
What’s Wrong With Fault Injection As A Benchmarking Tool?

Abstract

This paper attempts to solidify the technical issues
involved in the long-standing debate about the
representativeness of fault injection as a tool for measuring
the dependability of general-purpose software systems.
While direct fault injection seems appropriate for
evaluating fault tolerant computers, most current software
systems are not designed in a way that makes injection of
faults directly into a module under test relevant for
dependability benchmarking. Approaches that seem more
likely to create representative faults are ones that induce
exceptional operating conditions external to a module
under test in terms of exceptional system state, exceptional
parameters/return values at an API, failed system
components, or exceptional human interface inputs.

1. Introduction

Fault injection has long been used as a way to evaluate

the robustness of computer systems. Traditional fault in-

jection techniques involve perturbing or corrupting a com-

puter’s memory or operating elements to create a fault.

Mechanisms to inject faults include heavy-ion radiation,

probes that inject electrical signals into hardware circuits,

mutation of programs, and software probes that corrupt sys-

tem state as programs are being executed. These tech-

niques are widely considered useful in evaluating a

system’s response to a hardware fault such as a radia-

tion-induced bit value inversion or a “stuck-at” fault. They

also can be effective at exercising various fault handling

mechanisms, both software and hardware.

While previous generation system dependability was of-

ten dominated by hardware faults, in the vast majority of

modern computer systems it is widely believed that soft-

ware problems are a more frequent cause of system-level

failures. Thus, attempts to measure and improve overall

system dependability are in need of a way to measure soft-

ware dependability. Over time, fault injection has come to

be used as a controversial technique for assessing software

fault tolerance and system-level dependability.

It is arguably the case that the question of representative-

ness is the single biggest open issue in fault injection today.

Fault injection, especially software-based fault injection, is

a reasonably convenient and effective way to evaluate sys-

tems. However, it is not always clear what fault injection

results mean for fielded systems. Proposing the use of fault

injection to benchmark system dependability typically trig-

gers vigorous debate, often with polarized viewpoints.

This paper seeks to identify a possible source of the large

gap between opposing views in the debate on fault injection

representativeness as well as place into perspective some of

the strengths and weaknesses of fault injection approaches.

While this paper presents opinions rather than scientific

facts, it is based on experiences from extensive interactions

with industry and the technical community as part of the

Ballista robustness testing project as well as two years as

co-chair of the IFIP 10.4 WG SIG on Dependability

Benchmarking.

This paper has been written to start a discussion rather

than end one. None of the issues discussed below are really

quite as black and white as they are portrayed to be. In par-

ticular, any tool that affords a different view of a system for

analysis brings with it some benefits. However, the dispar-

ity between benefits claimed by some fault injection propo-

nents versus the lack of value perceived by some fault

injection opponents suggests that a clear and precise articu-

lation of issues would help focus the debate. It is our hope

that this paper will put future discussions on this topic on a

more solid technical foundation.

2. Fault injection as a fault tolerant comput-
ing evaluation tool

Oneway to understand fault injection is to hypothesize a

system that would be sure to detect and recover from all

possible fault injection experiments (i.e., one that would be

perfect if evaluated using fault injection, although of course

in practice such perfection is not attainable). We assume

the classical situation in which faults are only injected

within the boundaries of a software module under test

(other situations are discussed Section 5). Thus, a software

fault injection experiment consists of injecting a fault into

the data or program of a module and evaluating whether the

Philip Koopman
ECE Department & ICES
Carnegie Mellon University

Pittsburgh, PA, USA
koopman@cmu.edu

result matches that of a so-called golden run of an uncor-

rupted copy of that same module. Compared to traditional

software testing techniques, this method of evaluation has

the distinct virtues of being relatively inexpensive to de-

velop and execute, as well as requiring minimal informa-

tion about the software being tested.

A software module which would be completely invul-

nerable to such injected faults would have to incorporate

exception handlers and acceptance tests. Exception han-

dlers would catch and convert any possible exceptions gen-

erated by an injected fault into a clean error return operation

followed by a subsequent recovery operation. Because ar-

bitrary changes can be made to a module under test by fault

injection, exceptions generated can potentially include

those from illegal instructions, memory protection viola-

tions, and other activations of machine checks. However,

not all program state corruptions result in exceptions.

Thus, acceptance tests would also be required in order to

catch and recover from any possible incorrect (but non-ex-

ceptional) result due to program or data mutation.

