18649 Distributed Embedded Systems

Soda M achine Portfolio Discussion
By Justin Ray, last modified 2010-02-16

Table of Contents

TADIE Of CONTENTS ...ttt et et s b et stb e besbbtbesnnenennnes 1
L INEFOUCTION e e 1
2. DISCIAIMEIS ... e e e e e e et et e e e e e e e e e eesse s aasseeeeeeeeaesnnnanaeeeaeeennnen 2
2.1 Not defecCt free (DUL CIOSE).....c.eeiiiiieeeeee e 2
2.2 NOt QUENOTTALIVEeeiiiiiiiie i eeeeee e e e e e bbb e e e e s ane 2
2.3 Not the only way of doING thINGS......... e eeeeeiieeieeiee e 3
pZ Y=\ Y o o T o) o 1= o PP 3

G T =T 1T = L o[PS PPOSUUPURPPPPRRPPPN 3
3.1 Correspondence between the Elevator and the Madhine — Simplifying
F TS0] 4] 0] P PP 3
3.2 The Importance of Doing It Right and the Cddtate-Found Bugsccvvvvvvvvvnnnnes 4
3.3 The Importance of Bug Tracking — Bugs Don’t Mélae Design is Bad........................ 5

4. ProjeCt SPECIfiC DISCUSSIONSummmmmmreeeeeeeeseennesennnenesssssssssssnssrsrernreesesereeerereeer 6
4.1 Project 2 — Sequence Diagram NUMDErNG.......uueevviiiiiiiiiiiiiiiiiiiiiiiiiieeieeneieeeeeeeee. 6
4.2 Project 2 — Approaches to Defining Use CasdsSaguence Diagrams for Embedded
)] (=] 1 1P 6
4.3 Project 3/4 -- High-Level vs. Low-Level ReqQUITENLSvvvivieiiimiiiiiiiiiiiiiinaeens 8
4.4 Project 4 —TiMe-Triggered DESIQN oo eeeeeerrerrmrrerrerurrnnmennnnnrnsmsmsrmrrnneeeere 9
4.5 Project 4 — Benefits of Time Triggered ReqUBAIBccoeeeeeeieiieiiiiieeiis e 9
4.6 Project 4 - Nested StateCharts ... 10
4.7 Project 4 — Pulsed Inputs and OULPULScceeeeiiiiiiiiiiiiiiiiiiiiiieiieiievieeeeeee e 12
4.8 Project 5 — Implementing Guard CoONAitiONS..cccac..evviiieiiiiiiiiiiiiiiiiiiiieieeiieeeeeeeeeee 13
4.9 Project 5 — Unit Testing Nested Statecharts..............ccceoveiiiiiiiieiciiii e, 13
4.10 Project 5 — Unit Testing NegatiVe CaASES . eeverrrrrrrereiirrrrirnrnereneneneserineenneeeeees 13
4.11 Project 5/6 — Testability Problems with Umtldntegration TestS..............uvvvvevinennnes 13
4.12 Projects 5, 6, 7 — USefulNesSs Of TeSHNGuuuceerrrrrrreririiiiiiiieiiiiievineiensieeeneeeeeeeees 14
4.13 Project 11 — Network Schedule ANalysSiS........cooooeiiiiiiiieee, 15
4.14 Projects 8-12 — A More Sophisticated Elevatar...............occccvviiiieiiiininiieeeeen. 15

1. Introduction

The soda machine portfolio (SMP) is provided tovglyou a reasonably complete example of
the portfolio that you will end up with after yoave completed all the course projects. To
provide additional insight about the projects ameldesign process, we have written this

Soda Machine Portfolio Discussion 1/15

document to explain the some of the design deadiloat went in to this project and provide
some additional information about the design preces

We will start with some general discussion thatli@ggo the project as a whole and then move
into notes for specific projects. The project sfieaotes are roughly organized to start at the
beginning of the semester and follow the SMP thhoegch project, pointing out interesting
details and useful tips along the way.

We suggest you read the whole discussion docunmehibak through the entire soda machine
portfolio after the UML design and End-to-End Despyocess lectures. Even if you don't
understand every part of the design process, litwip to have a big picture overview and see
how the different parts of the design processfiether. Then, as you go through the projects
during the semester, you can refer back to theudgon for each project as you reach it.

Before you get started with this document, pleasel the Requirements | document in the SMP
and in the elevator portfolio template. These doents describe the objects in the system and
messages that are present on the networks. Téiesdien will make more sense to you if you
are familiar with the parts of the system.

