
Component-Dependency based Micro-Rejuvenation Scheduling

Vinaitheerthan Sundaram, Matthew Tan Creti, Rajesh K. Panta, Saurabh Bagchi
School of Electrical and Computer Engineering, Purdue University

{vsundar,mtancret,rpanta,sbagchi}@purdue.edu

1. Introduction

With the growth of Internet, “always on” services are

becoming increasingly important. Software rejuvenation
is a well-known proactive technique to prevent failures
due to software aging and extend the lifetime of long-
running software such as Internet Servers, billing
systems, telecommunication switches [1]. However,
doing a machine reboot to rejuvenate takes time in the
order of minutes and can be expensive for large-scale
Internet systems, even when clusters are employed[2].
To reduce the downtime caused by machine reboot, a
fine-grained reboot technique called micro-reboot, which
reboots components, was proposed in [2]. Micro-reboot
has been shown to be an order of magnitude faster than
machine reboot and systems can be rejuvenated by parts
without ever doing a full reboot. Micro-rejuvenation [2]
is a proactive technique that uses micro-reboot to prevent
ageing failures. Since micro-rejuvenation involves
rebooting components, it is necessary to rejuvenate a
component’s transitive closure of dependents [2].

A complete rejuvenation schedule specifies the
rejuvenation time instants so that the cost of rejuvenation
is minimized. The complete rejuvenation can occur due
to periodic or random timer trigger, transaction load
trigger, or failure prediction trigger [1,3,4]. Similarly,
micro-rejuvenation can occur due to all three of these
triggers. However, a micro-rejuvenation schedule should
specify both the rejuvenation time instants as well as the
component(s) to be rejuvenated. The micro-rejuvenation
schedules are less well-studied in the literature than
complete rejuvenation.

One approach to micro-rejuvenation scheduling
proposed in [2] rejuvenates if utilization of system
resources, such as memory, is above a certain threshold.
The components are rejuvenated until the system
resources reach a normal level. The components
rejuvenated are selected in the order of amount of
resources released in earlier rejuvenations. Another
approach can be to adapt the complete rejuvenation
schedule to micro-rejuvenation schedule. For example, if
the complete-rejuvenation schedule is load-triggered,
that is, the system is rejuvenated when the load is greater
than a threshold; the adapted micro-rejuvenation
schedule will use component load-triggered, that is, the
component is rejuvenated if the component load is
greater than a threshold. We refer these two approaches

as simple scheduling, because both approaches take the
simplified approach that all components are independent
and will have the same cost in rejuvenating. Both the
simple scheduling approaches are easy to implement,
however, they do not take into account the dependency
of the components and therefore, can yield non-optimum
schedules. When a component is rejuvenated, all its
dependent components are rejuvenated and therefore,
any optimum schedule must take into account the fact
that dependent components will be rejuvenated twice or
more.

In this paper, we propose a dependency-aware micro-
rejuvenation scheduling policy that uses load-based
trigger and rejuvenate independent components only. We
develop a SAN model that closely reflects the real
system and used it for evaluating our scheduling policy.

2. Dependency-Aware Scheduling

We consider transaction based software systems such

as Internet servers, billing systems in which a transaction
on a component will cause transactions on all of its
dependencies. In such a system if component C1 is
dependent on C2 then the number of transaction on C2
will always be larger than the number of transactions on
C1 and thus, C2 will always have a larger age than C1.
Moreover, when C2 is rejuvenated, C1 is also rejuvenated
because of dependencies. Furthermore, the dependency
graph cannot have cycles as otherwise, the transactions
executing in a cycle will lead to live-lock. Therefore, it is
enough to rejuvenate independent components. Thus, our
scheduling policy, dependency-aware scheduling, looks
only at the components which have no dependencies and
decides when to rejuvenate those components based on
the load on the components..

3. SAN Model and Simulation Results

To demonstrate that component dependency based

rejuvenation can increase availability, we implemented
the SAN model [4]. We present a simple SAN model
where we model a system with only two components C1
and C2 and the component C1 depends on C2. The SAN
model is shown in Figure 1 and can be broken down into
three parts, namely, component simulation (middle left),
rejuvenation simulation (top and bottom right) and
failure simulation (middle right).

