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Abstract 
 

Defect and fault seeding is often considered for 
gathering empirical estimates within reliability models. 
Traditional defect seeding is fraught with difficult to 
resolve validity concerns when attempting to estimate true 
defect and fault populations. With dependability 
benchmarking we are less concerned about true defect 
and fault estimates, rather we wish to compare the 
relative effectiveness of dependability approaches. We 
propose that in this context the traditional concerns 
regarding defect and fault seeding techniques may not be 
as difficult to address and that potential new approaches 
may be useful as a means of benchmarking approaches to 
dependability.  
 
1. Introduction 
 

Within the context of traditional defect seeding 
suppose you use a dependability benchmarking capability 
to compare the performance of two tools on a system 
under test (SUT) – or its equivalent in code, design, or 
specification analysis – and both tools find the same 3 
defects.  This gives you a good comparative analysis of 
the tools, but leaves you wondering whether these three 
defects are 100% of the three remaining defects in the 
SUT, 10% of the 30 remaining defects, or something else. 
 

Defect seeding approaches attempt to estimate the size 
of the defect population and the absolute effectiveness of 
defect detection techniques by deliberately introducing 
defects into a system.  The general approach is: 
 

Insert N defects in the system under test (SUT).  
Run the tests, find M seeded defects, K unseeded 
defects. 
Estimate remaining defects as: 

 
R= K *((N-M)/M), from K/(K+R) = M/N. 

 
Thus, if you seed the SUT with 10 defects and each 

tool also finds 6 of the 10 seeded defects, you can 
estimate that the 3 defects found by the tools are 60% of 5 
previously-undetected defects in the SUT, and that two 
remain. 
 

The defect seeding concept has been around since at 
least the early 1970’s, but has fallen from practice because 
of difficulties in seeding defects in ways which satisfy the 
underlying assumptions of the estimation formula.  These 
include: 
 
1. The seeded defects are representative of existing 
defects.  Seeding is mostly done by developers, whose 
blind spots miss many sources of defects.   
 
2. The test profile is representative of the 
operational profile.  Again, the developers’ knowledge of 
actual usage patterns is generally highly imperfect.   
 
3. The SUT is developed without knowledge of the 
seeding profile.  If the seeded defects become well-
known, there are risks of consciously or unconsciously 
tailoring the tool to look good on the seeded defect 
sample. 
 
4. The source code available for defect seeding.  As 
systems become increasingly COTS-based, this difficulty 
increases. 
 

Individually and in concert, therefore, these 
assumptions are often invalid to some extent, leading to 
inaccurate estimates. However, there are not many strong 
alternative approaches available, and we feel it is worth 
exploring new approaches to defect seeding, which 
significantly strengthen the ability to satisfy these 
assumptions. 

 
2. Potential New Approaches 
 

We present several approaches that may help address 
some of the complications of the traditional approach to 
defect seeding (see [1] for details on several of these). 

 
1. Change Histories.  If the SUT is (say) version 3.4 

of a given system, one can use fixes from earlier versions 
as sources of seeded defects.  These have the 
representativeness advantage of having been real defects, 
but have the shortfall of having been the most detectable 
defects using current techniques.  Also, the version 
changes may be complex combinations of defect fixes and 



 

 

general upgrades, which makes preparing an 
appropriately-seeded SUT more difficult. 

 
2. N-Version Programming. One can generate 
further representative defects by giving the specs to 
different programmers and generating a family of SUT 
versions.  Comparative analysis of the defects found in the 
SUT versions can also generate estimates of the likely 
number of residual defects.  Studies of N-version 
programming have shown that it is an imperfect source of 
independent implementations, and it can also be 
expensive, but it appears to be worth exploration.  
Program mutations are a similar source of defect-seeding 
alternatives. 

 
3. Randomized Defect Seeding. One way to reduce 
the risks of gaming the seeding profile is to select random 
seeded defects from a large and/or parameterized sample.  
This also opens up the possibility of using multiple-run 
population estimators such as jackknife and bootstrap 
methods. 

 
4. Use of Defect Distribution Statistics. One can 
also combine randomized defect seeding with defect 
distribution statistics to address the defect 
representativeness issue.  Orthogonal Defect 
Classification statistics are a good example. 

 
5. Connectors and Wrappers.  One can deal with 
COTS defect and fault seeding to some extent by using 
connectors or wrappers to simulate potential real faults.  
Examples are data corruption faults via wrapper 
modifications of the output stream, or uses of connectors 

to generate communication failures (timing, handshaking, 
noise, etc.) 
 
3. Issues for Discussion 
 
Some issues worth exploring at the Workshop include: 
 

Mapping of preferred defect seeding approaches to 
dependability attributes.  These include: Robustness 
(reliability, availability, survivability), Protection 
(security, safety), Quality of Service (accuracy, 
fidelity, performance assurance), and Integrity 
(correctness, verifiability). 

 
Alternative concepts and approaches.  These could 
include mutation testing as defect seeding; model-
driven approaches; information theoretic approaches; 
or game theoretic approaches. 

 
Special application challenges, such as scalability, 
test oracles (e.g., for agent-based systems of systems), 
and Heisenbug effects (additional defects induced by 
seeded defects, such as timing and synchronization 
defects). 
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