There are some parts of the simulation framewodktha portfolio documents in the SMP that
still use elevator terminology (e.g. Passengeeawsibf Customer). The example portfolio is a
design of the soda machine system as a proxy éoeldvator system, so throughout the SMP

and this discussion, we will refer to similar parfghe two systems interchangeably.

2. Disclaimers

Read these disclaimers carefully before you base gesign on what you see in the examples.

2.1 Not defect free (but close)

We have made every effort to make the SMP is aptaimand error-free as possible.
However, it’s likely that there are some defectt thie have not found. If you find a defect (or
think you have) please notify the course staff motude as much information as you can (what
document is affected, why you think it is a defett,).

2.2 Not authoritative

We have also attempted to follow the guidelines pnodedures set forth in the course projects.
However, these change slightly from year to yead (@ometimes during the semester), so there
may be some discrepancids the cour se, the project write-upsarethe gold standard. If
thereisa conflict between the way the SMP iswritten and what isin the project write-up,
follow the project write-up and notify the cour se staff.

One specific way this manifests is that many pitsjeequire one person to create an artifact
(requirements, test case, etc) and another peosoerform a peer review on it. Since there was
only one person involved in the generation of tMPSthe authorship and reviews were all done
by the same person. But in your projects, you rhaste someone else do the reviews!

Soda Machine Portfolio Discussion 2/15

Another thing you will see in the example that yoay not do in your project is modify the
requirements or code for the system objects. Vh&s objects used for the soda machine are
less mature than those for the elevator, and sevega found in the course of the project were
actually related to the system objects. Although still possible that there are bugs in the
elevator system objects, you may not modify thégeabs or their requirements unless the
change is specified by a project write-up or yotaotprior permission from the course staff.
Caveat: The entire source code is available tg yodeel free to make whatever modifications
you want to the system objects when testing andglghg. Just realize that the code you
submit must work correctly with the baseline siniola framework that we have provided.

2.3 Not the only way of doing things

The SMP isot the only way of doing things. In fact, designgass is a synthesis task, and
there is more than one right way to get to the gbal reliable distributed system. That said, the
projects are designed to teach you about softwareeps and distributed design, so they take
you down a fairly narrow road, and you will likefind yourself following an approach very
similar to that taken in the SMP. The second bfthe course offers more opportunities for
innovation and open-ended design once you havate&amiliar with the elevator system and
the design process.

2.4 May not be copied

This is an important one. You are expected toref¢ghe SMP to get an idea of how to approach
the projects. Because the soda machine is a ctehptifferent (and much simpler) system,
very little of the design content will be directipplicable to the elevator. Most of the structural
content (HTML formatting, etc) is already providedhe portfolio templateBut you may not
verbatim copy any part of the SMP documents or codeinto your projects. Thisincludes

notes, discussion, and any part of the code. L ook as much asyou like, but do your own

work. Wetake cheating very seriously in this course, and copying from the SMP will be
considered the same as copying from another student. If you are unsure whether your result

is too close to the SMP document, see a TA or dlese instructor during office hours to double
check that you are OK.

3. General Topics

This section contains discussion topics are to@igeo refer to a specific project or apply at a
higher level to the entire design process.

3.1 Correspondence between the Elevator and the Sod a Machine —
Simplifying Assumptions

The purpose of the SMP is to give an example thainall enough that you can understand the
whole design package while having enough complégitpake it interesting and reveal some
important ideas about the design process.

Soda Machine Portfolio Discussion 3/15

In some ways, the elevator is very similar to théassmachine. For example, the
VendMotorControl and the VendPositionSensors instheia machine interact in a similar way to
the DriveControl and AtFloor sensors in the elexat®ut the VendMotor has much simpler
dynamics (instant start and stop, constant speetihas mechanical interlocks to protect it when
it reaches the end of the rail. In the elevatou gnust deal with the acceleration profile of the
Drive and use the HoistwayLimit sensors to make sou don’t overrun the end of the shaft.

Even setting aside the physical differences betweerlevator and the soda machine, there is
one major difference that makes the soda machirgh simpler than the elevator. The customer
behaviors for the soda machine are much simpler tthase of the elevator passengers. The
customer model is defined in such a way that cust@utions occur no more often than once
per second, and some actions can be delayed by@sams eight seconds. This is not too
unrealistic for interaction with a soda machine.

