Lecture #3

Microcontroller
Instruction Set

18-348 Embedded System Engineering
Philip Koopman
Wednesday, 20-Jan-2015

- Carnegie
) Electrical &Computer g
Q) ENENEERING Mellon

© Copyright 2006-2015, Philip Koopman, All Rights Reserved

April 2013: Traffic Light Heaven in L.A.

Los Angeles syncs up all 4,500 of its
traffic lights

9 Los Angeles is the first city in the world to snchronize all of its traffic lights,
hoping to unclog its massive roadway congestion.

B 4 = ; - =,

It has taken 30 years and $400 million, but Los Angeles has finally synchronized its traffic lights in an effort to
reduce traffic congestion, becoming the first city in the world to do so.

Mayor Antonio R. Villaraigosa said with the 4,500 lights
now in sync, commuters will save 2.8 minutes driving
five miles in Los Angeles, The New York Times
reported. Villaraigosa also said that the average speed
would rise more than two miles per hour on city streets
and that carbon emissions would be greatly reduced as
drivers spend less time starting and stopping.
According to CBS News, less idling will mean a 1-ton
reduction in carbon emissions every year. 2

Wi 2 Week of Mon .Tue -.\";Ed .Thu .Fri Lab'Reporr Due| Prela_b Due|| || Fri. Recitation
(SecE) || (Sec A) || (SecB) || (Sec C) || (Sec D) Wednesday Friday Discusses Labs

1 1] Jan NoLab || NoLab |[Open Lab||Open Lab||Open Lab) None 1 1.2

[[18-Tan MLE Day| 1 1 1 1] None >] 2.3

3 25-Tan 1 2 2 2 2 1 3 3.4

4 1-Feb 2 3 3 3 3 2 4 4.5

5 8-Feb 3 4 4 4 4 3 3 5.6

6 15-Feb 4 3 5 3 3 4 6 6.7

7 22-Feb 5 Open Lab||Open Lab||Open Lab 6 None None 7.8

s [29-Feb 6 6 6 6 | BREAK 5 7 Due || o Recitation

Thursday

- 7-Mar SPRING | BREAK || SPRING || BREAK || BREAK None None No Recitation

9 14-Mar Open Lab |Open Lab 7 7 7 6 8 8.9

10 ||21-Mar 7 7 8 8 8 7 9 9.10

11 ||28-Mar 8 8 9 9 9 8 10 10,11

12 |4-Apr 9 9 10 10 10 9 11 11

13 11-Apr 10 10 Open Lab|| Camival || Carnrval None None No Recitation

14 18-Apr Open Lab ||Open Lab||Open Lab||Open Lab||Open Lab! 10 None Optional/In-Lab)

15 ||25-Apr Open Lab ||Open Lab||Open Lab||Open Lab||Open Lab! None None Optional/In-Lab)

16 [2-MayFinals| TBD | TBD | TBD | TBD | TBD (T]ll:u]ﬂ::l;;\') None ||| No Recitation

(*8ee hlackboard for T.ab 11 nrelah demo & writenn information’

Where Are We Now?

& Where we’ve been:
* Embedded Hardware

¢ Where we’re going today:
« Instruction set & Assembly Language

¢ Where we’re going next:
¢ More assembly language
< Engineering process

Embedded C
Coding tricks, bit hacking, extended-precision math

Preview

¢ Programmer-visible architecture
* Registers
« Addressing modes

¢ Branching
« Types of branches
* How condition codes are set

¢ Assembly/Disassembly
* Review of how instructions are encoded

¢ Timing
* How long does an instruction take to execute? (simple version)

Where Does Assembly Language Fit?

¢ Source code
< High level language (C; Java)
¢ Variables and equations
¢ One-to-many mapping with

assembly language SOuRrCce A=B+C
COpE
& Assembly language —“’""i“eﬂ L Ay, B
« Different for each CPU AssempLy Lopy R2, C
architecture LAVCURCE sop R3 R, EZ
< Registers and operations ln g5 EmBLER sToRe R3, A
¢ Usually one-to-one mapping

to machine language Ox EAGT423|
Ox B7 329Ra2

¢ Machine language Ox vees
: (0N
e Hex/binary bits EXEcUT

e Hardware interprets to
execute program

Assembler To ROM Process

Figure 2.1 Microcontroller
Assembly language Source code Assembler Loader
development process. . MC9S12C32 Processor >
PIT equ $0240 / ™ Object code
DDRT equ 50242 N /'\ RAM
_org 54000 $4000 B6OF
Main ldaa H§OF 54002 7R0242 ROM
staa DDRT 54005 8605 860F7A02428605
Controller $4007 7R0240 TAO24086067R02
ldaa #5 $400A B606 40860ATA024086
staa DPIT ; 0101 $400C 720240 037A024020EA
ldaa #e $400F B&0A
gtaa PTT ; 0110 $4011 7R0240 4000
ldaa #10 54014 B860%
staa PIT ; 1010 $4016 7A0240 WO ports |«<—>
ldaa #9 $4019 20EA
staa PTT ; 1001 SFFFE 4000 Bus
bra Controller
org SFFFE T
fdb Main External circuits
and devices
[Valvano]
7