The above description of an idealized system should

help explain why fault injection is historically popular in

the fault tolerant computing community. A system that can

withstand an arbitrary fault can be said to be dependable

without concern for the specifics of the situation it is being

used in. Systems that employ fault tolerant techniques of-

ten have hardware support that tends to detect or correct in-

jected faults, as well as software that is designed for

recoverability after failure and for self-checking of compu-

tational results. Note that the requirement for an accep-

tance test that can detect an arbitrary fault can be difficult to

meet, and often leads to multi-version software design and

other expensive implementation techniques that can be jus-

tified only for the most critical systems.

Perhaps surprisingly, the widely used technique of input

value validity checking is not sufficient to assured depend-

ability against arbitrary fault injections. In the common

case, an injected fault can be expected to create an excep-

tion or incorrect value after a module performs validity

checking on input values. Thus, software would have to be

able to handle arbitrary corruptions of data values even if

they had previously passed input validity tests. Adding in-

put value tests can help strengthen a weak system by adding

indirect acceptance tests so that one module’s output gets

tested as it becomes the next module’s input. But, it does

not seem that a fully robust system can rely upon them ex-

clusively.

Put another way, all exceptions that can be generated by

hardware in any circumstance must be handled, even ones

that appear to be impossible based on the software design.

For example, a null pointer check might be changed by an

injected fault into an instruction that corrupts a pointer in-

stead of ensuring it is valid – there is no assurance that input

validity checks will suffice.

The issue of what happens when exception handlers or

acceptance tests are themselves corrupted is of course rele-

vant. One can argue that the chance of a value being

changed after its validity check is larger than the chance

that an arbitrary fault will result in both a corrupted value

and the propagation that value past an acceptance test. But

regardless of that argument, it is clear that validity checks

alone do not suffice to ensure dependability for an arbitrary

fault model.

Although it is still an open question whether direct injec-

tion of arbitrary faults leads to representative results with

regard to software dependability evaluation, systems built

to withstand arbitrary fault injections successfully can

clearly endure very difficult operating conditions. And in

fact these are the kind of systems that the fault tolerant com-

puting community has long dealt with. While it is impossi-

ble to be perfectly robust under every conceivable set of

concurrently injected faults, systems that perform well dur-

ing a fault injection campaign truly deserve to be called ro-

bust, but are likely to achieve this result at significant

expense.

The controversial question of concern is: should we

measure all systems by their response to arbitrarily injected

faults? Or, for that matter, is it appropriate to compare any

systems by such a standard?

3. Everyday, but mission-critical, software

In most computing, even many mission-critical comput-

ing applications, the expense of creating and operating a

completely fault tolerant computing system can be too

high. Thus, optimizations are employed to reduce develop-

ment and run-time costs. While programs employing these

optimizations can at times be less dependable than more

traditional fault-tolerant software systems, there is no es-

sential reason why this need be the case for the types of

faults actually encountered in everyday operation.

First and foremost, general purpose computing assumes

that hardware faults are rare, are detected by hardware

mechanisms, and need not be dealt with by application soft-

ware. This is by and large a reasonable set of assumptions.

In current systems, system crashes and problems created by

software failures seem to outnumber hardware failures by a

large margin. Furthermore, well known and affordable

hardware techniques such as using error detection coding

on memory and buses are available to reduce the chance of

undetected hardware faults and, if desired, provide auto-

matic recovery from likely hardware faults. (Whether cus-

tomers decide to actually pay for hardware reliability

features is in fact an issue, but arguably one that won’t be

resolved by creating even more hardware or software reli-

ability mechanisms that have non-zero cost to implement or

execute.) Mainframe computers have provided very reli-

able hardware for many years – thus the capability to pro-

vide effectively failure-free hardware environments is

more a matter of economy than practicability.

Given that application software can consider hardware

to be failure-free for practical purposes, significant and im-

portant optimizations can be employed to simplify software

and speed up execution. The general idea behind these

optimizations is to avoid repeating validity checks and

avoid providing unnecessary exception handlers.