The most important implication of the simple cuséorbehavior is that it allows us to assume
that whatever action is currently in progress (W8g@ soda, returning coins, etc) will complete
before another customer input arrives in the system

More specifically, we can always assume that syssemuiescent when it gets a new input.
Consider what happens if we relax this assumptMmat if the customer puts a coin in while a
soda is being vended? There’s no reason we candlé that case, but then we need to add
logic to the coin control to keep track of the fdwt this coin is for thaext vend cycle. What if
the customer presses the coin return button andalsutton at the same time? What if the
customer presses two different buttons? You carhew handling more complex customer
behaviors would quickly add complexity to the desig

The elevator can receive inputs from multiple pagses at the same time, and the timing of
these inputs is such that you cannot assume tha&t¢vator is quiescent when they occur. You
must take this complexity into account in your dasi The way the projects are set up, we ease
you into the complexity of the elevator by havirmuymplement a very simple elevator for the
mid-semester deadline, then adding more advandeavlmes later.

3.2 The Importance of Doing It Right and the Costo f Late-Found Bugs

The primary purpose of the course project is nsit fo produce a working elevator control
system. Our primary goal is that you follow theidge process and, by following it, come to
understand how software process is important tdyming software that is reliable and meets
requirements. In the real embedded world, a systigmamazing functionality and fancy extra
features but of unknown quality isn't as valuald@aystem with adequate functionality
implemented in high quality software. This ideagBected in the projects by how we assign
most of the points to design process and relatifesdypoints for design innovation.

In order to do well on the projects, you must ddl Wedlowing the rules and guidelines of the
design process. One of the most important ruleaceability. The entire design portfolio is a

Soda Machine Portfolio Discussion 4/15

living document that, at any given time, accurateljects the current state of the design.
Traceability is the glue that holds the differeattp of the project together. It lets you knowt tha
you didn’t miss anything, and if you find a defetsome part of the project, it lets you know
which other parts of the design may be affectethhy defect.

We require complete end-to-end traceability as a major pfti® project grade. This means

that what you did last week will be traced to wiat are doing this week, and next week, and

so forth. If you aren’t thorough on your sequed@grams, you will just have to redo them

when you write requirements. If you don’t redo ffegjuence diagrams, the incorrectness of (or
lack of) traceability will make it clear that yorgquirements and sequence diagrams don’t match
up. If you aren’t thorough when writing your resgments, then you will have to redo both the
requirements and the sequence diagrams when yow tirgce them to the statecharts. You will
save yourself a lot of time and effort by doing besst, most thorough job you can on each and
every project.

The further along in the process you are, the raarkeange in the project will cost you in terms
of updating the design documents. Another waye®this is to look at the issue log for the
SMP. Note that the early bugs affect just a fetifaants, but the later bugs touch almost every
part of the portfolio.

3.3 The Importance of Bug Tracking — Bugs Don’t Mea n the Design is Bad

Bug tracking is an important part of design procdssthe portfolio, bugs are tracked in the
Issue Log. Some people think that if you find ubsn that means that your system is not any
good. As a blanket statement, that’s just not trliee truth is that all designs have bugs. If you
claim that your system is completely bug free aeden had any bugs then you probably aren’t
looking hard enough or testing thoroughly.

The important thing about bug tracking is to untierd how it improves your project. Don't get
too caught up in having too many or too few budsst report them in your Issue Log as
honestly and completely as you can.

When you log a bug, take a minute to think abouy thle bug happened. Chances are, if you
overlooked something in one place, you may hawhers as well. Issue #10 is an example of
this. The VendControl unit test revealed an imgatation error, and further checking revealed
that the same implementation error was presefieirvendPositionControl as well.

If you see issues that affect multiple artifacke lissue #10, or you find yourself logging similar
bugs over and over, then think about how you cagrane your process to find these problems
sooner. In the case if issue #10, you could asté@to the code review checklist to remind the
reviewer to check that each message object isatbyiaitialized. If you do this, then bug
tracking has helped you refine your process!

Soda Machine Portfolio Discussion 5/15

4. Project Specific Discussions

These discussion topics deal with aspects of afgppmject or range of projects as noted in the
title of each subsection

4.1 Project 2 — Sequence Diagram Numbering

The scenarios and sequence diagrams are a staigtagelearn about how the controllers in the
distributed elevator cooperate to fulfill the higlvel requirements.

The project write-up requires that every arc hauaigue number. This requirement is
important because it lets you unambiguously refex specific arc in traceability, issue log
entries, and other design documents.

