MIL-HDBK-217F
2 DECEMBER 1991

SUPERSEDING MIL-HDBK-217E, Notice 1 2 January 1990

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

AMSC N/A

FSC-RELI

DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited.

DEPARTMENT OF DEFENSE WASHINGTON DC 20301

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

- 1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
- 2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
- 3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Rome Laboratory, AFSC, ATTN: ERSS, Griffiss Air Force Base, New York 13441-5700, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

	CONT	ENTS
OFOTION	4. 000pc	
SECTION		1-1
1.1	Purpose	1-1
1.2	Application	
1.3	Computerized Reliability Prediction	1-1
SECTION	2: REFERENCE DOCUMENTS	2-1
SECTION	3: INTRODUCTION	
3.1	Reliability Engineering	3-1
3.2	The Role of Reliability Prediction	3-1
3.3	Limitations of Reliability Predictions	3-2
3.4	Part Stress Analysis Prediction	3-2
SECTION	4: RELIABILITY ANALYSIS EVALUATION	4-1
SECTION	5: MICROCIRCUITS, INTRODUCTION	5-1
5.1	Gate/Logic Arrays and Microprocessors	5-3
5.2	Memories	5-4
5.3	VHSIC/VHSIC Like	5-7
5.4	GaAs MMIC and Digital Devices	5-8
5.5	Hybrids	5-9
5.6	SAW Devices	5-10
5.7	Magnetic Bubble Memories	5-11
5.8	π _T Table for All	5-13
5.9	C ₂ Table for All	5-14
5.10	π _E , π _L and π _O Tables for All	5-15
5.11	T _J Determination, (All Except Hybrids)	5-17
5.12	T _{.I} Determination, (For Hybrids)	5-18
5.13	Examples	5-20
SECTION	6: DISCRETE SEMICONDUCTORS	
6.0	Discrete Semiconductors, Introduction	6-1
6.1	Diodes, Low Frequency	6-2
6.2	Diodes, High Frequency (Microwave, RF)	6-4
6.3	Transistors, Low Frequency, Bipolar	6-6
6.4	Transistors, Low Frequency, Si FET	6-8
6.5	Transistors, Unijunction	6-9
6.6	Transistors, Low Noise, High Frequency, Bipolar	6-10
6.7	Transistors, High Power, High Frequency, Bipolar	6-12
6.8	Transistors, High Frequency, GaAs FET	6-14
6.9	Transistors, High Frequency, Si FET	6-16
6.10	Thyristors and SCRs	6-17
6.11	Optoelectronics, Detectors, Isolators, Emitters	6-19
6.12	Optoelectronics, Alphanumeric Displays	6-20
6.13	Optoelectronics, Laser Diode	
6.13	T ₁ Determination	6-21 6-23
6.15	Example	6-25

	U	п	ı	ᄃ	N	ı	3
_		_	-			-	_
•	_	~-	-	_			• -

SECTION	7: TUBES	
7.1	All Types Except TWT and Magnetron	7-1
7.1 7.2	Traveling Wave	7-3
7.2 7.3	Magnetron	_
7.3	magnetion	,
SECTION	8: LASERS	
8.0	Introduction	8-1
8.1	Helium and Argon	8-2
8.2	Carbon Dioxide, Sealed	8-3
8.3	Carbon Dioxide, Flowing	8-4
8.4	Solid State, ND:YAG and Ruby Rod	8-5
3 .4	Olid Oldo, 110.1710 dito 7100, 1100	
SECTION	9: RESISTORS	
9.0	Introduction	9-1
9.1	Fixed, Composition (RCR, RC)	9-2
9.2	Fixed, Film (RLR, RL, RN (R,C, or N), RN)	9-3
9.3	Fixed, Film, Power (RD)	9-5
9.4	Network, Fixed, Film (RZ)	9-6
9.5	Fixed, Wirewound (RBR, RB)	9-7
9.6	Fixed, Wirewound, Power (RWR, RW)	9-8
9.7	Fixed, Wirewound, Power, Chassis Mounted (RER, RE)	9-10
9.8	Thermistor (RTH)	9-12
9.9	Variable, Wirewound (RTR, RT)	9-13
9.10	Variable, Wirewound, Precision (RR)	9-15
9.11	Variable, Wirewound, Semiprecision (RA, RK)	9-17
9.12	Variable, Wirewound, Power (RP)	9-19
9.13	Variable, Nonwirewound (RJ, RJR)	9-21
9.14	Variable, Composition (RV)	9-23
9.15	Variable, Nonwirewound, Film and Precision (RQ, RVC)	9-25
9.16	Calculation of Stress Ratio for Potentiometers	9-27
9.17	Example	9-29
	·	
SECTION	10: CAPACITORS	
10.1	Fixed, Paper, By-Pass (CP, CA)	10-1
10.2	Fixed, Feed-Through (CZR, CZ)	10-3
10.3	Fixed, Paper and Plastic Film (CPV, CQR and CQ)	10-5
10.4	Fixed, Metallized Paper, Paper-Plastic and Plastic (CH, CHR)	10-7
10.5	Fixed, Plastic and Metallized Plastic	10-9
10.6	Fixed, Super-Metallized Plastic (CRH)	10-11
10.7	Fixed, MICA (CM, CMR)	10-12
10.8	Fixed, MICA, Button (CB)	10-14
10.9	Fixed, Glass (CY, CYR)	10-16
10.10	Fixed, Ceramic, General Purpose (CK, CKR)	10-18
10.11	Fixed, Ceramic, Temperature Compensating and Chip (CCR and CC, CDR)	10-20
10.12	Fixed, Electrolytic, Tantalum, Solid (CSR)	10-21
10.13	Fixed, Electrolytic, Tantalum, Non-Solid (CL, CLR)	10-22
10.14	Fixed, Electrolytic, Aluminum (CUR and CU)	10-24
10.15	Fixed, Electrolytic (Dry), Aluminum (CE)	
10.16	Variable, Ceramic (CV)	10-27
10.17	Variable, Piston Type (PC)	10-28
10.18	Variable, Air Trimmer (CT)	10-29
10.19	Variable and Fixed, Gas or Vacuum (CG)	10-30
10.20	Example	10-32

	CONT	ENTS
SECTION	11: INDUCTIVE DEVICES	
		44.4
11.1	Transformers	11-1
11.2	Coils	11-3
11.3	Determination of Hot Spot Temperature	11-5
SECTION	12: ROTATING DEVICES	
12.1	Motors	12-1
12.2	Synchros and Resolvers	12-3
12.3	Eiapsed Time Meters	12-4
12.4	Example	12-5
SECTION	13: RELAYS	
13.1	Mechanical	13-1
13.2	Solid State and Time Delay	13-3
SECTION	14: SWITCHES	
14.1	Toggle or Pushbutton	14-1
14.2	Basic Sensitive	14-2
14.3		14-3
	Rotary	
14.4	Thumbwheel	14-4
14.5	Circuit Breakers	14-5
SECTION	15: CONNECTORS	
15.1	General (Except Printed Circuit Board)	15-1
15.2	Printed Circuit Board	15-4
15.3	Integrated Circuit Sockets	15-6
13.3	integrated Circuit Sockets	15-0
SECTION 16.1	16: INTERCONNECTION ASSEMBLIES Interconnection Assemblies with Plated Through Holes	16-1
SECTION	17: CONNECTIONS	
17.1	Connections	17-1
SECTION	18: METERS	
18.1	Meters, Panel	18-1
		18-1
SECTION	19: QUARTZ CRYSTALS	
19.1	Quartz Crystals	19-1
SECTION	20: LAMPS	
	Lamps	20-1
SECTION	21: ELECTRONIC FILTERS	
21.1	Electronic Filters, Non-Tunable	21-1
SECTION	22: FUSES	
	Fuses	22-1
SECTION	23: MISCELLANEOUS PARTS	
	Miscellaneous Parts	23-1
		·
APPENDIX	A: PARTS COUNT RELIABILITY PREDICTION	A-1
V DDENUIA	B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)	B-1
	•	D-1
APPENDIX	C: BIBLIOGRAPHY	C-1

CONTENTS

OOMILITI		
	LIST OF TABLES	
Table 3-1:	Parts with Multi-Level Quality Specifications	3-3
Table 3-2:	Environmental Symbol and Description	3-4
Table 4-1:	Reliability Analysis Checklist	4-1
Table 6-1:	Default Case Temperatures for All Environments (°C)	6-23
Table 6-2:	Approximate Thermal Resistance for Semiconductor Devices	
	in Various Package Sizes	6-24
	LIST OF FIGURES	
Figure 5-1:	Cross Sectional View of a Hybrid with a Single Multi-Layered Substrate	5-18
Figure 8-1:	Examples of Active Optical Surfaces	8-1
Figure 9-1:	MIL-R-39008 Derating Curve	9-1

This revision to MIL-HDBK-217 provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

- New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
 - Monolithic Bloolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monolithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and co-processors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C_1 factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The C_2 factor remains unchanged from the previous Handbook version, but includes pln grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q) , the learning factor (π_L) , and the environmental factor (π_E) . The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

- 2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- 3. The reformatting of the entire handbook to make it easier to use.
- 4. A reduction in the number of environmental factors (π_E) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- 6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

1 . U

- 1.1 Purpose The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reliability of a mature design) of military electronic equipment and systems. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipment. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs. The handbook is intended to be used as a tool to increase the reliability of the equipment being designed.
- 1.2 Application This handbook contains two methods of reliability prediction "Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual hardware and circuits are being designed. The Parts Count Method requires less information, generally part quantities, quality level, and the application environment. This method is applicable during the early design phase and during proposal formulation. In general, the Parts Count Method will usually result in a more conservative estimate (i.e., higher failure rate) of system reliability than the Parts Stress Method.
- 1.3 Computerized Reliability Prediction Rome Laboratory ORACLE is a computer program developed to aid in applying the part stress analysis procedure of MIL-HDBK-217. Based on environmental use characteristics, piece part count, thermal and electrical stresses, subsystem repair rates and system configuration, the program calculates piece part, assembly and subassembly failure rates. It also flags overstressed parts, allows the user to perform tradeoff analyses and provides system mean-time-to-failure and availability. The ORACLE computer program software (available in both VAX and IBM compatible PC versions) is available at replacement tape/disc cost to all DoD organizations, and to contractors for application on specific DoD contracts as government furnished property (GFP). A statement of terms and conditions may be obtained upon written request to: Rome Laboratory/ERSR, Griffiss AFB, NY 13441-5700.

2.0 REFERENCE DOCUMENTS

This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-shelf" equipment which the Department of Defense purchases. The documents cited in this section are for guidance and information.

SPECIFICATION	SECTION #	TITLE
MIL-C-5	10.7	Capacitors, Fixed, Mica-Dielectric, General Specification for
MIL-R-11	9.1	Resistor, Fixed, Composition (Insulated) General Specification for
MIL-R-19	9.11	Resistor, Variable, Wirewound (Low Operating Temperature) General Specification for
MIL-C-20	10.11	Capacitor, Fixed, Caramic Dielectric (Temperature Compensating) Established and Nonestablished Reliability, General Specification for
MIL-R-22	9.12	Resistor, Wirewound, Power Type, General Specification for
MIL-C-25	10.1	Capacitor, Fixed, Paper-Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-R-26	9.6	Resistor, Fixed, Wirewound (Power Type), General Specification for
MIL-T-27	11.1	Transformer and Inductor (Audio, Power, High Power, High Power Pulse), General Specification for
MIL-C-62	10.15	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized), General Specification for
MIL-C-81	10.16	Capacitor, Variable, Ceramic Dielectric (Trimmer), General Specification for
MIL-C-92	10.18	Capacitor, Variable, Air Dielectric (Trimmer), General Specification for
MIL-R-93	9.5	Resistor, Fixed, Wirewound (Accurate), General Specification for
MIL-R-94	9.14	Resistor, Variable, Composition, General Specification for
MIL-V-95	23.1	Vibrator, Interrupter and Self-Rectifying, General Specification for
W-L-111	20.1	Lamp, Incandescent Ministure, Tungsten Filament
W-C-375	14.5	Circuit Breaker, Molded Case, Branch Circuit and Service
W-F-1726	22.1	Fuse, Cartridge, Class H (This covers renewable and nonrenewable)
W-F-1814	22.1	Fuse, Cartridge, High Interrupting Capacity
MIL-C-3098	19.1	Crystal Unit, Quartz, General Specification for
MilC-3607	15.1	Connector, Coaxial, Radio Frequency, Series Pulse, General Specifications for
MIL-C-3643	15.1	Connector, Coaxial, Radio Frequency, Series NH, Associated Fittings, General Specification for
MIL-C-3650	15.1	Connector, Coaxial, Radio Frequency, Series LC

SPECIFICATION	SECTION #	MLE
MIL-C-3655	15.1	Connector, Plug and Receptacle, Electrical (Coaxial Series Twin) and Associated Fittings, General Specification for
MIL-C-3767	15.1	Connector, Plug and Receptacle (Power, Bladed Type) General Specification for
MIL-S-3786	14.3	Switch, Rotary (Circuit Selector, Low-Current (Capacity)), General Specification for
MilC-3950	14.1	Switch, Toggle, Environmentally Sealed, General Specification for
MIL-C-3965	10.13	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, General Specification for
MIL-C-5015	15.1	Connector, Electrical, Circular Threaded, AN Type, General Specification for
MIL-F-5372	22.1	Fuse, Current Limiter Type, Aircraft
MIL-R-5757	13.1	Relay, Electrical (For Electronic and Communication Type Equipment), General Specification for
MIL-R-6106	13.1	Relay, Electromagnetic (Including Established Reliability (ER) Types), General Specification for
MIL-L-6363	20.1	Lamp, Incandescent, Aviation Service, General Requirement for
MIL-S-8805	14.1, 14.2	Switches and Switch Assemblies, Sensitive and Push, (Snap Action) General Specification for
MIL-S-8834	14.1	Switches, Toggle, Positive Break, General Specification for
MIL-M-10304	18.1	Meter, Electrical Indicating, Panel Type, Ruggedized, General Specification for
MIL-R-10509	9.2	Resistor, Fixed Film (High Stability), General Specification for
MIL-C-10950	10.8	Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for
MIL-C-11015	10.10	Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Specification for
MIL-C-11272	10.9	Capacitor, Fixed, Glass Dielectric, General Specification for
MIL-C-11693	10.2	Capacitor, Feed Through, Radio Interference Reduction AC and DC, (Hermetically Sealed in Metal Cases) Established and Nonestablished Reliability, General Specification for
MIL-R-11804	9.3	Resistor, Fixed, Film (Power Type), General Specification for
MIL-C-12889	10.1	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC, (Hermetically Sealed in Metallic Cases), General Specification for
MIL-R-12934	9.10	Resistor, Variable, Wirewound, Precision, General Specification for

SPECIFICATION	SECTION #	TITLE
MIL-C-14157	10.3	Capacitor, Fixed, Paper (Paper Plastic) or Plastic Dielectric, Direct Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-C-14409	10.17	Capacitor, Variable (Piston Type, Tubular Trimmer), General Specification for
MIL-F-15160	22.1	Fuse, Instrument, Power and Telephone
MIL-C-15305	11.2	Coil, Fixed and Variable, Radio Frequency, General Specification for
MIL-F-15733	21.1	Filter, Radio Interference, General Specification for
MIL-C-18312	10.4	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-F-18327	21.1	Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for
MIL-R-18546	9.7	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification for
MiL-S-19500	6.0	Semiconductor Device, General Specification for
MIL-R-19523	13.1	Relay, Control, Naval Shipboard
MIL-R-19648	13.1	Relay, Time, Delay, Thermal, General Specification for
MIL-C-19978	10.3	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for
MIL-T-21038	11.1	Transformer, Pulse, Low Power, General Specification for
MIL-C-21097	15.2	Connector, Electrical, Printed Wiring Board, General Purpose, General Specification for
MIL-R-22097	9.13	Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for
MIL-R-22684	9.2	Resistor, Fixed, Film, Insulated, General Specification for
MIL-S-22710	14.4	Switch, Rotary (Printed Circuit), (Thumbwheel, In-line and Pushbutton), General Specification for
MIL-S-22885	14.1	Switches, Pushbutton, Illuminated, General Specification for
MIL-C-22992	15.1	Connector, Cylindrical, Heavy Duty, General Specification for
MIL-C-23183	10.19	Capacitor, Fixed or Variable, Vacuum Dielectric, General Specification for
MIL-C-23269	10.9	Capacitor, Fixed, Glass Dielectric, Established Reliability, General Specification for
MIL-R-23285	9.15	Resistor, Variable, Nonwirewound, General Specification for

SPECIFICATION	SECTION #	TITLE
MIL-F-23419	22.1	Fuse, Instrument Type, General Specification for
MIL-T-23648	9.8	Thermistor, (Thermally Sensitive Resistor), Insulated, General Specification for
MIL-C-24308	15.1	Connector, Electric, Rectangular, Miniature Polarized Shell, Rack and Panel, General Specification for
MIL-C-25516	15.1	Connector, Electrical, Miniature, Coaxial, Environment Resistant Type, General Specification for
MIL-C-26482	15.1	Connector, Electrical (Circular, Miniature, Quick Disconnect, Environment Resisting) Receptacles and Plugs, General Specification for
MIL-R-27208	9.9	Resistor, Variable, Wirewound, (Lead Screw Activated) General Specification for
MIL-C-28748	15.1	Connector, Electrical, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for
MIL-R-28750	13.2	Relay, Solid State, General Specification for
MIL-C-28804	15.1	Connector, Electric Rectangular, High Density, Polarized Central Jackscrew, General Specification for, Inactive for New Designs
MIL-C-28840	15.1	Connector, Electrical, Circular Threaded, High Density, High Shock Shipboard, Class D, General Specification for
MIL-M-38510	5.0	Microcircuits, General Specification for
MIL-H-38534	5.0	Hybrid Microcircuits, General Specification for
MIL-I-38535	5.0	Integrated Circuits (Microcircuits) Manufacturing, General Specification for
MIL-C-38999	15.1	Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for
MIL-C-39001	10.7	Capacitor, Fixed, Mica Dielectric, Established Reliability, General Specification for
MIL-R-39002	9.11	Resistor, Variable, Wirewound, Semi-Precision, General Specification for
MIL-C-39003	10.12	Capacitor, Fixed, Electrolytic, (Solid Electrolyte), Tantalum, Established Reliablity, General Specification for
MIL-R-39005	9.5	Resistor, Fixed, Wirewound, (Accurate) Established Reliability, General Specification for
MIL-C-39006	10.13	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for
MIL-R-39007	9.6	Resistor, Fixed, Wirewound (Power Type) Established Reliability, General Specification for

SPECIFICATION	SECTION #	TITLE
MIL-R-39008	9.1	Resistor, Fixed, Composition, (Insulated) Established Reliability, General Specification for
MIL-R-39009	9.7	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Established Reliability, General Specification for
MIL-C-39010	11.2	Coll, Fixed, Radio Frequency, Molded, Established Reliability, General Specification for
MIL-C-39012	15.1	Connector, Coaxial, Radio Frequency, General Specification for
MIL-C-39014	10.10	Capacitor, Fixed, Ceramic Dielectric (General Purpose) Established Reliability, General Specification for
MRL-C-39015	9.9	Resistor, Variable, Wirewound (Lead Screw Actuated) Established Reliability, General Specification for
MIL-R-39016	13.1	Relay, Electromagnetic, Established Reliability, General Specification for
MIL-R-39017	9.2	Resistor, Fixed, Film (Insulated), Established Reliability, General Specification for
MIL-C-39018	10.14	Capacitor, Fixed, Electrolytic (Aluminum Oxide) Established Reliability and Nonestablished Reliability, General Specification for
MIL-C-39019	14.5	Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free, General Specification for
MIL-C-39022	10.4	Capacitor, Fixed, Metallized Paper, Paper-Plastic Film, or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-R-39023	9.15	Resistor, Variable, Nonwirewound, Precision, General Specification for
MIL-R-39035	9.13	Resistor, Variable, Nonwirewound, (Adjustment Type) Established Reliability, General Specification for
MIL-C-49142	15.1	Connector, Triaxial, RF, General Specification for
MIL-P-55110	15.2	Printed Wiring Boards
MIL-R-55182	9.2	Resistor, Fixed, Film, Established Reliability, General Specification for
MIL-C-55235	15.1	Connector, Coaxial, RF, General Specification for
MIL-C-55302	15.2	Connector, Printed Circuit, Subassembly and Accessories
MIL-C-55339	15.1	Adapter, Coaxial, RF, General Specification for
MIL-C-55514	10.5	Capacitor, Fixed, Plastic (or Metallized Plastic) Dielectric, Direct Current, In Non-Metal Cases, General Specification for
MIL-C-55629	14.5	Circuit Breaker, Magnetic, Unsealed, Trip-Free, General Specification for
MIL-T-55631	11.1	Transformer, Intermediate Frequency, Radio Frequency, and Discriminator, General Specification for

2.0 REFERENCE DOCUMENTS

SPECIFICATION	SECTIO	N# TITLE
MIL-C-55681	10.11	Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability, General Specification for
MIL-C-81511	15.1	Connector, Electrical, Circular, High Density, Quick Disconnect, Environment Resisting, and Accessories, General Specification for
MIL-C-83383	14.5	Circuit Breaker, Remote Control, Thermal, Trip-Free, General Specification for
MIL-R-83401	9.4	Resistor Networks, Fixed, Film, General Specification for
MIL-C-83421	10.6	Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal Cases, Established Reliability, General Specification for
MIL-C-83513	15.1	Connector, Electrical, Rectangular, Microminiature, Polarized Shell, General Specification for
MIL-C-83723	15.1	Connector, Electrical (Circular Environment Resisting), Receptacles and Plugs, General Specification for
MIL-R-83725	13.1	Relay, Vacuum, General Specification for
MIL-R-83726	13.1, 13.2, 13.3	Relay, Time Delay, Electric and Electronic, General Specification for
MIL-S-83731	14.1	Switch, Toggle, Unsealed and Sealed Toggle, General Specification for
MIL-C-83733	15.1	Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200 Degrees C Total Continuous Operating Temperature, General Specification for
MIL-S-83734	15.3	Socket, Plug-in Electronic Components, General Specification for
STANDARD		TITLE
MIL-STD-756		Reliability Modeling and Prediction
MIL-STD-883		Test Methods and Procedures for Microelectronics
MIL-STD-975		NASA Standard Electrical, Electronic and Electromechanical Parts List
MIL-8TD-1547		Parts, Materials and Processes for Space Launch Vehicles, Technical Requirements for
MIL-STD-1772		Certification Requirements for Hybrid Microcircuit Facilities and Lines

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

Standardization Document Order Desk 700 Robins Ave. Building 4, Section D Philadelphia, PA 19111-5094 (215) 697-2667 3.1 Reliability Engineering - Reliability is currently recognized as an essential need in military electronic systems. It is looked upon as a means for reducing costs from the factory, where rework of defective components adds a non-productive overhead expense, to the field, where repair costs include not only parts and labor but also transportation and storage. More importantly, reliability directly impacts force effectiveness, measured in terms of availability or sortic rates, and determines the size of the "logistics tail" inhibiting force utilization.