Given failure-free hardware, validity checks need only

be computed once for any particular value. As a simple ex-

ample, if a memory pointer must be validated before it is

dereferenced, it suffices to check pointer validity only once

upon entry to a module (and after pointer updates) rather

than every time that pointer is dereferenced. Many such

checks can be optimized using the general technique of

common subexpression elimination. (Compilers might

well perform this optimization even if checks are explicitly

included before each pointer use in source code.) Further-

more, if a set of related modules is designed to be used to-

gether, such checks can be optimized across module

boundaries and only invoked at external entry points into

the set of modules. Similarly, if exception handlers are pre-

ferred to data validity checks, these need only be provided

at external software interfaces.

Of course it is well known that data validity checks used

in practice are typically imperfect and could easily be im-

proved in many systems. However, the important point for

present purposes is that this is the preferred approach to at-

taining robustness in such systems, and that most such sys-

tems typically have at least some validity checks of this

nature in place. For example, in mission-critical software

systems, it is common practice to add additional “wrap-

pers” to perform validity checks at strategic places in the

system, such as before every call to the operating system.

An additional situation that can be considered an optimi-

zation is that acceptance tests used at the end of module ex-

ecution are often omitted or reduced to rudimentary form.

Instead, what is supposed to happen is that correctness

checks are moved from run time to development time, and

take the form of software testing suites and compiler analy-

sis to ensure software conformance to specifications.

Given the assumption of no hardware failures, this is a rea-

sonable way to reduce fielded software size and execution

time while ensuring correct operation. It is of course recog-

nized that test suites are generally imperfect; however this

does not change the fact that this is the prevalent approach

in ordinary software systems. Even in systems with rigor-

ously defined exception-handling interfaces, it is com-

monly the case that only exceptions that are expected to be

generated are supported, documented, and tested. Excep-

tions that are impossible to generate, based on analysis of

source code and a failure-free hardware assumption, are

usually not handled gracefully since doing so would be

seen as a waste of development resources within a finite

budget of time and money.

Now let us say that a software module developed ac-

cording to the above implementation philosophy is sub-

jected to fault injection as a way to exercise the system in an

attempt to find software dependability problems. The im-

portant question for this case is how to interpret a failure

that is created by a fault injected into the code or data spaces

of a module under test. There are twomain cases of interest

to consider based on the fault injection outcome.

(1) The injected fault produces a valid, but incorrect,

intermediate result that propagates to the output. If there

are no correctness defects in the module under test, this can

only correspond to incorrect data being presented at the ex-

ternal inputs of the module. That situation does not corre-

spond to a defect of any kind in the module under test

because the program that was actually written does not pro-

duce the same output as the fault-injected output for that

particular system state and set of input conditions, and is

therefore not representative of expected failures. Saying

that an ordinary software module is defective because it

gives a different answer when processing internally cor-

rupted data (or executing arbitrarily modified instructions)

than when processing uncorrupted data is, in the general

case, unreasonable.

Adifferent argument that is sometimes made is that such

a situation represents a hypothesized fault (similar in intent

to the concept of “bebugging” via source code mutation in

the software testing community). In this case such a fault

can only be argued to be useful in evaluating the effective-

ness of the test suite. But even then interpretation of results

must be made carefully if tests have been designed in a

“white box”manner, taking into account the structure of the

module being tested. It might not be reasonable to criticize

a test suite for failing to find a defect in a program that has

been mutated to have a different structure or functionality

than the one the tests were designed for. In other words, the

concept of optimization can and does extend to designing

tests that are only relevant for the software that has been

specified in light of reasonable and common defects. Fur-

thermore, this use of fault injection requires availability of a

test suite, which is seldom the situation encountered when

fault injection is used as a dependability metric.

(2) The injected faults produce an inappropriate ex-

ception or crash. In this case determining the correctness

of module functionality is simplified by applying a default

specification that the module should not produce an undoc-

umented (or unrecoverable) exception and should not crash

or hang. These sorts of module failures can be legitimately

called robustness failures, which reduce software depend-

ability, but only if they could plausibly happen during the

execution of a real application program.

Consider a pointer validity check to illustrate the issue of

representativeness in this situation. Aprogrammight check

a pointer passed as an input parameter at the beginning of a

module, and then dereference it many times during execu-

tion without altering its value. Given that hardware faults

are not under consideration, that program can never suffer a

memory protection violation by dereferencing that pointer.

However, a fault injection campaign might well create an

invalid pointer and a subsequent exception or crash. It is

difficult to claim that this result measures software depend-

ability, because it could never happen during production

use. Evenmore importantly, it is unreasonable to claim that

it is representative of a hypothesized software robustness

defect, because in fact this is a case in which the software

was specifically designed to be robust to the very type of

fault that was injected!