Figure 1: SAN Model for two dependent components

We assume that the transaction requests arrival and

service rates are exponentially distributed with rates
TRANS_REQ_RATE and TRANS_SERVICE_RATE.
A transaction request is serviced by component C1 or C2
with equal probability. The rejuvenation for both
components are simulated as timed activity with
exponential distribution with rates C1_REJUV_RATE or
C2_REJUV_RATE. Likewise, system failure is
simulated as timed activity with exponential distribution
with rate FAIL_RECOVER_RATE. All transactions
entering the system are counted by the places C1ReqQ or
C2ReqQ. The transactions entering during rejuvenation
or failure are not executed and are separately counted by
the places C1MissedTr and C2MissedTr.

The transactions execution of each component is
simulated. Despite rejuvenation, failures can occur in the
system. When the component is rejuvenated or failed, the
model captures the number of transactions missed. We
assume that all transactions cause equal aging to any
component that is involved with it. We have used load-
based rejuvenation scheme, in which each component is
rejuvenated when it has executed some threshold amount
of transactions. To evaluate our simulation, we inject
failures into our system as follows. The age of a
component increases its likelihood of failure. The
detailed simulation results are discussed next.

Table 1. Parameter values used in our simulation
Parameter Value
TRANS_REQ_RATE 0.1 (/seconds)
TRANS_SERVICE_RATE 1 (/seconds)
C1_REJUV_RATE 0.05 (/seconds)
C2_REJUV_RATE 0.05 (/seconds)
FAIL_RECOVER_RATE 0.005 (/seconds)
C1_REJUV_THRES 2000 (Transactions)
C2_REJUV_THRES 2000 (Transactions)
SYS_FAIL_THRES 500 (Transactions)

Since rejuvenation affects availability of the system,
we plot availability of the system against aging. The
availability of the system is defined as the ratio of the

number of transactions executed to the number of
transactions entered the system. We ran the SAN
simulation using Mobius [4]. The parameters used in the
experiment are shown in Table 1. We recorded the
availability for different loads or transaction rates.

The results are shown in Figure 2. As the load
increases, the number of missed transactions increases
and therefore, the availability decreases in all cases. In
the case of no rejuvenation, the system takes longer time
to recover, which can be seen from the faster decrease of
availability. Comparing the simple and dependency-
aware scheduling policies, we see that dependency-aware
scheduling policy improves the availability up to 3.38%
over the simple scheduling policy. This is because in the
latter case, the component C1 gets rejuvenated
independently as well as when component C2 was
rejuvenated. However, in the former, the component C1
is rejuvenated only when the component C2 is
rejuvenated.

Figure 2: Comparison of availability for different

rejuvenation scheduling policies.

4. Conclusions and Future Work

In this paper, we presented a new dependency-aware

micro-rejuvenation scheduling policy. We created an
SAN model to evaluate our policy and showed that it can
improve availability in transaction-based systems. In
future, we would like extend our SAN model to several
components and complex interactions. We are also
implementing the proposed scheduling policy in J2EE
servers such as JBOSS and GlassFish.

5. References

1. Y. Huang, C. Kintala, N. Kolettis and N. Fulton. Software

Rejuvenation : Analysis, Module and Applications. In IEEE Intl.
Symposium on Fault Tolerant Computing, FTCS 25.

2. George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg
Friedman, and Armando Fox. Microreboot – A Technique for
Cheap Recovery. In OSDI 2004.

3. S. Garg, A. Puliafito, M. Telek and K. S. Trivedi. Analysis of
Preventive Maintenance in Transactions Based Software Systems.
In IEEE Transactions on Computers, Jan 1998.

4. A Performability-Oriented Software Rejuvenation Framework for
Distributed Applications. A. T. Tai, K. S. Tso, W. H. Sanders,
and S. N. Chau. A In IEEE DSN-2005