The achievement of reliability is the function of reliability engineering. Every aspect of an electronic system, from the purity of materials used in its component devices to the operator's interface, has an impact on reliability. Reliability engineering must, therefore, be applied throughout the system's development in a diligent and timely fashion, and integrated with other engineering disciplines.

A variety of reliability engineering tools have been developed. This handbook provides the models supporting a basic tool, reliability prediction.

3.2 The Role of Reliability Prediction - Reliability prediction provides the quantitative baseline needed to assess progress in reliability engineering. A prediction made of a proposed design may be used in several ways.

A characteristic of Computer Aided Design is the ability to rapidly generate alternative solutions to a particular problem. Reliability predictions for each design alternative provide one measure of relative worth which, combined with other considerations, will aid in selecting the best of the available options.

Once a design is selected, the reliability prediction may be used as a guide to improvement by showing the highest contributors to failure. If the part stress analysis method is used, it may also reveal other fruitful areas for change (e.g., over stressed parts).

The Impact of proposed design changes on reliability can be determined only by comparing the reliability predictions of the existing and proposed designs.

The ability of the design to maintain an acceptable reliability level under environmental extremes may be assessed through reliability predictions. The predictions may be used to evaluate the need for environmental control systems.

The effects of complexity on the probability of mission success can be evaluated through reliability predictions. The need for redundant or back-up systems may be determined with the aid of reliability predictions. A tradeoff of redundancy against other reliability enhancing techniques (e.g.: more cooling, higher part quality, etc.) must be based on reliability predictions coupled with other pertinent considerations such as cost, space limitations, etc.

The prediction will also help evaluate the significance of reported failures. For example, if several failures of one type or component occur in a system, the predicted failure rate can be used to determine whether the number of failures is commensurate with the number of components used in the system, or, that it indicates a problem area.

Finally, reliability predictions are useful to various other engineering analyses. As examples, the location of built-in-test circuitry should be influenced by the predicted failure rates of the circuitry monitored, and maintenance strategy planners can make use of the relative probability of a failure's location, based on predictions, to minimize downtime. Reliability predictions are also used to evaluate the probabilities of failure events described in a failure modes, effects and criticality analysis (FMECAs).

3.0 INTRODUCTION

3.3 Limitations of Reliability Predictions - This handbook provides a common basis for reliability predictions, based on analysis of the best available data at the time of issue. It is intended to make reliability prediction as good a tool as possible. However, like any tool, reliability prediction must be used intelligently, with due consideration of its limitations.

The first limitation is that the failure rate models are point estimates which are based on available data. Hence, they are valid for the conditions under which the data was obtained, and for the devices covered. Some extrapolation during model development is possible, but the inherently empirical nature of the models can be severely restrictive. For example, none of the models in this handbook predict nuclear survivability or the effects of ionizing radiation.

Even when used in similar environments, the differences between system applications can be significant. Predicted and achieved reliability have always been closer for ground electronic systems than for avionic systems, because the environmental stresses vary less from system to system on the ground and hence the field conditions are in general closer to the environment under which the data was collected for the prediction model. However, failure rates are also impacted by operational scenarios, operator characteristics, maintenance practices, measurement techniques and differences in definition of talture. Hence, a reliability prediction should never be assumed to represent the expected field reliability as measured by the user (i.e., Mean-Time-Between-Maintenance, Mean-Time-Between-Removals, etc.). This does not negate its value as a reliability engineering tool; note that none of the applications discussed above requires the predicted reliability to match the field measurement.

Electronic technology is noted for its dynamic nature. New types of devices and new processes are continually introduced, compounding the difficulties of predicting reliability. Evolutionary changes may be handled by extrapolation from the existing models; revolutionary changes may defy analysis.

Another limitation of reliability predictions is the mechanics of the process. The part stress analysis method requires a significant amount of design detail. This naturally imposes a time and cost penalty. More significantly, many of the details are not available in the early design stages. For this reason this handbook contains both the part stress analysis method (Sections 5 through 23) and a simpler parts count method (Appendix A) which can be used in early design and bid formulation stages.

Finally, a basic limitation of reliability prediction is its dependence on correct application by the user. Those who correctly apply the models and use the information in a conscientious reliability program will find the prediction a useful tool. Those who view the prediction only as a number which must exceed a specified value can usually find a way to achieve their goal without any impact on the system.

3.4 Part Stress Analysis Prediction

3.4.1 Applicability - This method is applicable when most of the design is completed and a detailed parts list including part stresses is available. It can also be used during later design phases for reliability trade-offs vs. part selection and stresses. Sections 5 through 23 contain failure rate models for a broad variety of parts used in electronic equipment. The parts are grouped by major categories and, where appropriate, are subgrouped within categories. For mechanical and electromechanical parts not covered by this Handbook, refer to Bibliography items 20 and 36 (Appendix C).

The failure rates presented apply to equipment under normal operating conditions, i.e., with power on and performing its intended functions in its intended environment. Extrapolation of any of the base failure rate models beyond the tabulated values such as high or sub-zero temperature, electrical stress values above 1.0, or extrapolation of any associated model modifiers is completely invalid. Base failure rates can be interpolated between electrical stress values from 0 to 1 using the underlying equations.

The general procedure for determining a board level (or system level) failure rate is to sum individually calculated failure rates for each component. This summation is then added to a failure rate for the circuit board (which includes the effects of soldering parts to it) using Section 16, Interconnection Assemblies.

For parts or wires soldered together (e.g., a jumper wire between two parts), the connections model appearing in Section 17 is used. Finally, the effects of connecting circuit boards together is accounted for by adding in a failure rate for each connector (Section 15, Connectors). The wire between connectors is assumed to have a zero failure rate. For various service use profiles, duty cycles and redundancies the procedures described in MIL-STD-756, Reliability Modeling and Prediction, should be used to determine an effective system level failure rate.

3.4.2 Part Quality - The quality of a part has a direct effect on the part failure rate and appears in the part models as a factor, π_Q . Many parts are covered by specifications that have several quality levels, hence, the part models have values of π_Q that are keyed to these quality levels. Such parts with their quality designators are shown in Table 3-1. The detailed requirements for these levels are clearly defined in the applicable specification, except for microcircuits. Microcircuits have quality levels which are dependent on the number of MIL-STD-883 screens (or equivalent) to which they are subjected.

Table 3-1: Parts With Multi-Level Quality Specifications

Part	Quality Designators
Microcircuits	S, B, B-1, Other: Quality Judged by Screening Level
Discrete Semiconductors	JANTXV, JANTX, JAN
Capacitors, Established Reliability (ER)	D, C, S, R, B, P, M, L
Resistors, Established Reliability (ER)	S, R, P, M
Coils, Molded, R.F., Reliability (ER)	S, R, P, M
Relays, Established Reliability (ER)	R, P, M, L

Some parts are covered by older specifications, usually referred to as Nonestablished Reliability (Non-ER), that do not have multi-levels of quality. These part models generally have two quality levels designated as "MIL-SPEC.", and "Lower". If the part is procured in complete accordance with the applicable specification, the π_Q value for MIL-SPEC should be used. If any requirements are waived, or if a commercial part is procured, the π_Q value for Lower should be used.

The foregoing discussion involves the "as procured" part quality. Poor equipment design, production, and testing facilities can degrade part quality. The use of the higher quality parts requires a total equipment design and quality control process commensurate with the high part quality. It would make little sense to procure high quality parts only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DoD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-art and has a high reliability requirement necessitating high quality parts, the total equipment program should be given careful scrutiny and not just

3.0 INTRODUCTION

the parts quality. Otherwise, the low failure rates as predicted by the models for high quality parts will not be realized.

3.4.3 Use Environment - All part reliability models include the effects of environmental stresses through the environmental factor, π_E , except for the effects of ionizing radiation. The descriptions of these environments are shown in Table 3-2. The π_E factor is quantified within each part failure rate model. These environments encompass the major areas of equipment use. Some equipment will experience more than one environment during its normal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch (M_L) conditions during boost into and return from orbit, and space flight (S_E) while in orbit.

Table 3-2: Environmental Symbol and Description

Environment	π _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Ground, Benign	G _B	G _B G _{MS}	Nonmobile, temperature and humidity controlled environments readily accessible to maintenance; includes laboratory instruments and test equipment, medical electronic equipment, business and scientific computer complexes, and missiles and support equipment in ground silos.
Ground, Fixed	G _F	G _F	Moderately controlled environments such as installation in permanent racks with adequate cooling air and possible installation in unheated buildings; includes permanent installation of air traffic control radar and communications facilities.
Ground, Mobile	G _M	G _M M _P	Equipment installed on wheeled or tracked vehicles and equipment manually transported; includes tactical missile ground support equipment, mobile communication equipment, tactical fire direction systems, handheld communications equipment, laser designations and range finders.
Naval, Sheltered	N _S	N _S N _{SB}	Includes sheltered or below deck conditions on surface ships and equipment installed in submarines.
Naval, Unsheltered	N _U	N _U N _U U N _H	Unprotected surface shipborne equipment exposed to weather conditions and equipment immersed in salt water. Includes sonar equipment and equipment installed on hydrofoil vessels.

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	ಸ _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 x _E Symbol	Description
Airborne, Inhabited, Cargo	^A ic	AIC AIT AIB	Typical conditions in cargo compartments which can be occupied by an aircrew. Environment extremes of pressure, temperature, shock and vibration are minimal. Examples include long mission aircraft such as the C130, C5, B52, and C141. This category also applies to inhabited areas in lower performance smaller aircraft such as the T38.
Airborne, Inhabited, Fighter	A _{IF}	A _{IF} A _{IA}	Same as A _{IC} but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111, F/A 18 and A10 aircraft.
Airborne, Uninhabited, Cargo	Auc	Auc Aut Aub	Environmentally uncontrolled areas which cannot be inhabited by an aircrew during flight. Environmental extremes of pressure, temperature and shock may be severe. Examples include uninhabited areas of long mission aircraft such as the C130, C5, B52 and C141. This category also applies to uninhabited area of lower performance smaller aircraft such as the T38.
Airborne, Uninhabited, Fighter	A _{UF}	A _U ⊭ A _{UA}	Same as A _{UC} but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111 and A10 aircraft.
Airborne, Rotary Winged	^A RW	^A RW	Equipment installed on helicopters. Applies to both internally and externally mounted equipment such as laser designators, fire control systems, and communications equipment.
Space, Flight	S _F	s _F	Earth orbital. Approaches benign ground conditions. Vehicle neither under powered flight nor in atmospheric reentry; includes satellites and shuttles.

3.0 INTRODUCTION

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	π _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Missile, Flight	M _E	M _{FF}	Conditions related to powered flight of air breathing missiles, cruise missiles, and missiles in unpowered free flight.
Missile, Launch	ML	M լ Մ _{ՏԼ}	Severe conditions related to missile launch (air, ground and sea), space vehicle boost into orbit, and vehicle re-entry and landing by parachute. Also applies to solid rocket motor propulsion powered flight, and torpedo and missile launch from submarines.
Cannon, Launch	CL	C _L	Extremely severe conditions related to cannon launching of 155 mm. and 5 inch guided projectiles. Conditions apply to the projectile from launch to target impact.

3.4.4 Part Fallure Rate Models - Part failure rate models for microelectronic parts are significantly different from those for other parts and are presented entirely in Section 5.0. A typical example of the type of model used for most other part types is the following one for discrete semiconductors:

$$\lambda_D = \lambda_D \pi_T \pi_A \pi_R \pi_S \pi_C \pi_Q \pi_E$$

where:

 λ_{D} is the part failure rate,

 λ_{b} is the base failure rate usually expressed by a model relating the influence of electrical and temperature stresses on the part,

 π_E and the other π factors modify the base failure rate for the category of environmental application and other parameters that affect the part reliability.

The π_E and π_Q factors are used in most all models and other π factors apply only to specific models. The applicability of π factors is identified in each section.

The base failure rate (λ_b) models are presented in each part section along with identification of the applicable model factors. Tables of calculated λ_b values are also provided for use in manual calculations. The model equations can, of course, be incorporated into computer programs for machine processing. The tabulated values of λ_b are cut off at the part ratings with regard to temperature and stress, hence, use of parts beyond these cut off points will overstress the part. The use of the λ_b models in a computer

MII - MIJON-21/F

3.0 INTRODUCTION

program should take the part rating limits into account. The λ_b equations are mathematically continuous beyond the part ratings but such failure rate values are invalid in the overstressed regions.

All the part models include failure data from both catastrophic and permanent drift failures (e.g., a resistor permanently falling out of rated tolerance bounds) and are based upon a constant failure rate, except for motors which show an increasing failure rate over time. Failures associated with connection of parts into circuit assemblies are not included within the part failure rate models. Information on connection reliability is provided in Sections 16 and 17.

3.4.5 Thermal Aspects - The use of this prediction method requires the determination of the temperatures to which the parts are subjected. Since parts reliability is sensitive to temperature, the thermal analysis of any design should fairly accurately provide the ambient temperatures needed in using the part models. Of course, lower temperatures produce better reliability but also can produce increased penalties in terms of added loads on the environmental control system, unless achieved through improved thermal design of the equipment. The thermal analysis should be part of the design process and included in all the trade-off studies covering equipment performance, reliability, weight, volume, environmental control systems, etc. References 17 and 34 listed in Appendix C may be used as guides in determining component temperatures.

Table 4-1 provides a general checklist to be used as a guide for evaluating a reliability prediction report. For completeness, the checklist includes categories for reliability modeling and allocation, which are sometimes delivered as part of a prediction report. It should be noted that the scope of any reliability analysis depends on the specific requirements called out in a statement-of-work (SOW) or system specification. The inclusion of this checklist is not intended to change the scope of these requirements.

Table 4-1: Reliability Analysis Checklist

Major Concerns	Comments			
Major Concerns	Comments			
MODELS Are all functional elements included in the reliability block diagram /model?	System design drawings/diagrams must be reviewed to be sure that the reliability model/diagram agrees with the hardware.			
Are all modes of operation considered in the math model?	Duty cycles, alternate paths, degraded conditions and redundant units must be defined and modeled.			
Do the math model results show that the design achieves the reliability requirement?	Unit failure rates and redundancy equations are used from the detailed part predictions in the system math model (See MIL-STD-756, Reliability Prediction and Modeling).			
ALLOCATION				
Are system reliability requirements allocated (subdivided) to useful levels?	Useful levels are defined as: equipment for subcontractors, assemblies for sub-subcontractors, circuit boards for designers.			
Does the allocation process consider complexity, design flexibility, and safety margins?	Conservative values are needed to prevent reallocation at every design change.			
PREDICTION				
Does the sum of the parts equal the value of the module or unit?	Many predictions neglect to include all the parts producing optimistic results (check for solder connections, connectors, circuit boards).			
Are environmental conditions and part quality representative of the requirements?	Optimistic quality levels and favorable environmental conditions are often assumed causing optimistic results.			
Are the circuit and part temperatures defined and do they represent the design?	Temperature is the biggest driver of part failure rates; low temperature assumptions will cause optimistic results.			
Are equipment, assembly, subassembly and part reliability drivers identified?	Identification is needed so that corrective actions for reliability improvement can be considered.			
Are alternate (Non MIL-HDBK-217) failure rates highlighted along with the rationale for their use?	Use of alternate failure rates, if deemed necessary, require submission of backup data to provide credence in the values.			
Is the level of detail for the part failure rate models sufficient to reconstruct the result?	Each component type should be sampled and failure rates completely reconstructed for accuracy.			
Are critical components such as VHSIC, Monolithic Microwave Integrated Circuits (MMIC), Application Specific Integrated Circuits (ASIC) or Hybrids highlighted?	Prediction methods for advanced technology parts should be carefully evaluated for impact on the module and system.			

5.0 MICROCIRCUITS, INTRODUCTION

This section presents failure rate prediction models for the following ten major classes of microelectronic devices:

Section	
5.1	Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
5.1	Monolithic MOS Digital and Linear Gate/Logic Array Devices
5.1	Monolithic Bipolar and MOS Digital Microprocessor Devices
5.2	Monolithic Bipolar and MOS Memory Devices
5.3	Very High Speed Integrated Circuit (VHSIC/VHSIC-Like and VLSI) CMOS Devices (> 60K Gates)
5.4	Monolithic GaAs Digital Devices
5.4	Monolithic GaAs MMIC
5.5	Hybrid Microcircuits
5.6	Surface Acoustic Wave Devices
5.7	Magnetic Bubble Memories

In the title description of each monolithic device type, Bipolar represents all TTL, ASTTL, DTL, ECL, CML, ALSTTL, HTTL, FTTL, F, LTTL, STTL, BiCMOS, LSTTL, IIL, I³L and ISL devices. MOS represents all metal-oxide microcircuits, which includes NMOS, PMOS, CMOS and MNOS fabricated on various substrates such as sapphire, polycrystalline or single crystal silicon. The hybrid model is structured to accommodate all of the monolithic chip device types and various complexity levels.

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where 1K = 1024 bits. For example, a 16K memory has 16,384 bits, a 64K memory has 65,536 bits and a 1M memory has 1,048,576 bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

For devices having both linear and digital functions not covered by MIL-M-38510 or MIL-I-38535, use the linear model. Line drivers and line receivers are considered linear devices. For linear devices not covered by MIL-M-38510 or MIL-I-38535, use the transistor count from the schematic diagram of the device to determine circuit complexity.

For digital devices not covered by MIL-M-38510 or MIL-I-38535, use the gate count as determined from the logic diagram. A J-K or R-S flip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions; AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

Technology	Gate Approximation
Bipolar	No. Gates = No. Transistors/3.0
CMOS	No. Gates = No. Transistors/4.0
All other MOS except CMOS	No. Gates = No. Transistors/3.0

5.0 MICROCIRCUITS, INTRODUCTION

A detailed form of the Section 5.3 VHSIC/VHSIC-Like model is included as Appendix B to allow more detailed trade-offs to be performed. Reference 30 should be consulted for more information about this model.

Reference 32 should be consulted for more information about the models appearing in Sections 5.1, 5.2, 5.4, 5.5, and 5.6. Reference 13 should be consulted for additional information on Section 5.7.

