
18-548/15-548 Multi-Level Strategies 10/5/98

1

10
Multi-Level Strategies

18-548/15-548 Memory System Architecture
Philip Koopman
October 5, 1998

Required Reading: Cragon 2.6-2.7, 2.8-2.8.2, 2.8.4
 Jouppi paper, 1990 ISCA, pp. 364-373

Supplemental Reading: Hennessy & Patterson 5.5

Assignments
u By next class read:

• Cragon: 3.6-3.6.1
• Supplemental:

– Hennessy & Patterson: 5.9
– Mogul paper, 1991 Asplos, pp. 75-84

u Homework 6 due October 14

u Lab #4 due October 21

18-548/15-548 Multi-Level Strategies 10/5/98

2

Where Are We Now?
u Where we’ve been:

• Data organization, Associativity, Cache size
• Policies -- how to manage the data once it’s been arranged

u Where we’re going today:
• Multi-level caches to improve performance

– Another layer to the memory hierarchy
– Permits employing diverse data organizations
– Permits exploiting diverse policies

u Where we’re going next:
• System-level effects
• Test
• Tuning for speed & deeper levels of memory hierarchy

Preview
u Understanding Multi-Level Caches

• Why they are used
• Organization tradeoffs
• Policy tradeoffs

u Optimizing multi-level cache performance -- L1 vs. L2 diversity
• Organization
• Policy

u Make bandwidth vs. latency tradeoffs
• Cache pipelining techniques
• Block/sector size vs. bus width

18-548/15-548 Multi-Level Strategies 10/5/98

3

Multilevel Caches
u Small, fast Level 1 (L1) cache

• Often on-chip for speed and bandwidth

u Larger, slower Level 2 (L2) cache
• Closely coupled to CPU; may be on-chip,

or “nearby” on module

PROCESSOR

L1 CACHE

L2 CACHE

MEMORY

t1
Pmiss1

t2
Pmiss2

MULTI-LEVEL
SIZE & SPEED

18-548/15-548 Multi-Level Strategies 10/5/98

4

Multilevel Cache Sizes
u Intel: L1 L2

• 80386 sometimes off-chip none
• 80486: 8K none; or 64K+ off-chip
• Pentium: 16K (split) 256K - 512K off-chip
• Pentium Pro: 16K (split) 256K - 512K on-module
• Pentium II: 32K (split) 512K on-module

u MIPS: L1 L2
• R2000 128K (split) off-chip none
• R3000 128K (split) off-chip ~1 MB off-chip
• R4400 32K (split) 128K-4MB off-chip
• R5000 64K (split) 512K-2MB off-chip
• R10000 32K (split) 512K-16MB off-chip

u It’s nice to have total cache size bigger than L1 that fits on chip
• But, putting even a small L1 on-chip is a Good Thing

Why L2 Cache is Necessarily Slower
u Longer critical path

• Line length (capacitive delay) grows as square root of memory array size
• Addressing & data multiplexing grow as n log n with array size

u Off-chip access is slower than on-chip access
• Off-chip driving delays

– Pad drivers
– Traces
– EMI/analog limitations to circuit board speed & planar RF transmission
– Length vs. speed of light

• Allowance for clock skew
• Limits on power dissipation (SRAM array; pad drivers)

u Off-chip access is narrower than on-chip access (less bandwidth)
• Pins cost money -- packaging, board density

– May need multi-cycle transfers for larger blocks

• On-chip routing is cheaper
– Block size limited by memory array dimensions, not by pin count

18-548/15-548 Multi-Level Strategies 10/5/98

5

Two-Level Miss Rates
u Local miss rate: misses in cache / accesses to cache

• L1 cache => Pmiss1

• L2 cache => Pmiss2

• Useful for optimizing a particular level of cache given a fixed design otherwise

u Global miss rate: misses in cache / accesses from CPU
• L1 cache => Pmiss1

• L2 cache => Pmiss1 * Pmiss2

(only L1 misses are seen by L2, which has a local miss ratio of Pmiss2)
• Good for measuring traffic that will be seen by next level down in memory

hierarchy

u Global L2 miss rate equals miss rate of composite cache

Example Effect of Relative L2 Speed

(Data from Hennessy & Patterson Figure 5.24)

u L1 cache fixed at 32 KB

64
128

256
512

1024
2048

4096

4 Clocks L2 Hit

8 Clocks L2 Hit

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

R
el

at
iv

e
E

xe
cu

tio
n

Ti
m

e

L2 Cache Size

Effect of L2 Hit Time

18-548/15-548 Multi-Level Strategies 10/5/98

6

Example Performance

(Hennessy & Patterson Figure 5.23)

u Local/global miss rate is for L2 cache given 32 KB L1 cache
u Single cache miss rate assumes only L1 cache of varying size

