
18-548/15-548 Vector Performance

1

17
Vector

Performance
18-548/15-548 Advanced Computer Architecture

Philip Koopman
November 9, 1998

Required Reading: Cragon 11.3-11.3.5, 11.7
http://www.ices.cmu.edu/koopman/titan/rules.html

Supplemental Reading: Hennessy & Patterson B.6-B.9
Palacharla & Kessler; ISCA 1994

Assignments
u By next class read about buses:

• Cragon 2.2.8

• Supplemental reading:
– Hennessy & Patterson 6.3
– Gustavson: Bus Tutorial (library)
– Borill bus comparison (library)
– Siewiorek & Koopman Appendix A

– Supplemental for lecture after that:
– Skim USB overview slides by Kosar Jaff (see web page)
– TI PCI technical briefing (see web page)

18-548/15-548 Vector Performance

2

Where Are We Now?
u Where we’ve been:

• Vector architecture

u Where we’re going today:
• Vector performance

u Where we’re going next:
• Multiprocessor Coherence
• Fault tolerance

Preview
u Elements of vector performance

• Peak & sustained performance
• Amdahl’s Law again

u Benchmark performance
• Linpack as an example

u Alternatives to vector computing?
• Hardware alternatives
• Software alternatives

u Eleven rules for supercomputer design

18-548/15-548 Vector Performance

3

ELEMENTS OF
VECTOR PERFORMANCE

Generic Vector Architecture

18-548/15-548 Vector Performance

4

Important Factors in Vector Performance
u FLOP = “FLoating point OPeration”

• FLOPs = “FLoating point OPerations”
• MFLOPS = Million FLOPs per Second

u Latency
• When are vectors so small that using a scalar unit is faster than waiting for a

deeply pipelined vector unit?
u VRF characteristics

• How big is the VRF (number of vectors, vector length)?
• How many ports available to the VRF?

u Bandwidth available to memory
• FLOPs per memory access is a measure of data locality
• Bandwidth available to memory may limit performance
• How many VAG units are available for simultaneous accesses?
• How effective is the memory system at avoiding bank conflicts?

Measures of Vector Computer Performance
u MFLOPS is the “MIPS” of the supercomputer world

• Peak MFLOPS = “guaranteed not to exceed performance rate”
• Sustained MFLOPS, typically for 100x100 LINPACK

– May be quoted for 1000x1000 LINPACK on some machines -- why?

u Performance Measures
• Peak performance -- all operations from vector register file (streaming rate

limited by execution limits)
• R¥ -- MFLOPS rate on an infinite-length vector (memory port streaming rate)
• N1/2 -- vector length needed to reach one-half of R¥

• NV -- vector length needed to make vector mode at least as fast as scalar mode
 (“vector/scalar cross-over”)

u Benchmarks
• Linpack
• Livermore Loops
• Floating point SPECmarks
• ...

18-548/15-548 Vector Performance

5

Peak Performance
u Peak performance typically limited by floating point execution units

• DSPs typically quote multiply-accumulate as peak
• Supercomputers typically quote peak DAXPY from register file

u Assume independent multiplier & adder
• Peak performance is typically 1 multiply + 1 add per clock;

peak MFLOPS = 2x clock rate (in MHz)
u But, there is an assumption of balance

• DAXPY consumes 1 scalar + 2 vectors for each 1 result vector
• Need holding register for scalar
• Need 2 read ports + 1 write port to VRF to achieve peak rate

Processor
Clock
Period

Exec.
Units

Peak
MFLOPS

Cray-1 12.5 ns 2 160
Cray X-MP 9.5 ns 2 210
NEC SX-2 6.0 ns 8 1333
Titan 1 125 ns 2 16

Practical Effects of Vector Register Length
u Vectors bigger than vector registers must be strip-mined

• Introduces additional overhead (preceding data ignored this)
• Must make sure to have two sets of vector register available to “ping-pong”

results and avoid false dependencies
(Hennessy & Patterson Figure B.10)

18-548/15-548 Vector Performance

6

R¥ -- Memory-Limited Peak Performance
u Limited by whether execution units can be kept fully fed from memory

