18-548/15-548 Multi-Level Strategies 10/5/98

10
Multi-Level Strategies

18-548/15-548 Memory System Architecture
Philip Koopman
October 5, 1998

Required Reading: Cragon 2.6-2.7,2.8-2.8.2,2.8.4 *
Jouppi paper, 1990 | SCA, pp. 364-373 A egle
Supplemental Reading: Hennessy & Patterson 5.5 ()

Assignments

+ By next classread:
* Cragon: 3.6-3.6.1
* Supplemental:
— Hennessy & Patterson: 5.9
— Mogul paper, 1991 Asplos, pp. 75-84

¢ Homework 6 due October 14

¢ Lab #4 dueOctober 21

18-548/15-548 Multi-Level Strategies 10/5/98

Where Are We Now?

¢ Wherewe' vebeen:
» Dataorganization, Associativity, Cache size
 Policies -- how to manage the data once it’s been arranged

¢ Wherewe'regoing today:
» Multi-level cachesto improve performance
— Another layer to the memory hierarchy
— Permits employing diverse data organizations
— Permits exploiting diverse policies

¢ Wherewe'regoing next:
» System-level effects
o Test
» Tuning for speed & deeper levels of memory hierarchy

Preview

+ Understanding Multi-L evel Caches
* Why they are used
» Organization tradeoffs
 Policy tradeoffs
& Optimizing multi-level cache performance-- L1 vs. L2 diversity
» QOrganization
» Policy
¢ Make bandwidth vs. latency tradeoffs
» Cache pipelining techniques
* Block/sector size vs. bus width

18-548/15-548 Multi-Level Strategies

Multilevel Caches
¢ Small, fast Level 1 (L1) cache
 Often on-chip for speed and bandwidth PROCESSOR
¢ Larger, slower Level 2 (L2) cache i
» Closely coupled to CPU; may be on-chip, i1
or “ nearby” on module L1 CACHE Pmiss]
t2
L2 CACHE Pmiss?
MEMORY

MULTI-LEVEL
SIZE & SPEED

10/5/98

18-548/15-548 Multi-Level Strategies

Multilevel Cache Sizes

¢ Intd:
» 80386
» 80486:
e Pentium:
* Pentium Pro:
e Pentiumll:

¢ MIPS
« R2000
* R3000
e R4400
« R5000
¢ R10000

L1

sometimes off-chip
8K

16K (split)

16K (split)

32K (split)

L1

128K (split) off-chip
128K (split) off-chip
32K (split)

64K (split)

32K (split)

L2

none

none; or 64K+ off-chip
256K - 512K off-chip
256K - 512K on-module
512K on-module

L2

none

~1 MB off-chip
128K-4MB off-chip
512K-2MB off-chip
512K-16MB off-chip

+ It’sniceto havetotal cache size bigger than L1 that fits on chip
» But, putting even asmall L1 on-chip isa Good Thing

Why L2 Cacheis Necessarily Slower

& Longer critical path

» Linelength (capacitive delay) grows as square root of memory array size
» Addressing & data multiplexing grow asn log n with array size

+ Off-chip accessisslower than on-chip access
» Off-chip driving delays

— Pad drivers

— Traces

— EMI/analog limitations to circuit board speed & planar RF transmission
— Length vs. speed of light
» Allowance for clock skew
» Limitson power dissipation (SRAM array; pad drivers)
+ Off-chip accessisnarrower than on-chip access (less bandwidth)

» Pinscost money -- packaging, board density

— May need multi-cycle transfers for larger blocks
» On-chip routing is cheaper
— Block size limited by memory array dimensions, not by pin count

10/5/98

18-548/15-548 Multi-Level Strategies

Two-Leve Miss Rates

¢ Local missrate: missesin cache/ accessesto cache

L1 cache=> P«
L2 cache=> P,
Useful for optimizing a particular level of cache given afixed design otherwise

¢ Global missrate: missesin cache/ accesses from CPU

L1 cache=> P«
L2cache=>P iy * Priso
(only L1 misses are seen by L2, which has alocal miss ratio of P,;«,)

Good for measuring traffic that will be seen by next level down in memory
hierarchy

+ Global L2 missrate equals missrate of composite cache

Example Effect of Relative L 2 Speed

¢ L1cachefixed at 32 KB

Effect of L2 Hit Time

Relative Execution Time

8 Clocks L2 Hit

4 Clocks L2 Hit
512

L2 Cache Size 2048

4096

(Datafrom Hennessy & Patterson Figure 5.24)

10/5/98

18-548/15-548 Multi-Level Strategies 10/5/98

Example Performance

Local/global missrateisfor L2 cachegiven 32 KB L1 cache
+ Single cache missrate assumesonly L1 cache of varying size

80.0%

70.0% !

