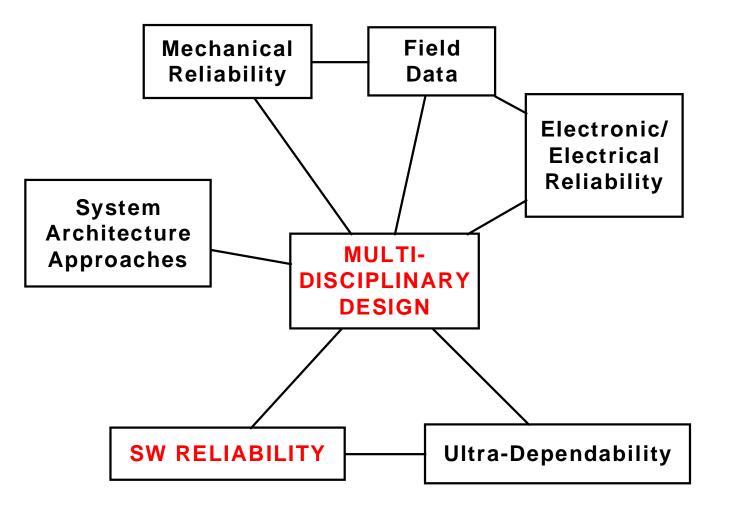
Multi-Disciplinary Tradeoffs


18-849b Dependable Embedded Systems Phil Koopman 3/30/99

Required Reading:

Critical System Properties: Analysis and Taxonomy, Rushby

You Are Here:

Overview: Multi-Disciplinary Tradeoffs

Introduction

• Appropriate combination of disciplines required to achieve goals

Key concepts

- Concurrent design/design-for-X
- Hardware/Software Codesign
- Using the right technology for the job
- Inherent multi-disciplinary tensions (*e.g.*, safety vs. reliability)

Tools / techniques / metrics

• Mostly CAD tools in the mechanical engineering domain

Conclusions & future work

• Many opportunities; difficult area

Concurrent Design / Design-For-X

Design-For-X for multi-objective satisfaction

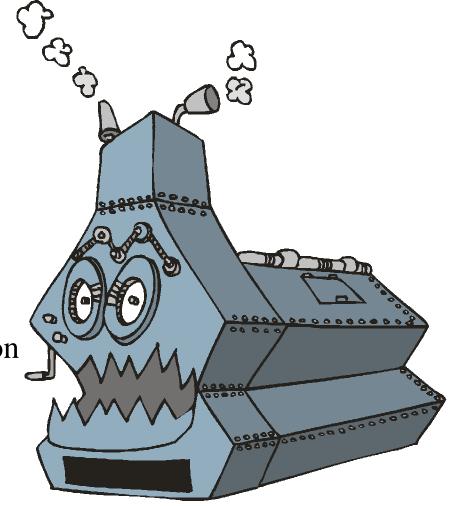
- Design for: Assembly, Recycling, Reliability, Service,...
- Typically CAD tool evaluation rather than synthesis
- Primarily a mechanical engineering approach
 - Some circuit board CAD tools beginning to do this

Concurrent design/ cross-functional teams

- Put all the different engineers in one room
- Do life-cycle phase planning concurrently instead of consecutively

OUR ANCESTORS JUST SAT AROUND IN CAVES, GRUNTING AND DRAWING ON THE WALL.

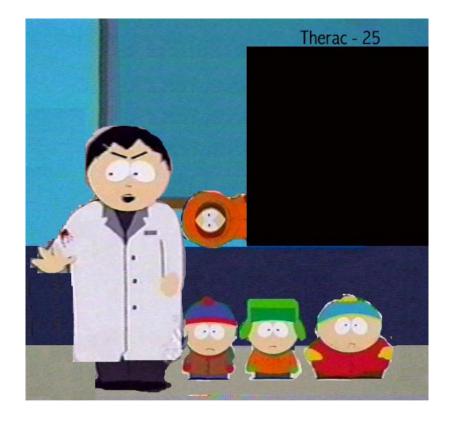
NOT VERY


PRODUCTIVE.

Hardware/Software Codesign

CAD/synthesis approach to HW/SW tradeoffs

- Start off with system description
- Perform HW/SW partitioning
- Optimize speed/cost/power/etc.
- At this point only a niche approach
 - Does not deal with analog portions of systems
 - Requires synthesizable description
 - Most won't take C source code for the software input
 - We'll see how it scales in the future


Use The Right Technology For The Job

Some technologies invite unnecessary complexity

- Be careful of using software for safety interlocks
 - Therac 25
 - Future elevators?
- Put *necessary* complexity in software for dependability
 - Tune-up-free engines

Pick the right role for people

- Too stressful invites errors
- Too boring invites "drop-out"
- People are good at novelty; machines are good at repetition

Inter-Disciplinary Design Tensions

Not always possible to maximize in every dimension

• There are some inherently antagonistic properties

Safety vs. Reliability

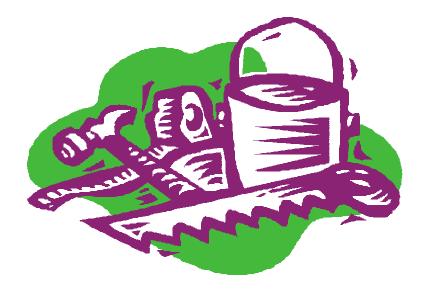
- A system that never operates might be perfectly "safe"
- A system that operates in unsafe situations is "reliable"

Security vs. Utility

• A system that lets nobody log in may be perfectly "secure"

Performance vs. Real-Time

• Real-time jitter increases with statistical performance improvement techniques (*e.g.* cache memory)


Tools / Techniques

CAD Tools for inter-disciplinary design

- Design-for-X tools in mechanical engineering
- Circuit board evaluation tools (thermal / RFI / manufacturability)
- Hardware/software codesign

Management & Process techniques

Concurrent/multi-disciplinary design teams

Relationship To Other Topic Areas

Tradeoffs of mechanical/electronic/etc. reliability

Architecture approach

- Should enable multiple technology solutions to critical properties
- If restrictive, can force poor tradeoffs

Software reliability

• Sometimes non-software approach relieves SW reliability pressure

Ultra-dependability

• Ultra-dependable systems require clever tradeoffs among, and probably use of multiple approaches to dependability

Conclusions & Future Work

Important to keep a broad perspective

- Hammers only work on some screws
- Use all the tools in your technological toolbelt
- Efforts to work in this area are more mature on mechanical side than computer side
 - Design-for-X efforts are in practice
 - HW/SW codesign is limited in scope and still a research topic

Global optimality is a worthy quest

• It is also a long, hard road

PAPER: Critical System Properties

Contrast of different system properties

- Dependability
- Safety
- Security
- Real-time

You can't always get what you want

• Specifically, discusses inter-disciplinary tensions