Embedded System Education at Carnegie Mellon

Philip Koopman
Carnegie Mellon University

Other embedded educators: Gary Fedder
Bruce Krogh
Radu Marculescu
JoAnn Paul
Raj Rajkumar
Dan Siewiorek
Don Thomas

... and others who touch upon this area:
- DSP
- MEMS
- Robotics
- …
Embedded Systems Courses

Sophomores:
- Hardware Design
 - Single-CPU Systems
 - C/Java Programming

Juniors:
- Signals & Systems
- Software/System Engineering
- Rapid Prototyping/Wearable Computers
- Distributed Embedded Systems
- Signals & Systems

Seniors/Grads:
- HW/SW Codesign
- Reconfigurable Computing
- Mechatronics
- Dependability
- Various Topics
- Engineering Process “War Stories”
- Linear/Discrete Systems

What Does It Take To “Do” Embedded?

- We’ve been doing it for a long time
 - More a continual evolution process than a redirection

- 1980s: Intro. to embedded systems & real time control lab

- Early 1990s: Wearable computer course – taught twice/yr. since 1992
 - Radar/Sonar graduate course – now defunct
 - Dependability graduate course – now human factors

- Late 1990s: Redirect bit-slice CPU design course to HW/SW Codesign

- 1999: Distributed embedded system (e.g., cars)

- By 2001: Encourage universal software engineering literacy
HW/SW Codesign

- **ECE 18-545: Advanced Digital Design Project**
 - Assumes hardware design (procedural Verilog) and programming (C) skills
 - Lab-centered on *building a real system* on a wire-wrapped breadboard
 - Project completion requires HW/SW tradeoff & co-simulation

- **Typical projects: JPEG encoder, Chess Game**
 - Spec is given as C program, executable on Unix
 - Design goals set by students at beginning of term
 - Design variants such as speed, size, extensibility, and student-defined

- **Teams of 4 students**
 - All ECE students
 - Course-defined project goal
 - FPGA + Processor + RAM as building blocks
 - 60 students every Fall
Distributed Embedded Systems

- **ECE 18-540: “Distributed Embedded Systems”**
 - Assumes general embedded systems skill set
 - Multiple small processors on an embedded/real time network (e.g. CAN)
 - System partitioning, scheduling, and performance evaluation
 - *Analysis, simulation* from cars, elevators, trains, …
 - *Realistic situations* used for discussions/case studies
 - 35+ students every Fall
Distributed Embedded Project

- **Distributed Elevator Implementation**
 - Done in simulation; framework provided
 - Groups of 3 students
 - Performance competition for
 - 1% of course grade bonus
 - Industry sponsor gear as prizes

- **Hands-on emphasis of:**
 - Concurrency
 - Failure mode response
 - Dropped messages
 - Failed nodes
 - Emergent behaviors
 - Requirements changes
Rapid Prototyping/Wearable Computers

- ECE 18-843 “Mobile Computing Systems and Applications”
 - Assumes *some* students have general hardware and software background
 - *Real-world product design*

- **Real project + Real customer**
 - Information appliance & Internet-based embedded applications
 - Every semester is different, but involves a real customer
 - System requirements through delivery in one semester
 - *Including* component purchase & fabrication/assembly of hardware prototype

- **Learn by doing**
 - Historically most projects have been wearable computers
 - Examples of real-world issues are sure to crop up in a real design project
 - But which issues crop up depend on the specific project
Rapid Prototyping Project

Example:

- MoCCA, a mobile computing and communications
- Real prototype for Compaq for field sales force collaboration
- Single project for multi-disciplinary team of 25-30 students twice per year
 - Computer Engineering, Design (Fine Arts), Mechanical Engineering, Software Engineering, Human Computer Interaction, and others

Prototype Final Design Concept

- Mocca received the prestigious Industrial Design Excellence Awards (IDEA) from award co-sponsors Business Week magazine and the Industrial Designers Society of America (IDSA).
Common Themes

- Both real and realistic design experiences
 - Real experiences with real customers are, well, real
 - Realistic experiences provide a way to ensure controlled breadth
 - Students tell us these are the courses they talk about in interviews

- Key embedded education areas:
 - Software / Digital hardware / Controls / System-level issues / Life cycle
 - Different group sizes: 1-2 / 3-4 / 20-30 per project
 - Different perspectives: hands-on project; analysis; case study

- Contact with industrial sponsors for courses and projects
 - Compaq sent people nearly every week for MoCCA meetings
What Have We Learned?

- **Key element: must have frequent industry interactions**
 - Parts/tools: Altera / Motorola / Cadence / Synplicity
 - On-campus industry representatives:
 - Adtranz / Bosch / Caterpillar / Emerson Electric
 - Multi-project relationships with other companies
 - General Motors / DaimlerChrysler / ABB / …
 - *BUT*, still building up course partners
 - Ideally not only support, but also active participation in course projects

- **Biggest problem:** scarce faculty (same as everywhere else)
 - Especially difficult for mid-career switchovers
 - industry ⇒ academia

- **Biggest asset:** industry participation

- **Biggest victory:** injecting reality into the courses

- **Biggest cost:** dedicated staffing for large project courses!

- **Biggest challenge:** multi-disciplinary design *methodology*