L2 CACHE

L1 ONLY

L2 GLOBAL

Same Chart, Log-Log Scale

L2 CACHE

L1 ONLY

L2 GLOBAL

18-548/15-548 Multi-Level Strategies 10/5/98

7

Evaluating Multi-Level Miss Rates
u Use Global Miss rates when evaluating traffic filtering of 2-level caches

• Effectiveness of L2 strategy depends on which L1 strategy is used
– Changing L1 strategy may require changing L2 strategy as well

• Global L2 miss rate equals effective composite cache miss rate

u Sequential forward model (local miss rates):
tea = thitL1 + (Pmiss1 * thitL2) + (Pmiss1 * Pmiss2 * ttransport)

[Note: Cragon uses global miss rates for this equation, which might be confusing]

MULTILEVEL FOR
POLICY & ORGANIZATION

DIVERSITY

18-548/15-548 Multi-Level Strategies 10/5/98

8

Diversity Motivation
u L1 and L2 should have differences to improve overall performance

• Small, fast, relatively inflexible L1
• Larger, slower, relatively flexible L2

u Issues:
• Cache size & virtual memory address translation
• Split vs. Unified & bandwidth vs. flexibility
• Write through vs. write back & write allocation
• Block size & latency vs. bandwidth
• Associativity vs. cycle time

u Following slides are representative tradeoffs
• The cache system in its entirety is what matters, not just any single parameter

Cache Size & Address Translation
u Late select cache -- cache access performed in parallel with address

mapping

u Virtual memory page size determines unmapped address bits
• 4 KB page -- 12 bits -- maximum direct map cache size 4 KB
• 8 KB page -- 13 bits -- maximum direct map cache size 8 KB

u Example: Pentium Pro
• Virtual memory uses 4 KB pages

– 12 unmapped bits available for cache access

• But 16K total L1 cache size!
• Obvious solutions: use only 4 KB to address the cache sets

– Split caches -- only need to address an 8K cache
– Then make each cache 2-way+ set associative -- only need to address 4K

» (D-cache is 2-way; I-cache is 4-way)

– 4K sets takes 12 address bits; and 12 unmapped address bits available

18-548/15-548 Multi-Level Strategies 10/5/98

9

Maximum L1 Cache Size vs. L2 Cache Size
u In the absence of “slight-of-hand,” L1 cache size is limited by

combination of virtual memory page size and organization
• P = VM page size (often 4KB or 8 KB)
• A = Associativity (sectors per set)
• N = number of caches (1=unified 2=split -- assume equal sizes)

u Max total L1 cache = P * A * N
• Can exceed using mapping restrictions for virtual memory

u But, L2 cache is accessed after translation -- no size restriction!
• Size driven by cost & physical limits:

– Want single bank of cache chips to avoid chip select delays
– Want few cache chips for address line loading & space (ideally, single chip)
– Want flexibility for cache size for cost/speed tradeoffs depending on customer

budget

Split vs. Unified
u Split caches give bandwidth; unified caches give flexibility

• Use split L1 combined with unified L2 for good aggregate performance

u Split L1 cache advantages
• Can provide simultaneous data & instruction access -- high bandwidth
• Gives factor of 2 improvement with address translation size limit
• Reduces hit rate, but not catastrophic if L2 cache is available to keep miss

penalties low

u Unified L2 cache advantages
• Reduces pin & package count -- only one path needed to off-chip L2
• Can be used for I-cache/D-cache coherence (invalidate I-cache line on

modification)
• Reduces brittleness of assuming half of memory used is instructions

– Some working sets are mostly data, some are mostly instructions

18-548/15-548 Multi-Level Strategies 10/5/98

10

Write Policies
u Write through? Write allocation?

• L1: write through + no-write allocate; L2 write back + write-allocate
u L1 cache: advantages of write through + no-write-allocate

• Simpler control
• No stalls for evicting dirty data on L1 miss with L2 hit
• Avoids L1 cache pollution with results that aren’t read for a long time
• Avoids problems with coherence (L2 always has modified L1 contents)

u L2 cache: advantages of write back + write-allocate
• Typically reduces overall bus traffic by “catching” all the L1 write-through

traffic
• Better able to capture temporal locality of infrequently written memory

locations
• Provides a safety net for programs where write-allocate helps a lot

– Garbage-collected heaps
– Write-followed-by-read situations
– Linking loaders (if unified cache, need not be flushed before execution)

Block/Sector Size
u Balancing miss rate vs. traffic ratio; latency vs. bandwidth
u Smaller L1 cache sectors & blocks