RISC Instruction Set Overview

& Typically simple encoding format to make hardware
simpler/faster

Classical Example: MIPS R2000
+ R7<=R27+0x1234

3] o
|OPcavi Re(fsﬂi‘ REG VST 7!MmemﬁT‘eJ
ews/i Sb-h//sws/ 16 bits

., R

ADDI R27 7, 0x1234

5 [o_17
i am "

ENCOPING: Ox 27 E7 (234 8

CISC Instruction Set Overview

¢ Complex encoding for small programs
¢ Classical Example: VAX; Intel 8088

* REP MOVSB (8088 String move)
— Up to 64K bytes moved; source in Sl reg; dest in DI reg; count in CX
JQ E P md VSE

[ioen] [weee]

eNcopivg: OxF2

Or A4

Accumulator-Based Microcontrollers

¢ Usually one or two “main” registers — “accumulators”
< Historically called register “A” or “Acc” or registers “A” and “B”
¢ This is where the Pentium architecture gets “AX, BX, CX, DX” from

¢ Usually one or more “index” registers for addressing modes
« Historically called register “X” or registers “X” and “Y”
« In the Pentium architecture these correspond to Sl and DI registers

¢ Atypical “H =J + K” operation is usually accomplished via:
e Load “J” into accumulator
e Add “K” to “J”, putting result into accumulator
e Store “H” into memory
« Reuse the accumulator for the next operation (no large register file)

& Usually microcontrollers are resource-poor
¢ E.g., No cache memory for most 16-bit micros!

10

CPU12 Resource — Long Version

DECA oscrement A DECA

Operation:
(R}= 801 5 A
Descriplion:
Subiract ons from the content of acoumdator A,

The M, Z, and V. , The G stass
[

T mutge procision comgatons.

CPU12 ceR et

Reference Manual

: Sot H MSE of resul Is sot; cleased charwiss
Sot if result is $00; coarsd othersise
St theeo was a two

snz

H * i ared onty {A)
was §80 balors the operation.

Addrews R
Source Form Object Code
[0

DECA. TH o o

fra@scale com

U Anference Marsal, flov, L8
[r——n—— [

11

CPUIAGE

Instruction Set Summary {Sheet 2 of 14]

wzve

srsERntas| [F

g
@
&
&l
=5
i o
..
B
[- =
15 x NDEX REGISTER X -
=

%

STACK PONTER

15 e 0| procsaw counrer

KN 1N EVC | CONDTION CODE REGISTER

o
camty .
EvERFLEW =
zem0 =]
HEGATVE] P
]
=
=
(=]
oy
o1s v
W L3
STCF DSADLE (IGHORE 5TCR GRCOCES) -
RESET DEFAULT 15 1
Figure 1. Programming Model
MOTOROLA EPUIZ Retwrwoce Guste (¢ HES 13 and ongass MEBHC 1) ¥

B e 2001

12

“CPU12” Programming Model — (MC9S12C128)

7 A 0|7 B

15 D 0
[15 X 0|
[15 Y 0|
[15 sp 0|
s z g

SXHINZVC

’T,

g—EITACCUMULATORSAANDB Dis reallv iUStA:B
16-BIT DOUBLE ACCUMULATOR D NOT a Separate reqiSter'

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

CONDITION CODE REGISTER

CARRY 173 'T]

ovERrLOW Flags’ used for

ZERD conditional branches
NEGATIVE

MASK (DISABLE) IRQ INTERRUPTS

HALF-CARRY

(USED IN BCD ARITHMETIC)
MASK{DISABLE; XIRQ INTERRUPTS
RESET CR XIR

Q SET X,
INSTRUCTIONS MAY CLEAR X
BUT CANNOT SET X

STOP DISABLE (IGNORE STOF OPCODES)
RESET DEFAULT IS 1
[Motorola01] 13

The CPU12 Reference Guide

& Summarizes assembly language programming info
Lots of info there This lecture is an intro to that material

. Addr. Machine Access Detail
Source Form Operation Mode Coding (hex) Hes12 ez SXHI |NZVC

ABA (A)+(B)=A INH |18 08 [| -—A- |[AAAA
Add Accumulators A and B

ABX B+ =X DX |12 BS PEf L Co— | —-__
Translates to LEAX B,X

ABY B+¥)=Y IDX |19 ED 23 S [
Transiates to LEAY B,Y

ADCA #opr8i B+ M +C=A IMM a2 ii P Bl -—A- |AAAA

ADCA gpr8a Add with Carry to A DIR |22 ad rBf rfp

ADCA gprica EXT |B® hh 11 rEO rOP

ADCA gprx(_xysp DX |ae xb rPf rfp

ADCA gprx9 xysp IDX1 |29 zb ££ rEO PO

ADCA qprxT8.xysp IDX2 |9 xb ee f£f frep £rep

ADCA [D,xysp] [D.IDX] |A5 =b EIfrPE £1Prfp

ADCA [aprxT6.xysp] [IDX2] |as xb ee £f 52824 fIPrfp

ADCB #opr8i B)+(M+C=B IMM |eo 44 P Bl -—A- |[AAAA

ADCB opréa Add with Carry to B DR |po ad ref rEp

ADCB gprisa EXT |F2 hh 11 rEO rop

[Motorola01] 14

ALU Operations — Addition as an Example

¢ “Inherent” address modes:

« ABA B)Y+(A)=>A Add accumulator B to A
— Encoding: 18 06

« ABX B)Y+(X)=>X Add accumulator B to X
— Encoding: 1A E5

¢ Immediate Operand:

« ADDD #value (D) +jj:kk=>D Add to D
— Add constant value to D (example: D <= D + 1234)
— Encoding: C3 jj kk
— Example: ADDD #$534 Adds hex 534 (0x534) to D reg

¢ “Extended” operand — location in memory at 16-bit address:
e ADDD address (D) + [HH:LL]=>D Add to D
— Fetch a memory location and add to D
— Encoding: F3 HH LL
— Example: ADDD $5910 Adds 16-bit value at $5910 to D

* NOTE: “[xyz]” notation means “Fetch from address xyz”

15

Address Modes

Address Modes

IMM — Immediate

IDX — Indexed (no extension bytes) includes:
5-bit constant offset
Pre/post increment/decrementby 1. .. 8
Accumulator A, B, or D offset

IDX1 — 9-bit signed offset (1 extension byte)

IDX2 — 16-bit signed offset (2 extension bytes)

[D, IDX] — Indexed indirect (accumulator D offset)

[IDX2] — Indexed indirect (16-bit offset)

INH — Inherent (no operands in object code)

REL — 2's complement relative offset (branches)

DIR — Direct (8-bit memory address with zero high bits)

EXT — Extended (16-bit memory address)

[Motorola01]

16

Instruction Description Notation

abc

abcaxys

abd

abdxys

dxys

msk8

opréi

ey 0P/ 16
opr8a

—p 0pr]6a

oprx0_xysp

oprx3
oprx5
oprx9
oprx16
page
rel8
rel9
rel16
trapnum
Xys
xysp

AorBorCCR

AorBorCCRorDorXorY or SP. Some assemblers also allow T2 or T3
AorBorD

AorBorDorXorYorSP

DorXorY or SP

8-bit mask, some assemblers require # symbol before value

8-bit immediate value

16-bit immediate value

8-bit address used with direct address mode

16-bit address value

Indexed addressing postbyte code:

oprx3,—xys PredecrementXorYorSPby1...8

oprx3+xys Preincrement XorYorSPby 1. .8

oprx3 xys— Postdecrement X or Y or SP by 1 8

oprx3,xys+ Postincrement X orYorSPby1...8

oprx5,xysp 5-bit constant offset from X or Y or SP or PC

abd xysp Accumulator A or B or D offset from X or Y or SP or PC
Any positive integer 1 8 for pre/post increment/decrement
Any value in the range —16 .. +15
Any value in the range —256 +255

.65,535

8-bit value for PPAGE, some assemblers require # symbol before this value

Any value in the range —32,768

Label of branch destination within —=256 to +255 locations
Label of branch destination within -512 to +511 locations
Any label within 64K memory space

Any 8-bit value in the range $30-$39 or $40-$FF
XorYorSP

XorYorSPorPC [Motorola01]

17

Notation for Encoding of Instruction Bytes

Machine Coding

dd
ee
eb
EE

8-bit direct address $0000 to S00FF. (High byte assumed to be $00).
High-order byte of a 16-bit constant offset for indexed addressing.
Exchange/Transfer post-byte. See Table 3 on page 23.

Low-order eight bits of a 9-bit signed constant offset for indexed addressing,

or low-order byte of a 16-bit constant offset for indexed addressing.

—) hh
ii

—_— jj
—)
1b
— 1

mim

High-order byte of a 18-bit extended address.

8-bit immediate data value.

High-order byte of a 18-bit immediate data value.
Low-order byte of a 18-bit immediate data value.

Loop primitive (DBNE) post-byte. See Table 4 on page 24.
Low-order byte of a 16-bit extended address.

8-bit immediate mask value for bit manipulation instructions.

Set bits indicate bits to be affected.

P
agq
tn

Program page (bank) number used in CALL instruction.
High-order byte of a 16-bit relative offset for long branches.
Trap number $30-339 or $40-5FF.

Signed relative offset $80 (—128) to $7F (+127).

Offset relative to the byte following the relative offset byte, or
low-order byte of a 16-bit relative offset for long branches.

xb

Indexed addressing post-byte. See Table 1 on page 21

and Table 2 on page 22.