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- 2. MOS Devices, Digital and Linear Gate/Logic Arrays
- 3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
- 4. Microprocessors

 $\lambda_{\rm p} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E}) \pi_{\rm Q} \pi_{\rm L}$ Failures/10⁶ Hours

Bipolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1

Di	gital		Linear		PLA/PAL		
No. Gates	C ₁	No. Tra	nsistors	C ₁	No. Gates	C ₁	
1,001 to 3	,		300	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042	

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1*

		Digital		Linear PLA/P.			PLA/PAL	AL	
N	o. G	iates	C ₁	No.	Trai	nsistors	C ₁	No. Gates	C ₁
1 101 1,001 3,001 10,001 30,001	to to to to to	100 1,000 3,000 10,000 30,000 60,000	.010 .020 .040 .080 .16	1 101 301 1,001	to to to	100 300 1,000 10,000	.010 .020 .040 .060	Up to 500 501 to 1,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor

Die Complexity Failure Rate - C₁

No. Bits	Bipolar C ₁	MOS C ₁
Up to 8	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters

Parameter	Refer to		
π _T	Section 5.8		
C ₂	Section 5.9		
π _E , π _Q , π _L	Section 5.10		

MICROCIRCUITS, MEMORIES

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- Ultraviolet Eraseable PROMs (UVEPROM)
 "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
- Static Random Access Memorles (SRAM)
 Dynamic Random Access Memories (DRAM)

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$ Failures/10⁶ Hours

Die Complexity Failure Rate - C1

		MO	Bipolar			
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BIMOS)	ROM, PROM	SRAM
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031 .062	.0094 .019 .038 .075	.0052 .011 .021 .042

 A_1 Factor for λ_{CVC} Calculation

	····Cyc	
Total No. of Programming Cycles Over EEPROM Life, C	Flotox ¹	Textured- Poly ²
Up to 100 100 < C ≤ 200 200 < C ≤ 500 500 < C ≤ 1K 1K < C ≤ 3K 3K < C ≤ 7K 7K < C ≤ 15K 15K < C ≤ 20K 20K < C ≤ 30K 30K < C ≤ 100K 100K < C ≤ 400K 400K < C ≤ 500K	.00070 .0014 .0034 .0068 .020 .049 .10 .14 .20 .68 1.3 2.7 3.4	.0097 .014 .023 .033 .061 .14 .30 .30 .30 .30

- 1. $A_1 = 6.817 \times 10^{-6}$ (C)
- 2. No underlying equation for Textured-Poly.

A₂ Factor for λ_{cvc} Calculation

Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A ₂
Up to 300K	0
300K < C ≤ 400K	1.1
400K < C ≤ 500K	2.3

All Other Model Parameters

Parameter	Refer to
πΤ	Section 5.8
C ₂	Section 5.9
π _E , π _Q , π _L	Section 5.10
λ _{cyc} (EEPROMS only)	Page 5-5

 $\lambda_{cyc} = 0$ For all other devices

EEPROM Read/Write Cycling Induced Failure Rate - λ _{cyc}										
		vices Except Flotox and EEPROMS		λ _{cyc} = 0						
Flotox and	d Tex	ctured Poly EEPROMS		$\lambda_{\text{cyc}} = \left[A_1 B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}}$						
Model Fa	ctor		lotox ce 5-4	Textured-Poly Page 5-4						
В1		Pa	ge 5-6	Page 5-6						
A2		A ₂	= 0	Page 5-5						
B ₂		B ₂	= 0	Page 5-6						
πQ		Se	ction 5.10	Section 5.10						
1. No On- 2. On-Ch 3. Two-N	Error Correction Code (ECC) Option 1. No On-Chip ECC 2. On-Chip Hamming Code 3. Two-Needs-One Redundant Cell Approach			$\pi_{ECC} = 1.0$ $\pi_{ECC} = .72$ $\pi_{ECC} = .68$						
NOTES:	1.	See Reference 24 for reschemes at the memory		f-chip error detection and correction vei.						
	2.	If EEPROM type is unk	nown, assu	me Flotox.						
3. Error Correction Code Options: Some EEPROM manufacturers have incorporate on-chip error correction circuitry into their EEPROM devices. This is represented the on-chip hamming code entry. Other manufacturers have taken a redundant of approach which incorporates an extra storage transistor in every memory cell. This is represented by the two-needs-one redundant cell entry.										
	4.	The A ₁ and A ₂ factors	shown in S	ection 5.2 were developed based on an assumed						
		system life of 10,000 op significantly longer or sl	perating hou	irs. For EEPROMs used in systems with cted lifetimes the A_1 and A_2 factors should be						
		multiplied by:								
			10,00	00						
	System Lifetime Operating Hours									

5.2	MICHO	CIRCU	HS,	MEMORIE	5
					_

					Ť				_		_										_	_	_			_								
		Σ.	2.1	5.0	6.	6 .	1.7	© :	3.	₹.	 	 6.	?;	ÿ :		0	86	94	8	.87	.	8.	1.	9.1	7.5	2 8	9	8	.62	.58	· ′ `		v -	
	3 (82)	256K	5:	₹.	ا .3	د .	<u>-</u>	-	<u>-</u> :	0.	96:	6 .	zo . c	6 ¢	. Y	22	8	99	9 .	.	20	.57					9	45	7	42	3 - 303			
	Textured-Poly ³ (B ₂)	64K	-	0.	98	8 8.	8 .	89	.75	.72	89 .	59	29.	P 4	5.4	, <u>ru</u>	64	14.	. 4 .5	7	7.	₹.	98. 6	ان 190	ن ق		, E	.32	E	.30 88	$\left(\frac{1}{1_{\rm J}+273}\right)$			
	Texture	9K	9/	7	67	8	20	56	23	20	3 :	5 6	3 :	- <	3 8	88	38	8	32	31	8	8	58	75	ę	3 %	R	S.	8	0.21	10.5			
		_																													.12 8.63 x 10 ⁻⁵			
		\$	25	S	₹.	₹.	¥.	₹.	<u>جن</u>	<u>ښ</u>	<u>ښ</u>	<u>ښ</u>	ی د	, ĕ	-	. ~	~	ř	**	<u>ن</u> خ	ķ	بة	- -	" :		-	=	<u> </u>	-	5 5	dx.			
		¥	6.	5.0	2.5	2.3	5.5	2.7	2.8	3.0	က် (၃)	₩ (, A	4	4.5	4.7	2.0	5.2	5.5	5.7	0.9	6,2		0 F	7.	7.6	7.9	89 (ε ε ε	\$5			,
ulation	(B ₁)	256K	1.3	4.	5.	7.6	8 0.	o :	2.0	2.7	2.3	2. c	9 C	· 0	3.0	3.2	3.4	3.5	3.7	3.9	4.	4.2	4.4	0 0	, r	2 2	5.4	9.6	80 4 80 4	6.3	(B4000)			
and B ₂ Factors for $\lambda_{\rm cyc}$ Calculation	Textured-Poly ² (B ₁)	64K	ģ	0.		<u>-</u>	د .	. .	4.	<u>`</u>	 o o	. 0	22	2.3	2.4	2.5	5.6	2 . 8	5 .9	0.0 0.0	S 6		† 4 7 C) E	3.9	0.	4 •	4.5	2. B1.		Ę	
rs for λ	extured	16K	99	K.	11.	85	88	6 .	0.	Ξ;	- ;	N	ກ. -		75	9.	1.7	60 :	6 .	0 :	7 00	 (2.5	? ;	, c	2 6	2.7	2.8	B (3.1			terminati	
2 Facto	1	A A	47	50	5 .	.58 8	29.	.	K!	9.7	<u>æ</u> g	8 8	و	E C	<u>-</u>	=	1.2	J.3	1 .3	7.	₹.	5:	<u>ه</u> .	<u> </u>	- a	. 	6 .	2.0	2.7	2.2			or T _J De	
		5	6.		- 7			60	—	<u> </u>	9	 				_	_		<u>-</u>	_	_					_		~			- 333	- 303	งก 5.11 f	
B1		T.																					N č	'nċ	3 'n	<u>ن</u> کر ا	ಸ	~	₹ 7	3.6	$\left(\frac{1}{\mathbf{J_{J}+273}}\right)$	+ 273	Section	
	(B ₁)	256K	2.2	2.4	2.7	5.9	3.5	æ. •	3.7	4.	4 .	4.1	o r	, ec	6.2	6.7	7.1	7.5	80.	9.5	0	9.5	₽;	= :	= \$	1 52	E	4	4 ;	5		F	C). S	
	Flotox 1	64K	=	-	1.3	4.	9.	1.7	6 .6	2.0	2.5	 4. r	, c v v	i c	9.5	3.3	3.5	3.8	0.4	4.2	5.5	4.7	0. r		, r	6	4.9	6.7		7.7	8.63 x 10 ⁻⁵	8.63 x 10 ⁻⁵	rature (°	= 1024 bits
	L.	16K				0.72			0.93	0.	(~ .	 	· ·	9	1.7	8 9.	6.	5.0	2.	2.5	2.4	5.5	o 0 Vi C	9 0		3.5	3.4	(A)	3.9	•xp (8.6	exp (Тетре	¥
		↓	72.	8	.	38	Q	₹.	14.	ri.	 55:	8. 6.	2 2	8 5	78	E	8 .	\$	0.	-:	<u>-</u>	7.5			• •	<u>, , , , , , , , , , , , , , , , , , , </u>	9.	1.7	- :	• •	.5	8	Junction	s. NOTE
		. B(Bits)																													(B)	(84000).25	 Worse Case Junction Temperature (°C). See Section 5.11 for T_J Determination 	- Number of bits. NOTE: 1
		Memory Size, B(Bits) → 4K T _J (°C)	જ	ළ	ક્ષ	₽	₹	ය	S	<u>8</u>	ន ខ	2;	હ ક	S &	8	88	5	105	10	115	5	125	<u> </u>	3 \$	<u> </u>	5 5	155	9	165	175	1. B ₁ =	3. B ₂ =	T _J = Wor	B - Num
٠		¥ ⊢,																																

5.3 MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS

DESCRIPTIONCMOS greater than 60,000 gates

 $\lambda_{\rm p} = \lambda_{\rm BD} \pi_{\rm MFG} \pi_{\rm T} \pi_{\rm CD} + \lambda_{\rm BP} \pi_{\rm E} \pi_{\rm Q} \pi_{\rm PT} + \lambda_{\rm EOS}$ Failures/10⁶ Hours

Die Base Failure Rate - λ_{RD}

Part Type	λ _{BD}
Logic and Custom	0.16
Gate Array	0.24

anulacturing Process Correction Factor - π_{MFG}						
^л мFG						
.55						
2.0						

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
π _E , π _Q	Section 5.10

Package Type Correction Factor - π_{PT}

	πрт								
Package Type	Hermetic	Nonhermetic							
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7	1.3 2.9 6.1							

Die Complexity Correction Factor - π_{CD}

Feature Size			D ie Area (cm²)							
(Microns)	A ≤ .4	.4 < A ≤ .7	.7 < A ≤ 1.0	$1.0 < A \le 2.0$	$2.0 < A \le 3.0$					
.80	8.0	14	19	38	58					
1.00	5.2	8.9	13	25	37					
1.25	3.5	5.8	8.2	16	24					
$\pi_{CD} = \left(\frac{A}{.21}\right) \left(\frac{2}{X}\right)$	$\pi_{\text{CD}} = \left(\frac{A}{(.21)} \times \left(\frac{2}{X_s}\right)^2 \times (.64)\right) + .36$ A = Total Scribed Chip Die Area in cm ² X_s = Feature Size (microns)									
Die Area Conversion: cm ² = MIL ² ÷ 155,000										

Package Base Failure Rate - λ_{RP}

Package Base Fallure Hate - ABP							
Number of Pins	^λ BP						
24	.0026						
28	.0027						
40	.0029						
44	.0030						
48	.0030						
52	.0031						
64	.0033						
84	.0036						
120	.0043						
124	.0043						
144	.0047						
220	.0060						
$\lambda_{BP} = .0022 + ((1.72 \times 10^{-5}) \text{ (NP)})$ NP = Number of Package Pins							

Electrical Overstress Failure Rate - λ_{FOS}

	EOS
V _{TH} (ESD Susceptibility (Volts))*	λ _{EOS}
0 - 1000	.065
> 1000 - 2000	.053
> 2000 - 4000	.044
> 4000 - 16000	.029
> 16000	.0027

 $\lambda_{EOS} = (-\ln (1 - .00057 \exp(-.0002 V_{TH})) / .00876$

V_{TH} = ESD Susceptibility (volts)

 Voltage ranges which will cause the part to fail. If unknown, use 0 - 1000 volts.

5.4 MICROCIRCUITS, GAAS MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

$\lambda_p = [C_1 \pi_T \pi_A + C_2 \pi_E] \pi_L \pi_Q$ Failures/10⁶ Hours

MMIC: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁			
1 to 100 101 to 1000	4.5 7.2			
C ₁ accounts for the following active elements: transistors, diodes.				

Digital: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁		
1 to 1000 1,001 to 10,000	25 51		
C ₁ accounts for the following active elements: transistors, diodes.			

Device Application Factor - π_A

Application	*A
MMIC Devices Low Noise & Low Power (≤ 100 mW) Driver & High Power (> 100 mW) Unknown	1.0 3.0 3.0
Digital Devices All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
πΤ	Section 5.8
c ₂	Section 5.9
π _E , π _L , π _Q	Section 5.10

DESCRIPTIONHybrid Microcircuits

$$\lambda_{\rm p} = [\Sigma N_{\rm c} \lambda_{\rm c}] (1 + .2 \pi_{\rm E}) \pi_{\rm F} \pi_{\rm Q} \pi_{\rm L}$$
 Failures/10⁶ Hours

N_C = Number of Each Particular Component

 λ_{c} = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_F) , screening level (π_Q) , and maturity (π_L) . The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., $(1+.2\pi_E)$). Only the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_Q = 1$, $\pi_F = 1$ and $T_A = Hybrid Case Temperature for these calculations.$

Determination of λ₋

Determine λ _c for These Component Types	Handbook Section	Make These Assumptions When Determining λ _C
Microcircuits	5	$C_2 = 0$, $\pi_Q = 1$, $\pi_L = 1$, T_J as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC).
Discrete Semiconductors	6	π_{Q} = 1, T_{J} as Determined from Section 6.14, π_{E} = 1.
Capacitors	10	$\pi_Q = 1$, $T_A = Hybrid Case Temperature,\pi_E = 1.$

NOTE:

If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

Circuit Function Factor - π=

Circuit Type	πF		
Digital	1.0		
Video, 10 MHz < f < 1 GHz	1.2		
Microwave, f > 1 GHz	2.6		
Linear, f < 10 MHz	5.8		
Power	21		

All Other Hybrid Model Parameters			
π _L , π _Q , π _E	Refer to Section 5.10		

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTIONSurface Acoustic Wave Devices

$\lambda_p = 2.1 \,\pi_Q \,\pi_E \,\text{Failures/}10^6 \,\text{Hours}$

Quality Factor - π_Q

Screening Level	™Q
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10
None beyond best commerical practices.	1.0

Environmental Factor - π_E

Environment	π _E
GB	.5
G_{F}	2.0
G _B G _F G _M	4.0
N _S	4.0
N _U	6.0
Aic	4.0
A _{IF}	5.0
Auc	5.0
A _{UF}	8.0
A _{RW}	8.0
S _F	.50
M _F	5.0
M_L	12
CL	220

MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, 2. coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_p = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

where:

 λ_1 = Failure Rate of the Control and Detection Structure

$$\lambda_1 = \pi_Q \left[N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E \right] \pi_D \pi_I$$

 λ_2 = Failure Rate of the Memory Storage Area

$$\lambda_2 = \pi_Q N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Chips Per Package - NC

= Number of Bubble Chips per Packaged Device

Temperature Factor – π_T

$$\pi_{T} = (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right]$$

Use: $E_a = .8$ to Calculate π_{T1}

 E_2 = .55 to Calculate π_{T2}

T_J = Junction Temperature (°C), $25 \le T_{,j} \le 175$

 $T_J = T_{CASE} + 10^{\circ}C$

Device Complexity Failure Rates for Control and Detection Structure - C₁₁ and C₂₁

$$C_{11} = .00095(N_1)^{.40}$$

$$C_{21} = .0001(N_1)^{.226}$$

Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), $N_1 \le 1000$

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

Write Duty Cycle Factor - π_W

$$\pi_{W} = \frac{10D}{(RW)^{.3}}$$

 $\pi_W = 1$ for D \leq .3 or R/W \geq 2154

D = Avg. Device Data Rate

Mfg. Max. Rated Data Rate ≤ 1

R/W = No. of Reads per Write

NOTE:

For seed-bubble generators, divide π_W by 4, or use 1, whichever is greater.

Duty Cycle Factor - π_D

$$\pi_{D} = .9D + .1$$

D = Avg. Device Data Rate ≤ 1
Mfg. Max. Rated Data Rate

Device Complexity Failure Rates for Memory Storage Structure - C₁₂ and C₂₂

 $C_{12} = .00007(N_2)^{.3}$

 $C_{22} = .00001(N_2)^{.3}$

 N_2 = Number of Bits, $N_2 \le 9 \times 10^6$

All Other Model Parameters

Parameter	Section
C ₂	5.9
π _E , π _Q , π _L	5.10

	Gade Digital Active Devices, Eve	7	2.500m-68 3.10m-69 3.10m-69 3.10m-69 3.10m-69 4.80m-68 3.20m-68 3.20m-68 3.20m-68 3.20m-69 3.20m-60 3.20m-69 3.20m-69 3.20m-69 3.20m-69 3.20m-69 3.20m-69 3.20m-69 3.20m-69 3.20m-69 3.20m-69 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.20m-60 3.	
	GeAs MMC Active Devices, Pr.	9:	2.206.02 2.206.03 2.206.04 2.206.04 3.206.04	As Devices
F	Memories (Bipdar & MDS), MNOS	-0.	C. C	Ea
Temperature Factor For All Microcircuits - π _T	Linear (Bipoler & MOS)	.65	22.00 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-Ea
tor For All Mix	Digital MOS, VINSIC CINOS	£.		Et a. 1 exp (6.617 Crive Device Chanr In. M:38510, or from the technologies. Id lamperature of the
perature Fac	III, PL, ISL	æ.	0.5. 0.5. 0.5. 0.5. 0.5. 0.5. 0.5. 0.5.	-Ea
Tem	BICHIOS, LSTR.	ιń		T _J + 273 - 299 Silicon Devices n Energy (eV) (Shown Above) bon Temperature (Silicon Divides) or Average (or Section 5.12 for Hytrids) for T _J Determiny T _C + P θ _{JC} Cate Temperature (°C) Device Power Dissipation (V) Jurcition to Case Thermal Resistance (°C/N) be obtained from the device manufacture, Marelant device. MOS column for HC, HCT, AC, ACT, C and First should be considered valid only up to the resistance.
	F. LTM., STTL	1 .		Fig. 10-6 T + 273 - 296 Silicon
	CAL HITL CAL HITL FITL OTL ECL ALSTIL	₹.	######################################	# (e.e.)
		Ea(eV) → T _J (°C)	20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	F - 1 exp

5.9 MICROCIRCUITS, C2 TABLE FOR ALL

Package Failure Rate for all Microcircuits - C2

Package Type					
Number of Functional Pins, N _p	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ¹ , SMT (Leaded and Nonleaded)	DIPs with Glass Seal ²	Flatpacks with Axial Leads on 50 Mil Centers ³	Cans ⁴	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ⁵
3 4 6 8 10 12 14 16 18 22 24 28 36 40 64 80 128 180 224	.00092 .0013 .0019 .0026 .0034 .0041 .0048 .0056 .0064 .0079 .0087 .010 .013 .015 .025 .032 .053 .076	.00047 .00073 .0013 .0021 .0029 .0038 .0048 .0059 .0071 .0096 .011 .014 .020	.00022 .00037 .00078 .0013 .0020 .0028 .0037 .0047 .0058 .0083 .0098	.00027 .00049 .0011 .0020 .0031 .0044 .0060 .0079	.0012 .0016 .0025 .0034 .0043 .0053 .0062 .0072 .0082 .010 .011 .013 .017 .019 .032 .041 .068 .098

1.
$$C_2 = 2.8 \times 10^{-4} (N_p)^{1.08}$$

2.
$$C_2 = 9.0 \times 10^{-5} (N_p)^{1.51}$$

3.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$$

4.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$$

5.
$$C_2 = 3.6 \times 10^{-4} (N_p)^{1.08}$$

NOTES:

1. SMT: Surface Mount Technology

2. DIP: Dual In-Line Package

3. If DIP Seal type is unknown, assume glass

4. The package failure rate (C₂) accounts for failures associated only with the package itself. Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.