50.0%

\(33%
50.0% L

Miss

40.0% 38%
rale \
30.0% ‘28%
. 22%
20.0% - : /) 3
—a&—9 4@ Localmiss rale

10.0% 8% &3

e 3% 2% 1% 1% 1% 1% 19, 19 Single cache miss ratg
L3%13% 13% Lo%, - - » m—g Globzl miss rale

4 8 16 32 64 128 256 512 1024 2048 4096

L2 GLOBAL Cache siza (KB)

(Hennessy & Patterson Figure 5.23)

Same Chart, Log-L og Scale

100.0%

—ee

~a_
\

%

e & & Lovalmissrale

10.0%

Miss N
rate
T

0% E%@E@%ﬁ

Single cache miss rate
Globzl miss rate

01% ‘ ‘ ‘ o ‘ ‘ ‘ o
"4 8 16 32 64 128 256 512 1024 2048 4096

Cache size (KB)

18-548/15-548 Multi-Level Strategies 10/5/98

Evaluating Multi-Level Miss Rates

¢ Use Global Missrateswhen evaluating traffic filtering of 2-level caches
» Effectiveness of L2 strategy depends on which L1 strategy is used
— Changing L1 strategy may require changing L2 strategy as well
» Global L2 missrate equals effective composite cache missrate

+ Sequential forward model (local missrates):

tea = thitLl + (Pmissl * thitL2) + (Pmissl * Pmissz * ttransport)

[Note: Cragon uses global missrates for this equation, which might be confusing]

MULTILEVEL FOR
POLICY & ORGANIZATION
DIVERSITY

18-548/15-548 Multi-Level Strategies 10/5/98

Diversity Motivation

¢ L1and L2 should havedifferencestoimprove overall performance
» Small, fast, relatively inflexible L1
» Larger, slower, relatively flexible L2

¢ |ssues
» Cache size & virtual memory address trandlation
 Split vs. Unified & bandwidth vs. flexibility
» Writethrough vs. write back & write allocation
» Block size & latency vs. bandwidth
» Associativity vs. cycletime

+ Following slides arerepresentative tradeoffs
» The cache systeminits entirety iswhat matters, not just any single parameter

Cache Size & Address Trandation

+ Latesdlect cache -- cache access performed in parallel with address
mapping

+ Virtual memory page size determines unmapped address bits
* 4 KB page -- 12 bits -- maximum direct map cache size 4 KB
» 8 KB page -- 13 bits -- maximum direct map cache size 8 KB

¢ Example: Pentium Pro

* Virtual memory uses 4 KB pages
— 12 unmapped hits available for cache access

* But 16K total L1 cache sizel

» Obvious solutions: use only 4 KB to address the cache sets
— Split caches -- only need to address an 8K cache
— Then make each cache 2-way+ set associative -- only need to address 4K

» (D-cacheis 2-way; |-cacheis 4-way)

— 4K setstakes 12 address bits; and 12 unmapped address bits available

18-548/15-548 Multi-Level Strategies 10/5/98

Maximum L1 Cache Sizevs. L2 Cache Size

+ Intheabsenceof “ dlight-of-hand,” L1 cachesizeislimited by
combination of virtual memory page size and or ganization
* P=VM page size (often 4KB or 8 KB)
* A = Associativity (sectors per set)
* N = number of caches (1=unified 2=split -- assume equal sizes)

¢ Maxtotal L1cache=P* A* N
» Can exceed using mapping restrictions for virtual memory

¢ But, L2 cacheisaccessed after trandation -- no sizerestriction!
» Sizedriven by cost & physical limits:
— Want single bank of cache chipsto avoid chip select delays
— Want few cache chips for address line loading & space (ideally, single chip)