18

ALU Operations — Addition Example Revisited

& “Inherent” address modes:

« ABA B)Y+(A)=>A Add accumulator B to A
— Encoding: 18 06

¢ ABX B)+(X)=>X Add accumulator B to X
— Encoding: 1A E5

¢ Immediate Operand:

« ADDD #oprl6i (D) +jj:kk=>D Add to D
— Add constant value to D (example: D <= D + 1234)
— Encoding: C3 jj Kk g
— Example: ADDD #$534 Adds hex 534 (0x534) to D reg

¢ “Extended” operand — location in memory at 16-bit address:
« ADDD oprl6a (D) + [HH:LL]=>D Add to D
— Fetch a memory location and add to D
— Encoding: F3 HH LL < mm—
— Example: ADDD $5910 Adds 16-bit value at $5910 to D

19

ALU Operations — Addition — 2

¢ Immediate Operand:

« ADDD #opri6i (D) +jj:kk=>D Add to D
— Add constant value to D (example: D <= D + 1234)
— Encoding: C3 jj kk
— Example: ADDD #$534 Adds hex 534 (0x534) to D reg

* What C code would result in this instruction?
register intl6 T; // assume that X is kept in machine register D
T =T+ 0x534,

¢ “Extended” operand — location in memory at 16-bit address:
e ADDD opril6a (D) + [HH:LL]=>D Add to D
— Fetch a memory location and add to D
— Encoding: F3 HH LL
— Example: ADDD $5910 Adds 16-bit value at $5910 to D
* What C code would result in this instruction?
static int16 B; /I B is a variable that happens to be at address $5910
T=T+B,;

20

ALU Operations — Addition — 2

¢ “Direct” operand — location in memory at 8-bit address:

* ADDD opr8a (D) +[00:LL]=>D Add to D
— Fetch a memory location and add to D; address is 0..FF (“page zero” of memory)
— Encoding: D3 LL
— Example: ADDD $0038

« Special optimized mode for smaller code size and faster execution
— Especially for earlier 8-bit processors, but still can be useful

— Gives you 256 bytes of memory halfway between “memory” and “register” in terms
of ease & speed of access

— Assembler knows to use this mode automatically based on address being $00xx

» Result — programs often optimized to store variables in first 256 bytes of RAM
— If you have very limited RAM, this is worth doing to save time & space!
— But it also promotes use of shared RAM for variables, which is bug prone

¢ What C code would result in this instruction?
static int16 B; /I B is a variable that happens to be at address $0038
T=T+B;

21

ALU Operations — Addition — 3

¢ “Indexed” operand — memory indexed; pre/post increment/decrement

« ADDD oprx,xysp (D) + [EE:FF+XYSP] =>D
— Add oprx to X, Y, SP or PC; use address to fetch from memory; add value into D
— Encoding: E3 xb /I E3 xb ff // E3 xb ee ff
(Signed offset value; encoding varies — 5 bits, 9 bits; 16 bits)
— Example: ADDD $FFFO, X add value at (X-16,,) to D
Encoding: E3 10 (5 bit signed constant ... “$10”)

(see Table 1 of CPU12 reference guide for xb byte encoding)
< Special optimized mode for smaller code size and faster execution

— “xb” can do many tricks, including support for post/pre-increment/decrement to
access arrays

* What C code would result in this instruction?
static int16 B[100];
register intl6 *p = &B[50]; // assume “p” is stored in register X
T=T+*p-8); [/addsB[42]to T

22

Indexed Examples

Figure 2.2 RAM EEPROM

Example of the 6811 X 0026 47800

indexed addressing 0025 556 $FB01| SA7 }staa 4,x

mode. A[$56 50028 §F802[504 '
50029 §F803

Figure 2.3 RAM EEPROM

Example of the 6812 Y $081E $F800

indexed addressing 50818) 556 <Fg01 [3ER]
mOdE A $0820 $F802 $5C gtaa -4,Y

$0821 SFB03

Figure 2.4 RAM EEPROM

Another example of the Y 5086 §F800

6812 indexed addressing (BEZy 556 4F801[56A

mode A[$56 1 50864 §F802| $EB | } staa $40,Y
' 50865 SFE03| 540

Figure 2.5 RAM EEPROM

Athird example of the v[$0823 | §0a22 $F801 $62

6812 indexed addressing QB23y $56 SPO2[SEA]| oo s

ode A[$56 50824 $7803[302 weid)
' 50A25 sF804| 500 [Valvano] :

ALU Operations — Addition — 4

¢ “Indexed Indirect” operand — use memory value as address, with offset
e ADDD [oprx16,xysp] (D) + [[EE:FF+XYSP]]=>D

— Add oprx to X, Y, SP or PC; use address to fetch from memory; use the value
fetched from memory to fetch from a different memory location; add value into D

— Encoding: E3 xb ee ff
Example: ADDD [$8, X] add value at [(X+8)] to D
Encoding: E3 E3 0008 16-bit constant offset

(see Table 1 of CPU12 reference guide for xb byte encoding)

* What C code would result in this instruction?
static int16 vart;
register int16 *p;
static int16 *B[100]; // B is a variable that happens to be at address $38

B[4] = &vart;
p = &B[0]; // assume “p” is stored in register X

T =T+ *(*(p+4)); /l adds vart to T

24

Indexed Indirect Example

LDAA #$56
LDY #$2345
STAA [-4,Y] ; Fetch 16-bit address from $2341, store A at $1234

Figure 2.6 1233
Example of the 6812 1234 56
indexed-indirect i $235 A_
addressing mode. Y| 2345 -i.... n
"ey, 2340 1
12
$2345 — 4 = $2341 ggj? -
[Valvano]

Had Enough Yet?