• Smaller sectors reduces conflict/capacity misses
• Smaller blocks reduces time to refill cache block (which may reduce CPU stalls

due to cache being busy for refill)
• But, still want blocks > 32 bits

– Direct access to long floats
– Exploit block transfers from L2 cache
– Limit tag storage overhead space for sectors

u Larger L2 cache sectors & blocks
• Larger sectors create less of a conflict problem with large cache size
• Main memory has large latency on L2 miss, so proportionally lower cost to

refill larger cache block once memory transfer started
• Once L1 cache block is refilled, larger L2 block refill can continue with lower

probability of stall (refill overlapped with/hidden by subsequent L1 cache hits)

18-548/15-548 Multi-Level Strategies 10/5/98

11

Larger Block Sizes for L2
u Conflict misses relatively less important with larger cache

• If L2 cache is 16x bigger, might be OK to have 2x or 4x larger block size

(Hennessy & Patterson Figure 5.25)

Associativity
u Balance complexity, speed, efficiency
u L1 -- no clear winner

• Direct mapped L1 gives faster cycle time
– But, lower hit rate on an already small cache

• Set associative L1 gives slower cycle time, better hit rate
– Set associativity may be encouraged by address translation issue
– May be less of a problem with on-chip L1 cache

u L2 -- no clear winner
• Direct mapped L2 minimizes pin & package count for cache

– Only 1 tag need be fetched
– No problem with multiplexing multiple data words based on tag match
– Set associativity less advantageous for really large caches

• Set associative L2 gives flexibility
– Less brittle to degenerate cases with data structures mapped to same location
– Associative time penalty less of an issue for L2 cache than L1 cache (smaller

percentage of total miss delay)

18-548/15-548 Multi-Level Strategies 10/5/98

12

Multi-Level Inclusion
u Complete inclusion means all elements in highest level of memory

hierarchy are present in lower levels (also called “subset property”)
• For example, everything in L1 is also in L2 cache
• Useful for multiprocessor coherence; only have to check lowest cache level

u Inclusion requires
• Number of L2 sets >= number of L1 sets
• L2 associativity >= L1 associativity
• L1 shares LRU data with L2 to coordinate replacements

u Whenever non-inclusion is encountered, special effort is required to
maintain coherence for:
• Write back L1 cache (L2 might not know L1 has been modified)
• Temporary non-inclusion for pending writes in write buffer
• L2 block size > L1 block size

– Flush/evict any L1 block mapping to invalidated L2 block

L1 vs. L2 Tradeoff Examples
u Pentium Pro L1 L2

• Size 16KB none - 256KB - 512KB
• Organization Split (8KB + 8KB) Unified
• Write Policies programmable; same for both
• Block size 32 bytes 32 bytes (1 block/sector)
• Associativity D: 2-way; I: 4-way 4-way

u MIPS R10000 L1 L2
• Size 64KB 512KB - 16 MB
• Organization Split (32KB + 32KB) Unified
• Write Policies write back write back
• Block size D: 32 bytes I: 64 bytes 64 or 128 bytes
• Associativity 2-way 2-way

u Isn’t L1 write back a problem for coherence?

18-548/15-548 Multi-Level Strategies 10/5/98

13

Concept In Everyday Life:
u What’s an everyday example of 2-level caching with differing

management policies

• What is the motivation for the caching?

• How are the policies different between the levels?

BANDWIDTH VS. LATENCY

18-548/15-548 Multi-Level Strategies 10/5/98

14

Cache Bandwidth vs. Latency Tradeoffs
u Pipelined caches

• Multiple concurrent access operations gives increased throughput
• But:

– Increases latency for read accesses
– Risk of stall for deferred write access

u Block size vs. transfer size
• Large blocks increase memory bandwidth & refill latency
• But, large blocks decrease miss ratio

2-Stage Pipelined Writes
u Decouple write access to tags and data for faster (average) write hits

• Stage 1: check tag for
write hit

• Stage 2: actually write
data

u But, need 2nd port for reads, or stall for write followed by read

(Hennessy & Patterson Figure 5.28)

DELAYED WRITE BUFFER

18-548/15-548 Multi-Level Strategies 10/5/98

15

3-Stage Generalized Cache Access Pipelining
u 3-stage pipeline only works for direct

mapped caches
• Possible stages (not necessarily how it is

really done)...
• Stage 1: (1) decode address

(2) drive word lines
• Stage 2: (3) read & latch memory row

(4) select data word; precharge
bit lines for next access

• Stage 3: (5) check tag for match while
speculatively using data

(6) abort use of data if tag
mismatch

TAG?

ABORT?