In general, a sequential numbering is best bedaiseasier to understand. However, some
sequence diagrams are very long (e.g. 1C or 2fyod find an error and have to insert a new
arc, it is acceptable to put a new number on tbeheat is out of order with the rest of the
diagram, although the arc should still be numbeethat it corresponds to the scenario
numbering. For example, look at arc 4h in sequelgram 2A. This is an arc that was added
later in the design process (see Issue #6).nibtisn order with the rest of the arcs, but its
number begins with 4 because it corresponds téotimgh step in the scenario description.

The goal of the project is an unambiguous desorpdf system behavior and a design that has
complete and consistent traceability. The out+oeo arcs meet this goal because they are still
uniquely numbered. The alternative (renumberihthal arcs and completely redoing
traceability) is much more likely to introduce bugdraceability.

4.2 Project 2 — Approaches to Defining Use Cases an d Sequence Diagrams
for Embedded Systems

The scenarios and sequence diagrams in the SMsaseel on Customer use cases, so they deal
with changes in the system that are initiated leydistomers’ actions. Since most people have
used elevators (and soda machines) before, thestagy to become familiar with the system is
to think about how a person would interact withYtou will notice that a user action that results
in a soda being vended gives rise to a seriesasitevthat encompass the entire system and most
of the major system functionality. This is okagchuse it gets you on the path for designing the
system, but you can see that it results in therddC28 sequence diagrams, which have a lot of
duplication.

In an embedded system, the various controllersaatssmbe actors (e.g. the Dispatcher on the

elevator use case diagram). If this were not #se cthere would be no way to describe a control
loop (which isn’t initiated by any user action).

Soda Machine Portfolio Discussion 6/15

If you start to view the system in terms of corlBolises cases, then you get a series of simpler
use cases that feed in to each other. Once comsegjof this approach is that, if you write the
sequence diagrams correctly, the system stateyajiaen time corresponds to the preconditions
on exactly one sequence diagram. In this view,canuthink of the operation of the system as a
whole as executing a series of sequence diagramsengre- and post-conditions dovetail into
each other. Also, if you take this approach,dh&tomer use cases are reduced to defining the
change in system state that a user’s action causes.

Let’s consider the sequence diagram 2A as an exanWk can decompose this large sequence
diagram into several smaller use cases. Thedistbshows the use cases and gives a rough
sketch of which parts of the original sequence diagthey would contain. The post-condition
for each use case is the same as the precondfttbe one that follows it.

» 2A - Customer presses a button when the correcuantas been paid
o0 Arcs lathrough 1c — the customer’s action onlynges the system state
» 7A — ButtonControl indicates Choice Accepted
0 Arcs 2a and 2b and the related inputs to the BGiartrol
» 8A - VendPositionControl aligns VendCarriage
0 Arcs 3athrough 3f
* 9A - Sodais Vended
0 Arcs 4a through 49
» 7B - ButtonControl indicates Soda Empty
o Arcs 5a and 5b and related inputs

Aside from creating much shorter sequence diagrdresg is one other benefit. Most of the
other large sequence diagram (1C) will also tib ithhe controller use cases, so the 1C sequence
diagram would be simplified to just the first coaipif arcs. Not only have we greatly reduced
the complexity, but we’'ve eliminated a lot of theptication.

If this approach works so well, why not use ithe soda machine example? The short answer is
that while it may make sense to decompose themyisti® controller use cases, it's very

difficult to write those scenarios unless you aliyehave a very clear understanding of how the
components of the system interact. Consider thenple we worked out above for SD 2A. As a
refinement step, to go from one giant sequenceaamgo several small ones, it makes sense.
But it would not be easy or straightforward if yimied to do it without the giant sequence
diagram to give you the big picture. In theorye@ould include a refinement step in the design
process (between Projects 2 and 3) for generatintyaller use cases and sequence diagrams
from sequence diagrams based on user use casewihgiso would be beyond the scope of this
project and the course.

If you do not understand the interactions of thetadlers in the system well, writing sequence
diagrams for customer/passenger use cases cagidetp understand the system better. Then,
as your understanding improves, you may refine geguence diagrams along the lines of
controller use cases to more succinctly describesyistem operation. This refinement is useful
because will likely improve your understanding loé system, but is not required for the course
project.