¢ Really, all these modes get used in real
programs

¢ You’ve already seen very similar stuff in
18-240, but that’s more RISC-like

« We expect you to be able to tell us what a
short, simple program we’ve written does
if it uses any of the modes described
during lecture

e There are even trickier modes — seldom
used but nice to have

* See Valvano Section 2.2 for more
discussion

Other Math & Load/Store Instructions

¢ Math
e ADD - integer addition (2’s complement)
¢ SBD - integer subtraction (2’s complement)
e CMP - compare (do a subtraction to set flags but don’t store result)
¢ Logic
* AND - logical bit-wise and
¢ ORA - logical bit-wise or
* EOR - bit-wise exclusive or (xor)
e ASL, ASR - arithmetic shift left and right (shift right sign-extends)
¢ LSR - logical shift right
¢ Data movement
e LDA, LDX, ... —load from memory to a register
e STA, STX, ... —store from register to memory
¢ MOV - memory to memory movement

+ Bit operations and other instructions
e Later...

27

Control Flow Instructions

¢ Used to go somewhere other than the next sequential instruction
< Unconditional branch — always changes flow (“goto instruction x)
< Conditional branch — change flow sometimes, depending on some condition

¢ Addressing modes
e REL: Relative to PC - “go forward or backward N bytes”
— Uses an 8-hit offset rr for the branch target
— Most branches are short, so only need a few bits for the offset
— Works the same even if segment of code is moved in memory

e EXT: Extended hh:ll - “go to 16-bit address hh:ll”
— Takes more bits to specify
— No limit on how far away the branch can be

28

Relative Addressing

¢ Relative address computed as:
* Address of next in-line instruction after the branch instruction
— Because the PC already points to the next in-line instruction at execution time
« Plus relative byte rr treated as a signed value
— rrof 0..$7F is a forward relative branch
— rr of $80..$FF is a backward relative branch

¢ Example: BCCcy_clr
« Next instruction is at $0009; rr = $03
» $0009 + $03 = $000C (cy_clr)

asm_main:

000000 180B 0lxx MOVE #1, temp byte
¢ Example: BRA asm_loop 000004 xx
. L. 000005 87 CLRA
» Next instruction is at $000F; asm_loop:
— 000006 52 INCB
rr=$F7 000007 2403 BCC oy clr
o $000F + $F7 = 000009 43 DECA
00000A 43 DECA
$000F + $FFF7 = 000008 43 DECA
$O00F - $0009 = 00000 A7 cy_clr: NOP
$0006 (asm_loop) 00000D 20F7 BRA asm_loop

29

Unconditional Branch

¢ JMP instruction — Jump

 JMP $1256 -- jump to address $1256
JMP Target_Name

« JMP also supports indexed addressing modes — why are they useful?

« BRA $12 -- jJump to $12 past current instruction
— Relative addressing (“rr”) to save a byte and make code relocatable

¢ JSR instruction — Jump to Subroutine
* JSR $7614 -- jJump to address $7614, saving return address
e JSR Subr_Name

< Supports DIRect (8 bit offset to page 0) and EXTended, as well as indexed
addressing

* More about how this instruction works in the next lecture

30

Conditional Branch

& Branch on some condition

« Always with RELative (rr 8-bit offset) addressing

— Look at detailed instruction set description for specifics of exactly what address the
offset is added to

« Condition determines instruction name

* BCC $08 - branch 8 bytes ahead if carry bit clear

e BCS Loop - branch to label “Loop” if carry bit set

« BEQ/BNE - branch based on Z bit (“Equal” after compare instruction)
e BMI/BPL - branch based on N bit (sign bit)

¢ Other complex conditions that can be used after a CMP instruction
e BGT - branch if greater than
e BLE - branch if less than or equal

31

Condition Codes

< Status bits inside CPU that indicate results of operations
e C = carry-out bit
e Z = whether last result was zero
< N = whether last result was “negative” (highest bit set)
¢ 'V = whether last result resulted in an arithmetic overflow

& Set by some (but not all instructions)
e CMP - subtracts but doesn’t store result; sets CC bits for later “BGE, BGT” etc
< ADD and most arithmetic operations — sets CC bits
¢ MOV instructions — generally do NOT set CC bits on this CPU
— But, on a few other CPUs they do — so be careful of this!