— Want flexihility for cache size for cost/speed tradeoffs depending on customer
budget

Split vs. Unified

+ Split caches give bandwidth; unified caches give flexibility
» Use split L1 combined with unified L2 for good aggregate performance

¢ Split L1 cache advantages
» Can provide simultaneous data & instruction access -- high bandwidth
» Givesfactor of 2 improvement with address trandation size limit

» Reduces hit rate, but not catastrophic if L2 cache is available to keep miss
penalties low

& Unified L2 cache advantages
» Reduces pin & package count -- only one path needed to off-chip L2

» Can be used for 1-cache/D-cache coherence (invalidate I-cache line on
modification)

» Reduces brittleness of assuming half of memory used is instructions
— Some working sets are mostly data, some are mostly instructions

18-548/15-548 Multi-Level Strategies 10/5/98

Write Policies

& Writethrough? Write allocation?

e L1:writethrough + no-write allocate; L2 write back + write-allocate
+ L1 cache: advantages of writethrough + no-write-allocate

» Simpler control

» No stallsfor evicting dirty dataon L1 misswith L2 hit

» Avoids L1 cache pollution with results that aren’t read for along time

» Avoids problems with coherence (L2 always has modified L1 contents)
& L2 cache advantagesof write back + write-allocate

» Typically reduces overall bus traffic by “catching” all the L1 write-through
traffic

» Better able to capture temporal locality of infrequently written memory
locations
» Provides a safety net for programs where write-allocate helps alot
— Garbage-collected heaps
— Write-followed-by-read situations
— Linking loaders (if unified cache, need not be flushed before execution)

Block/Sector Size

& Balancing missratevs. trafficratio; latency vs. bandwidth
¢ Smaller L1 cachesectors & blocks
» Smaller sectors reduces conflict/capacity misses

» Smaller blocks reduces timeto refill cache block (which may reduce CPU stalls
due to cache being busy for refill)
* But, till want blocks > 32 hits
— Direct accessto long floats
— Exploit block transfers from L2 cache
— Limit tag storage overhead space for sectors

o Larger L2 cachesectors& blocks
» Larger sectors create less of a conflict problem with large cache size
* Main memory haslarge latency on L2 miss, so proportionally lower cost to
refill larger cache block once memory transfer started
* Once L1 cache block isrefilled, larger L2 block refill can continue with lower
probability of stall (refill overlapped with/hidden by subsequent L1 cache hits)

10

18-548/15-548 Multi-Level Strategies 10/5/98

Larger Block Sizesfor L2

+ Conflict missesrelatively lessimportant with larger cache
» |If L2 cacheis 16x bigger, might be OK to have 2x or 4x larger block size

200 1.95

1.75

Relative CPU exccution time 1.50 -

1.2b

1.00

16 32 64 128 256 512
Block size at second-level cache (bytes)

(Hennessy & Patterson Figure 5.25)

Associativity

+ Balance complexity, speed, efficiency
¢ L1--noclear winner
» Direct mapped L1 givesfaster cycletime
— But, lower hit rate on an already small cache
» Set associative L1 gives slower cycle time, better hit rate
— Set associativity may be encouraged by address translation issue
— May be less of aproblem with on-chip L1 cache

¢ L2--noclear winner
» Direct mapped L2 minimizes pin & package count for cache
— Only 1 tag need be fetched
— No problem with multiplexing multiple data words based on tag match
— Set associativity less advantageous for really large caches
» Set associative L2 gives flexibility
— Lessbrittle to degenerate cases with data structures mapped to same location

— Associative time penalty less of an issue for L2 cache than L1 cache (smaller
percentage of total miss delay)

11

18-548/15-548 Multi-Level Strategies

Multi-Leved Inclusion

¢ Completeincluson meansall elementsin highest level of memory
hierarchy are present in lower levels (also called “ subset property”)
» For example, everything in L1 isalso in L2 cache
» Useful for multiprocessor coherence; only have to check lowest cache level

+ Inclusion requires
* Number of L2 sets >= number of L1 sets
o L2 associativity >= L1 associativity
e L1 sharesLRU datawith L2 to coordinate replacements