To further illustrate the problem with representativeness

in this case, consider a situation in which a null pointer

check has been omitted from a piece of off-the-shelf soft-

ware available only in executable form. The traditional so-

lution to cure robustness failures of this type would be to

add an external wrapper to the module that checks for

pointer validity. Adding that wrapper makes the software

robust to null pointer inputs. But, this wrapped module

would still suffer an exception in response to a fault injec-

tion that creates a null pointer after the wrapper performs its

check. Thus not only would robust software appear to have

robustness failures under a fault injection experiment, but

hardened software would similarly appear to be non-robust.

Software that performs acceptance tests might tend to

appear more robust under fault injection than software that

just performs input validity checks. This is because any in-

jected faults that are activated during the execution of a

module would, theoretically, be detected and handled by an

acceptance test. However, optimizations would still intro-

duce vulnerabilities to fault injection, such as not imple-

menting exception handlers for exceptions that are

impossible in fault-free hardware operation. For an invalid

pointer example, there is no reasonable basis for incurring

the cost of memory address exception handlers if all point-

ers are known to be valid based on previous validity checks.

Thus, direct fault injection experiments are not suitable

for general-purpose software robustness benchmarking.

They are unlikely to show an improvement in robustness

when proven techniques are used to improve software ro-

bustness via filtering out invalid or exceptional input val-

ues. While it could then be claimed that fault injection

would alternately test whether all possible exceptions were

caught by a module, this approach has a similar problem in

that fault injection is likely to generate exceptions that can’t

possibly happen in real program runs. Furthermore, even

adding exception handlers will not necessarily catch in-

jected faults that generate unexpected exceptions or, worse,

disable or subvert the exception handler itself.

4. The importance of realistic fault activation

The key problem with using direct fault injection on a

software module is that doing so does not take into account

whether the injected fault can be activated by inputs during

real execution, and similarly whether it can slip by any

available exception handler. Mainstream software devel-

opment, even for critical systems, traditionally achieves ro-

bust operation in large part by restricting the ability of

exceptional values to activate potential fault sites via a set

of input validity checks. It then seeks to handle only those

exceptions that can actually be encountered (i.e., ones for

which input checks are not implemented or cannot provide

complete coverage) to minimize software complexity.

Of course most software is certainly not perfect. Not all

values are checked before being used. Not all exceptions

that can be generated are handled gracefully. However, it

appears that fault injection has trouble distinguishing

whether a general purpose software module (as opposed to

a specially created fault tolerant software module) would in

fact be operationally robust.

To use an analogy to the problem under consideration,

consider the task of making a camping tent absolutely dark,

with no light entering whatsoever, perhaps for the purpose

of photographic film processing. A single layer of black

plastic sheetingmight suffice for this task, but might also be

imperfect or develop holes while in use. A fault tolerant

computing analogy might well involve using multiple lay-

ers of plastic sheeting to reduce the probability of aligned

multi-layer holes. Fault injection would then involve putt-

ing a few small holes in individual layers to ensure that light

still did not penetrate, simulating the process of holes ap-

pearing due to wear and tear during use.

By the same analogy, a fault injection technique applied

to a cost-sensitive situation would be to prick holes in a sin-

gle layer plastic tent and assert that light indeed penetrated

into the tent when a hole was made (assume that after each

such hole is evaluated it is automatically patched). Further-

more, fault injection might prick and illuminate holes in

portions of the tent which were not exposed to light in the

first place such as plastic buried under dirt at the edges of

the tent. (A more extreme version of fault injection would

be to shine a flashlight inside the tent and assert that light

had entered; but an expected response in that case would be

to eject the person holding the flashlight!)

While pricking holes in a single-layered plastic tent in-

deed serves to illustrate the vulnerability of using a single

layer of plastic, one should not be surprised that owners of

such a tent don’t see much value in a fault injection exer-

cise. Amore effective approach for their situation would be

to create ways to identify existing holes so they could be

patched, perhaps by entering the tent and patching places

where light leaked in, analogous to installing software

wrappers to improve dependability. Thus, the core prob-

lems of a fault-injection based approach in this analogy of

an optimized, cost-sensitive system are (1) identifying de-

fects that aren’t in the system as it is actually implemented,

and (2) creating false alarms to such a degree that effort is

arguably better spent on other activities. Saying that opti-

mizing systems for cost can lead to less robust systems is of

course a valid point, but does not change the fact that most

purchasers demand optimized systems; insisting that no

such systems be implemented is simply unrealistic.