32

C &V flags

¢ Carry: did the previous operation result in a carry out bit?
e $FFFF+1 = $0000 + Carry out
o $7FFF + $8000 = $FFFF + No Carry out
e Carry-in bit, if set, adds 1 to sum for ADC
— we’ll do multi-precision arithmetic later
e Carry bit is set if there is an unsigned add or subtract overflow
— Result is on other side of $0000/$FFFF boundary

¢ Overflow (V): did the previous operation result in a signed overflow?
e $FFFF+1=$0000 no signed overflow (-1+1=0)
o $7FFF +1=%$8000 hassigned overflow (32767 + 1 =» -32768)
« This is overflow in the normal signed arithmetic sense that you are used to
— Result is on other side of $8000/$7FFF boundary

¢ Note that the idea of “overflow” depends on signed vs. unsigned
« Hardware itself is sign agnostic — software has to keep track of data types
« Carry flag indicates unsigned overflow
« V flag indicates signed overflow

33
Instruction Set Summary (Sheet 5 of 14) A
" Addr. Machine Access Detail
Source Form Operation Mode Coding (hex) Hes12 o1z SXHI NIV
DBNE abdxys, reld (entr) -1 = cnir REL |04 1b rr peP (branch) DDP| ----
If (entr) not = 0, then Branch; (9-bit) PP (o branch)
else Continue to next instruction
Decrement Counter and Branch if = 0
(cntr=A. B, D.X. Y. or SP)
DEC opriéa M)-301 =M EXT |72 hh 11 TEWO TOPW| - AAA-
DEC opm0_xysp Decrement Memoary Location IDX |63 xb TEW oW
DEC oprx8,xysp IDX1 |e2 xb ££ IPWO TPOW
DEC oprx16,xysp IDX2 |62 xb o2 £f frowp £rPEw
DEC [D.xysp] [DDX] |62 xb EIfrePw fIfrew
DEC [opre 76,xysp] [IDX2] |62 xb ea £f fIPrew fIPTEW
DECA (A)-301 = A Decrement A INH 43 o o
DECB (B)-$01 =B Decrement B INH |53 =1 =]
DES (SP)- 30001 = SP IDX |18 3F pf et .o
Translates to LEAS -1,5P
DEX (%) -$0001 =X INH | o3 =] of -aan A--
Decrement Index Register X
DEY (¥)-$0001 =Y INH o3 o of ---- | A--
Decrement Index Register Y

[Motorola01] 34

Assembler to Hex

¢ Sometimes (less often these days, but sometimes) you have to write your

own assembler!

< In this course, we want you to do just a little by hand to get a feel

* LDAB #254

LDAB #opdi =8 MM |8 it ®
LDAB cprda Load Accumulalos B IR |Ds ad TPt
LDAB opr T EXT |[Fé hh 11 PO
LDAB guradd_xysp DX | E& xb P
LDAB opxadt xysp 0X1 | Es xb ££ PO
LOAB gorx 15.xysp X2 |E& xb ee £f frPP
LDAB 0. xysed [0JDK] |E6 b f1eres
LDAB fapre 6 xyspd IDXZ] |6 xb ee ££ FIPERE

Fl -——- | AAD-
rtp
rop
rfe
red
£rPP
f1frfe
£IPELP

« Addressing mode is:
e Opcode is:
e Operand is:
Full encodingis:__

[Motorola01] 35

Hex to Assembler (Dis-Assembly)

+ If all you have is an image of a program in memory, what does it do?

< Important for debugging

< Important for reverse engineering (competitive analysis; legacy components)

< Start with Hex, and figure out what instruction is
« AAE223CC

ORAA fopesi [+ M) = A T M Joa it ® el ---- [aan- |
ORAA gpida Losgical OR A wsth Memory DR | %4 dd rFE rfF
ORAA gprT6a EXT |BA hh 11 PO P
ORAA aprni_xysp DX |As xb Ff CfF
ORAA gpead xysp K1 | AR xb £f rFO 42]
ORAA gpex 16, xysp I0X2 | Ax xb e ££ YRR YRR
ORAA [0 xysp] [DIDX) | a8 xb FIErPE EIEEER
ORAA [aprxT6 xysp] [ID¥2] |Ax xb ee ££ fIPTPEL [5i34
*« ORAA - one of the indexed versions [Motorola01]

¢ Need to look up XB value =>

lable 1. Indexed Addressing Mode Postbyte Encoding (Xb)

] w0 EJ] 3 E] E] i
a, 1. 150 oy 18 (0 e
55 con t |Sbcoral Jormine |postine [Shconst |Sconst |preamc |postine
i)] 1) T T 3l L i
1% 15, 2 2x IR 187 247 2=
foconet |sbocorst |oremc [poatin |Suconst | const |ereanc t
[:x3 7 = = £ L3 [
2 —1ax E Je 2% R ERd
Soeonst [Sheoesl peine [postine |sheonst [eomst [prede
¥ 3 = ™ £53 53 Ll
3,5 13, 4% s 3 SER A
foconet |sbocorst |orednc [poatine |Sbconst |t const |erean