Soda Machine Portfolio Discussion 7/15

4.3 Project 3/4 -- High-Level vs. Low-Level Require ments

Requirements in different parts of the design pse@erve different purposes. For example, the
High Level Requirements in the Requirements | daenintell you what is expected of the
elevator/soda machine without telling you anythatgut how those goals are going to be
achieved. These are the kind of requirementsntingttit be produced by a customer in a real
world project. At this level, it's very importatd keep implementation details out of the
requirements. The purpose of the design procdsspduce a design that meets the
requirements, so putting the implementation dethdsically, design decisions) into the high
level requirements is a reversal of the propermoofithe design process. Writing proper high-
level requirements is a skill that takes practiceé experience to develop.

Requirements will become more low-level as the @ssqrogresses. The behavioral
requirements you will write for projects 3 and 4 axtremely low level and really halfway to
implementation. The form given for these requiretags extremely restrictive, but it can cover
most cases.

Even for low-level requirements, there is still mo write requirements that describe a
behavior without specifying implementation. Onamyple is the ButtonControl requirement
R2.4b (you can also look at the equivalent ET negment, ER2.4b). The requirement (as of this
writing) states:

R2.4. If Button[s] is equal to True AND mEmpty[s]equal to False and mCoinCount is equal to
SODA_COST and mVend is equal to False, then Butgiri[s] shall be commanded to blink
with a period of 1s.

The second half of this requirement doesn’t syriftllow the formula for low-level

requirements, since we don’t specify a value tgdtebut rather an action to be taken. But this is
probably the best way to write the requirementngider the alternative: If we want to be more
specific (more formulaic), we need a notion of tiamel a way to keep track of the passage of
time. But that requires us to make some assungptbout the way the controller is going to be
implemented. Does the platform have a hardwarerfmif we use a counter to track time, how
do we know how often the controller will be run?ilMhere be a real-time clock that we can
check? Any decision we make here about writingevsprecific requirements restricts the
implementation choices we can make.

You are at a slight disadvantage in the courseeptdjecause we have already provided a
specific platform that you will use to implemenetélevator, so it’s hard to put yourself in the
mindset that you don’t know how things are goingutm out. But in the “real world”, it is very
likely that the platform would not be chosen asthoint in the design process. It's also possible
that you would carry the design to a certain paimd then turn the design over to another team
(or a subcontractor) to complete the implementationeither case, the less restrictive the
requirements are, the better.

Soda Machine Portfolio Discussion 8/15

As far as the project goes, there are not “righti &vrong” requirements. Any set of
requirements that completely and correctly spexifie elevator is technically correct. It's more
a matter of “better” or “worse”. This is a mattdrexperience, and one of the goals of the
project is to help you develop that experiencAs the design process progresses, you will see
the consequences of the requirements that you wiioteto pay attention and learn from the
process. Were your requirements easy or hardpgtement? Did you have to make significant
changes to your requirements in order to implerttee? If so, consider what you needed to do
to make your requirements “better”, so that you @anhat from the beginning in the future.

4.4 Project 4 —Time-Triggered Design

The time-triggered approach is not the only waglésign a system, nor is it appropriate for all
systems. Since time-triggered design is not ugtallght in other courses, we force you to
develop a pure time-triggered design so that yduhave the approach available as a tool.

The shift we make from project 3 to project 4 iatfhinstead of responding to messages when
they are received (responding to the message egteient is the “event trigger”), the controller
executes periodically (this is the “time trigger"Jhe controller makes decisions based on the
current state of the system at the time of exenutio

Time-triggered is more than just remembering tiséValue of messages that have been sent.
Not only does the system remember message valuesabh controller periodically transmits
updates whether the value of the message has ahanget. This is what really makes the
stored message values into state variables.

In the event triggered case (without periodic upglatyou need (in the worst possible case) the
entire message history of the system in order ¥@ lsaacomplete picture of the current system
state. In the time triggered case, the last f@ssage round gives you a complete picture of
system state.

One limitation of time-triggered design is that@nnot handle events that happen too quickly for
the system to detect. Choosing the appropriategsfor controllers (based on the time
constants of the system) is a very important piatti@time-triggered design process. What if,
for example, we ran the ButtonControl object withree second period? If a button press lasted
less than a second (very likely) and fell betweescations of the controller, then the controller
would not detect that the button press had occurBalin the elevator (and the soda machine),
we run the button controllers at 100ms becauseagtagranularity that will detect normal button
presses.

4.5 Project 4 — Benefits of Time Triggered Requirem ents

To see how time-triggered design simplifies theunegments writing, compare the time-
triggered and event-triggered requirements foMeedControl object. The first four ET
requirements deal with setting state variablegtoamber message values. The last four

Soda Machine Portfolio Discussion 9/15

requirements (eight if you count multipart requisstts separately) deal with responding to the
four different messages that might activate thedlwvaechanism. This entire set of requirements
can be collapsed into the single multipart requestiR4.3.