The key problem is one of whether activation of a given

potential fault could actually occur in a real system under

real operating conditions, or if it can occur, whether it takes

place under a condition that the designers of the system feel

justified in ignoring. Direct fault injection creates situa-

tions that might be impossible to achieve in real execution,

by for example creating an exceptional value just after a va-

lidity check. Without a measure of whether activation of an

injected fault is possible in a real system, it is difficult to use

the results of direct fault injection for everyday software.

For this reason, direct fault injection is ultimately no substi-

tute for a good development and test process. It can, how-

ever, help in designing a module to tolerate design faults

contained in other modules and its execution environment

as discussed in the next section.

5. Representative uses of fault injection

Given the above discussion, it would be a mistake to

conclude fault injection is of no use in evaluating the de-

pendability of mainstream software. The real issue is using

fault injection in a manner appropriate to the relevant as-

sumptions and development model for any particular sys-

tem under consideration. For systems designed to tolerate

generalized failures as described in Section 2, fault injec-

tion seems like a useful tool to use in overall system evalua-

tion. But lack of tolerance for directly injected faults does

not demonstrate software undependability; it merely fails

to make a case for software being dependable in the face of

arbitrary runtime faults.

Some of the ways in which fault injection can be helpful

are listed below. Note that these techniques avoid injecting

faults directly into the module under test, but rather inject

faults into external interfaces or the surrounding environ-

ment. Thus all such approaches have the virtue of being

non-invasive with respect to the actual execution of the

module under test and thus present a fault model that does

not assume a particular approach is used within a module

for providing dependable operation.

• Callee interface fault injection. Faults can be injected

into the inputs of a module to check for

out-of-specification responses. The presumption here is

that some external software defect exists that feeds an

exceptional value (one that is invalid rather than merely

incorrect) to the module under test. This approach is

only representative to the degree that injected faults

could really happen in operation. It tends to be most

useful for very widely used application programming

interfaces (APIs) for which all uses cannot possibly be

foreseen, as well as for faults injected that are common

results of programming errors (e.g., submitting a null

value as a pointer parameter to a procedure call). A

variation on this theme is testing for security

vulnerabilities such as buffer overflow vulnerabilities.

• Caller interface fault injection. Faults can be injected

in values returned to the module under test from other

software that it calls via external calling interfaces.

Representativeness in this situation can be tricky to

determine if the module is only destined to run on one

version of supporting software if that software cannot

actually generate the faults used for testing. However,

the utility of this approach increases if the module under

test must be portable or the underlying software can be

expected to be upgraded or revised over time.

• Forced resource exhaustion and environmental

exceptions. Exceptional conditions such as having no

allocable memory or a full hard disk can stress a

software module under test in terms of its ability to

process exceptions. This can be seen as a special case of

fault injection into the external caller interface as just

described, but is in general an important case to cover.

• Failure of cooperating processes, tasks, and computers

in a distributed system.

• Configuration, maintenance, and other failures in the

supporting infrastructure and execution environment,

including failed hardware components such as disk

drives, missing or incorrectly configured software

supporting the execution of a module under test, and

even installation of incompatible versions of software.

• User interface failures, in which users create

exceptional inputs or operational situations.

The above approaches are all relevant to some degree to

both fault tolerant software systems as well as general-pur-

pose, optimized software systems because they deal with

factors outside the control of designers performing soft-

ware module optimization.

6. Conclusions

Direct injection of faults into a software module can pro-

vide evidence of software dependability. Certainly any

piece of software that can tolerate a large fraction of possi-

ble arbitrary changes to its operation and still provide cor-

rect answers is dependable, and is likely to provide

extensive exception handling capabilities to provide that

dependability. However, this does not make such fault in-

jection suitable as a benchmarking technique in general, be-

cause much software is not designed to withstand fault

injection, but rather is optimized assuming correct hard-

ware operation.