MICROCIRCUITS, π_{E} , λ_{L} AND π_{Q} TABLES FOR ALL 5.10

Environment Factor - *E

Environment	*E
G _B	.50
G _F	2.0
G _B G _F G _M	4.0
N _S	4.0
N _S N _U	6.0
A _{IC}	4.0
A _{IF}	5.0
AUC	5.0
A _{UF}	8.0
AIC AIF AUC AUF ARW SF	8.0
S _F	.50
M _F	5.0
ML	12
M _L C _L	220

Learning Factor - π_L

Years in Production, Y	πL
≤ .1	2.0
.5	1.8
1.0	1.5
1.5	1.2
≥ 2.0	1.0

 $\pi_{L} = .01 \exp(5.35 - .35Y)$

Y = Years generic device type has been in production

Quality Factors

Quality Factors - π _Q						
	Description	πQ				
Class 1:	Procured in full accordance with MIL-M-38510, Class S requirements.					
2.	Procured in full accordance with MfL-I-38535 and Appendix B thereto (Class U).	.25				
3.	Hybrids: (Procured to Class S requirements (Quality Level K) of MIL-H-38534.					
Class	B Categories;					
1.	Procured in full accordance with MIL-M-38510, Class B requirements.					
2.	Procured in full accordance with MIL-I-38535, (Class Q).	1.0				
3.	Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534.					
Class	B-1 Category;					
requests of No. Mil. other documents of the documents of	y compliant with all uirements of paragraph 1.2.1 flL-STD-883 and procured to a drawing, DESC drawing or er government approved umentation. (Does not include rids). For hybrids use customening section below.	2.0				

5.10 MICROCIRCUITS, π_{E} , π_{L} AND π_{Q} TABLES FOR ALL

Quality Factors (cont'd): π_Q Calculation for Custom Screening Programs

Group	MIL-STD-883 Screen/Test (Note 3)	Point	Valuation
1*	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	50	
2*	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum) TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	37	
3	Pre-Burn in Electricals TM 1015 (Burn-in B-Level/S-Level) and TM 5004 (or 5008 for Hybrids) (Post Burn-in Electricals @ Temp Extremes)	30 36	(B Level) (S Level)
4*	TM 2020 Pind (Particle Impact Noise Detection)	11	
5	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature Extremes)	11	(Note 1)
6	TM 2010/17 (Internal Visual)	7	
7*	TM 1014 (Seal Test, Cond A, B, or C)	7	(Note 2)
8	TM 2012 (Radiography)	7	
9	TM 2009 (External Visual)	7	(Note 2)
10	TM 5007/5013 (GaAs) (Wafer Acceptance)	1	
11	TM 2023 (Non-Destructive Bond Pull)	1	

$$\pi_{Q} = 2 + \frac{87}{\Sigma \text{ Point Valuations}}$$

*NOT APPROPRIATE FOR PLASTIC PARTS.

NOTES:

- 1. Point valuation only assigned if used independent of Groups 1, 2 or 3.
- 2. Point valuation only assigned if used independent of Groups 1 or 2.
- 3. Sequencing of tests within groups 1, 2 and 3 must be followed.
- 4. TM refers to the MIL-STD-883 Test Method.
- 5. Nonhermetic parts should be used only in controlled environments (i.e., G_B and other temperature/humidity controlled environments).

EXAMPLES:

- 1. Mfg. performs Group 1 test and Class B burn-in: $\pi_Q = 2 + \frac{87}{50+30} = 3.1$
- 2. Mfg. performs internal visual test, seal test and final electrical test: $\pi_Q = 2 + \frac{87}{7+7+11} = 5.5$

Other Commercial or Unknown Screening Levels

 $\pi_{Q} = 10$

5.11 MICROCIRCUITS, T, DETERMINATION, (ALL EXCEPT HYBRIDS)

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$T_J = T_C + \theta_{JC}P$$

T_J = Worst Case Junction Temperature (°C).

 T_C = Case Temperature (°C). If not available, use the following default table.

Default Case Temperature (T_C) for all Environments

Environment	GB	G_{F}	GM	NS	Nυ	Ąc	ĄF	Auc	AUF	ARW	SF	MF	ML	CL
T _C (℃)	35	45	50	45	50	60	60	75	75	60	35	50	60	45

 θ_{JC} = Junction-to-case thermal resistance (°C/watt) for a device soldered into a printed circuit board. If θ_{JC} is not available, use a value contained in a specification for the closest equivalent device or use the following table.

Package Type (Ceramic Only)	Die Area > 14,400 mil ² θ _{JC} (℃W)	Die Area ≤ 14,400 mil ² θ _{JC} (°C/W)
Dual-In-Line	11	28
Flat Package	10	22
Chip Carrier	10	20
Pin Grid Array	10	20
Can	_	70

P = The maximum power dissipation realized in a system application. If the applied power is not available, use the maximum power dissipation from the specification for the closest equivalent device.

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR HYBRIDS)

This section describes a method for estimating junction temperature (T_J) for integrated circuit dice mounted in a hybrid package. A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure 5-1 is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. The table following Figure 5-1 provides a list of commonly used hybrid materials with typical thicknesses and corresponding thermal conductivities (K). If the hybrid internal structure cannot be determined, use the following default values for the temperature rise from case to junction: microcircuits, 10°C; transistors, 25°C; diodes, 20°C. Assume capacitors are at T_C.

Figure 5-1: Cross-sectional View of a Hybrid with a Single Multi-Layered Substrate

5.12 MICROCIRCUITS, T., DETERMINATION, (FOR HYBRIDS)

	Typical Hybrid Characteristics									
Material	Typical Usage	Typical Thickness, L _i (in.)	Feature From Figure 5-1	Thermal Conductivity, K _i (<u>W/in²</u> °C/in	$\binom{\frac{1}{K_i}}{\binom{L_i}{n^2}}$					
Silicon	Chip Device	0.010	Α	2.20	.0045					
GaAs	Chip Device	0.0070	Α	.76	.0092					
Au Eutectic	Chip Attach	0.0001	В	6.9	.000014					
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	.0023					
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	.0060	.58					
Epoxy (Conductive)	Chip Attach	0.0035	В	.15	.023					
Thick Film Dielectric	Glass Insulating Layer	0.0030	С	.66	.0045					
Alumina	Substrate, MHP	0.025	D	.64	.039					
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	.0038					
Kovar	Case, MHP	0.020	F	.42	.048					

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: ≥ 2W, Typically)

0.020

0.020

$$\theta_{JC} = \frac{\sum\limits_{i=1}^{n} \left(\frac{1}{K_{i}}\right) \left(L_{i}\right)}{A}$$

n = Number of Material Layers

Case, MHP

Case, PHP

 K_i = Thermal Conductivity of ith Material $\left(\frac{W/in^2}{°C/in}\right)$ (User Provided or From Table)

L_i = Thickness of ith Material (in) (User Provided or From Table)

A = Die Area (in²). If Die Area cannot be readily determined, estimate as follows: $A = [.00278 \text{ (No. of Die Active Wire Terminals)} + .0417]^2$

Estimate T_J as Follows:

Aluminum

Copper

$$T_J = T_C + .9 (\theta_{JC}) (P_D)$$

 T_C = Hybrid Case Temperature (°C). If unknown, use the T_C Default Table shown in Section 5.11.

 θ_{JC} = Junction-to-Case Thermal Resistance (°C/W) (As determined above)

P_D = Die Power Dissipation (W)

.0043

.0020

4.6

9.9

5.13 MICROCIRCUITS, EXAMPLES

Example 1: CMOS Digital Gate Array

Given:

A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$\lambda_{\mathbf{p}} = (C_{1}\pi_{T} + C_{2}\pi_{E}) \, \pi_{\mathbf{Q}}\pi_{L} \qquad \text{Section 5.1}$$

$$C_{1} = .020 \qquad 1000 \, \text{Transistors} \approx 250 \, \text{Gates, MOS C}_{1} \, \text{Table, Digital Column}$$

$$\pi_{T} = .29 \qquad \text{Determine } T_{J} \, \text{from Section 5.11}$$

$$T_{J} = 48^{\circ}\text{C} + (28^{\circ}\text{C/W})(.075\text{W}) = 50^{\circ}\text{C}$$

$$\text{Determine } \pi_{T} \, \text{from Section 5.8, Digital MOS Column.}$$

$$C_{2} = .011 \qquad \text{Section 5.9}$$

$$\pi_{E} = 4.0 \qquad \text{Section 5.10}$$

$$\pi_{Q} = 3.1 \qquad \text{Section 5.10}$$

$$Group \, 1 \, \text{Tests} \qquad 50 \, \text{Points}$$

$$Group \, 3 \, \text{Tests} \, (\text{B-level}) \qquad \frac{30 \, \text{Points}}{80 \, \text{Points}}$$

$$TOTAL \qquad 80 \, \text{Points}$$

$$\pi_{Q} = 2 + \frac{87}{80} = 3.1$$

$$\pi_{L} = 1 \qquad \text{Section 5.10}$$

Example 2: EEPROM

Given:

A 128K Flotox EEPROM that is expected to have a T_J of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

Section 5.2

 $\lambda_{\rm D} = [(.020)(.29) + (.011)(4)](3.1)(1) = .15$ Failure/10⁶ Hours

			p 1 1 2 E Cycharl	
C ₁	=	.0034	Section 5.2	
πT	=	3.8	Section 5.8	
C_2	=	.014	Section 5.9	

 $\pi_D = (C_1 \pi_T + C_2 \pi_E + \lambda_{CMC}) \pi_C \pi_L$

$$\pi_{\text{E}} = 5.0 \qquad \text{Section 5.10}$$

$$\pi_{\text{Q}} = 2.0 \qquad \text{Section 5.10}$$

$$\pi_{\text{L}} = 1.0 \qquad \text{Section 5.10}$$

$$\lambda_{\text{CyC}} = .38 \qquad \text{Section 5.2:}$$

$$\lambda_{\text{CyC}} = \begin{bmatrix} A_1 & B_1 + \frac{A_2B_2}{\pi_Q} \end{bmatrix} \pi_{\text{ECC}}$$

$$A_2 = B_2 = 0 \text{ for Flotox}$$

$$Assume \text{ No ECC, } \pi_{\text{ECC}} = 1$$

$$A_1 = .1, \text{ 7K } \leq \text{C} \leq 15\text{K Entry}$$

$$B_1 = 3.8 \qquad \text{(Use Equation 1 at bottom of B}_1 \text{ and B}_2 \text{ Table})$$

$$\lambda_{\text{CyC}} = A_1 B_1 = (.1)(3.8) = .38$$

$$\lambda_{\rm D}$$
 = [(.0034)(3.8) + (.014)(5.0) + .38] (2.0)(1) = .93 Failures/10⁶ Hours

Example 3: GaAs MMIC

Given:

A MA4GM212 Single Pole Double Throw Switch, DC - 12 GHz, 4 transistors, 4 inductors, 8 resistors, maximum input P_D = 30 dbm, 16 pin hermetic flatpack, maximum T_{CH} = 145°C in a ground benign environment. The part has been manufactured for 1 year and is screened to Paragraph 1.2.1 of MIL-STD-883, Class B equivalent screen.

Section 5.4

$$\pi_T$$
 = .061
 Section 5.8, $T_J = T_{CH} = 145^{\circ}C$
 π_A
 = 3.0
 Section 5.4, Unknown Application

 C_2
 = .0047
 Section 5.9

 π_E
 = .50
 Section 5.10

 π_L
 = 1.5
 Section 5.10

 π_C
 = 2.0
 Section 5.10

 $\lambda_{D} = [C_1 \pi_T \pi_A + C_2 \pi_F] \pi_I \pi_O$

$$\lambda_p = [(4.5)(.061)(3.0) + (.0047)(.5)](1.5)(2.0) = 2.5 \text{ Failures/}10^6 \text{ Hours}$$

NOTE: The passive elements are assumed to contribute negligibly to the overall device failure rate.

Example 4: Hybrid

Given:

A linear multichip hybrid driver in a hermetically sealed Kovar package. The substrate is alumina and there are two thick film dielectric layers. The die and substrate attach materials are conductive epoxy and solder, respectively. The application environment is naval unsheltered, 65°C case temperature and the device has been in production for over two years. The device is

MICROCIRCUITS, EXAMPLES 5.13

screened to MIL-STD-883, Method 5008, in accordance with Table VIII, Class B requirements. The hybrid contains the following components:

Active Components:

LM106 Bipolar Comparator/Buffer Die (13 Transistors)

LM741A Bipolar Operational Amplifier Die (24 Transistors)

Si NPN Transistor

2 Si PNP Transistor

Si General Purpose Diodes

Passive Components:

2 -17 -Ceramic Chip Capacitors

Thick Film Resistors

$$\lambda_{D} = [\sum N_{C} \lambda_{C}] (1 + .2\pi_{E}) \pi_{F} \pi_{Q} \pi_{L}$$
 Section 5.5

1. **Estimate Active Device Junction Temperatures**

If limited information is available on the specific hybrid materials and construction characteristics the default case-to-junction temperature rises shown in the introduction to Section 5.12 can be used. When detailed information becomes available the following Section 5.12 procedure should be used to determine the junction-to-case ($\theta_{\rm JC}$) thermal resistance and T_J values for each component.

$$\theta_{JC} = \frac{\sum_{i=1}^{n} \left(\frac{1}{K_i}\right) (L_i)}{A}$$
 (Equation 1)

Layer	Figure 5-1 Feature		
Silicon Chip	A		.0045
Conductive Epoxy	В		.023
Two Dielectric Layers	С	(2)(.0045) =	.009
Alumina Substrate	D		.039
Solder Substrate Attachment	E		.0023
Kovar Case	F		.048
		$\Sigma\left(\frac{1}{K_i}\right)(L_i) =$.1258

A = Die Area =
$$[.00278 \text{ (No. Die Active Wire Terminals)} + .0417]^2$$
 (Equation 2)
 $T_J = T_C + \theta_{JC} P_D$ (Equation 3)

5.13 MICROCIRCUITS, EXAMPLES

	LM106	LM741A	SINPN	Si PNP	Si Diode	Source
No. of Pins	8	14	3	3	2	Vendor Spec. Sheet
Power Dissipation, P _D (W)	.33	.35	.6	.6	.42	Circuit Analysis
Area of Chip (in. ²)	.0041	.0065	.0025	.0025	.0022	Equ. 2 Above
θ _{JC} (℃/W)	30.8	19.4	50.3	50.3	56.3	Equ. 1 Above
⊤ _J (℃)	75	72	95	95	89	Equ. 3 Above

- 2. Calculate Failure Rates for Each Component:
 - A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$\lambda_{p} = [C_{1} \pi_{T} + C_{2} \pi_{E}] \pi_{Q} \pi_{L}$$

Section 5.1

Because $C_2 = 0$;

$$\lambda_D = C_1 \pi_T \pi_Q \pi_L$$

 π_{T} : Section 5.8; π_{Q} , π_{L} Default to 1.0

- = (.01)(3.8)(1)(1) = .038 Failures/10⁶ Hours
- B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

$$\lambda_{\rm p} = C_1 \pi_{\rm T} \pi_{\rm Q} \pi_{\rm L} = (.01)(3.1)(1)(1) = .031 \text{ Failures/}10^6 \text{ Hours}$$

C) Silicon NPN Transistor, Rated Power = 5W (From Vendor Spec. Sheet), V_{CE}/V_{CEO} = .6, **Linear Application**

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm T} \pi_{\rm A} \pi_{\rm R} \pi_{\rm S} \pi_{\rm Q} \pi_{\rm E}$$
 Section 6.3; $\pi_{\rm Q}$, $\pi_{\rm E}$ Default to 1.0 = (.00074)(3.9)(1.5)(1.8)(.29)(1)(1)

- = .0023 Failures/10⁶ Hours
- D) Silicon PNP Transistor, Same as C.

$$\lambda_{\rm p} = .0023 \text{ Failures/} 10^6 \text{ Hours}$$

E) Silicon General Purpose Diode (Analog), Voltage Stress = 60%, Metallurgically Bonded Construction.

 $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm T} \pi_{\rm S} \pi_{\rm C} \pi_{\rm Q} \pi_{\rm E}$ = (.0038)(6.3)(.29)(1)(1)(1)

Section 6.1; π_{Q} , π_{F} Default to 1.0

- = .0069 Failures/10⁶ Hours

5.13 MICROCIRCUITS, EXAMPLES

F) Ceramic Chip Capacitor, Voltage Stress = 50%, $T_A = T_{CASE}$ for the Hybrid, 1340 pF, 125°C Rated Temp.

$$\lambda_{\rm p} = \lambda_{\rm b} \, \pi_{\rm CV} \, \pi_{\rm Q} \, \pi_{\rm E}$$
 Section 10.11; $\pi_{\rm Q}$, $\pi_{\rm E}$ Default to 1.0 = .0028)(1.4)(1)(1) = .0039 Failures/10⁶ Hours

G) Thick Film Resistors, per instructions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall hybrid failure rate and they may be ignored.

Overall Hybrid Part Failure Rate Calculation:

$$\begin{array}{lll} \lambda_{\rm p} &=& \left[\sum {\rm N_C} \; \lambda_{\rm c} \right] (1 + .2 \, \pi_{\rm E}) \, \pi_{\rm F} \, \pi_{\rm Q} \, \pi_{\rm L} \\ \\ \pi_{\rm E} &=& 6.0 & {\rm Section} \; 5.10 \\ \\ \pi_{\rm F} &=& 5.8 & {\rm Section} \; 5.5 \\ \\ \pi_{\rm Q} &=& 1 & {\rm Section} \; 5.10 \\ \\ \pi_{\rm L} &=& 1 & {\rm Section} \; 5.10 \\ \\ \lambda_{\rm p} &=& \left[\; (1) (.038) + (1) (.031) + (2) \; (.0023) + (2) \; (.0023) \\ \\ && + \; (2) (.0069) + (2) (.0039) \; \right] (1 \, + \; .2 \, (6.0)) \; (5.8) \; (1) (1) \\ \\ \lambda_{\rm p} &=& 1.3 \; {\rm Failures/10^6 \; Hours} \end{array}$$

6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

The semiconductor transistor, diode and opto-electronic device sections present the failure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different failure rate models that vary to some degree. The models apply to single devices unless otherwise noted. For multiple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor (π_T) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device junction to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section.

6.1 DIODES, LOW FREQUENCY

SPECIFICATION MIL-S-19500

DESCRIPTION

Low Frequency Diodes: General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor, Current Regulator, Voltage Regulator, Voltage Reference

 $\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Diode Type/Application	λ _b
General Purpose Analog Switching	.0038
Power Rectifier, Fast Recovery	.069
Power Rectifier/Schottky Power Diode	.0030
Power Rectifier with High Voltage Stacks	.0050/ Junction
Transient Suppressor/Varistor	.0013
Current Regulator Voltage Regulator and Voltage	.0034 .0020
Reference (Avalanche and Zener)	

Temperature Factor - π_T

(General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor)

Power Rectifier, Transient Suppressor)							
T _J (°C)	πΤ	T _J (°C)	π _T				
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.2 1.4 1.6 1.9 2.6 3.0 3.4 3.9 4.4 5.7 6.4 7.0	105 110 115 120 125 130 135 140 145 150 156 165 170 175	9.0 10 11 12 14 15 16 18 20 21 23 25 28 30 32				
π ₇ =	exp (- 3091	$\frac{1}{T_1 + 273}$	1 298				

Junction Temperature (°C)

$\label{eq:Temperature Factor - π_T} \end{substitute} Temperature Factor - π_T (Voltage Reference,$

and Current Regulator)			
T _J (°C)	π _T	T _J (*C)	×T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 160 165 170	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
	(· 1	1))

$$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J}+273} - \frac{1}{298}\right)\right)$$
 $T_{J} = \text{Junction Temperature (°C)}$

6.1 DIODES, LOW FREQUENCY

Electrical Stress Factor - π_S

Stress	π_{S}
Transient Suppressor, Voltage Regulator, Voltage Reference, Current Regulator	1.0
All Others:	
V _s ≤ .30	0.054
.3 < V _S ≤ .40	0.11
.4 < V _s ≤ .50	0.19
.5 < V _s ≤ .60	0.29
.6 < V _s ≤ .70	0.42
.7 < V _S ≤ .80	0.58
.8 < V _s ≤ .90	0.77
.9 < V _S ≤ 1.00	1.0
-	

For All Except Transient Suppressor, Voltage

Regulator, Voltage Reference, or Current Regulator

$$\pi_{S} = .054$$
 $(V_{S} \le .3)$
 $\pi_{S} = V_{S}^{2.43}$ $(.3 < V_{S} \le 1)$

 V_S = Voltage Stress Ratio = $\frac{\text{Voltage Applied}}{\text{Voltage Rated}}$

Voltage is Diode Reverse Voltage

Contact Construction Factor - π_C

Contact Construction	π _C
Metallurgically Bonded	1.0
Non-Metallurgically Bonded and Spring Loaded Contacts	2.0

Quality Factor - π_Q

Quality	π _Q
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_E

Environment raciol - xE		
Environment	π _E	
G _B	1.0	
G _F	6.0	
G _F G _M N _S N _U	9.0	
N _S	9.0	
N _U	19	
A _{IC}	13	
^A IC ^A IF	29	
AUC	20	
^A UF	43	
A _{RW}	24	
S _F	.50	
M _F	14	
м _L Ել	32	
CL	320	

6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

SPECIFICATION MIL-S-19500

DESCRIPTION

Si IMPATT; Bulk Effect, Gunn; Tunnel, Back; Mixer, Detector, PIN, Schottky; Varactor, Step Recovery

$\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

Diode Type	አ _ው
Si IMPATT (≤ 35 GHz) Gunn/Bulk Effect	.22 .18
Tunnel and Back (Including Mixers, Detectors) PIN	.0023 .0081
Schottky Barrier (Including Detectors) and Point Contact (200 MHz ≤ Frequency ≤ 35 GHz) Varactor and Step Recovery	.027 .0025
Valacioi and Step necessary	.0025

Temperature Factor - π_T (All Types Except IMPATT)

(All Types Except IMPATT)			
T _J (°C)	π _T	T _J (°C)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.5 3.8 4.1	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	4.4 4.8 5.1 5.5 5.9 6.3 6.7 7.1 7.6 8.0 8.5 9.0 9.5
$\pi_{T} = \exp\left(-2100\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T ₁ = Junction Temperature (°C)			

Temperature Factor- π_T

	(IMPATT)				
T _J (°C)	π _T	T _J (°C)	π _T		
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.3 1.8 2.3 3.0 3.9 5.0 6.4 8.1 10 13 16 19 24 29 35	105 110 115 120 125 130 135 140 145 150 155 160 165 170	42 50 60 71 84 99 120 140 160 180 210 250 280 320 370		
π _Т =	$\pi_{T} = \exp\left(-5260\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$				
T, =	T _J = Junction Temperature (°C)				

Application Factor - π_A

Diodes Application	π _A
Varactor, Voltage Control	.50
Varactor, Multiplier	2.5
All Other Diodes	1.0

6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

Power Rating Factor - π_R

Rated Power, Pr (Watts)	π _R
PIN Diodes Pr ≤ 10	.50
10 < P _r ≤ 100	1.3
100 < P _r ≤ 1000	2.0
$1000 < P_r \le 3000$	2.4
All Other Diodes	1.0
PIN Diodes $\pi_{R} = .3$	26 ln(P _r)25
All Other Diodes π _R = 1	.0

Quality Factor - π_Q
(All Types Except Schottky)

Quality *	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	5.0
Lower	25
Plastic	50

^{*} For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500.