4.6 Project 4 - Nested Statecharts

In the project write-up, we advise you to avoidtedsstatecharts. It is difficult to implement
nested states correctly, and the semantics ofdbied states can easily be misinterpreted.
Because it is so difficult to get right, we do inspacertain restrictions on how you may use
nested states. These are spelled out in the PEojete-up, and you should read them carefully
if you plan to use nested states.

If you look at the statechart for ButtonControkive Requirements Il document, you will see that
we have used a nested statechart to describeassterfy behavior of the button during a vend
cycle.

The first reason for using the nested statechamoagh (even though we consider this to be sub-
optimal in most cases) is to show you an examgeftdillows the restrictions we impose in the
project write-up. Note that arcs into and outhef VEND state point to the VEND state itself,
and not to any substate. Also note that the Irstete arc inside the VEND state points to the
FLASH_OFF state. That means that every time timel &tate is entered, the controller also
enters the FLASH_OFF state.

The second reason for using the nested stateghadach is to illustrate some of the
implementation difficulties that might arise whee do so. If you look at the implementation of
the ButtonControl object, you will see that a sepastate variable is needed to track the current
state of the states inside the VEND superstatardar to meet the initialization condition, this
variable is initialized to FLASH_OFF whenever thaimstate machine is in any state other than
VEND. A separate switch() statement is nestedlsnttie VEND case of the main state machine
to implement the inner state machine.

This implementation doesn’t seem so complex, baitithbecause this is a relatively simple
statechart. Consider the case where the IDLE MBTE states also had substates, and the
FLASH_ON and FLASH_OFF substates had sub-substétesis case, you would be juggling
6 state variables and trying to keep track of wiviahables should be initialized in which states.
It is very likely that there would be complex buagsociated with your implementation.

Finally, consider the case where our restrictiorams that cross superstate boundaries is
relaxed. In this case, you would be allowed t@tze transition directly from FLASH_OFF to
IDLE. But consider our implementation with onetstaariable for each set of nested substates
in the statechart. Now, the transition checkirgida the VEND substates can not only modify
the currentVendState, they can also modify theetu@®uterState as well. Allowing transitions
across superstate boundaries breaks the abstrattioa nested states, and you are virtually
guaranteed to have problems implementing suchtecsiat, which is why we do not allow
those transitions in the project.

Soda Machine Portfolio Discussion 10/15

Since we suggest that you avoid nested statechartdternate way to design the statechart for
the ButtonControl object is given in Figure 1 below

ButtonControl Statechart (non-nested version)

18649 Spring 2010

. Grocup 7

Justin Ray/justinr2

N
State 52.1 IDLE
[r2.1] 5| State 52.4 VEND_FLASH_OFF
Set Butlunllght[s] to True. [T2.2] Do:
Set mButton[s] to False. |« Set ButtonLight[s] to False.

[r2.7]

Set FlashCounter to 0. L Set mButton[s] to True.
[T2.5]
[T2.4]

Increment FlashCounter.
v

State 52.5 VEND_FLASH_ON

[12.3]
Set Buttunnght[s] to False. {

State 52.2 EMPTY [12.9] [

Do:
Set ButtonLight[s] to True.
Set mButton[s] to True.
Decrement FashCounter.

Set mButton[s] to False.
Set FlashCounter to 0.

Figure 1: Alternate statechart for ButtonControl with no nested states.

We have essentially flattened the statechart. d'thb, you must do several things:

» Create a top-level state for each substate (VENIASH. OFF and
VEND_FLASH_ON).

» The transitions that originally went into the VEMEate (T2.1) should go into the new
state that represents the initial state of thes’®#D substates, in this case,
VEND_FLASH_OFF.

» For transitions out of the VEND state, you mustateea duplicate set of transitions out of
each new state (VEND_FLASH_OFF and VEND_FLASH_ONhese are represented
by T2.2 and T2.3 and the new transitions T2.8 aa@®,Twhere the guard conditions for
T2.2 and T2.8 are the same, and the guard condit@nr2.3 and T2.9 are the same.

One important detail here is that when we creafdichte transitions in the flattened statechart,
we give them unique numbers even though their goanditions are the same. This avoids
ambiguity in the specification and in traceability.you altered the ButtonControl statechart
along these lines, you would need to update theinements-to-statecharts traceability and
statecharts-to-code traceability to reflect thengjess.