• Assume infinite-length vector, with no re-use of results
• Equivalent to 100% cache miss rate in a scalar processor

u Balance required for full-speed operation
• Assume DAXPY operation

– Read 2 numbers and produce 1 result for each multiply + add
– Need 3 memory ports (VAGs) for each 2 execution units for full speed

• Need enough VRF capacity to assure no false dependencies from sharing vector
registers

Processor
Clock
Period

Exec.
Units

Peak
MFLOPS

Memory
Ports R¥

Cray-1 12.5 ns 2 160 1 26.6
Cray X-MP 9.5 ns 2 210 3 210
NEC SX-2 6.0 ns 8 1333 12 1333
Titan 1 125 ns 2 16 3 14.5

N1/2 -- Performance on “Small” Vectors
u N1/2 gives a feel for how well shorter vectors perform

• N1/2 measured with respect to R¥
(how big a vector to get half R¥ performance)

• Smaller N1/2 means that machine achieves a good percentage of peak
throughput with short vectors

u N1/2 determined by a combination of:
• Vector unit startup overhead
• Vector unit latency
• (varies depending on operation being performed)

Processor
Clock
Period

Exec.
Units

Peak
MFLOPS

Memory
Ports R¥ N1/2

Cray-1 12.5 ns 2 160 1 26.6 10-20
Cray X-MP 9.5 ns 2 210 3 210 10-25
NEC SX-2 6.0 ns 8 1333 12 1333 large
Titan 1 125 ns 2 16 3 14.5 18

18-548/15-548 Vector Performance

7

NV -- Use Scalars Instead?
u NV is the vector/scalar crossover point

• Vector length < NV -- scalars are faster
• Vector length > NV -- vectors are faster
• Depends on latency & startup overhead for vector unit (varies by operation)

u Titan-1 NV = 2 BUT
• Titan-1 didn’t have a MIPS R2010 scalar floating point chip; it wasn’t ready in

time; so scalars used vector unit as well
• MIPS M/120-5 used R2010 and got about the same performance with no vector

unit
• Titan-2 included an R2010...

Processor
Clock
Period

Exec.
Units

Peak
MFLOPS

Memory
Ports R¥ N1/2 NV

Cray-1 12.5 ns 2 160 1 26.6 10-20 1.5-2.5
Cray X-MP 9.5 ns 2 210 3 210 10-25 ~2
NEC SX-2 6.0 ns 8 1333 12 1333 large large
Titan 1 125 ns 2 16 3 14.5 18 2(*)

BENCHMARK PERFORMANCE

18-548/15-548 Vector Performance

8

Benchmarks
u Linpack

• Gaussian elimination using DAXPY operation
• 100x100 Linpack measures a good balance of overhead & sustained speed

u Floating point SPECmarks
• Combination of 10 scientific programs; emphasis on finite element computation

(workstation computing)
u Livermore Loops

• Collection of scientific computation “kernels”
• Uses harmonic mean to penalize outliers reduces benefit from single peak

performance loops
• Replaced by NAS & PERFECT

u NAS Parallel Benchmarks (NASA)
• 8 programs for parallel supercomputers; computational fluid dynamics

u Perfect Club Benchmarks (Univ. Illinois)
• 13 executable programs for scientific computing

LINPACK as an Example
u 100 x 100 Matrix Gaussian Elimination

• Iteratively, a row is multiplied by constant and added to rows below it
• Each iteration adds a column of leading zeros, reducing next row size by 1

u Inner loop is DAXPY operation
• 1st iteration is vector length 100
• 2nd iteration is vector length 99 ...

18-548/15-548 Vector Performance

9

Linpack Excerpt:
for (kb = 0; kb < n; kb++)
{ k = n - (kb + 1);
 b[k] = b[k]/a[lda*k+k];
 t = -b[k];
 daxpy(k,t,&a[lda*k+0],1,&b[0],1);
}

void daxpy(int n, REAL da, REAL dx[], int incx, REAL
dy[], int incy)

...
for (i = 0;i < n; i++) { dy[i] = dy[i] + da*dx[i];}

Linpack Performance
u Balance required for DAXPY peak performance: (Y = aX + Y)

• Assume a loaded into a holding register
• On every clock: load X, store intermediate;

load intermediate, load Y, store Y
– 3 read ports and 2 write ports

• Internal (to the functional units) chaining can reduce bandwidth requirements:
load X, load Y, store Y