Using direct fault injection as a dependability bench-

mark commits the logical fallacy of “denying the anteced-

ent” (this fallacy is an argument of the form: “If A then B;

Not A, thus not B”). In this instance the specific logical fal-

lacy would be: “if software performs well under fault injec-

tion then it is dependable; a particular piece of software

performs poorly on a fault injection test, thus it is not de-

pendable.” Because much software is optimized in ways

that preserve dependability for the expected case of fail-

ure-free hardware, one cannot conclude that software that

does poorly at direct fault injection is undependable. The

most that can be inferred is that the results provide sugges-

tive evidence that software does not use exception handling

as its primary means of providing dependability (but even

that statement assumes that injected faults did not affect ex-

ception handling itself).

It is possible that the controversy over fault injection

continues because of disparate world-views of how robust

software should be created. For systems that must achieve

comprehensive fault tolerant operation, including with-

standing hardware faults, injecting faults directly into a

module under test can yield insight into operation in the

face of equipment faults. Traditional fault tolerant soft-

ware, and in particular software that has comprehensive ac-

ceptance test support and exception handling, might be

evaluated using fault injection techniques. The ability to

demonstrate how such injected faults correspond to mea-

surements of software defects rather than hardware defects

is still a research topic. But, the arbitrary nature of injected

faults that are permitted to activate at the software level

rather than being compensated for by hardware mecha-

nisms can be argued to provide a substantial exercise of the

software fault tolerance designed into a system.

General-purpose software tends to be optimized to elim-

inate redundant validity checks and superfluous exception

handlers under the assumption that hardware faults are both

rare and detected without the involvement of application

software. This means that a fault that is injected might well

result in a failure that is not representative of the particular

software module under test (i.e., the injected fault might

create an exceptional value at a point in a computation

where such a value would have already been caught by va-

lidity checks). Direct fault injection experiments on gen-

eral-purpose software tend to underestimate the degree of

operational robustness available, and in particular are

poorly suited to measuring the improvement of robustness

afforded by adding input value checks to software inter-

faces via code modification or addition of robustness wrap-

pers. Thus, fault injection results in this case distinguish

which approach was used to ensure software dependability

(validity checks versus exception handling) rather than

solely whether the software is in fact dependable.

For systems in which hardware is presumed to have

enough built-in capabilities to offer fault-free operation for

practical purposes, direct fault injection seems to offer little

evaluative benefit in the absence of an accurate fault activa-

tion analysis. But, fault injection into the surrounding envi-

ronment seems attractive as a way to characterize

exceptional condition response. It is important in every

such experiment to clearly state several things for the re-

sults to be meaningful: the fault hypothesis being evalu-

ated, the correspondence between the faults being injected

versus that fault hypothesis, and the assumptions being

made about the structure of software being evaluated. And

finally, it is important to avoid confusing the ability of fault

injection to demonstrate robustness with the fact that lack

of such a demonstration does not prove that software is

non-robust within reasonable operating environments.

7. Acknowledgments

The reader will note a lack of scholarly references in this

paper. The important parts of the relevant discussions have

taken place in meetings and e-mails over a period of years,

and thus are impractical to cite or even attribute. Citing

only scholarly publications as sources of various current

and historical ideas would overlook that many of these

ideas circulated long before they were published or aren’t

formally published, and would likely provoke a variety of

divisive responses from authors who object to our interpre-

tation of their work. Thus we simply assume that the reader

is familiar with fault injection as a general technique, and

we acknowledge that none of the technical ideas in this pa-

per are new; we simply summarize experiences and possi-

bly present them in a new light.

Discussions with the members of the IFIPWG 10.4 SIG

on Dependability Benchmarking and in particular with

Henrique Madeira have been invaluable in forming the

thoughts presented in this paper. This paper is, however,

solely the opinion of the author. This material is based

upon work supported in part by DARPA and US Army Re-

search Office under Award No. C-DAAD19 01-1-0646,

and the High Dependability Computing Program from

NASA Ames cooperative agreement NCC-2-1298. Any

opinions, findings, and conclusions or recommendations

expressed in this publication are those of the author and do

not necessarily reflect the view of the sponsoring agencies.

	Front Cover
	Introduction
	Table of Contents
	F-1 Wilson
	F-7 Kanoun
	F-9 Brown
	F-15 Raz
	F-17 Cukier
	F-19 Rus
	F-21 Bigrigg
	F-25 Boehm
	F-27 Zhu
	F-29 Arlat
	F-31 Koopman

	PAGE:
	page F-31: F-31
	page F-32: F-32
	page F-33: F-33
	page F-34: F-34
	page F-35: F-35
	page F-36: F-36
	header: DSN Workshop on Dependability Benchmarking, June 25, 2002