¢ Whenever non-inclusion isencountered, special effort isrequired to
maintain coherencefor:
* Writeback L1 cache (L2 might not know L1 has been modified)
» Temporary non-inclusion for pending writes in write buffer
e L2block size> L1 block size
— Flush/evict any L1 block mapping to invalidated L2 block

L1vs. L2 Tradeoff Examples

¢ PentiumPro
» Size
» QOrganization
» Write Policies

L1
16KB
Split (8KB + 8KB)

L2
none - 256KB - 512KB
Unified

programmable; same for both

» Block size 32 bytes 32 bytes (1 block/sector)
» Associativity D: 2-way; I: 4-way 4-way
¢ MIPSR10000 L1 L2
+ Size 64KB 512KB - 16 MB
» QOrganization Split (32KB + 32KB) Unified
* Write Policies write back write back
» Block size D: 32 bytes |: 64 bytes 64 or 128 bytes
» Associativity 2-way 2-way

¢ Isn't L1 writeback a problem for coherence?

12

10/5/98

18-548/15-548 Multi-Level Strategies 10/5/98

Concept In Everyday Life:

¢ What’'san everyday example of 2-level caching with differing
management policies

» What isthe motivation for the caching?

» How arethe policies different between the levels?

BANDWIDTH VS. LATENCY

13

18-548/15-548 Multi-Level Strategies 10/5/98

Cache Bandwidth vs. Latency Tradeoffs

¢ Pipelined caches
» Multiple concurrent access operations gives increased throughput
e But:

— Increases latency for read accesses
— Risk of stall for deferred write access

+ Block sizevs. transfer size
» Large blocksincrease memory bandwidth & refill latency
» But, large blocks decrease missratio

2-Stage Pipelined Writes

¢ Decouplewrite accessto tags and data for faster (average) write hits

» Stage 1: check tag for cPU
: H addrass
write hit e
» Stage 2: actualy write | ir out
data)

DELAYED WRITE BUFFERI

Data

Wrile
buffe”
[

(Hennessy & Patterson Figure 5.28) Lower level memary i

& But, need 2nd port for reads, or stall for write followed by read

14

18-548/15-548 Mullti-

Level Strategies

3-Stage Generalized Cache Access Pipelining

& 3-stagepipeline only worksfor direct @
mapped caches

Possible stages (not necessarily how it is @
really done)... &/

Stage1: (1) decode address
(2) drive word lines

Stage 2: (3) read & latch memory row

(4) select dataword; precharge
bit lines for next access
Stage 3: (5) check tag for match while
speculatively using data

(6) abort use of dataif tag @ ’—‘
mismatch he? A/

@

ABORT?

M1 PS R4000 Pipelined Cache Example

INSTRUCTION CHECK

CACHE CACHE ALU
FETCH TAG

STAGE 1

— Store buffer usesidle cache cycles to deposit written data

— Blocking cache -- tag mismatch causes stall for cache miss

7

— Split cache for bandwidth; both direct mapped

CLOCK CYCLES =i
1 2 3 4 5 6
REGISTER
READ

STAGE 2 | STAGE 3 STAGE1 | STAGE2

DECODE

MIPS R4000 PIPELINE

¢ Threeclock cache pipeline: address decode, fetch, tag compare
» New cache access can be started each clock cycle --> “ superpipelining”

STAGE 3

8

STORE BUFFHE
WRITES WHE
CACHE IDLE..|

REGISTER
WRITE

15

10/5/98

18-548/15-548 Multi-Level Strategies

Pipelined Cache Tradeoffs

¢ Increaseslatency
» Takes 3 clocksuntil L1 cache missis declared!