– 2 read ports and 1 write port
– Intermediate not written to VRF (implements a logical or actual “DAXPY”

instruction)

u Peak performance might be one DAXPY result per clock
• 3 memory “touches”, 2 FLOPs per clock
• Linpack performance limited by available memory bandwidth!
• Balanced system: 3 concurrent memory pipes + multiplier + adder

18-548/15-548 Vector Performance

10

Linpack Performance: Multiprocessing
u Stardent Titan-1 Data:

u Linpack is limited by bus bandwidth!
• Multiprocessing helps by obtaining overhead concurrency

– R¥= 14.5; but there is spare bandwidth on the write-back bus that can be used by a
second CPU with Linpack

• Multiprocessing limited with short vectors because of parallelism overhead
• With long vectors, bus bandwidth limits everything

– Titan aggregate bus bandwidth is 256 MB/sec
– 256 MB/sec / (8 B/word * 3 words/2 FLOPs) = 21 MFLOPS theoretical limit
– But, there are limitations due to multi-processor bank conflicts

Linpack
MFLOPS Number of Processors

Array Size 1 2 3 4
100 x 100 6.5 9.1 11.0 11.7
300 x 300 9.0 13.4 14.7 15.0

1000 x 1000 10.5 15.0 15.6 15.7

ALTERNATIVES
TO VECTOR COMPUTERS?

18-548/15-548 Vector Performance

11

Alternative to Vector Registers: Use Cache
u Cache might be used instead of vector registers

• Hardware can’t assume dependency-free access
• Set associativity must be high (at least 3-way set associative to avoid conflicts

with DAXPY)
– Think of a cache set as a vector register
– BUT, also have to worry about conflicts caused by large stride accesses

u Cache good for:
• Vector working sets that fit all in cache
• High FLOP/memory touch ratios
• Combines scalar & vector mechanisms for cost savings

u But, it has problems:
• Very long vectors can flush other data from cache (must use cache bypass

instructions, which start looking like vector loads/stores)
• Requires large number of pending memory references to be tracked from

processor

Cache Linpack Performance
u Performance depends heavily on

data set size
• In-cache performance high
• Out-of-cache performance poor

u Opposing performance forces
• Bigger array reduces overhead
• Bigger array doesn’t fit in cache

– But, bottom/right part of array
more heavily referenced than top
left -- ~45KB array does will in 8
KB L1 cache

u Fine-grain performance
variations
• Different array sizes move in and

out of phase with block size (partial
block usage affects performance)

Alpha Linpack Performance

Array Size (e.g., 100 x 100)

10 100 1000

M
FL

O
P

S

6

7

8

9

10

11

12

13

14

15

76 x 76 ~= 45 KB
32x32 = 8 KB

181x181 = 256 KB

18-548/15-548 Vector Performance

12

Vector Concepts: “General Purpose” Processing
u Vector-like data abounds

• “Scientific” computing: weather forecasting, design optimization
• Image processing (rows vs. columns); multimedia
• Radar, Sonar, signal processing
• Spreadsheets

u Anticipatory fetching of data streams
• Data streams exhibit sequential locality much larger than cache block size

– Once first cache miss occurs, can avoid future cache misses
– Vector registers can be thought of as software-managed caches with no conflict

misses

u Strided data accesses
• Exploit structured accesses to data as an aid to prefetching
• Cache blocks are hardware-supported accesses with stride 1

– Automatic pre-fetching of data with stride 1 after a demand miss
– Not necessarily well suited to data with large strides (high cache pollution)

Software Prefetching
u Superscalar CPUs may permit “free” prefetching

• Schedule prefetch instructions to load data into cache just before it is needed
• Can schedule these instructions in otherwise unused issue slots
• Requires special instruction semantics -- does not generate data dependencies

– Should not stall processor on cache miss
– Can be “faked” with load instruction on nonblocking cache, although might incur

TLB miss, etc.

u But, not a perfect solution
• For large transport times may require extra instructions and registers for book-

keeping address arithmetic (can it all be scheduled for free?)
• Large vectors will sweep the cache, clearing other data out
• Large block sizes can inflate traffic ratios and cache pollution

18-548/15-548 Vector Performance

13

Stream Buffers -- Run-Time Vectorization
u Data prefetch buffer to “stream” data in to caches or CPU

• Automatic detection of strided access by comparing successive load instructions
-- a dynamically operated VAG!