36

Easier Way To Find Op-Code Information

b [Motorola01] Table 6. CPU12 Opcode Map (Sheet 1 of 2)
00 15[10 1]20 3|30 40 1l50 1|80 36|70 4130 1le0 3| A0 3-6| BD S
BGND | ANDCC | BRA PULX | NEGA | NEGB | MEG NEG | SUBA | SUBA | SUBA | SUBA
IH 1] IM 2| RL 2| IH H 1|H 110 24| EX 3]IM 2| Dl 2{ID 24| EX 3(n
01 51 21 13 341 151 1181 36|71 4|81 1|91 3| Al 36| B1 3
MEM EDIV BRN PULY | COMA | COMB COM com CMPA | CMPA | CMPA | CMPA
IH 1]IH 1 [RL 2] 1H IH 1= 1110 24| EX 3]IM 2101 20 24| EX 3n
0z 1112 1) 22 |32 42 152 1]82 36|72 4|82 92 3| A2 36| B2 3
INY MUL BHI PULA | INCA | INCB INC INC SBCA | SBCA | SBCA | SBCA
IH 1| 1H 1| RL 2| IH H 1|H 1o 24| EX 3]IM 2| DI 2|0 24| EX 30
03 1113 3123 3|33 3 53 1|83 36|73 4(83 HEE 3| A3 3-6| B3 3
DEY | EMUL LS PULB | DECA | DECB | DEC DEC | SUBD | SUBD | SUBD | SUBD
% IH 1]IH 1| RL 2] 1H IH 1= 1110 24| EX 3]IM 3|0l 20 24| EX 3n
< 04 314 1]24 | 34 44 154 1]84 36|74 4|84 94 3| A4 36| B4 3
3 loop ORCC | BCC | PSHX | LSRA | LSRB LSR LSR | ANDA | ANDA | ANDA | ANDA
~ RL 3| IM 2| RL 2| H IH 1= 11D 24| EX 3|IM 2| ol 2| 24| EX 30
%J 05 3-6| 15 47|25 3|35 45 1155 1|85 3-B| 75 4185 HES 3| A5 3-6| BS 3
o JMP JSR CS | PSHY | ROLA | ROLB | ROL ROL BITA BITA BITA BITA
@ [[o] 2-4) 1D 2-4|RL 2| IH IH 1|H 111D 24| EX 3]IM 2|0l 21D 24| EX 30
g 06 16 BES] 46 o6 1]86 36|76 486 HEE 3| AB 26| BE ElS
@ JMP JSR NE | PSHA | RORA | RORB | ROR ROR | LDAA | LDAA | LDAA | LDAA
© EX 3| EX 3| RL 2| H IH 1= 11D 24| EX 3|IM 2| ol 2| 24| EX 30
£ 07 4117 4f27 3|37 47 1157 1|87 38|77 4187 1]97 AT 1| B7 1|C
g BSR JSR BEQ | PSHB | ASRA | ASRB | ASR ASR | CLRA | TSTA NOP | TFREEXG
= RL 2|01 2| RL 2| IH IH 1|H 111D 24| EX 3]IH 1|H 1[H 11 H 200
Q 06 1118 -l 28 EEE 48 133 1]88 36|76 488 HEE 3| A8 36| BB 3(cC
T INX | page2 | BVC | PULC | ASLA | ASLB ASL ASL EORA | EORA | EORA | EORA
o H 1| - -|RL 2| H H 1| H 1D 24| Ex 3| M 2| ol 2|Ip 24| Ex aln
g 1] 119 2|28 31|38 49 159 69 12479 3|88 Rt 3| A9 36| B9 3|c
~ DEX LEAY BVS PSHC | LSRD | ASLD CLR CLR | ADCA | ADCA ADCA
@ IH 1]ID 2-4 | RL 2| H 1= 11 H 11D 24| EX 3] e 1l 5] s =23 afn
a oA 3T[1A 2{2Aa RN ETY EED IT|5A Z|BA 124 TA EE HER 3| AA 36 (WA 3(cC
Q RTC LEAX BPL PULD | CALL | STAA | STAA | STAA | ORAA | OR o] RAA
(a IH [24| RL 2] IH EX 4] D1 2|0 24| EX 3] z| Dl 18] 24 X 3{n
3 0B e[1B 2|2B 31| 3B Z[4B 17-10| 3B 2|6B 24| 7B 8B 9B BB 3
D RTI LEAS BMI PSHD | CALL | STAB | STAB | STAB | ADDA | ADDA ADDA
= Key to Table &: 2| o 2|ib 2a|Ex 3|0
=] Opeode - ey i HES 3[AaC 36|BC 3¢
% m“uﬁmt% Number of HCS12 cycles (§ incicates HC12 different) CPD cPD CPD
O Address Mode -1 1 Mumber of bytes 3| DI 2|0 24| EX 30 37
- 2lan 2lan 2Rl BD Kl s

Performance — How Many Clock Cycles?