» 2 clock latency from Load instruction to data available at ALU
— 1 clock for ALU to do address arithmetic counts as that instruction’s execution
— 2 clocksfor D-cache read (assume result forwarded to ALU before register write)

+ Increasesthroughput
» Upto 3x improvement in clock speed if cachet+tag check was critical path
* Increasingly useful as larger, slower L1 caches are used

& Requiresdirect mapped cachefor 3rd stage
» Speculative execution needs correct data available before tag check
* (2-way set associative would require 2 ALUS, 2 ports to cache write buffer)

Multi-L evel Block Sizes

o Tradeoff for large block sizes
vs. available access width

CPU
) . CHIP L1 CACHE
¢ Example: Pentium+430HX set (BLOCK SIZE)
» CPU Access Width
— 256 hitsinstruction / clock L1 FETCHWIDTH
— 2 @ 32 hitsdata/ clock L2 CACHE
« L1Block Size = 256 bits (BLOCK S12F)
— L1 Fetch Width = 64 bits L2 FETCH WIDTH
— Example L2 Access: 3-1-1-1=6
« L2 Block Size = 256 bits FORAM PAGE S178)
— L2 Fetch Width = 64 hits

— Example L2 Miss: 8-2-2-2=14
» DRAM Page sizeis proportional
to sgrt(chip size)
— (e.g., 16K hitsfor 16Mx4 chip)

16

10/5/98

10/5/98

18-548/15-548 Multi-Level Strategies

Example of Multi-Level Access Time Equation

tLlhit + Pleiss * tL2hit + Pleiss* I:)L2miss* tL2misrs
* Pentium example (using marginal L2 miss penalties, not absolute)

ot

t1miss =6 ClOCKS ;i = 14 Clocks

— t_ 44 = 1 clock

Example Pentium Average Teffective_access

-
"S- o
RN~ OOt - ©
? T s
x Y00 0 2%
S coiersecas sto 3
g st atan S
A LRI

Access

7
2555
SRR
\.:...:
KRR
G L
2r
7

2
LT
Nhhhhh..
L~

J5%
LR
LA Lz

....h

JOUPPI CACHES

17

18-548/15-548 Multi-Level Strategies

Jouppi Caches

simplicity

+ |SCA paper on small auxiliary caches
* AssumelL1 cacheisdirect mapped
» How can asmall associative cache take the edges off conflict miss problems?
» Attempt to get set associative-like behavior with direct mapped speed and

Victim Cache

¢ Storeseviction victims

Address from
procassor

Data to processor

tags

_>

data

next lower
cache

Address to Data from

next lower cache

tag comparator ona cache line of data
tag comparator one cache line of data
tag comparator one cache line of data
tag comparator one cache line of data
T T

» Simulates set associativity for the last few sets touched
* Some, or maybe even most, conflict misses removed; better than miss cache

Direct-mapped
cache

LRU en'ry

Fully-associative
victim cache

MRU entry

18

10/5/98

18-548/15-548 Multi-Level Strategies

Stream Buffer

From processor

To processor

tags

__9

data

—

tag and
comparator,

one cache line of data

tag

one cache line of data

tag

one cache line of data

- EE-BE-NE-]

one cache line of data

NS
T

+1

To next lower cache

From next lower cache

& Hardware prefetching“ push” into cache, as opposed to CPU “ pull”
» Need not be sequential; can be strided

Direct-mapped
cache

Head entry

Stream buffer
(FIFO Queue)

Tall entry

REVIEW

19

10/5/98

18-548/15-548 Multi-Level Strategies 10/5/98

Review
& Multi-level cachesare used to increase overall cache size & decouple
CPU cache accesses from the memory bus
» Bigger is better; but L1 caches have size limits
» L1 and L2 caches often have different tradeoffs
— L1: split; write through/no-allocate; smaller blocks; low associativity
— L2: unified; write back/allocate; larger blocks, moderate associativity
¢ On-chip L1 cachedesign is highly constrained
» Size, aspect ratio, areausage
¢ Both bandwidth and latency matter
» Cache pipelining techniques may help
» Block/sector size vs. bus width is a key tradeoff

+ Jouppi caches demonstrate than sometimes a small auxiliary cache can
big a good “ win”

Key Concepts

¢ Latency
» Fast L1 cache can hide latency of slower L2 cache
» Slow L2 cache can hide latency of even slower main memory
¢ Bandwidth
 Pipelining cache accesses can improve bandwidth
+ Concurrency/Replication
» Heterogeneous replication provides diversity
— L1vs. L2 caches
— Associative Jouppi caches vs. direct mapped L1 cache
¢ Balance

» Balancing L1 and L2 parameters provides emergent behavior better than simply
using alarger L1 cache

20