• Counter generates new addresses to load using speculative prefetching
– But, be careful about page faults from accidental over-runs!
– May want more than one buffer (perhaps 3 buffers for DAXPY)

• These are speculative loads; keep in buffer awaiting cache miss (or, have no
cache at all)

Palacharla & Kessler; an extension of a paper by Jouppi

Possible HW Solutions for Vector Access
u Sectored caches

• e.g., block size = 8 bytes to fit a dword; sector size = 64 bytes
– Avoids cache pollution and limits traffic ratio
– Still risks conflict misses with strided data -- only 25% of cache can be used

• Could combine with software hints as to how many blocks to load within a
sector upon encountering a cache miss

u Run-time vector HW support
• Automatic strided access detection to start prefetching data
• Stream buffers to store speculative prefetches without polluting cache
• “Uncached” loads to avoid sweeping out cache contents with one-time data

accesses
– These are often the loads that might be prefetched via stream buffers

u A new life for vector hardware?
• Software-controlled stream buffers that prefetch data (VAGs)

– VRF = cache; strided prefetching
– VRF = prefetch buffer; strided speculative prefetching (doesn’t disrupt cache)

18-548/15-548 Vector Performance

14

Possible SW Solutions for Vector Access
u Software-controlled prefetching

• Especially effective with sectored cache
u Better algorithms...

• A better algorithm wins over better hardware every time

LAPACK -- a better Linpack
u LAPACK = Linpack re-written with block optimizations

• Loads intermediate results into vector registers
• Increases FLOP/memory touch ratio

u Titan data demonstrates usefulness of blocked algorithms
• LAPACK is limited by N1/2 not R¥

Linpack
MFLOPS Number of Processors

Array Size 1 2 3 4
100 x 100 6.5 9.1 11.0 11.7
300 x 300 9.0 13.4 14.7 15.0

1000 x 1000 10.5 15.0 15.6 15.7

LApack
MFLOPS Number of Processors

Array Size 1 2 3 4
100 x 100 6.1 9.1 10.6 11.2
300 x 300 10.4 18.4 24.6 28.6

1000 x 1000 13.1 25.5 36.5 46.6

18-548/15-548 Vector Performance

15

ELEVEN RULES OF
(SUPER)COMPUTER DESIGN

Gordon Bell’s Eleven Rules ...
1) Performance, performance, performance.

• People are buying supercomputers for performance.
2) Everything matters.

• The use of the harmonic mean for reporting performance on the Livermore
Loops severely penalizes machines that run poorly on even one loop.

3) Scalars matter the most.
4) Provide as much vector performance as price allows.

• Peak vector performance is often determined by a combination of bus
bandwidth and vector register capacity.

• Rule of thumb: enough bandwidth for two results per clock tick
5) Avoid holes in the performance space.

• Divides are uncommon, but not unused.
6) Place peaks in performance.

• Give Marketing something to brag about; be “the best in the world” at
something.

18-548/15-548 Vector Performance

16

... for Supercomputer Design
7) Provide a decade of addressing.

• Support an extra 2 address bits every 3 years of product (10 years ~= 7 bits)
8) Make it easy to use.

• “Dusty deck" code (or Windows code) is what people want to run

9) Build on other's work.
• Don’t reinvent compiler technology if you’re in the hardware business

10) Design for the next one, and then do it again.
• Pipeline design teams so after first success there is another product underway

11) Have slack resources. Expect the unexpected.
• No matter how good the schedule, unscheduled events will occur.

REVIEW

18-548/15-548 Vector Performance

17

Review
u Elements of vector performance

• Peak performance is easy
• Sustained performance requires bandwidth

– But bandwidth is just money

• Really good performance requires low latency
– And latency requires creative design

• Amdahl’s Law applies...
u Benchmark performance

• Linpack as an example; LApack as a refinement

u Alternatives to vector computing?
• Hardware alternatives -- tweaking cache; adaptive prefetching
• Software alternatives -- nothing beats a better algorithm!

u Eleven rules for supercomputer design

