
Checkpoint/Recovery

18-849b Dependable Embedded Systems
John DeVale

February 4, 1999

Required Reading: Application-Transparent Checkpointing in Mach 3.0/UX - Russinovich and Segall

Best Tutorial: Libckpt: Transparent Checkpointing under Unix
Usenix Winter 1995 Technical Conference

Authoritative Books: Software Fault Tolerance, Michael R. Lyu (ed)

2

Overview: Checkpointing - Recovery
u Introduction

• Method of creating fault tolerant software systems

u Key concepts
• Periodically saves process/system state
• In the event of a fault, state is restored via a rollback
• Scales to distributed/parallelized applications

u Tools / techniques / metrics
• Stratus VOS and Tandem NonStop Kernel
• libFt , libckpt

u Relationship to other topics
• Fault Tolerant Computing technique

u Conclusions & future work

3

Checkpoint - Recovery… The basic picture
Memory

Process A

Non-Volatile

Copy of
Process A

Checkpoint mechanism
copies the state of
process A into non-
volatile storage

Memory

Restored
Copy of

Process A

System Failure...

Non-Volatile

Copy of
Process A

Restore mechanism copies
the last known checkpointed
state of process A back into
memory and continues
processing. This
mechanism is especially
useful for application which
may run for long periods of
time before reaching a
solution.

4

Where we are

5

Description of Topic
u Checkpoint-Recovery gives an application or system the

ability to save its state, and tolerate failures by enabling
a failed executive to recover to an earlier safe state.

u Key ideas
• Saves executive state

• Provides recovery mechanism in the presence of a fault

• Can allow tolerance of any non-apocalyptic failure

• Provides mechanism for process migration in distributed systems
for fault tolerance reasons or load balancing

6

Saves Executive State
u When a checkpoint is executed, a snapshot of all

program state is saved into some non-volatile, machine
accessible medium.

• Time

• Space

• Memory Exclusion - new idea
– Ref:Memory Exclusion: Optimizing the Performance of Checkpointing Systems

James Plank, submitted for publication, SP&E
– Allows the checkpointing mechanism to be told, and/or dynamically determine what

memory structures are an important part of program state, and only save those
structures.

– Saves time AND space

7

Provides Recovery Mechanism
u Once a fault has occurred, the recovery mechanism

restores the program to the last checkpointed state

• Current automatic Unix based tools wait for the process to abort,
and restore it after abort.
– Time constraint may not allow for this length of recovery
– In the presence of a software design fault, rollback mechanism needs more

complexity to allow rollback to a previous state, yet retain knowledge of
faulted path of execution.

• Stratus, Tandem seem to handle this, but details are sketchy

8

Failure Tolerance
u Faults can be tolerated, even those which may

physically destroy the processing site

• Geographically distant sites with a synchronized distributed
systems can perform coordinated checkpoints and process
migration.

• Transient faults and glitches tolerated as a matter of course
through the normal checkpoint-recovery system

9

Tools / Techniques
u libFT - AT&T research labs

• Provides checkpoint recovery and watchdog demons
• http://www.research.att.com/sw/tools/reuse/packages/ft.html

u libCKPT - University of Tenn. Knoxville
• Provides incremental checkpoint recovery library, with memory exclusion
• http://www.cs.utk.edu/~plank/plank/www/libckpt.html

u PMCKPT
• The Poor man’s checkpoint
• http://warp.dcs.st-andrews.ac.uk/warp/systems/checkpoint/source.html

u CONDOR
• Process migration for load balancing
• http://www.cs.wisc.edu/condor

u General Links
• http://warp.dcs.st-andrews.ac.uk/warp/systems/checkpoint/

10

Metrics
u Key Metrics in Checkpoint - Recovery

• Snapshot Time
– How long it takes to identify and copy (to intermediate storage) all required

program state

• Commit Time
– How long it takes to copy snapshot into non-volatile storage

• Recovery Time
– How long it takes to restore state to a failed process

u Dependant on state size and system performance

11

Relationship To Other Topic Areas
u Fault Tolerant Computing

• Checkpoint - Rollback is a technique which can be used to build
fault tolerance into a computing system

• In its current form it very capably saves process state and can
create a new process and restore old state to it in the case of a
process failure

u SW fault tolerance
• Related to SW fault tolerance by sharing a common goal
• Scope of the solutions are on a much different scale

– SW fault tolerance focuses more on making software not crash
– Traditional checkpointing focuses on recovering from the crash in a graceful

manner while preserving computational state and critical data.

12

Conclusions & Future Work
u Checkpoint-Recovery provides

• Ability to save and restore state for critical applications
• Useful for single computer systems and large distributed or

parallel systems
• Can incur large time penalties during checkpointing

u Future Work
• Design for Checkpoint-Recovery

– Design critical systems to have as small a critical state as possible
» Breakdown task into smaller subsystems which can be checkpointed separately
» Self recovering state

• Task restart may not be possible in small RT/Embedded systems
– Support at the OS level to allow micro checkpoints and rollbacks at a task

level

13

Application-Transparent Checkpointing in Mach
u Paper presents methodology for checkpoint-recovery

u Performance varied with memory footprint
• Typically <5 sec checkpoint cost (first) less for subsequent

• Larger commit delays - 10 to 30 sec of degraded performance

• Recovery times 5 to 10 sec for reasonably sized applications

u Major Contributions
• Provides roadmap on how one might build in transparent checkpointing

• Can checkpoint and restore entire system state in X

u Limitations
• Time costly

• Requires custom pager in OS

• Does not address memory exclusion (trade-off for transparency)