Quality Factor - π_Q

(Schottky)		
Quality*	π Q	
JANTXV	.50	
JANTX	1.0	
JAN	1.8	
Lower	2.5	
Plastic	-	

For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500.

Environment Factor - π_F

Environment	π _E
G _B	1.0
GF	2.0
G _M	5.0
NS	4.0
N _U	11
A _{IC} A _{IF} A _{UC} A _{UF}	4.0
A _{IF}	5.0
Auc	7.0
A _{UF}	12
A _{RW}	16
S _F M _F	.50
	9.0
ML	24
M _L Cլ	250

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION

NPN (Frequency < 200 MHz) PNP (Frequency < 200 MHz)

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_S \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ,

Туре	λ _b
NPN and PNP	.00074

Application Factor - π_A

Application	π _A
Linear Amplification	1.5
Switching	.70

Temperature Factor - π_T

T _J (°C)	πΤ	T _J (°C)	π_{\uparrow}
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.6 3.9 4.2	105 110 115 120 125 130 135 140 145 150 156 160 165 170	4.5 4.8 5.6 5.9 6.8 7.2 7.7 8.1 8.6 9.1 9.7
$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Power Rating Factor - πD

rower nating racion - AR			
Rated Power (Pr., Wa	tts) π _R		
P _r ≤ .1	.43		
P _r = .5	.77		
P _r = 1.0	1.0		
$P_r = 5.0$	1.8		
P _r = 10.0	2.3		
$P_r = 50.0$	4.3		
$P_{r} = 100.0$	5.5		
P _r = 500.0	10		
$\pi_{P_i} = .43$ $\pi_{P_i} = (P_i)^{.37}$	$π_R = .43$ Rated Power ≤ .1W $π_R = (P_r)^{.37}$ Rated Power > .1W		
*R = (' ')	Tates Tower > . IVV		

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

Voltage Stress Factor - π_S

		<u></u>
Applied V _C	E/Rated VCEO	π _S
0 < V _s ≤	.3	.11
.3 < V _s ≤	.4	.16
.4 < V _S ≤	.5	.21
.5 < V _s ≤	3 .6	.29
.6 < V _S ≤	. .7	.39
.7 < V _s ≤	8. 2	.54
.8 < V _S ≤	.9	.73
.9 < V _s ≤	1.0	1.0
^π S -	.045 exp (3.1(Vs))	(0 < V _S ≤ 1.0)
V _s =	■ Applied V _{CE} / Rated V _{CEO}	
V _{CE} = Voltage, Collector to Emitter		Emitter
V _{CEO} -	 Voltage, Collector to Emitter, Base Open 	

Environment Factor - π_F

	<u>. </u>
Environment	π _E
G _B	1.0
G _F	6.0
G _M	9.0
NS	9.0
N _U	19
^A IC	13
A _{IF}	29
Auc	20
A _{UF}	43
^A RW	24
S _F	.50
M _F	14
ML	32
СĹ	320

Quality Factor - π_Q

Quality	π _Q
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

6.4 TRANSISTORS, LOW FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

N-Channel and P-Channel Si FET (Frequency ≤ 400 MHz)

$\lambda_p = \lambda_b \pi_T \pi_A \pi_Q \pi_E \quad \text{Failures/10}^6 \ \text{Hours}$

Base Failure Rate - λ,

Transistor Type	λ _b
MOSFET	.012
JFET	.0045

Temperature Factor - π_T

T _J (°C)	π _T	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7

$$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$
 $T_{J} = \text{Junction Temperature (°C)}$

Quality Factor - π_O

Quality	π _Q
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Application Factor - π_A

Application (P _f , Rated Output Power)	π _A
Linear Amplification (P _r < 2W)	1.5
Small Signal Switching	.70
Power FETs (Non-linear, P _r ≥ 2W)	
$2 \le P_r < 5W$	2.0
$5 \le P_r < 50W$	4.0
$50 \le P_r < 250W$	8.0
P _r ≥ 250W	10

Environment Factor - π_{E}

Environment	π _E
G _B	1.0
G _F	6.0
G _M	9.0
NS	9.0
N _U	19
A _{IC}	13
A _{IF}	29
A _{UC}	20
A _{UF}	43
A _{RW}	24
S _F	.50
M _F	14
M_L	32
CL	320

TRANSISTORS, UNIJUNCTION

SPECIFICATION MIL-S-19500

DESCRIPTION Unijunction Transistors

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Туре	λ _b
All Unijunction	.0083

Temperature Factor - π_T

25 1.0 105 5.8 30 1.1 110 6.4 35 1.3 115 6.9 40 1.5 120 7.5 45 1.7 125 8.1 50 1.9 130 8.8	T _J (°C)	π_{T}	T _J (°C)	π _T
55 2.1 135 9.5 60 2.4 140 10 65 2.7 145 11 70 3.0 150 12 75 3.3 155 13 80 3.7 160 13 85 4.0 165 14 90 4.4 170 15 95 4.9 175 16 100 5.3 175 16	30 35 40 45 55 60 75 85 90 95	1.1 1.3 1.5 1.7 1.9 2.1 2.4 2.7 3.0 3.3 3.7 4.0 4.4 4.9	110 115 120 125 130 135 140 145 150 155 160 165	6.4 6.9 7.5 8.1 8.8 9.5 10 11 12 13 13

$$\pi_{T} = \exp \left(-2483 \left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

$$T_{J} = \text{Junction Temperature (°C)}$$

Quality Factor - π_Q

Quality	π_{Q}
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_E

	<u>"E</u>
Environment	π _E
GB	1.0
G _F	6.0
G _B G _F G _M	9.0
N _S	9.0
N∪	19
	13
^A IC ^A IF ^A UC	29
Auc	20
A _{UF}	43
A _{RW}	24
S _F	.50
M _F	14
м∟	32
Mլ Cլ	320

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION

Bipolar, Microwave RF Transistor (Frequency > 200 MHz, Power < 1W)

$$\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$$
 Failures/10⁶ Hours

Application Note: The model applies to a single die (for multiple die use the hybrid model). The model does apply to ganged transistors on a single die.

Base Failure Rate - λ.

	· · · · · ·
Type	λ _b
All Types	.18

Temperature Factor - π_T

T_J (°C) π_T T_J (°C) π_T 25 1.0 105 4.5 30 1.1 110 4.8 35 1.3 115 5.2 40 1.4 120 5.6 45 1.6 125 5.9 50 1.7 130 6.3 55 1.9 135 6.8 60 2.1 140 7.2 65 2.3 145 7.7 70 2.5 150 8.1 75 2.8 155 8.6 80 3.0 160 9.1 95 3.3 165 9.7 90 3.6 170 10 95 3.9 175 11 100 4.2 175 11		·		
30 1.1 110 4.8 35 1.3 115 5.2 40 1.4 120 5.6 45 1.6 125 5.9 50 1.7 130 6.3 55 1.9 135 6.8 60 2.1 140 7.2 65 2.3 145 7.7 70 2.5 150 8.1 75 2.8 155 8.6 80 3.0 160 9.1 85 3.3 165 9.7 90 3.6 170 10 95 3.9 175 11	T _J (°C)	πΤ	T _J (°C)	πΤ
	30 35 40 45 50 55 60 65 70 75 80 95	1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.6 3.9	110 115 120 125 130 135 140 145 150 155 160 165	4.8 5.2 5.6 5.9 6.8 7.2 7.7 8.1 8.6 9.1 9.7

$$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{j}+273}-\frac{1}{298}\right)\right)$$

T_J = Junction Temperature (°C)

Power Rating Factor - πp

Rated Power (P _r , Watts)	π _R		
P _r ≤ .1	.43		
.1 < P _r ≤ .2	.55		
$.2 < P_r \le .3$.64		
$.3 < P_r \le .4$.71		
$.4 < P_r \le .5$.77		
.5 < P _r ≤ .6	.83		
.6 < P _r ≤ .7	.88		
.7 < P _r ≤ .8	.92		
.8 < P _r ≤ .9	.96		
π _R = .43	P _r ≤.1W		
$\pi_{R} = (P_r)^{.37}$	P _r > .1 W		

Voltage Stress Factor - π_s

Applied VCE/Rated VCEO	π _s
0 < V _s ≤ .3	.11
.3 < V _s ≤ .4	.16
.4 < V _s ≤ .5	.21
.5 < V _s ≤ .6	.29
.6 < V _s ≤ .7	.39
.7 < V ₈ ≤ .8	.54
.8 < V _s ≤ .9	.73
$.9 < V_{S} \le 1.0$	1.0

 π_s = .045 exp (3.1(Vs)) (0 < V_s ≤ 1.0)

V_s = Applied V_{CE} / Rated V_{CEO}

V_{CE} - Voltage, Collector to Emitter

V_{CEO} = Voltage, Collector to Emitter, Base Open

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

Quality Factor - π_Q

Quality	π _Q
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _B	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC}	4.0
A _{IF}	5.0
Auc	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
MF	9.0
M_L	24
M _L C _L	250

TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION

Power, Microwave, RF Bipolar Transistors (Average Power ≥ 1W)

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_M \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Frequency				Output Po	wer (Watts)					
(GHz)	1.0	5.0	10	50	100	200	300	400	500	600
≤ 0.5	.038	.039	.040	.050	.067	.12	.20	.36	.62	1.1
1	.046	.047	.048	.060	.080	.14	.24	.42	.74	1.3
2	.065	.067	.069	.086	.11	.20	.35			
3	.093	.095	.098	.12	.16	.28				
4	.13	.14	.14	.17	.23					
5	.19	.19	.20	.25						

 $.032 \exp(.354(F) + .00558(P))$

Frequency (GHz)

Output Power (W)

NOTE: Output power refers to the power level for the overall packaged device and not to individual transistors within the package (if more than one transistor is ganged together). The output power represents the power output from the active device and should not account for any duty cycle in pulsed applications. Duty cycle is accounted for when determining π_A .

Temperature Factor - π_T

(Gold Metallization)

T _J (°C) ≤ .40 .45 .50 .55 ≤100 .10 .20 .30 .40 110 .12 .25 .37 .49	
) with 1 111	
110 .12 .25 .37 .49	
120 .15 .30 .45 .59	
130 .18 .36 .54 .71	
140 .21 .43 .64 .85	
150 .25 .50 .75 1.0	
160 .29 .59 .88 1.2	
170 .34 .68 1.0 1.4	
180 .40 .79 1.2 1.6	
190 .45 .91 1.4 1.8	
200 .52 1.0 1.6 2.1	

$$\pi_{T} = .1 \exp\left(-2903 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$$
 $(V_{S} \le .40)$

$$\pi_{T} = 2 (V_{S} - .35) \exp \left(-2903 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right).$$

$$(.4 < V_{S} \le .55)$$

- VCE / BVCES

VCE Operating Voltage (Volts)

Collector-Emitter Breakdown **BVCES** Voltage with Base Shorted to

Emitter (Volts)

Peak Junction Temperature (°C) T_{J}

Temperature Factor - π_T

(Aluminum Metallization)

	V _S (VCE/BVCES)			
T _J (°C)	≤ .40	.45	.50	.55
≤100	.38	.75	1.1	1.5
110	.57	1.1	1.7	2.3
120	.84	1.7	2.5	3.3
130	1.2	2.4	3.6	4.8
140	1.7	3.4	5.1	6.8
150	2.4	4.7	7.1	9.5
160	3.3	6.5	9.7	13
170	4.4	8.8	13	18
180	5.9	12	18	23
190	7.8	15	23	31
200	10	20	30	40

$$\pi_{T} = .38 \exp\left(-5794 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$$
 $(V_{S} \le .40)$

$$\pi_{T} = 7.55 \ (V_{S} - .35) \exp \left(-5794 \left(\frac{1}{T_{J} + 273} - \frac{1}{373} \right) \right),$$

$$(.4 < V_{S} \le .55)$$

VCE / BVCES

 Operating Voltage (Volts) VCE

BVCES Collector-Emitter Breakdown Voltage with Base Shorted to

Emitter (Volts)

Peak Junction Temperature (°C) $T_{\mathbf{J}}$

6.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

Application Factor - π_A

•	·	
Application	Duty Factor	πA
CW	N/A	7.6
Pulsed	≤ 1% 5% 10% 15% 20% 25%	.46 .70 1.0 1.3 1.6
	≥ 30%	2.2

 $\pi_A = 7.6$, CW

 π_A = .06 (Duty Factor %) + .40 , Pulsed

Quality Factor - πQ

Quality	π _Q
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.

Matching Network Factor - π_M

Matching	π _M
Input and Output	1.0
Input	2.0
None	4.0

Environment Factor - π_{F}

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC}	4.0
A _{IF}	5.0
Auc	7.0
A _{UF}	12
ARW	16
S _F	.50
M _F	9.0
M_L	24
M _L C _L	250

6.8 TRANSISTORS, HIGH FREQUENCY, GAAS FET

SPECIFICATION

MIL-S-19500

DESCRIPTION

GaAs Low Noise, Driver and Power FETs (≥ 1GHz)

$$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{A} \pi_{M} \pi_{Q} \pi_{E}$$

Failures/10⁶ Hours

Base Failure Rate - λh

Operating	ting		Average Output Power (Watts)				
Frequency (GHz)	< .1	.1	.5	11	2	4	6
1	.052			_	••		
4	.052	.054	.066	.084	.14	.36	.96
5	.052	.083	.10	.13	.21	.56	1.5
6	.052	.13	.16	.20	.32	.85	2.3
7	.052	.20	.24	.30	.50	1.3	3.5
8	.052	.30	.37	.47	.76	2.0	
9	.052	.46	.56	.72	1.2		
10	.052	.71	.87	1.1	1.8		

 $\lambda_h = .052$

1≤F≤10, P<.1

 $\lambda_{1} = .0093 \exp(.429(F) + .486(P))$

4≤F≤10, .1≤P≤6

F = Frequency (GHz)

P - Average Output Power (Watts)

The average output power represents the power output from the active device and should not account for any duty cycle in pulsed applications.

Temperature Factor - π_{T}

T _C (°C)	πΤ	T _C (°C)	πΤ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.3 1.6 2.1 2.6 3.2 4.0 4.9 5.9 7.2 8.7 10 12 15 18 21	105 110 115 120 125 130 135 140 145 150 155 160 165 170	24 28 33 38 44 50 58 66 75 85 97 110 120 140 150
π _T =	exp (- 4485	$\left(\frac{1}{T_{C} + 273} - \right)$	1)
	((10 1 -13	

T_C = Channel Temperature (°C)

Application Factor - π_{Δ}

Application (P ≤ 6W)	π _A
All Low Power and Pulsed	1
CW	4

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor - π_M

Matching	πM
Input and Output	1.0
Input Only	2.0
None	4.0
1	

Quality Factor - π_{Q}

π _Q
.50
1.0
2.0
5.0

Environment Factor - π_E

	<u> </u>
Environment	π _E
GB	1.0
G _F	2.0
G _B G _F G _M	5.0
N _S	4.0
N _U	11
A _{IC}	4.0
A _{IC} A _{IF} A _{UC}	5.0
A _{UC}	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	7.5
M_L	24
Mլ Cլ	250

TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION

MIL-S-19500

Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Transistor Type	λ _b
MOSFET	.060
JFET	.023

Temperature Factor - π_T

T _J (°C)	π _T	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170	3.9 4.2 4.5 4.8 5.1 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T ₁ = Junction Temperature (°C)			

Quality Factor - π_Q

Quality	πQ	
JANTXV	.50	
JANTX	1.0	
JAN	2.0	
Lower	5.0	

Environment Factor - π_E

Environment ractor	" E
Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
NU	11
A _{IC}	4.0
A _{IF}	5.0
A _{UC}	7.0
A _{UF}	12
A _{RW}	16
SF	.50
M _F	9.0
ML	24
cL	250

6.10 THYRISTORS AND SCRS

SPECIFICATION MIL-S-19500

DESCRIPTION

Thyristors SCRs, Triacs

$\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Device Type	λ _b
All Types	.0022

Temperature Factor - π_T

T _J (℃)	π_{T}	T _J (℃)	π_{\top}
25 30 35 40 45 50 55 60 67 75 85 90 10	1.0 1.2 1.4 1.6 1.9 2.2 2.6 3.4 3.9 4.4 5.7 6.2 8.0	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	8.9 9.9 11 12 13 15 16 18 19 21 23 25 27 30 32

$$\pi_{T}$$
 - $\exp\left(-3082\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$

T_{.1} = Junction Temperature (°C)

T = THAIS GENERIC GEVICE IVOR HAS DERN

Current Rating Factor - π_R

Tantaning Factor NH		
Rated Forward Current (Ifrms (Amps))	π _R	
.05 .10 .50 1.0 5.0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	.30 .40 .76 1.0 1.9 2.5 3.9 4.4 4.8 5.1 5.5 5.8 6.0 6.3 6.6 6.8 7.0 7.2 7.4 7.6 7.8 7.9	
$\pi_{R} = (l_{frms})^{.40}$		
I _{frms} = RMS Rated Forward Current (Amps)		

6.10 THYRISTORS AND SCRS

Voltage Stress Factor - π_S

_	3
V _S (Blocking Voltage Applied/ Blocking Voltage Rated)	π _S
$V_{S} \le .30$ $.3 < V_{S} \le .4$ $.4 < V_{S} \le .5$ $.5 < V_{S} \le .6$ $.6 < V_{S} \le .7$ $.7 < V_{S} \le .8$ $.8 < V_{S} \le .9$ $.9 < V_{S} \le 1.0$.10 .18 .27 .38 .51 .65 .82
$\pi_{S} = .10$ $\pi_{S} = (V_{S})^{1.9}$	$(V_s \le 0.3)$ $(V_s > 0.3)$

Quality Factor - π_Q

Quality	πQ
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_F

Environment	π _E	
G _B	1.0	
G _E	6.0	
G _M	9.0	
N _S	9.0	
N _U	19	
A _{IC}	13	
A _{IC} A _{IF}	29	
Auc	20	
A _{UF}	43	
A _{RW}	24	
S _F	.50	
M _F	14	
ML	32	
cĹ	320	

6.11 OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS

SPECIFICATION MIL-S-19500

DESCRIPTION

Photodetectors, Opto-isolators, Emitters

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Dago I ambio I late 170		
Optoelectronic Type	λ	
Photodetectors		
Photo-Transistor	.0055	
Photo-Diode	.0040	
Opto-Isolators		
Photodiode Output, Single Device	.0025	
Phototransistor Output, Single Device	.013	
Photodarlington Output, Single Device	.013	
Light Sensitive Resistor, Single Device	.0064	
Photodiode Output, Dual Device	.0033	
Phototransistor Output, Dual Device	.017	
Photodarlington Output, Dual Device	,017	
Light Sensitive Resistor, Dual Device	.0086	
Emitters		
Infrared Light Emitting Diode (IRLD)	.0013	
Light Emitting Diode (LED)	.00023	

Temperature Factor - π_T

Tomporatore : doies			
T _J (°C)	πΤ	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.4 2.7 3.0 3.4	75 80 85 90 95 100 105 110	3.8 4.3 4.8 5.3 5.9 6.6 7.3 8.0 8.8
$\pi_{T} = \exp\left(-2790\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Quality Factor - π_Q

πQ
.70
1.0
2.4
5.5
8.0

Environment Factor - π_E

	<u> </u>
Environment	π _E
G _B	1.0
	2.0
G _F	8.0
N _S	5.0
N _U	12
	4.0
A _{IC} A _{IF}	6.0
A _{UC}	6.0
A _{UF}	8.0
A _{RW}	17
S _F	.50
M _F	9.0
ML	24
Mլ Cլ	450

6.12 OPTOELECTRONICS, ALPHANUMERIC DISPLAYS

SPECIFICATION MIL-S-19500

DESCRIPTION Alphanumeric Display

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_h

Number of Characters	^λ b Segment Display	λ _b Diode Array D is play
1 1 w/Logic Chip 2 2 w/Logic Chip 3 3 w/Logic Chip 4 4 w/Logic Chip 5 6 7 8 9 10	.00043 .00047 .00086 .00090 .0013 .0013 .0017 .0018 .0022 .0026 .0030 .0034 .0039	.00026 .00030 .00043 .00047 .00060 .00064 .00077 .00081 .00094 .0011 .0013 .0015 .0016
11 12 13 14 15	.0047 .0052 .0058 .0060	.0020 .0021 .0023 .0025 .0026

 $\lambda_D = .00043(C) + \lambda_{1C}$, for Segment Displays

 λ_{b} = .00009 + .00017(C) + λ_{IC} , Diode Array Displays

C = Number of Characters

 λ_{IC} = .000043 for Displays with a Logic Chip

= 0.0 for Displays without Logic Chip

NOTE: The number of characters in a display is the number of characters contained in a <u>single</u> sealed package. For example, a 4 character display comprising 4 separately packaged single characters mounted together would be 4-one character displays, not 1-four character display.