¢ This is not so easy to figure out
« See pages 73-75 of the CPU 12 reference manual

+ In general, factors affecting speed are:

< Does the chip have an 8-bit or 16-bit memory bus? (Ours has a 16-bit bus)

— 8-bit bus needs one memory cycle per byte

— 16-bit bus needs one memory cycle per 2 bytes, but odd addresses only get 1 byte

< How many bytes in the encoded instruction itself?

- AAE223CC

< Isita complicated computation that consumes clock cycles (e.g., division)?

takes 4 bytes of fetching
» 2 bus cycles if word aligned
» 3 bus cycles if unaligned (but get next instruction byte “for free” on 3 cycle)

* How many bytes of data
— Need to read data and, potentially write it
« Is there an instruction prefetch queue that can hide some fetch delay?

Usual lower bound estimate

e Count up clock cycles for memory touches and probably it takes that or longer

38

Simple Timing Example

¢ ADCA $1246
e EXT format — access detail is “rPO” for HCS12
— r—8-bit data read
— P —16-bit program word access to fetch next instruction
— O - either prefetch cycle or free cycle (memory bus idle) based on alignment
e Total is 3 clock cycles
— (lower case letters are 8-bits; upper case letters are 16-bit accesses)
— Simple rule — count letters for best case # of clock cycles

Access Detail
Source Form Aﬂlir::s Object Code

HCS12 MesHC12
ADCA #oprsi IMM 89 11 P P
*ESAropTo B e TPT rfP
ADCA opriga EXT ES hh 11 rBO rop
AL OPTRO Ay op TCr P sl TET rfP
ADCA oprx9,xysp DX A9 xb ff rBO rbo
ADCA oprx16,xysp IDX2 A9 xb ee ff frop frop
ADCA [D,xysp] [D.IDX] B9 xb EIfrPf fIfrfp
ADCA [oprx16,xysp] [IDX2] A9 xb ee ff fIDrPE fIDPrED

[MotorolaQ1] 39

Another Timing Example

¢ Recall that “D” is a 16-bit register comprised of A:B

¢ ADDD $1247, X
¢ IDX2 format — access detail is “fRPP” for HCS12
f — free cycle (to add address to computation performed, memory bus idle)
R — 16-bit data read
P — 16-hit program word access to fetch next instruction
P — 16-hit program word access to fetch next instruction
e Total is 4 or 5 clock cycles
— 4 for minimum; plus 1 if value of X+$1247 is odd (straddles word boundaries)

Access Detail
Source Form Azlir::s Object Code

HCS12 M68HC12
ADDD #oprigi IMM 3 31 kk o ap
ADDD opr8a DIR D2 dd RDF RED
ADDD opriéa EXT F3 hh 11 REO ROD
ADDD oprx0_xysp DX E3 xb REPf RED
BB Ess s e Eo—n—fr e RDO
ADDD oprx16.xysp DXz El xb ee ff £RID | fRDD
RUDTT LAY ER] CHIDrR] ET =& TITELF fIfREP
ADDD [oprxi6, xysp] [IDX2] E3 xb es ff fIPRPE fIPRED

[Motorola01] 40

Preview of Labels for Prelab 2

& Labels are a convenient way to refer to a particular address
e Can be used for program addresses as well as data addresses
¢ You know it is a label because it starts in column 1 (“:” is optional)

¢ Assume you are currently assembling to address $4712
¢ (how you do that comes in the next lecture)

Mylabela:

ABA ; this is at address $4712
Mylabelb:
Mylabelc

PSHA ; this is at address $4713

« The following all do EXACTLY the same thing:
— JMP $4713
— JMP Mylabelb
— JMP Mylabelc

41

Preview of Assembler Psuedo-Ops

¢ The following are assembler directives, not HC12 instructions
e Labels — refer to an address by name instead of hex number
¢ ORG: define the address where data/code starts
< DS: Define Storage (allocate space in RAM)
¢ DC: Define Constant (allocate space in ROM/flash)
¢ EQU: Equate (like an equal sign for assembler variables)

¢ This is for orientation when looking at code
< Specifics in the next lecture

42

Lecture 3 Lab Skills

¢ Write an assembly language program and run it

¢ Manually convert assembly language to hex

¢ Manually convert hex program to assembly language

43

Lecture 3 Review

¢ CPU12 programmer model
» Registers
« Condition codes

¢ Memory Addressing modes

< Given an instruction using one of the modes described and some memory
contents, what happens?

¢ Assembly
« Given some assembly language, what is the hex object code?
« Given some hex object code, what is the assembly language

¢ Simple timing
« Given an encoded instruction, what is the minimum number of clocks to
execute?
— Be able to count number of letters in the timing column
— We do not expect you to figure out all the rules for straddling word boundaries etc.

« Branch cycle counting covered in next lecture
44