Again, we will reiterate: Nested statecharts aeeptable as long as they meet the guidelines
spelled out in Project 5. However, we stronglyiadwou to stick with flat statecharts.

Soda Machine Portfolio Discussion 11/15

4.7 Project 4 — Pulsed Inputs and Outputs

Although the elevator does not have any inputsutpwts that are pulse oriented, the soda
machine does. In order to detect a coin beingtedethe CoinControl object must detect the
false-true-false pulse in the Coinin input. Deglwith these pulses is inherently event-
triggered. In this section, we will briefly desaibow the pulse signal behavior is handled in
statecharts. This will give you insight into howeats may be handled in a pure time-triggered
system.

In the behavioral requirements for CoinControlyéhis a state variable "CoinReceived" that is
used to describe the edge detection behavior. VHmiable is set true on a rising edge (R3.1a),
and false on a falling edge (R3.6).

In the statechart, the CoinReceived state varighitaplicitly implemented by the COIN_IN_1
and COIN_IN_2 states. The first state is enteredmthe Coinin value becomes true (detect
rising edge) and is executed only once due to tieenditional transition T3.2. The COIN_IN_2
state waits for the Coinln value to become fals#ifig edge detector) before returning to the
IDLE state.

In order to return a coin to the Customer, the Coihoutput must receive a false-true-false

pulse as well. The pulse output is implementedviar scenarios: overpay, when a customer
puts in an extra coin, and return, when the custgresses the coin return button. In both cases,
the statechart requires a state for setting tha@uai value true (the RETURN_1 and OVERPAY
states), and a state for setting the CoinOut Viaise (IDLE performs this function in both

cases).

During testing, it was found that the CoinOut ouitpeieded to be asserted for at least two
periods in order to be reliably detected by the eeturn object, so the OVERPAY_STRETCH
and RETURN_STRETCH states were added (see Issye #hé stretch states extend the time
that the CoinOut output is set true. As an exerasnsider how you would modify the
STRETCH states if you needed to stretch the pujlsedre than one additional period.

In several places, you will note that there areesamconditional transitions. For example,
consider T3.12 between OVERPAY and OVERPAY_STRETHere is no difference in the
output of the controller in those two states. ©héy difference is that the CoinCount state
variable is decremented in OVERPAY. Because oliti@nditional transition, we guarantee
that the decrement operation only happens one tifnge allowed event-triggered semantics
into our statechart, we could implement these tistes as a single state with an entry action or
action on arc to decrement the CoinCount. The Coitrol state machine (as shown in the
SMP) shows an acceptable way to implement the envent using pure time-triggered
semantics. There are a few places in the elevdtere you might need to use this technique,
but if you find yourself using it more than oncetwice, it means you are missing the point of a
time-triggered system and you should re-examine gpproach or come to office hours for
help.

Soda Machine Portfolio Discussion 12/15

4.8 Project 5 — Implementing Guard Conditions

Since java has a native Boolean type, you can oséeBn values directly in a test statement, as
in:

bool ean a = fal se;

if (ta) { //do sonmething }

This is equivalent to:
bool ean a = fal se;
if (a ==false) { //do sonething }

The second form is what you will see in the exangplée (although it is not requiredyaur
code). This form, while less compact, is prefefsedause it is more explicit, and it more closely
follows the notation used in the design.

4.9 Project 5 — Unit Testing Nested Statecharts

Because we have two possible internal states tol¥,EENhorough test of the ButtonControl
object must test both, hence the button_controlf &md button_control_2.mf tests (each one
tests transitions out of a different VEND substafEis is another reason why the flattened
statecharts are preferable. In the flatteneddtaté example given in Figure 1, each transition
could be tested explicitly, which improves tracéigband our certainty that the statechart has
been completely exercised.

4.10 Project 5 — Unit Testing Negative Cases

The button_control_3.mf test is an example of attest something checks to see if a transition
does NOT occur. It checks that there is no treorsitom EMPTY to VEND if a button is
pressed while the mEmpty signal is true.

4.11 Project 5/6 — Testability Problems with Unita nd Integration Tests

This section covers tests of state changes thatr éao rapidly to be reliably checked by the
automated testing framework in the simulator. hese cases, manual verification of the
controller operation (through checking debug messpig required to complete the testing. This
approach may be needed in Unit and Integratiomgpst

Sometimes there is a testability problem becaus®smtputs occur for less than three message
periods. The way the simulation framework is inmpdaited, simultaneous events occur in
pseudorandom order. This emulates jitter in asgstiemn and reflects the idea that no two
events are truly simultaneous. As a result, ydufimd that it takes longer than two
message/controller periods before an output caellably tested. That is how long it takes state
change messages to propagate through the system.

