
Robustness Measurement in OS Forecast and Selection

Xiaoen Ju and Hengming Zou
School of Software and Department of Computer Science

Shanghai Jiao Tong University
Shanghai 200240, China

{xiaoen.ju, zou}@sjtu.edu.cn

Abstract

Commercial Off-the-Shelf (COTS) operating systems
have long been widely used. However, the problem con-
cerning the robustness of such OSs is far from being solved.
Although many efforts have been made in this research do-
main, people still find it difficult to make choices among
various OSs for robustness concerns. This fast abstract
presents a brief summary of our OS robustness measure-
ment in our work of constructing a reference model for OS
forecast and selection. We measure both the robustness of
OS APIs and their usage frequency in typical operational
profiles. Our research has obtained some interesting pre-
liminary results and is still ongoing.

1. Introduction
Software robustness has long been the concern of soft-

ware researchers, engineers, and practitioners. Software
failures, especially those in mission-critical areas, keep re-
minding people that the issue of software robustness can
never be underestimated. In particular, due to the impact op-
erating systems have on software running on them, choos-
ing a robust OS is vital for concerned users.

This abstract presents our OS robustness measurement
in our work of constructing a reference model for OS ro-
bustness forecast and selection. The reference model aims
to predict the robustness of OSs in different typical opera-
tional profiles (such as Vista’s robustness under compute-
intensive usage) and select appropriate OSs as the develop-
ment/operating platform based on robustness requirements.
This research is part of a bigger project called Platform-
based Software Reliability Forecast and Selection [10],
which aims to predict software’s maximum achievable re-
liability under various development/operating platforms.

2. Approach
Due to the important role played by OS APIs in upper

level software’s robustness, we decide to focus our study on

the robustness of the APIs. Our work is divided into two
parts: the first part measures the robustness of the APIs; the
second part relates API usage to typical operational profiles.

We define: a robustness vector RAPI with each compo-
nent RAPIi indicating the robustness of the ith API, and
an operational profile vector P with each component Pi in-
dicating the usage frequency of the ith API in the profile.
Then the overall robustness Roverall of the OS in this oper-
ational profile can be calculated (predicated) as follows:

Roverall = RT
API · P

Next we describe how to obtain RAPI and P .

3. Robustness Test
Our testing is derived from Ballista [5]. The methodol-

ogy is a combination of random testing and fault injection.
Well-defined exceptional values are used to inject faults into
the OS APIs. Those values are created according to param-
eter data types (instead of API functions). In other words,
we create exceptional values (and also normal values) for
each data type such as integer and C-type character, and put
them into separate data type pools. When launching a test
for one particular API, the test manager randomly picks up
values in the pools corresponding to the data types of the
API parameters. Like Ballista, we use the CRASH scale [1]
to measure the test responses and to report results.

4. Operational Profile Measurement
Since APIs are OS-dependent, the tools used for the

measurement vary accordingly. On Windows, we use De-
tours [2]; on Linux, we use the “strace” system call. Typ-
ical operational profiles can be generated by using bench-
mark programs. For example, SPEC CPU 2006 benchmark
is used to simulate a compute-intensive operational profile.

5. Recent Research Result
We have created a Windows Ballista test harness from

the POSIX-oriented Ballista project and measured the ro-
bustness of 87 C-Library functions and over 100 Win32



APIs on XP and Vista. We have also measured the usage
of Win32 APIs in a typical compute-intensive environment
with SPEC CPU 2006 INT. Table 1 shows the top ten most
frequently called Win32 APIs when running the benchmark
on Vista, as well as their robustness values.

Table 1. WinAPI usage with SPEC CPU06 INT
Win32 API (Vista) Usage Robustness

WriteFile 43.17% 96.269%
GetConsoleMode 39.63% 100.000%

FileTimeToLocalFileTime 4.28% 99.000%
FileTimeToSystemTime 4.28% 100.000%

ReadFile 2.13% 96.259%
CreateFileA 1.53% N/A

FindFirstFileA 1.42% 95.948%
GetCurrentDirectoryA 1.42% 55.854%

FindClose 1.41% 92.537%
GetSystemTimeAsFileTime 0.29% 90.000%

The robustness is calculated as 1− FailureRate which
is measured by our robustness test program. The robustness
for “CreateFileA” API is “N/A” because its total number of
test cases is too large and we decide to omit such test for
now (”CreateFileA” has 25,903,957,500,432 test cases).

