

Defect and Fault Seeding In Dependability Benchmarking

Barry Boehm, Daniel Port
University of Southern California
{boehm, dport}@sunset.usc.edu

Abstract

Defect and fault seeding is often considered for
gathering empirical estimates within reliability models.
Traditional defect seeding is fraught with difficult to
resolve validity concerns when attempting to estimate true
defect and fault populations. With dependability
benchmarking we are less concerned about true defect
and fault estimates, rather we wish to compare the
relative effectiveness of dependability approaches. We
propose that in this context the traditional concerns
regarding defect and fault seeding techniques may not be
as difficult to address and that potential new approaches
may be useful as a means of benchmarking approaches to
dependability.

1. Introduction

Within the context of traditional defect seeding
suppose you use a dependability benchmarking capability
to compare the performance of two tools on a system
under test (SUT) – or its equivalent in code, design, or
specification analysis – and both tools find the same 3
defects. This gives you a good comparative analysis of
the tools, but leaves you wondering whether these three
defects are 100% of the three remaining defects in the
SUT, 10% of the 30 remaining defects, or something else.

Defect seeding approaches attempt to estimate the size
of the defect population and the absolute effectiveness of
defect detection techniques by deliberately introducing
defects into a system. The general approach is:

Insert N defects in the system under test (SUT).
Run the tests, find M seeded defects, K unseeded
defects.
Estimate remaining defects as:

R= K *((N-M)/M), from K/(K+R) = M/N.

Thus, if you seed the SUT with 10 defects and each

tool also finds 6 of the 10 seeded defects, you can
estimate that the 3 defects found by the tools are 60% of 5
previously-undetected defects in the SUT, and that two
remain.

The defect seeding concept has been around since at
least the early 1970’s, but has fallen from practice because
of difficulties in seeding defects in ways which satisfy the
underlying assumptions of the estimation formula. These
include:

1. The seeded defects are representative of existing
defects. Seeding is mostly done by developers, whose
blind spots miss many sources of defects.

2. The test profile is representative of the
operational profile. Again, the developers’ knowledge of
actual usage patterns is generally highly imperfect.

3. The SUT is developed without knowledge of the
seeding profile. If the seeded defects become well-
known, there are risks of consciously or unconsciously
tailoring the tool to look good on the seeded defect
sample.

4. The source code available for defect seeding. As
systems become increasingly COTS-based, this difficulty
increases.

Individually and in concert, therefore, these
assumptions are often invalid to some extent, leading to
inaccurate estimates. However, there are not many strong
alternative approaches available, and we feel it is worth
exploring new approaches to defect seeding, which
significantly strengthen the ability to satisfy these
assumptions.

2. Potential New Approaches

We present several approaches that may help address
some of the complications of the traditional approach to
defect seeding (see [1] for details on several of these).

1. Change Histories. If the SUT is (say) version 3.4

of a given system, one can use fixes from earlier versions
as sources of seeded defects. These have the
representativeness advantage of having been real defects,
but have the shortfall of having been the most detectable
defects using current techniques. Also, the version
changes may be complex combinations of defect fixes and

general upgrades, which makes preparing an
appropriately-seeded SUT more difficult.

2. N-Version Programming. One can generate
further representative defects by giving the specs to
different programmers and generating a family of SUT
versions. Comparative analysis of the defects found in the
SUT versions can also generate estimates of the likely
number of residual defects. Studies of N-version
programming have shown that it is an imperfect source of
independent implementations, and it can also be
expensive, but it appears to be worth exploration.
Program mutations are a similar source of defect-seeding
alternatives.

3. Randomized Defect Seeding. One way to reduce
the risks of gaming the seeding profile is to select random
seeded defects from a large and/or parameterized sample.
This also opens up the possibility of using multiple-run
population estimators such as jackknife and bootstrap
methods.

4. Use of Defect Distribution Statistics. One can
also combine randomized defect seeding with defect
distribution statistics to address the defect
representativeness issue. Orthogonal Defect
Classification statistics are a good example.

5. Connectors and Wrappers. One can deal with
COTS defect and fault seeding to some extent by using
connectors or wrappers to simulate potential real faults.
Examples are data corruption faults via wrapper
modifications of the output stream, or uses of connectors

to generate communication failures (timing, handshaking,
noise, etc.)

3. Issues for Discussion

Some issues worth exploring at the Workshop include:

Mapping of preferred defect seeding approaches to
dependability attributes. These include: Robustness
(reliability, availability, survivability), Protection
(security, safety), Quality of Service (accuracy,
fidelity, performance assurance), and Integrity
(correctness, verifiability).

Alternative concepts and approaches. These could
include mutation testing as defect seeding; model-
driven approaches; information theoretic approaches;
or game theoretic approaches.

Special application challenges, such as scalability,
test oracles (e.g., for agent-based systems of systems),
and Heisenbug effects (additional defects induced by
seeded defects, such as timing and synchronization
defects).

4. References

[1] Voas, J., McGraw, G., Software Fault Injection,
Wiley, 1998.

	page F-25: F-25
	PAGE:
	page F-26: F-26
	header: DSN Workshop on Dependability Benchmarking, June 25, 2002