MIPS R4000 Pipelined Cache Example
u Three clock cache pipeline: address decode, fetch, tag compare

• New cache access can be started each clock cycle --> “superpipelining”
– Store buffer uses idle cache cycles to deposit written data
– Blocking cache -- tag mismatch causes stall for cache miss
– Split cache for bandwidth; both direct mapped

INSTRUCTION
CACHE
FETCH

DATA
CACHE
FETCH

DECODE

REGISTER
READ

WRITE TO
STORE

BUFFER

REGISTER
WRITE

CHECK
CACHE

TAG

CHECK
CACHE

TAG
ALU

MIPS R4000 PIPELINE

CLOCK CYCLES
1 2 3 4 5 6 7 8

STORE BUFFER
WRITES WHEN
CACHE IDLE...

STAGE 1 STAGE 1STAGE 2 STAGE 2STAGE 3 STAGE 3

18-548/15-548 Multi-Level Strategies 10/5/98

16

Pipelined Cache Tradeoffs
u Increases latency

• Takes 3 clocks until L1 cache miss is declared!
• 2 clock latency from Load instruction to data available at ALU

– 1 clock for ALU to do address arithmetic counts as that instruction’s execution
– 2 clocks for D-cache read (assume result forwarded to ALU before register write)

u Increases throughput
• Up to 3x improvement in clock speed if cache+tag check was critical path
• Increasingly useful as larger, slower L1 caches are used

u Requires direct mapped cache for 3rd stage
• Speculative execution needs correct data available before tag check
• (2-way set associative would require 2 ALUs, 2 ports to cache write buffer)

Multi-Level Block Sizes
u Tradeoff for large block sizes

vs. available access width

u Example: Pentium+430HX set
• CPU Access Width

– 256 bits instruction / clock
– 2 @ 32 bits data / clock

• L1 Block Size = 256 bits
– L1 Fetch Width = 64 bits
– Example L2 Access: 3-1-1-1=6

• L2 Block Size = 256 bits
– L2 Fetch Width = 64 bits
– Example L2 Miss: 8-2-2-2=14

• DRAM Page size is proportional
to sqrt(chip size)

– (e.g., 16K bits for 16Mx4 chip)

PHYSICAL MEMORY
(DRAM PAGE SIZE)

L2 CACHE
(BLOCK SIZE)

L1 CACHE
(BLOCK SIZE)

L2 FETCH WIDTH

CPU
CHIP

CPU ACCESS WIDTH

L1 FETCH WIDTH

18-548/15-548 Multi-Level Strategies 10/5/98

17

Example of Multi-Level Access Time Equation
u tea = tL1hit + PL1miss * tL2hit + PL1miss * PL2miss * tL2miss

• Pentium example (using marginal L2 miss penalties, not absolute)
– tL1hit = 1 clock tL1miss =6 clocks tL2miss = 14 clocks

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0.0

0.2

0.4

0.6
0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

Access (clocks)

Access (clocks)

P(
L1

 M
iss

)

P(L2 Miss)

Example Pentium Average Teffective_access

JOUPPI CACHES

18-548/15-548 Multi-Level Strategies 10/5/98

18

Jouppi Caches
u ISCA paper on small auxiliary caches

• Assume L1 cache is direct mapped
• How can a small associative cache take the edges off conflict miss problems?
• Attempt to get set associative-like behavior with direct mapped speed and

simplicity

Victim Cache
u Stores eviction victims

• Simulates set associativity for the last few sets touched
• Some, or maybe even most, conflict misses removed; better than miss cache

18-548/15-548 Multi-Level Strategies 10/5/98

19

Stream Buffer
u Hardware prefetching “push” into cache, as opposed to CPU “pull”

• Need not be sequential; can be strided

REVIEW

18-548/15-548 Multi-Level Strategies 10/5/98

20

Review
u Multi-level caches are used to increase overall cache size & decouple

CPU cache accesses from the memory bus
• Bigger is better; but L1 caches have size limits
• L1 and L2 caches often have different tradeoffs

– L1: split; write through/no-allocate; smaller blocks; low associativity
– L2: unified; write back/allocate; larger blocks; moderate associativity

u On-chip L1 cache design is highly constrained
• Size, aspect ratio, area usage

u Both bandwidth and latency matter
• Cache pipelining techniques may help
• Block/sector size vs. bus width is a key tradeoff

u Jouppi caches demonstrate than sometimes a small auxiliary cache can
big a good “win”

Key Concepts
u Latency

• Fast L1 cache can hide latency of slower L2 cache
• Slow L2 cache can hide latency of even slower main memory

u Bandwidth
• Pipelining cache accesses can improve bandwidth

u Concurrency/Replication
• Heterogeneous replication provides diversity

– L1 vs. L2 caches
– Associative Jouppi caches vs. direct mapped L1 cache

u Balance
• Balancing L1 and L2 parameters provides emergent behavior better than simply

using a larger L1 cache