Quality Factor - TO

Quality	π _Q
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Temperature Factor - π_T

T _J (℃)	π _T	T _J (℃)	π_{T}
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.4 2.7 3.0 3.4	75 80 85 90 95 100 105 110	3.8 4.3 4.8 5.3 5.9 6.6 7.3 8.0 8.8
$\pi_{\text{T}} = \exp\left(-2790\left(\frac{1}{T_{\text{J}} + 273} - \frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Environment Factor - π_F

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F	8.0
NS	5.0
N _U	12
A _{IC} A _{IF} A _{UC} A _{UF}	4.0
A _{IF}	6.0
A _{UC}	6.0
A _{UF}	8.0
A _{RW}	17
A _{RW} S _F	.50
M _F	9.0
ML	24
Mլ Cլ	450

6.13 OPTOELECTRONICS, LASER DIODE

SPECIFICATION MIL-S-19500

DESCRIPTION Laser Diodes with Optical Flux Densities < 3 MW/cm² and Forward Current < 25 amps

 $\lambda_p = \lambda_b \pi_T \pi_Q \pi_I \pi_A \pi_P \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

λ _b
3.23
5.65

Temperature Factor - π_T

T _J (°C) π _T 25 1.0 30 1.3 35 1.7 40 2.1 45 2.7 50 3.3 55 4.1 60 5.1 65 6.3		
30 1.3 35 1.7 40 2.1 45 2.7 50 3.3 55 4.1 60 5.1 65 6.3	T _J (°C)	πΤ
75 9.3	30 35 40 45 50 55 60 65 70	1.3 1.7 2.1 2.7 3.3 4.1 5.1 6.3 7.7

Junction Temperature (°C)

Quality Factor - TO

Quality	πQ
Hermetic Package	1.0
Nonhermetic with Facet Coating	1.0
Nonhermetic without Facet Coating	3.3

Forward Current Factor, π_i

Forward Peak Current (Amps)	π
.050	0.13
.075	0.17
.1	0.21
.5	0.62
1.0	1.0
2.0	1.6
3.0	2.1
4.0	2.6
5.0	3.0
10	4.8
15	6.3
20	7.7
25	8.9

 $\pi_{|} = (1)^{.68}$

I = Forward Peak Current (Amps), i ≤ 25

NOTE: For Variable Current Sources, use the Initial Current Value.

Application Factor π_A

Application	Duty Cycle	π _A
CW		4.4
Pulsed	.1	.32 .45
	.2	.45
	.2 .3	.55
	.4	.63
	.5	.71
	.4 .5 .6	.77
	.7	.77 .84
	.8	.89
	.9	.95
	1.0	1.00

 $\pi_{A} = 4.4$, CW

 π_A = Duty Cycle ^{0.5}, Pulsed

NOTE: A duty cycle of one in pulsed application represents the maximum amount it can be driven in a pulsed mode. This is different from continuous wave application which will not withstand pulsed operating levels on a continuous basis.

6.13 OPTOELECTRONICS, LASER DIODE

Power Degradation Factor - π_P

Ratio P _r /P _s	πр
0.00	.50
.05	.53
.10	.56
.15	.59
.20	.63
.25	.67
.30	.71
.35	.77
.40	.83
.45	.91
.50	1.0
.55	1.1
.60	1.3
.65	1.4
.70	1.7
.75	2.0
.80	2.5
.85	3.3
.90	5.0
.95	10
	i

$$\pi_{p} = \frac{1}{2(1 - \frac{Pr}{Ps})}$$
 $0 < \frac{Pr}{Ps} \le .95$

P_S = Rated Optical Power Output (mW)

P_r = Required Optical Power Output (mW)

NOTE: Each laser diode must be replaced when power output falls to Pr for failure rate prediction to be valid.

Environment Factor - π_E

	<u> </u>	
Environment	π _E	
G _B	1.0	
	2.0	
G _F G _M	8.0	
	5.0	
N _S N _U	12	
Aic	4.0	
AIC AIF	6.0	
Auc	6.0	
A _{UC} A _{UF}	8.0	
A _{RW}	17	
S _F	.50	
M _F	9.0	
ĺ M _L	24	
M _L C _L	450	

6.14 DISCRETE SEMICONDUCTORS, T, DETERMINATION

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$T_{i,l} = T_{i,l} + \theta_{i,l} P$$

where:

T_{.1} = Junction Temperature (°C)

T_C = Case Temperature (°C). If no thermal analysis exists, the default case temperatures shown in Table 6-1 should be assumed.

θ_{JC} = Junction-to-Case Thermal Resistance (°C/W). This parameter should be determined from vendor, military specification sheets or Table 6-2, whichever is greater. It may also be estimated by taking the reciprocal of the recommended derating level. For example, a device derating recommendation of .16 W/°C would result in a θ_{JC} of 6.25 °C/W. If θ_{JC} cannot be determined assume a θ_{JC} value of 70°C/W.

P = Device Worse Case Power Dissipation (W)

The models are not applicable to devices at overstress conditions. If the calculated junction temperature is greater than the maximum rated junction temperature on the MIL slash sheets or the vendor's specifications, whichever is smaller, then the device is overstressed and these models ARE NOT APPLICABLE.

Table 6-1: Default Case Temperatures (T_C) for All Environments

Environment	T _C (°C)
G _B	35
G _F	45
G _B G _F G _M N _S	50
N _S	45
NU	50
AIC AIF AUC AUF	60
A _{IF}	60
AUC	75
A _{UF}	75
ARW	60
S _F	35
M _F	50
M_L	60
M _L C _L	45

6.14 DISCRETE SEMICONDUCTORS, TJ DETERMINATION

Table 6-2: Approximate Junction-to-Case Thermal Resistance (θ_{JC}) for Semiconductor Devices in Various Package Sizes"

Package Type	θJC (°C⁄W)	Package Type	θJC (°C/W)
Package Type TO-1 TO-3 TO-5 TO-8 TO-9 TO-12 TO-18 TO-28 TO-33 TO-39 TO-41 TO-44 TO-46 TO-52 TO-53 TO-57 TO-59 TO-60 TO-61 TO-63 TO-66 TO-71 TO-72 TO-83 TO-72 TO-83 TO-89 TO-92 TO-94	70 10 70 70 70 70 70 5 70 70 70 5 5 5 5 5 5	TO-205AD TO-205AF TO-220 DO-4 DO-5 DO-7 DO-8 DO-9 DO-13 DO-14 DO-29 DO-35 DO-41 DO-45 DO-205AB PA-42A,B PD-36C PD-50 PD-77 PD-180 PD-77 PD-180 PD-319 PD-262 PD-975 PD-280 PD-216 PT-2G	70 70 5 5 5 10 5 10 10 10 10 70 70 70 70 70 70 70 70 70
		*	

^{*}When available, estimates must be based on military specification sheet or vendor values, whichever θ_{JC} is higher.

6.15 DISCRETE SEMICONDUCTORS, EXAMPLE

Example

Given:

Silicon dual transistor (complementary), JAN grade, rated for 0.25 W at 25°C, one side only, and 0.35 W at 25°C, both sides, with T_{max} = 200°C, operating in linear service at 55°C case temperature in a sheltered naval environment. Side one, NPN, operating at 0.1 W and 50 percent of rated voltage and side two, PNP, operating at 0.05 W and 30 percent of rated voltage. The device operates at less than 200 MHz.

Since the device is a bipolar dual transistor operating at low frequency (<200 MHz), it falls into the Transistor, Low Frequency, Bipolar Group and the appropriate model is given in Section 6.3. Since the device is a dual device, it is necessary to compute the failure rate of each side separately and sum them together. Also, since θ_{JC} is unknown, θ_{JC} = 70°C/W will be assumed.

Based on the given information, the following model factors are determined from the appropriate tables shown in Section 6.3.

$$\lambda_{b} = .00074$$

$$\pi_{T1} = 2.2$$

$$\pi_{T2} = 2.1$$

$$\pi_{A} = 1.5$$

$$\pi_{R} = .68$$

$$\pi_{S1} = .21$$

$$\pi_{S2} = .11$$

$$\pi_{C} = 2.4$$

$$\pi_{C} = 9$$
SIDE 1
SIDE 2
$$\lambda_{D} = \lambda_{D} \pi_{T1} \pi_{A} \pi_{R} \pi_{S1} \pi_{Q} \pi_{E} + \lambda_{D} \pi_{T2} \pi_{A} \pi_{R} \pi_{S2} \pi_{Q} \pi_{E}$$

$$\lambda_{D} = (.00074)(2.2)(1.5)(.68)(.21)(2.4)(9) + (.00074)(2.1)(1.5)(.68)(.11)(2.4)(9)$$

.011 Failures/10⁶ Hours

TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

 $\lambda_p = \lambda_b \pi_L \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λb

(Includes Both Random and Wearout Failures)					
Tube Type	λ _b	Tube Type	λ _b		
Receiver		Klystron, Low Power,			
Triode, Tetrode, Pentode	5.0	(e.g. Local Oscillator)	30		
Power Rectifier	10				
CRT	9.6	Klystron, Continuous Wave*			
Thyratron	50	3K3000LQ	9.0		
Crossed Field Amplifier		3K50000LF	54		
QK681	260	3K210000LQ	150		
SFD261	150	3KM300LA	64		
Pulsed Gridded		3KM3000LA	19		
2041	140	3KM50000PA	110		
6952	390	3KM50000PA1	120		
7835	140	3KM50000PA2	150		
Transmitting	140	4K3CC	610		
	75	4K3SK	29		
Triode, Peak Pwr. ≤ 200 KW, Avg.	/5	4K50000LQ	30		
Pwr. ≤ 2KW, Freq. ≤ 200 MHz	400	4KM50LB	28		
Tetrode & Pentode, Peak Pwr.	100	4KM50LC	15		
≤ 200 KW, Avg. Power ≤ 2KW,		4KM50SJ	38		
Freq. ≤ 200 KW	252	4KM50SK	37		
If any of the above limits exceeded	250	4KM3000LR	140		
Vidicon		4KM50000LQ	79		
Antimony Trisulfide (Sb ₂ S ₃)		4KM50000LR	57		
Photoconductive Material	51	4KM170000LA	15		
Silicon Diode Array Photoconductive		8824	130		
Material	48	8825	120		
Twystron		8826	280		
VA144	850	VA800E	70		
VA145E	450	VA8502 VA853	220		
VA145H	490	VA653 VA856B	65		
VA913A	230	VA888E	230		
Klystron, Pulsed*		VACCOL	230		
4KMP10000LF	43				
8568	230	* If the CW Klystron of interest is not listed above,			
L3035	66	1			
L3250	69	use the Alternate CW Klystron λ _b Table on the			
L3403	93	following page.			
SAC42A	100				
VA842	18				
Z5010A	150				
ZM3038A	190				
Z191000A	190				

 $^{^{\}star}$ If the pulsed Klystron of interest is not listed above, use the Alternate Pulsed Klystron λ_D Table on the following page.

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

Alternate* Base Failure Rate for Pulsed Klystrons - λ_b

		F(GHz)						
P(MW)	.2	.4	.6	.8	1.0	2.0	4.0	6.0
.01	16	16	16	16	16	16	16	16
.30	16	16	17	17	17	18	20	21
.80	16	17	17	18	18	21	25	30
1.0	17	17	18	18	19	22	28	34
3.0	18	20	21	23	25	34	51	
5.0	19	22	25	28	31	45	75	
8.0	21	25	30	35	40	63	110	
10	22	28	34	40	45	75		
25	31	45	60	75	90	160		

 $\lambda_b = 2.94 (F)(P) + 16$

F = Operating Frequency in GHz, $0.2 \le F \le 6$

P = Peak Output Power in MW, .01 ≤ P ≤ 25 and P ≤ 490 F^{-2.95}

*See previous page for other Klystron Base Fallure Rates.

Alternate* Base Failure Rate for CW Klystrons - λ_h

								U
!	F(MHz)							
P(KW)	300	500	800	1000	2000	4000	6000	8000
0.1	30	31	33	34	38	47	57	66
1.0	31	32	33	34	39	48	57	66
3.0	32	33	34	35	40	49	58	
5.0	33	34	35	36	41	50		
8.0	34	35	37	38	42			
10	35	36	38	39	43			
30	45	46	48	49				
50	55	56	58	59				
80	70	71	73					
100	80	81						
-		_		-		- حاب		_

 $\lambda_{b} = 0.5P + .00046F + 29$

P = Average Output Power in KW, $0.1 \le P \le 100$ and $P \le 8.0(10)^6(F)^{-1.7}$

F = Operating Frequency in MHz, 300 ≤ F ≤ 8000

*See previous page for other Klystron Base Failure Rates.

Learning Factor - π_I

T (years)	πι
≤ 1	10
2	2.3
≥ 3	1.0

 $\pi_1 = 10(T)^{-2.1}, 1 \le T \le 3$

= 10, T≤1

= 1, T≥3

T = Number of Years since Introduction to Field Use

Environment Factor - π_E

Environment	π _E		
G _B	.50		
G _F	1.0		
G _M	14		
N _S	8.0		
N _U	24		
A _{IC}	5.0		
A _{IF} A _{UC}	8.0		
A _{UC}	6.0		
A _{UF}	12		
A _{RW}	40		
S _F	.20		
M _F	22		
M _L	57		
M _L C _L	1000		

7.2 TUBES, TRAVELING WAVE

DESCRIPTIONTraveling Wave Tubes

 $\lambda_p = \lambda_b \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

		Frequency (GHz)							
Power (W)	.1	1	2	4	6	8	10	14	18
400		40	40	40				40	
100	11	12	13	16	20	24	29	42	61
500	11	12	13	16	20	24	29	42	62
1000	11	12	14	16	20	24	29	43	62
3000	12	13	14	17	21	25	30	44	65
5000	12	13	15	18	22	26	32	46	68
8000	13	14	16	19	23	28	33	49	72
10000	14	15	16	20	24	29	35	51	75
15000	15	16	18	22	26	32	39	56	83
20000	17	18	20	24	29	35	43	62	91
30000	20	22	24	29	36	43	52	76	110
40000	25	27	30	36	43	53	64	93	140

 $\lambda_b = 11(1.00002)^P (1.1)^F$

P = Rated Power in Watts (Peak, if Pulsed), $.001 \le P \le 40,000$

F = Operating Frequency in GHz, $.3 \le F \le 18$.

If the operating frequency is a band, or two different values, use the geometric mean of the end point frequencies when using table.

	<u>~E</u>
Environment	π _E
G _B	1.0
G _F	3.0
G _M	14
N _S	6.0
N _U	21
A _{IC}	10
A _{IF}	14
Auc	11
A _{UF}	18
A _{RW}	40
s _F	.10
M _F	22
Mլ Cլ	66
Ել	1000

7.3 TUBES, MAGNETRON

DESCRIPTION

Magnetrons, Pulsed and Continuous Wave (CW)

 $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm U} \pi_{\rm C} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate - λη

								U						
							Freq	uency (G	Hz)					
P(MW)	.1	.5	1	5	10	20	30	40 `	50	60	70	80	90	100
.01	1.4	4.6	7.6	24	41	67	91	110	130	150	170	190	200	220
.05	1.9	6.3	10	34	56	93	120	150	180	210	230	260	280	300
.1	2.2	7.2	12	39	64	110	140	180	210	240	270	290	320	350
.3	2.8	9.0	15	48	80	130	180	220	260	300	330	370	400	430
.5	3.1	10	17	54	89	150	200	240	290	330	370	410	440	480
1	3.5	11	19	62	100	170	230	280	330	380	420	470	510	550
3	4.4	14	24	77	130	210	280	350	410	470	530	580	630	680
5	4.9	16	26	85	140	230	310	390	460	520	580	640	700	760

Pulsed Magnetrons:

 $\lambda_{\rm b} = 19({\rm F})^{.73} ({\rm P})^{.20}$

F = Operating Frequency in GHz, .1 ≤ F ≤ 100

P = Output Power in MW,

.01 ≤ P ≤ 5

CW Magnetrons (Rated Power < 5 KW):

 $\lambda_{\rm b} = 18$

Utillization Factor - π_U

Utilization (Radiate Hours/ Filament Hours)	πυ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	.44 .50 .55 .61 .66 .72 .78 .83 .89 .94
$\pi_{\text{U}} = 0.44 + 0.56R$	

Construction Factor - π_C

Radiate Hours/Filament Hours

Construction	π _C
CW (Rated Power < 5 KW)	1.0
Coaxial Pulsed	1.0
Conventional Pulsed	5.4

Environment Factor - π_F

Environment	π _E		
GB	1.0		
G _F	2.0		
	4.0		
G _M N _S	15		
N _U	47		
A _{IC}	10		
A _{IC} A _{IF}	16		
Auc	12		
A _{UF}	23		
A _{UF} A _{RW}	80		
	.50		
S _F M _F	43		
	133		
M _L Cլ	2000		

The models and failure rates presented in this section apply to <u>laser peculiar items only</u>, i.e., those items wherein the lasing action is generated and controlled. In addition to laser peculiar items, there are other assemblies used with lasers that contain electronic parts and mechanical devices (pumps, valves, hoses, etc.). The failure rates for these parts should be determined with the same procedures as used for other electronic and mechanical devices in the equipment or system of which the laser is a part.

The laser failure rate models have been developed at the "functional," rather than "piece part" level because the available data were not sufficient for "piece part" model development. Nevertheless, the laser functional models are included in this Handbook in the interest of completeness. These laser models will be revised to include piece part models and other laser types when the data become available.

Because each laser family can be designed using a variety of approaches, the failure rate models have been structured on three basic laser functions which are common to most laser families, but may differ in the hardware implementation of a given function. These functions are the lasing media, the laser pumping mechanism (or pump), and the coupling method.

Examples of media-related hardware and reliability influencing factors are the solid state rod, gas, gas pressure, vacuum integrity, gas mix, outgassing, and tube diameter. The electrical discharge, the flashlamp, and energy level are examples of pump-related hardware and reliability influencing factors. The coupling function reliability influencing factors are the "Q" switch, mirrors, windows, crystals, substrates, coatings, and level of dust protection provided.

Some of the laser models require the number of active optical surfaces as an input parameter. An active optical surface is one with which the laser energy (or beam) interacts. Internally reflecting surfaces are not counted. Figure 8-1 below illustrates examples of active optical surfaces and count.

Figure 8-1: Examples of Active Optical Surfaces

8.1 LASERS, HELIUM AND ARGON

DESCRIPTION

Helium Neon Lasers Helium Cadmium Lasers Argon Lasers

 $\lambda_p = \lambda_{MEDIA} \pi_E + \lambda_{COUPLING} \pi_E$ Failures/10⁶ Hours

Lasing Media Failure Rate - λ_{MEDIA}

	771625771
Туре	^λ MEDIA
He/Ne	84
He/Cd	228
Argon	457
I .	.

Coupling Failure Rate - $\lambda_{COUPLING}$

Types	λ _{COUPLING}
Helium	o
Argon	6

NOTE: The predominant argon laser failure mechanism is related to the gas media (as reflected in λ_{MEDIA} ; however, when the tube is refilled periodically (preventive maintenance) the mirrors (as part of $\lambda_{COUPLING}$) can be expected to deteriorate after approximately 10⁴ hours of operation if in contact with the discharge region.