A comparison between our results and those from CMU,
published in DSN’00 [8] shows that our robustness values
are much higher. One possible explanation for the differ-
ence is that our tests were run on XP and Vista while CMU’s
were run on W2K and earlier versions. Presumably, XP and
Vista have improved on the API robustness over W2K.

Another possible explanation may relate to the selection
of input values. While our test inputs are generated based
on parameter types, the use of the same data type can be dif-
ferent among various Win32 APIs. Consider the situation in
which we employ generally defined unsigned long values to
test a DWORD parameter that is used as a flag. The API can
tell with a simple check that the input value is invalid, and
thus omit the checks for other parameters whose validation
may be difficult to verify.

The hierarchy and inheritance of data types may also
contribute to test skews. In our test, we follow the data type
generation rules of the original Ballista project, which stipu-
late that every data type (except for root type “bType”) must
inherit from a more generic parent type. This may lead to
a situation in which most of the test cases for one data type
are actually generated for its parent type(s). Consequently,
those test cases may terminate at the check of the first in-
valid parameter of the child type, and thus skip the checks
on the validity of other parameters, which leads to skews.

For example, a file mapping handle type inherits from
a handle type. While there are only 12 test cases for the
file mapping handle type, there are 72 test cases for han-
dle type. When testing with the file mapping handle type,
in most cases the test process returns system error code 6,

indicating that an invalid handle is used. While this is a ro-
bust response from the OS, we cannot tell from the tests that
whether the other parameters are also checked effectively.

Finally, bugs in the original source code of Ballista
may have caused false positive OS failures in CMU’s tests,
which contribute to the differences between the two results.

6. Related Work
The Ballista project tested fifteen OSs that implement

the POSIX standard [4] and Shelton et al. [8] expanded the
work to six Windows variants. Süßkraut et al. [9] improved
the data type definition of Ballista. Mendonça et al. [6] also
followed the Ballista methodology and did robustness tests
for device drivers on several Windows OSs, including the
newly-appeared Vista. Kanoun et al. [3] created DBench
and tested the dependability of several Windows and Linux
OSs. Miller and his team used fuzz test [7] to study the
robustness of applications on different OSs.

7. Conclusion
This fast abstract presented our current study on OS ro-

bustness measurement. We followed the Ballista methodol-
ogy in testing the robustness of OS APIs. In addition, we
measured the usage of APIs in typical operational profiles.
Some first-hand research results were presented as well. We
anticipate to report in next year’s DSN conference the full
results of our tests and the construction of the OS robustness
forecast and selection model based on those results.

References

[1] R. Biyani and P. Santhanam. Tofu: Test optimizer for func-
tional usage. In Software Enigneering Technical Brief, IBM
T. J. Watson Research Center, number (2)1, 1997.

[2] Detours. research.microsoft.com/sn/detours/.
[3] K. Kanoun, Y. Crouzet, A. Kalakech, A. Rugina, and

P. Rumeau. Benchmarking the dependability of Windows
and Linux using postmarkTM workloads. In ISSRE’05.

[4] P. Koopman and J. DeVale. Comparing the robustness of
POSIX operating systems. In 29th Intl. Sym. on Fault-
Tolerant Computing, pages 30–37, 1999.

[5] Carnegie Mellon University. Ballista test harness. In
http://www.cs.cmu.edu/afs/cs/project/edrc-ballista/www/.

[6] M. Mendonça and N. Neves. Robustness testing of the
Windows DDK. In DSN’07, pages 554–564, 2007.

[7] B. P. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of UNIX utilities. In Communications of the
ACM, December 1990.

[8] C. Shelton, P. Koopman, and K. Devale. Robustness testing
of the Microsoft Win32 API. In DSN’00, pages 261–270.

[9] M. Süßkraut and C. Fetzer. Robustness and security harden-
ing of COTS software libraries. In DSN’07, pages 61–71.

[10] H. Zou. Software reference modeling for high reliability. In
Proc. First Asia Working Conference on Verified Software,
Macau, October 31, 2006.