Soda Machine Portfolio Discussion 13/15

You can see an example of this testability probilethe testing of the pulse states in the
CoinControl. Several of the states cannot be destelicitly because the controller is only in
that state for one period or because the outpetglantical to adjacent states. In this case, you
should use the log messages from the controllersrify that the appropriate states and outputs
are correctly exercised in the tests. You caregeeples of how to document these tests in the
Unit and Integration test logs of the SMP.

Wherever possible, you should use the automatéddgegsamework (assertions) to test your
controllers and sequence diagrams. Automatedaestgreferred because they can easily be re-
run after changes are made to the system.

No part of the ELEVATOR design uses pulse deteatiogeneration, so you should be able to
generate reliable tests using the assertion framewbyou feel that you cannot adequately test
your statecharts with the automated testing franmnkewben you MUST obtain TA approval for
any test that uses log messages to verify a conmpone

These kinds of testing limitations are common mrdal world. There is a whole area called
"design for testability". The basic idea behingida for testability is that in addition to meeting
functional requirements, you can add additionalitapr outputs to facilitate thorough testing.

One way to change the soda machine design to iragestability would be to impose an
additional requirement that the pulse to the Coitré@tuator last at least 300ms. This would
reduce the need for manual verification in the ani integration tests because it would give the
CoinOut output time to propagate reliably throulgé $ystem. This change would be an
acceptable one to make because it still meetsdieenally imposed requirement (a pulse of at
least 150 ms) described in the Requirements | deatim

4.12 Projects 5, 6, 7 — Usefulness of Testing

Look at the notes in the Unit, Integration, and &mance test logs and the related issue log
entries. Each kind of testing identified bugsha system. Some bugs are detectable at the
individual controller level. These were detectedinit testing (at least one bug in each
controller). Some bugs surface when testing ttexaction between the controllers in
integration tests, and finally, some bugs only eyeevhen the system is fully functional at the
acceptance test level.

The bugs identified at the acceptance test werefgigntly harder to track down. Acceptance
tests can be thousands of (simulated) secondsalothgake several minutes to run to the point
where the bug is exercised. It takes practicefamiliarity with the system just to be able to
inject breakpoints at the right time in the acceptatests to study the operation of the system
and identify the cause of a bug. This can be éalhedifficult if the bug occurs late in a long
test. In acceptance tests, the problem is evaleh@ecause there are many objects instantiated
and interacting, and the behavior of any one aintker a combination of their behaviors) might
be the cause of the bug.

Soda Machine Portfolio Discussion 14/15

By contrast, Unit Tests are the easiest to exeanutedebug. Typically, they only last for tens of
simulated seconds, and there is only one objetantiated, so debugging is much simpler. You
can also directly modify the inputs to the systémdltering the injected messages) to see if
changes affect the way the bug manifests.

The point to take away from this is that the eaihethe testing process you can catch a bug, the
easier it is to find and fix. For this reason, yhould focus a lot of effort on Unit tests (and
later, Integration tests) since thorough testintpase stages will greatly simplify your
acceptance testing task.

4.13 Project 11 — Network Schedule Analysis

In Project 11, we impose limited bandwidth on thNOnetwork. The simulator has a bit-level
CAN network simulation that accurately models tlabgl priority behavior of real CAN
networks. You can use the simulator to measuréanewidth used by the system and compare
it to the bandwidth you predicted in your theorati@nalysis (using Rate Monotonic
Scheduling). The simulated bandwidth shouldfetiveen the best and worst case scenarios
predicted in your analysis.

In the SMP, this comparison revealed a flaw inrttessage period for the CoinReturn smart
sensor (see Issue #17). This is just another eeanfifnow all the testing and analysis that is
done on the system throughout the semester israsig verify that you have built the system
that you meant to build.

4.14 Projects 8-12 — A More Sophisticated Elevator

A large part of Projects 8 through 12 consistsxtéeding and updating your elevator to add
more sophisticated behaviors. There is no corredipg extension in the soda machine because,
by this point in the semester, you have been exptmsall parts of the design process. You
should continue to follow the rules and best pcagtidescribed in the earlier projects and in this
document as you complete your advanced elevatagrdes

Soda Machine Portfolio Discussion 15/15