 $\lambda_{\mbox{COUPLING}}$ is negligible for helium lasers.

Environment Factor - π_F

E	
Environment	π _E
G _B	.30
G _F	1.0
G _M	4.0
N _S	3.0
N _U	4.0
A _{IC}	4.0
A _{IF}	6.0
A _{UC}	7.0
A _{UC} A _{UF}	9.0
A _{RW}	5.0
S _F	.10
M _F	3.0
M_L	8.0
Ել	N/A

8.2 LASERS, CARBON DIOXIDE, SEALED

DESCRIPTION CO₂ Sealed Continuous Wave Lasers

 $\lambda_p = \lambda_{MEDIA} \pi_O \pi_B \pi_E + 10 \pi_{OS} \pi_E$ Failures/10⁶ Hours

Lasing Media Failure Rate - AMEDIA

	MCDM
Tube Current (mA)	^λ MEDIA
10	240
20	930
30	1620
40	2310
50	3000
100	6450
150	9900

λ_{MEDIA} = 69(I) - 450

I = Tube Current (mA), 10 ≤ I ≤ 150

Gas Overfill Factor = π_O

CO ₂ Overfill Percent (%)	πΟ
0	1.0
25	.75
50	.50

 $\pi_{O} = 1 - .01$ (% Overfill)

Overfill percent is based on the percent increase over the optimum CO_2 partial pressure which is normally in the range of 1.5 to 3 T_{OT} (1 T_{OTT} = 1 mm Hg Pressure) for most sealed CO_2 lasers.

Ballast Factor - πρ

Percent of Ballast Volumetric Increase	π _B
0	1.0
50	.58
100	.33
150	.19
200	.11

Optical Surface Factor - π_{OS}

Active Optical Surfaces	πOS
1	1
2	2

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_E

	···E
Environment	π _E
GB	.30
G _F	1.0
G _B G _F G _M	4.0
N _S	3.0
N _U	4.0
A _{IC}	4.0
A _{IF}	6.0
A _{IC} A _{IF} A _{UC}	7.0
l ^A UF	9.0
A _{RW}	5.0
S _F	.10
M _F	3.0
ML	8.0
Mլ Cլ	N/A

8.3 LASERS, CARBON DIOXIDE, FLOWING

DESCRIPTIONCO₂ Flowing Lasers

$\lambda_p = \lambda_{COUPLING} \pi_{OS} \pi_E$ Failures/10⁶ Hours

Coupling Failure Rate - λ_{COUPLING}

000. 20
^λ COUPLING
3 30 300

λ_{COUPLING} = 300P

P = Average Power Output in KW, $.01 \le P \le 1.0$

Beyond the 1KW range other glass failure mechanisms begin to predominate and after the $\lambda_{COUPLING}$ values. It should also be noted that CO_2 flowing laser optical devices are the primary source of failure occurrence. A tailored optical cleaning preventive maintenance program on optic devices greatly extends laser life.

Optical Surface Factor - π_{OS}

Active Optical Surfaces	πos
1	1
2	2
L	<u> </u>

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment actor xE	
Environment	π _E
G _B	.30
G _F	1.0
G _M	4.0
N _S	3.0
N _U	4.0
A _{IC}	4.0
A _{IC} A _{IF}	6.0
AUC	7.0
A _{UF}	9.0
A _{RW}	5.0
S _F	.10
M _F	3.0
M _L C _L	8.0
Cլ	N/A

8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

DESCRIPTION

Neodymium-Yttrium-Aluminum-Garnet (ND:YAG) Rod Lasers

Ruby Rod Lasers

 $\lambda_{\rm p}$ = ($\lambda_{\rm PUMP}$ + $\lambda_{\rm MEDIA}$ + 16.3 $\pi_{\rm C}\pi_{\rm OS}$) $\pi_{\rm E}$ Failures/10⁶ Hours

Pump Pulse Failure Rate - λ_{PUMP} (Xenon Flashlamps)

The empirical formula used to determine λ_{PUMP} (Failures/10⁶ Hours) for Xenon lamps is:

$$\lambda_{\text{PUMP}}$$
 = (3600) (PPS) $\left[2000 \left(\frac{E_{j}}{\text{dL}\sqrt{t}}\right)^{8.58}\right] \left[\pi_{\text{COOL}}\right]$

λρυμρ is the failure rate contribution of the Xenon flashlamp or flashtube. The flashlamps evaluated herein are linear types used for military solid state laser systems. Typical default model parameters are given below.

PPS is the repetition pulse rate in pulses per second. Typical values range between 1 and 20 pulses per second.

 E_j is the flashlamp or flashtube input energy per pulse, in joules. Its value is determined from the actual or design input energy . For values less than 30 joules, use E_j = 30. Default value: E_j = 40.

d is the flashlamp or flashtube inside diameter, in millimeters.

Default value: d = 4.

L is the flashlamp or flashtube arc length in inches. Default value: L = 2.

is the truncated pulse width in microseconds. Use t = 100 microseconds for any truncated pulse width exceeding 100 microseconds. For shorter duration pulses, pulse width is to be measured at 10 percent of the maximum current amplitude. Default value: t = 100.

 π_{COOL} is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\text{COOL}} = 1.0$ for any air or inert gas cooling. $\pi_{\text{COOL}} = .1$ for all liquid cooled designs. Default value: $\pi_{\text{COOL}} = .1$, liquid cooled.

Pump Pulse Failure Rate - λ_{PUMP}3 (Krypton Flashlamps)

The empirical formula used to determine λ_{PUMP} for Krypton lamp is:

λ_{PUMP} = [625] [10^{(0.9} P]] [*COOL] Failures/10⁶ Hours
λ_{PUMP} is the failure rate contribution of the krypton flashlamp or flashtube. The flashlamps evaluted herein are the continuous wave (CW) type and are most widely used for commercial solid state applications. They are approx-imately 7mm in diameter and 5 to 6 inches long.

P is the average input power in kilowatts.

Default value: P = 4.

is the flashlamp or flashtube arc length in inches. Default value: L = 2.

 $\pi_{\rm COOL}$ is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\rm COOL} = 1$ for any air or inert gas cooling. $\pi_{\rm COOL} = .1$ for all liquid designs. Default value: $\pi_{\rm COOL} = .1$, liquid cooled.

Media Failure Rate - λΑΕΓΙΑ

MILDIA	
Laser Type	^λ MEDIA
ND:YAG	o
Ruby	(3600) (PPS) [43.5 F ^{2.52}]

PPS is the number of pulses per second

F is the energy density in Joules per cm.²/pulse over the cross-sectional area of the laser beam, which is nominally equivalent to the cross-sectional area of the laser rod, and its value is determined from the actual design parameter of the laser rod utilized.

NOTE: λ_{MEDIA} is negligible for ND:YAG lasers.

8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

Coupling Cleanliness Factor - π_C

Cleanliness Level	™ C
Rigorous cleanliness procedures and trained maintenance personnel. Bellows provided over optical train.	1
Minimal precautions during opening, maintenance, repair, and testing. Bellows provided over optical train.	30
Minimal precautions during opening, maintenance, repair, and testing. No bellows provided over optical train.	60

NOTE: Although sealed systems tend to be reliable once compatible materials have been selected and proven, extreme care must still be taken to prevent the entrance of particulates during manufacturing, field flashlamp replacement, or routine maintenance/repair. Contamination is the major cause of solid state laser malfunction, and special provisions and vigilance must continually be provided to maintain the cleanliness level required.

Optical Surface Factor - π_{OS}

Active Optical Surfaces	π _{OS}
1	1
2	2

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_E

Environment	π _E		
G _B	.30		
G _F	1.0		
G _M	4.0		
N _S	3.0		
N _U	4.0		
	4.0		
A _{IC} A _{IF}	6.0		
Auc	7.0		
A _{UF}	9.0		
A _{RW}	5.0		
s _F	.10		
M _F	3.0		
ML	8.0		
Mլ Cլ	N/A		

9.0 RESISTORS, INTRODUCTION

This section includes the active resistor specifications and, in addition, some older/inactive specifications are included because of the large number of equipments still in field use which contain these parts.

The Established Reliability (ER) resistor family generally has four qualification failure rate levels when tested per the requirements of the applicable specification. These qualification failure rate levels differ by a factor of ten (from one level to the next). However, field data has shown that these failure rate levels differ by a factor of about only three, hence the $\pi_{\mathbb{C}}$ values have been set accordingly.

The use of the resistor models requires the calculation of the electrical power stress ratio, Stress = operating power/rated power, or per Section 9.16 for variable resistors. The models have been structured such that derating curves do not have to be used to find the base failure rate. The rated power for the stress ratio is equal to the full nominal rated power of the resistor. For example, a MIL-R-39008 resistor has the following derating curve:

Figure 9-1: MIL-R-39008 Derating Curve

This particular resistor has a rating of 1 watt at 70°C ambient, or below. If it were being used in an ambient temperature of 100°C, the rated power for the stress calculation would still be 1 watt, not 45% of 1 watt (as read off the curve for 100°C). Of course, while the derating curve is not needed to determine the base failure rate, it must still be observed as the maximum operating condition. To aid in determining if a resistor is being used within rated conditions, the base failure rate tables show entries up to certain combinations of stress and temperature. If a given operating stress and temperature point falls in the blank portion of the base failure rate table, the resistor is overstressed. Such misapplication would require an analysis of the circuit and operating conditions to bring the resistor within rated conditions.

9.1 RESISTORS, FIXED, COMPOSITION

SPECIFICATION

STYLE

DESCRIPTION

MIL-R-39008 MIL-R-11 RCR RC Resistors, Fixed, Composition (Insulated), Established Reliability Resistors, Fixed, Composition (Insulated)

 $\lambda_p = \lambda_b \pi_B \pi_O \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

l		_	Stress_	_	_
T _A (℃)	.1	.3	.5	.7	.9
10 20 30 40 50 60 70 80 90 100	.00007 .00011 .00015 .00022 .00031 .00044 .00063 .0013 .0018 .0018 .0026 .0038	.00010 .00015 .00022 .00031 .00045 .00066 .00095 .0014 .0020 .0029 .0041	.00015 .00021 .00031 .00046 .00067 .00098 .0014 .0021 .0031 .0045	.00020 .00030 .00045 .00066 .00098 .0014 .0021 .0032 .0047	.00028 .00043 .00064 .00096 .0014 .0021 .0032 .0048

$$\lambda_{b} = 4.5 \times 10^{-9} \exp\left(12\left(\frac{T+273}{343}\right)\right) \exp\left(\frac{S}{.6}\left(\frac{T+273}{273}\right)\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power

Resistance Factor - π_R

Resistance Range (ohms)	π _R
< .1 M	1.0
> .1 M to 1 M	1.1
> 1.0 M to 10 M	1.6
> 10 M	2.5

Quality Factor - π_O

Quality	πQ
S	.03
R	0.1
Р	0.3
М	1.0
MIL-R-11	5.0
Lower	15

Environment Factor - π_{\vdash}

Literioriment ractor wE				
Environment	π _E			
G _B	1.0			
G _F	3.0			
G _M	8.0			
N _S	5.0			
N _U	13			
A _{IC}	4.0			
A _{IF}	5.0			
AUC	7.0			
AUF	11			
A _{RW}	19			
S _F	.50			
M _F	11			
ML	27			
CL	490			

9.2 RESISTORS, FIXED, FILM

SPECIFICATION
MIL-R-39017
MIL-R-22684
MIL-R-55182

MIL-R-10509

STYLE RLR RL RN (R, C, or N) RN DESCRIPTION

Fixed, Film, Insulated, Established Reliability

Fixed, Film, Insulated

Fixed, Film, Established Reliability

Fixed, Film, High Stability

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(MIL-R-22684 and MIL-R-39017)

(MIL-R-22684 and MIL-R-39017) Stress						
T _A (℃)	.1	.3	.5	.7	.9	
0	.00059	.00073	.00089	.0011	.0013	
10	.00063	.00078	.00096	.0012	.0014	
20	.00067	.00084	.0010	.0013	.0016	
30	.00072	.00090	.0011	.0014	.0018	
40	.00078	.00098	.0012	.0016	.0019	
50	.00084	.0011	.0014	.0017	.0022	
60	.00092	.0012	.0015	.0019	.0024	
70	.0010	.0013	.0017	.0021	.0027	
80	.0011	.0014	.0018	.0024		
90	.0012	.0016	.0021	.0027		
100	.0013	.0018	.0023			
110	.0015	.0020	.0026			
120	.0017	.0023				
130	.0019					
140	.0022				į	
		4	3			

$$\lambda_b = 3.25 \times 10^{-4} \exp\left(\frac{T + 273}{343}\right)^3 \exp\left(S\left(\frac{T + 273}{273}\right)\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power

Base Failure Rate - λ_b
(MIL-R-10509 and MII -R-55182)

	(MIL-H-10509 and MIL-H-55182) Stress					
T _A (℃)	.1	.3	.5	.7	.9	
0	.00061	.00074	.00091	.0011	.0014	
10	.00067	.00082	.0010	.0012	.0015	
20	.00073	.00091	.0011	.0014	.0017	
30	.00080	.0010	.0013	.0016	.0019	
40	.00088	.0011	.0014	.0017	.0022	
50	.00096	.0012	.0015	.0020	.0025	
60	.0011	.0013	.0017	.0022	.0028	
70	.0012	.0015	.0019	.0025	.0032	
80	.0013	.0016	.0021	.0028	.0036	
90	.0014	.0018	.0024	.0031	.0040	
100	.0015	.0020	.0026	.0035	.0045	
110	.0017	.0022	.0029	.0039	.0051	
120	.0018	.0024	.0033	.0043	.0058	
130	.0020	.0027	.0036	.0049	.0065	
140	.0022	.0030	.0040	.0054		
150	.0024	.0033	.0045			
160	.0026	.0036				
170	.0029					

$$\lambda_b = 5 \times 10^{-5} \exp\left(3.5 \left(\frac{T + 273}{398}\right)\right) \exp\left(S \left(\frac{T + 273}{273}\right)\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power

NOTE: Do not use MIL-R-10509 (Characteristic B) below the line. Points below are overstressed.

9.2 RESISTORS, FIXED, FILM

Resistance Factor - π_R

Resistance Range (ohms)	π _R
< .1M	1.0
≥ 0.1 M to 1 M	1.1
> 1.0 M to 10 M	1.6
> 10 M	2.5

Quality Factor - π_Q

Quality	πQ
S	.03
R	0.1
P	0.3
м	1.0
MIL-R-10509	5.0
MIL-R-22684	5.0
Lower	15

Environment	πΕ		
G _B	1.0		
G _F	2.0		
G _M	8.0		
NS	4.0		
N _U	14		
A _{IC}	4.0		
A _{IC} A _{IF}	8.0		
Auc	10		
A _{UF}	18		
A _{RW}	19		
S _F	.20		
M _F	10		
ML	28		
Mլ Cլ	510		

9.3 RESISTORS, FIXED, FILM, POWER

SPECIFICATION MIL-R-11804

STYLE RD **DESCRIPTION** Fixed, Film, Power Type

 $\lambda_p = \lambda_b^{} \pi_R^{} \pi_Q^{} \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Base Failure Hate - Ab						
T _A (℃)	.1	.3	ress .5	.7	.9	
0 10 20 30 40 50 60 70 80 90 110 120 130 140 150 160 170 180 190 200 210	.0089 .0090 .0092 .0094 .0096 .0098 .010 .010 .011 .011 .011 .012 .012 .012	.0098 .010 .010 .010 .011 .011 .011 .012 .012	.011 .011 .012 .012 .013 .013 .014 .014 .015 .015 .016	.013 .013 .014 .014 .015 .015 .016 .017	.015 .015 .016 .017 .017	
λ _b .	$\lambda_{b} = 7.33 \times 10^{-3} \exp\left(.202 \left(\frac{T + 273}{298}\right)^{2.6}\right) \times$					
	$\exp\left(\left(\frac{S}{1.45}\right)\left(\frac{T+273}{273}\right)^{.89}\right)^{1.3}$					
т.	T = Ambient Temperature (°C)					
S •	S = Ratio of Operating Power to Rated Power					

Quality Factor - π_{Q}

Quality	πQ		
MIL-SPEC	1.0		
Lower	3.0		

Environment Factor - *=

	_ <u>_</u>
Environment	π _E
G _B	1.0
G _F	2.0
G _M	10
N _S	5.0
N _U	17
AIC	6.0
A _{IF}	8.0
AUC	14
A _{UF}	18
A _{RW}	25
SF	.50
M _F	14
M _L	36
M _L Ել	660

Resistance Factor - π_R

Resistance Range (ohms)	πR
10 to 100	1.0
> 100 to 100K	1.2
> 100K to 1M	1.3
> 1M	3.5

9.4 RESISTORS, NETWORK, FIXED, FILM

SPECIFICATION MIL-R-83401

STYLE RZ **DESCRIPTION**

Resistor Networks, Fixed, Film

 $\lambda_p = .00006 \, \pi_T \, \pi_{NR} \pi_Q \pi_E$ Failures/10⁶ Hours

Temperature Factor - π_T

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>-</u>	
30 1.3 85 9.8 35 1.6 90 11 40 1.9 95 13 45 2.4 100 15 50 2.9 105 18 55 3.5 110 21 60 4.2 115 24 65 5.0 120 27 70 6.0 125 31	T _C (℃)	πΤ	T _C (℃)	πТ
	30 35 40 45 50 55 60 65 70	1.3 1.6 1.9 2.4 2.9 3.5 4.2 5.0 6.0	85 90 95 100 105 110 115	9.8 11 13 15 18 21 24 27

$$\pi_{T} = \exp(-4056 \left(\frac{1}{T_{C} + 273} - \frac{1}{298} \right)$$

T_C = Case Temperature (°C)

NOTE: If T_C is unknown, it can be estimated as follows:

T_C = T_A + 55 (S)

T_A = Ambient Temperature (°C)

S = Operating Power
Package Rated Power

Any device operating at $T_C > 125$ °C is overstressed.

Quality Factor - πQ

Quality	πQ
MIL-SPEC	· 1
Lower	3

Environment Factor - π_F

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	8.0
N _S	4.0
NU	14
A _{IC}	4.0
A _{IF} A _{UC}	8.0
A _{UC}	9.0
A _{UF}	18
A _{RW}	19
S _F	.50
M _F	14
ML	28
cլ	510

Number of Resistors Factor - π_{NR}

 π_{NR} = Number of Film Resistors in Use

NOTE: Do not include resistors that are not used.

9.5 RESISTORS, FIXED, WIREWOUND

SPECIFICATION

MIL-R-39005 MIL-R-93 STYLE RBR RB **DESCRIPTION**

Fixed, Wirewound, Accurate, Established Reliability Fixed, Wirewound, Accurate

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

		5	Stress		
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80 90	.0033 .0033 .0034 .0034 .0035 .0037 .0038 .0041 .0044	.0037 .0038 .0039 .0040 .0042 .0043 .0046 .0049 .0053	.0045 .0047 .0048 .0050 .0052 .0055 .0059 .0064 .0070	.0057 .0059 .0062 .0066 .0070 .0075 .0081 .0089	.0075 .0079 .0084 .0090 .0097 .011 .012 .013 .015
90 100 110 120 130 140	.0048 .0055 .0065 .0079 .010	.0059 .0068 .0080 .0099 .013	.0079 .0092 .011 .014 .018	.011 .013 .016 .021 .028	.017 .020 .025 .033
I					

$$\lambda_{b} = .0031 \exp\left(\frac{T + 273}{398}\right)^{10} \exp\left(S\left(\frac{T + 273}{273}\right)\right)^{1.5}$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power

Resistance Factor - π_R

Resistance Range (ohms)	π_{R}
Up to 10K	1.0
> 10K to 100K	1.7
> 100K to 1M	3.0
> 1M	5.0

Quality Factor - π_Q

Quality	πQ
S	.030
R	.10
Р	.30
М	1.0
MIL-R-93	5.0
Lower	15

	- E
Environment	π _E
G _B	1.0
	2.0
G _F G _M N _S N _U	11
N _S	5.0
N _Ü	18
AIC	15
A _{IF}	18
A _{IF} A _{UC}	28
A _{UF}	35
A _{UF} A _{RW}	27
S _F	.80
S _F M _F	14
M _L Ել	38
CL	610

9.6 RESISTORS, FIXED, WIREWOUND, POWER

SPECIFICATION MIL-R-39007 **MIL-R-26**

STYLE **RWR** RW

DESCRIPTION

Fixed, Wirewound, Power Type, Established Reliability Fixed, Wirewound, Power Type

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

	Base Failure Rate - λ _b						
T _A (°C)	.1	. 3	Stress . 5	.7	.9		
0 10 20 30 40	.0042 .0045 .0048 .0052 .0056	.0062 .0068 .0074 .0081 .0089	.0093 .010 .011 .013 .014	.014 .016 .017 .020	.021 .024 .027 .031 .035		
50 60 70 80 90 100	.0061 .0066 .0072 .0078 .0085	.0097 .011 .012 .013 .014	.016 .017 .020 .022 .025	.025 .028 .032 .037 .042	.040		
110 120 130 140 150	.010 .011 .012 .014 .015	.018 .020 .022 .025 .028	.031 .036 .040 .046 .052	.055 .063	J		
160 170 180 190 200	.017 .019 .021 .023 .026	.032 .036 .040 .046 .052	.060 .068 .078				
210 220 230 240 250	.029 .033 .037 .042 .047	.059 .068 .077 .088 .10					
260 270 280 290 300 310	.054 .061 .06 .079 .091						
							

λ _b = .00148 exp	$\left(\frac{T+273}{298}\right)$	² exp($\left(\frac{S}{.5}\right)$	$\left(\frac{T+273}{273}\right)$	
-----------------------------	----------------------------------	-------------------	-----------------------------	----------------------------------	--

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power

NOTE: Do not use MIL-R-39007 Resistors below the line. Points below are overstressed.

