to 1.

Example:
f# 45. SIN F.

Computes the sine of 45 degrees.

I
i ~.

SQRT

t#

T*

54.
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

fl -- f2 "square-root"

Computes the square root of the absolute value of fl, giving f2.

Example:
f# 2. SQRT F.

Compute and display the square root of 2.

Comment: SQRT uses the Newton-Rhapson method for a higher speed square root than would be attainable using the ROOT function.

t "t-number"

IMMEDIATE WORD
Interpret the nµmber immediately following in the input stream as a temporary floating point number.

Example:
t# 123 T>F F.

This forces the normally single precision number to be interpreted as a floating point 123.

Comment: This word forces input into floating point format regardless of whether the number has a decimal point. t# is "state-smart" and either leaves the number on the stack or. compiles it as a literal.

tl t2 t3 "t-times"

Leave the arithmetic signed product of tl times t2, giving t3.

Example:
t# 3. t# -6. T* T>F F.

Compute the product of 3 and -6, which is -18.

Comment: This is a temporary floating point version of the word * .

T+

T-

T/

55
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

tl t2 t3 "t-plus"

Leave the arithmetic sum of tl plus t2 as ~he result t3.
Example:

t# 2.2 t# 3.3 T+ T>F F.
Add the two numbers 2.2 and 3.3, giving a result of 5.5

Comment: A temporary floating point version of the word + •

tl t2 t3 "t-minus"
Leave the arithmetic difference of tl minus t2 as the result t3.

Example:
t# 22. t# 33. T- T>F F.

Subtract 33 from 22, leaving -11.

Comment: A temporary floating point version of the word

tl t2 t3 "t-divide"

Leave the arithmetic signed quotient of tl divided by t2. t3 is the quotient with the sign as determined by conventional division sign rules.

Example:
t# 25. t# 3. T/ T>F F.

Divide 25 by 3, giving a quotient of 8.333333.

Comment: This is a temporary floating point version of the word / • Underflow is not checked for, and may yield unpredictable results.

T2**

T>F

T>N

(

56
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

tl t2 "t-two-to-the-x"

Raises 2 to the power of the input number tl, giving the
result t2.

Example:
t# 4.7 2** T>F F.

Input, calculate and display 2 raised to the 4.7th power

Comment: This is the primitive word used by the
floating point package for exponentiation in all bases.

t f "t-to-f"

Convert a temporary floating point number to a floating
point number. Force a "clean zero" during the
conversion.

Example:
f# 34. F>T f# 12. F>T T+ T>F F.

Convert the floating point 34 and 12 to temporary
precision, add them, and print out the result.

Comment: This is the inverse operation to F>T. Most
"T" operations allow the propagation of negative zero,
so T>F checks for negative zero and forces it to
positive zero.

t n "t-to-n"

Convert a temporary floating point number to a single
precision number. Overflow is not checked.

Example:
t# 34.8 T>N

Convert the temporary floating point 34.8 to single
precision 34 and display it.

Comment: This is the inverse operation to N>T. The
sign of the operand and the correct value are both
preserved if the temporary floating point value is
within the range of single precision numbers, otherwise
an overflowed value will result.

57
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

T>RND t n "t-to-n"

TABS

TAN

Convert a temporary floating point number to a single precision number, rounding to the nearest integer. overflow is not checked.

Example:
t# 34.7 T>RND .

Convert the temporary floating point 34.7 to single precision 35 and display it.

Comment: This is similar to T>N, but performs round-tonearest conversion instead of truncation.

tl t2 "t-abs"

Leave the positive temporary floating point number t2, which is the absolute value of the temporary floating point number tl.

Example:
t# -2.2 TABS T>F F.

Input, convert and display 2.2 .

Comment: This is the temporary floating point version of the word ABS.

fl -- f2 "tangent"

Computes f2, the tangent of fl (in degrees.) fl must not be an odd multiple of 90.

Example:
f# 60. TAN F.

Computes the tangent of 60 degrees.

I, I

!

, -,

TCONVERT

58
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

tl addrl -- t2 addr2 "t-convert"

Convert to the equivalent stack number the text
beginning at addrl+l with regard to BASE. The new value
is accumulated into temporary floating point number tl,
being left as t2. addr2 is the address of the first
non-convertible character.

Example:
HEX t# 0 6AC2 CONVERT DECIMAL

Place a floating point value of o on the stack and then
an address in memory at which the ideogram is to begin
its conversion. '

Comment: This is a temporary floating point version of
the word CONVERT.

TDEG>RAD tl t2 "t-degrees-to-
radians"

Converts the angle tl, in degrees, to the angle t2, in
radians.

Example:
t# 180 TDEG>RAD F>T F.

Pi is 180 degrees.

Comment: TDEG>RAD is the inverse operation of TRAD>DEG.
It multiplies the input angle in degrees by (2*pi)/360
to produce the output angle in radians.

TFRAC tl -- t2 "t-frac"

This word returns the fractional part of tl as t2.

Example:
t# -87.123 TFRAC T>F F.

he fractional part of -87.123 is -.123

Comment: The fractional part of the number is given the
same sign as the original number, and constitutes all
the digits to the right of the decimal point.

59
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

TLOG2 tl -- t2 "t-log-two"

Computes the log (base 2) of tl, leaving the result t2.

Example:
t# 5.1 TLOG2 T>F F.

Computes the log base 2 of 5.1 •

Comment: This is a faster logarithm than other base logs, since the temporary floating point packaged uses base 2 logs for internal calculations. This is the inverse operation of 2** •

TLOGB tl t2 -- t3 "t-log-b"

computes the log (base t2) of tl, leaving the result t3.
Example:

t# 5.1 t# 7. TLOGB T>F F.
Computes the log base 7 of 5.1

Comment: This is a generalized logarithm to any base. It is the inverse operation of ** •

TNEGATE tl t2 "t-negate"

Leave the two's complement of floating point number tl, giving t2.

Example:
t# 2.2 TNEGATE T>F F.

Input, negate and display a floating point number.

Comment: This is a temporary floating point version of the word NEGATE. Negative zero is allowed.

TRAD> DEG
degrees"

60
BINAR FORTH FLOATING POINT REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

tl -- t2 "t-radians-to-

Converts the angle tl, in radians, to the angle t2, in
degrees.

Example:
PI F>T TRAD>DEG T>F F.

Pi is 180 degrees.

Comment: TRAD>DEG is the inverse operation of TDEG>RAD.
It multiplies the input angle in radians by 360/(2*pi)
to produce the output angle in degrees.