Resistance Factor - π_R

	(MIL-R-39007)									
i		ĺ	<u> </u>	Resistance Range (ohms)						
	MIL-R- 39009 Style	Up to 50 0	>500 to 1K	>1K to 5K	>5K to 7.5K	>7.5 K to 10K	>10K to 15K	>15K to 20K	>20K	
	RWR 71	1.0	1.0	1.2	1.2	1.6	1.6	1.6	NA	
	RW R 74	1.0	1.0	1.0	1.2	1.6	1.6	NA	NA	
	RWR 78	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.6	
	RWR 80	1.0	1.2	1.6	1.6	NΑ	NA	NA	NA	
	RWR 81	1.0	1.6	NA	NA	NA	NA	NA	NA	
	RWR 82	1.0	1.6	1.6	NA	NA	NA	NA	NA	
	RWR 84	1.0	1.0	1.1	1.2	1.2	1.6	NA	NA	
	RWR 89	1.0	1.0	1.4	NA	NA	NA	NA	NA	

Quality Factor - π_Q

Quality	π _Q
S	.03
R	.10
Р	.30
М	1.0
MIL-R-26	5.0
Lower	15
L	

9.6 RESISTORS, FIXED, WIREWOUND, POWER

Resistance Factor - π_R

(MIL-R-26)

	Resistance Range (ohms)						
MIL-R-26 Style	Up 10 100	>100 to 1K	>1K to 10K	>10K to 100K	>100K to 150K	>150K to 200K	
RW 10 RW 11 RW 12 RW 13 RW 14 RW 15 RW 16 RW 20 RW 21 RW 22 RW 23 RW 24 RW 29 RW 30 RW 31 RW 35 RW 35 RW 36 RW 37 RW 38 RW 37 RW 38 RW 39 RW 55 RW 56 RW 67 RW 68 RW 70 RW 78 RW 79 RW 80 RW 81	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.2 1.0 1.2 1.0 1.4 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.2 1.5 2.0 2.0 1.4 2.0 1.4 1.4 1.5 1.4 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	1.6 444 444444444444444444444444444444444	1.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	

	E
Environment	πE
G _B	1.0
G _F	2.0
G _B G _F G _M	10
N _S	5.0
N _U	16
Aic	4.0
A _{IF} A _{UC}	8.0
Auc	9.0
A _{UF}	18
A _{RW}	23
\$ _F	.30
M _F	13
м _L Ել	34
Cլ	610

9.7 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

SPECIFICATION

STYLE

DESCRIPTION

MIL-R-39009

MIL-R-18546

RER

RE

Fixed, Wirewound, Power Type, Chassis Mounted,

Established Reliability

Fixed, Wirewound, Power Type, Chassis Mounted

 $\lambda_p = \lambda_b \pi_B \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Dase Failure nate - Mb							
			ess				
T _A (℃)	.1	.3	.5	.7	.9		
			2040	0070	040		
0	.0021	.0032	.0049	.0076	.012		
10	.0023	.0036	.0056	.0087	.014		
20	.0025	.0040	.0064	.0100	.016		
30	.0028	.0045	.0072	.012	.019		
40	.0031	.0050	.0082	.013	.022		
50	.0034	.0056	.0093	.016	.026		
60	.0037	.0063	.011	.018			
70	.0041	.0070	.012	.021			
80	.0045	.0079	.014	.024			
90	.0050	.0088	.016	.028			
100	.0055	.0098	.018	.032			
110	.0060	.011	.020				
120	.0066	.012	.023				
130	.0073	.014	.026				
140	.0081	.015	.030				
150	.0089	.017	.034				
160	.0098	.019					
170	.011	.022					
180	.012	.024					
190	.013	.027					
200	.014	.030					
210	.016						
220	.017						
230	.019						
240	.021						
250	.023						

 $\lambda_{b} = .00015 \exp\left(2.64\left(\frac{T+273}{298}\right)\right) \exp\left(\frac{S}{.466}\left(\frac{T+273}{273}\right)\right)$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power

Resistance Factor - π_R

(Characteristic G (Inductive Winding) of MIL-R-18546 and Inductively Wound Styles of MIL-R-39009)

			Resistance Range (ohms)					
Style	Rated Power (W)	Up to 500	>500 to 1K	>1K to 5K	>5K to 10K	>10K to 20K	20K	
RE 60 RER60	5	1.0	1.2	1.2	1.6	NA	NA	
RE 65 RER65	10	1.0	1.0	1.2	1.6	NA	NA	
RE 70 RER70	20	1.0	1.0	1.2	1.2	1.6	NA	
RE 75 RER75	30	1.0	1.0	1.0	1.1	1.2	1.6	
RE 77	75	1.0	1.0	1.0	1.0	1.2	1.6	
RE 80	120	1.0	1.0	1.0	1.0	1.2	1.6	

Resistance Factor - π_R

(Characteristic N (Noninductive Winding) of MIL-R-18546 and Noninductively Wound Styles of MIL-R-39009)

<u> </u>	NO I I I I I		Resistance Range (ohms)					
Style	Rated Power (W)	Up to 500	>500 to 1K	>1K to 5K	>5K to 10K	>10K to 20K	20K	
RE 60 RER40	5	1.0	1.2	1.6	NA	NA	NA	
RE 65 RER45	10	1.0	1.2	1.6	NA	NA	NA	
RE 70 RER50	20	1.0	1.0	1.2	1.6	NA	NA	
RE 75 RER55	30	1.0	1.0	1.1	1.2	1.4	NA	
RE 77	75	1.0	1.0	1.0	1.2	1.6	NA	
RE 80	120	1.0	1.0	1.0	1.1	1.4	NA	

9.7 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

Quality Factor - π_{Q}

***************************************	· · · · · · · · · · · · · · · · · · ·
Quality	πQ
S	.030
R	.10
Р	.30
м	1.0
MIL-R-18546	5.0
Lower	15

Environment Factor - π_{F}

	· 'E
Environment	π _E
GB	1.0
G _F	2.0
G _B G _F G _M N _S N _U	10
N _S	5.0
Nυ	16
A _{IC}	4.0
A _{IF}	8.0
AIC A _{IF} A _{UC} A _{UF}	9.0
A _{UF}	18
A _{RW}	23
S _F	.50
M _F	13
ML	34
M _L C _L	610

RESISTORS, THERMISTOR 9.8

SPECIFICATION MIL-T-23648

STYLE RTH

DESCRIPTION

Thermally Sensitive Resistor, Insulated, Bead, Disk and Rod Types

 $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Туре	λ _b
Bead (Styles 24, 26, 28, 30, 32, 34, 36, 38, 40)	.021
Disk (Styles 6, 8, 10)	.065
Rod (Styles 12, 14, 16, 18, 20, 22, 42)	.105

Environment Factor - π_{F}

Environment	π _E	
G _B	1.0	
G _F	5.0	
G _M	21	
N _S	11	
N _U	24	
A _{IC}	11	
A _{IF}	30	
Auc	16	
A _{UF}	42	
A _{RW}	37	
S _F	.50	
M _F	20	
	53	
Mլ Cլ	950	

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	1
Lower	15

RESISTORS, VARIABLE, WIREWOUND

SPECIFICATION

MIL-R-39015

MIL-R-27208

STYLE

RTR

RT

DESCRIPTION

Variable, Wirewound, Lead Screw Actuated,

Established Reliability

Variable, Wirewound, Lead Screw Actuated

$$\lambda_p = \lambda_b^{\pi}_{TAPS}^{\pi}_{R}^{\pi}_{V}^{\pi}_{Q}^{\pi}_{E}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_h

				ט	
i l		5	Stress		
T _A (℃)	.1	.3	.5	.7	.9
0	.0089	.011	.013	.016	.020
10	.0094	.012	.014	.017	.021
20	.010	.012	.015	.019	.024
30	.011	.013	.017	.021	.026
40	.012	.015	.018	.023	.029
50	.013	.016	.020	.026	.033
60	.014	.018	.023	.029	.037
70	.016	.020	.026	.033	.043
80	.018	.023	.03	.039	.050
90	.021	.027	.035	.046	.060
100	.024	.032	.042	.055	
110	.029	.038	.051		
120	.035	.047			
130	.044	.059			
140	.056				

$$\lambda_{b} = .0062 \exp\left(\frac{T+273}{358}\right)^{5} \exp\left(S\left(\frac{T+273}{273}\right)\right)$$

Ambient Temperature (°C)

S Ratio of Operating Power to Rated Power. See Section 9.16 for Calculation of S.

Resistance Factor - π_R

π _R
1.0
1.4
2.0

Potentiometer Taps Factor - π_{TAPS}

N	₹ TAPS	N TAPS	TAPS	N TAPS	TAPS
3 4 5 6 7 8 9 10	1.0 1.1 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.5	13 14 15 16 17 18 19 20 21	2.7 2.9 3.1 3.4 3.6 3.8 4.1 4.4 4.6 4.9	23 24 25 26 27 28 29 30 31 32	5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.4 7.7 8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

Number of Potentiometer Taps, including the Wiper and Terminations.

Voltage Factor - π_{V}

Applied Voltage* Rated Voltage	π_{\bigvee}
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

 $\sqrt{\mathsf{RP}_{\mathsf{Applied}}}$ *V Applied

Nominal Total Potentiometer Resistance

Power Dissipation PApplied

V Rated 40 Volts for RT 26 and 27

V_{Rated} 90 Volts for RTR 12, 22 and 24; RT 12 and 22

9.9 RESISTORS, VARIABLE, WIREWOUND

Quality Factor - π_Q

	<u> </u>
Quality	π _Q
S	.020
R	.060
Р	.20
М	.60
MIL-R-27208	3.0
Lo we r	10

Environment Factor - π_E

Environment	π _E
GB	1.0
G _F	2.0
GB GF GM NS NU AIC AIF AUC AUF	12
N _S	6.0
N _U	20
A _{IC}	5.0
A _{IF}	8.0
AUC	9.0
A _{UF}	15
A _{RW}	33
\$ _F	.50
M _F	18
MĿ	48
Mլ Cլ	870

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION

SPECIFICATION MIL-R-12934

STYLE RR **DESCRIPTION**Variable, Wirewound, Precision

 $\lambda_p = \lambda_b^{\pi}_{TAPS}^{\pi}_{C}^{\pi}_{R}^{\pi}_{V}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λh

	T			<u> </u>	
İ	l		Stress		
T _A (℃)	.1	.3	.5	.7	.9
 					
0	.10	.11	.12	.13	.14
10	.11	.12	.13	.14	.15
20	.12	.13	.14	.16	.17
30	.13	.14	.16	.17	.19
40	.14	.15	.17	.20	.22
50	.15	.17	.20	.22	.26
60	.17	.19	.22 '	.26	.30
70	.19	.22	.26	.30	.36
80	.21	.25	.30	.36	.43
90	.24	.30	.36	.44	.54
100	.28	.35	.44	.54	
110	.33	.42	.54		
120	.40	.52			
130	.49	.65			
140	.60				

$$\lambda_b = .0735 \exp\left(1.03 \left(\frac{T+273}{358}\right)^{4.45}\right) x$$

$$\exp\left(\left(\frac{S}{2.74}\right) \left(\frac{T+273}{273}\right)^{3.51}\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for Calcuating S.

Construction Class Factor - π_{C}

Construction Class	π _C
RR0900A <u>2</u> A9J103*	2.0
3	1.0
4	3.0
5	1.5

* Sample type designation to show how construction class can be found. In this example the construction class is 2. Construction class should always appear in the eighth position.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
100 to 10K	1.0
>10K to 20K	1.1
>20K to 50K	1.4
>50K to 100K	2.0
>100 K to 200K	2.5
>200K to 500K	3.5

Potentiometer Taps Factor - π_{TAPS}

	171.0				
NTAPS	TAPS	N TAPS	TAPS	N	TAPS
3 4 5 6 7 8 9 10 11 12	1.0 1.1 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.5	13 14 15 16 17 18 19 20 21 22	2.7 2.9 3.1 3.4 3.6 3.8 4.1 4.4 4.6 4.9	23 24 25 26 27 28 29 30 31 32	5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.4 7.7 8.0

$$π_{TAPS} = \frac{\left(N_{TAPS}\right)^{\frac{3}{2}}}{25} + 0.792$$
 $N_{TAPS} = N_{Umber of Potentiometer Taps, including the Wiper and Terminations.}$

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION

Voltage Factor - π_V

Applie Rate	π _V				
0 to 0.	.1		1.10		
>0.1 to	0.2		1.05		
>0.2 to	9.0 c	;	1.00		
>0.6 to	0.7	,	1.10		
>0.7 to	9.0 c		1.22		
>0.8 to	0.9		1.40		
>0.9 to	1.0		2.00		
*V Applied R _P	-	√RPPApplied Nominal Total Potent Resistance	iometer		
PApplied	-	Power Dissipation			
V Rated	•	250 Volts for RR0900 RR1300, RR2000, RF RR3100, RR3200, RF RR3400, RR3500	R3000,		
V Rated	=	423 Volts for RR3600	, RR3700		
V Rated	-	500 Volts for RR1006 RR2100, RR3800, RR			

Quality Factor - π_Q

Quality	π _Q
MIL-SPEC	2.5
Lower	5.0

<u> </u>		
Environment	π _E	
G _B	1.0	
G _F	2.0	
G _M	18	
N _S	8.0	
NU	30	
A _{IC}	8.0	
A _{IC} A _{IF} A _{UC} A _{UF}	12	
A _{UC}	13	
A _{UF}	18	
A _{RW}	53	
S _F	.50	
M _F	29	
Mլ Cլ	76	
CL	1400	

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

SPECIFICATION MIL-R-19

STYLE RA DESCRIPTION

Variable, Wirewound, Semiprecision (Low Operating

Temperature)

MIL-R-39002

RK

Variable, Wirewound, Semiprecision

$\lambda_p = \lambda_b^{\pi}_{TAPS}^{\pi}_{R}^{\pi}_{V}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λb

Dase Failure Trace - Ab					
T _A (℃)	.1	.3	Stress .5	.7	.9
-A(-)	ļ			• • • • • • • • • • • • • • • • • • • •	
0	.055	.063	.072	.083	.095
10	.058	.069	.081	.095	.11
20	.063	.076	.092	.11	.13
30	.069	.086	.11	.13	.17
40	.076	.098	.13	.16	.21
50	.085	.11	.15	.20	.27
60	.096	.13	.19	.26	.37
70	.11	.16	.24	.35	.52
80	.13	.20	.31	.48	.75
90	.16	.26	.42	.69	1.1
100	.19	.34	.59	1.0	
110	.24	.45	.85		
120	.31				
130	.42				

$$\lambda_{b} = .0398 \exp\left(.514 \left(\frac{T+273}{313}\right)^{5.28}\right) x$$

$$\exp\left(\frac{S}{1.44} \left(\frac{T+273}{273}\right)^{4.46}\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

NOTE: Do not use MIL-R-19 below the line. Points below are overstressed.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
10 to 2K	1.0
>2K to 5K	1.4
>5K to 10K	2.0

Potentiometer Taps Factor - π_{TAPS}

N TAPS	TAPS	NTAPS	TAPS	N TAPS	* TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

N_{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations.

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

Voltage Factor - π_V

Applied Voltage* Rated Voltage	π_{\bigvee}
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

Applied	=	$\sqrt{R_P^P}Applied$
---------	---	-----------------------

R_P - Nominal Total Potentiometer Resistance

Papplied = Power Dissipation

V_{Rated} = 50 Volts for RA10

= 75 Volts for RA20X-XC, F

= 130 Volts for RA30X-XC, F

175 Volts for RA20X-XA

= 275 Volts for RK09

= 320 Volts for RA30X-XA

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2.0
Lower	4.0

Environment	π _E	
G _B	1.0	
G _F	2.0	
G _M	16	
N _S	7.0	
N _U	28	
A _{IC}	8.0	
A _{IF}	12	
AUC	N/A	
A _{UF}	N/A	
A _{RW}	38	
S _F	.50	
M _F	N/A	
M_L	N/A	
Mլ Cլ	N/A	

9.12 RESISTORS, VARIABLE, WIREWOUND, POWER

SPECIFICATION MIL-R-22

STYLE RP DESCRIPTION

Variable, Wirewound, Power Type

 $\lambda_p = \lambda_b \pi_{TAPS} \pi_R \pi_V \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Stress					
T _A (℃)	.1	.3	.5	.7	.9
0	.064	.074	.084	.097	.11
10	.067	.078	.091	.11	.12
20	.071	.084	.099	.12	.14
30	.076	.091	.11	.13	.16
40	.081	.099	.12	.15	
50	.087	.11	.14	.17	
60	.095	.12	.15		
70	.10	.14	.18		
80	.12	.15			
90	.13	.18			
100	.15				
110	.17				
120	.20				

$$\lambda_{b} = .0481 \exp\left(.334 \left(\frac{T+273}{298}\right)^{4.66}\right) x$$

$$\exp\left(\frac{S}{1.47} \left(\frac{T+273}{273}\right)^{2.83}\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
1 to 2K	1.0
>2K to 5K	1.4
>5K to 10K	2.0

Potentiometer Taps Factor - π_{TAPS}

	7/11 0					
	NTAPS	*TAPS	N	TAPS	N TAPS	TAPS
	3	1.0	13	2.7	23	5.2
	4	1.1	14	2.9	24	5.5
	5	1.2	15	3.1	25	5.8
	6	1.4	16	3.4	26	6.1
	7	1.5	17	3.6	27	6.4
	8	1.7	18	3.8	28	6.7
	9	1.9	19	4.1	29	7.0
ı	10	2.1	20	4.4	30	7.4
	11	2.3	21	4.6	31	7.7
	12	2.5	22	4.9	32	8.0
	Comp. Page 4 a c					

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

N_{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations

9.12 RESISTORS, VARIABLE, WIREWOUND, POWER

Voltage Factor - π₁/

	Applied Voltage* Rated Voltage			
0 to 0.1			1.10	
>0.1 to 0.2			1.05	
>0.2 to	0.6	;	1.00	
>0.6 to	0.7	,	1.10	
>0.7 to	0.8	;	1.22	
>0.8 to	0.9	•	1.40	
>0.9 to	>0.9 to 1.0			
*VApplied	=	√ ^R P ^P Applied		
Rp	=	Nominal Total Pote Resistance	entiometer	
PApplied	Papplied = Power Dissipation			
V _{Rated}	V _{Rated} = 250 Volts for RP0			
	=	500 Volts for Othe	rs	

Construction Class Factor - π_{C}

Construction Class	Style	πC
Enclosed Unenclosed	RP07, RP11, RP16 All Other Styles are Unenclosed	2.0 1.0

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2.0
Lower	4.0

	E
Environment	π _E
G _B	1.0
G _F	3.0
G _M	16
N _S	7.0
N _U	28
A _{IC}	8.0
A _{IF}	12
A _{UC}	N/A
A _{UF}	N/A
A _{RW}	38
S _F	.50
M _F	N/A
ML	N/A
M _L Ել	N/A

9.13 RESISTORS, VARIABLE, NONWIREWOUND

SPECIFICATION

MIL-R-22097 MIL-R-39035 STYLE

RJ RJR **DESCRIPTION**

Variable, Nonwirewound (Adjustment Types) Variable, Nonwirewound (Adjustment Types), **Established Reliability**

 $\lambda_p = \lambda_b \pi_{TAPS} \pi_R \pi_V \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

			Stress	<u> </u>	
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80 90 100 110 120	.021 .021 .022 .023 .024 .025 .026 .028 .030 .034 .038 .043 .050	.023 .023 .024 .025 .026 .028 .030 .032 .035 .039 .044 .051	.024 .025 .026 .028 .029 .031 .033 .036 .040 .045 .052	.026 .027 .029 .030 .032 .035 .038 .042 .046 .053	.028 .030 .031 .033 .036 .039 .043 .047 .053
140	.074				

$$\lambda_{b} = .019 \exp\left(.445 \left(\frac{T+273}{358}\right)^{7.3}\right) x$$

$$\exp\left(\frac{S}{2.69} \left(\frac{T+273}{273}\right)^{2.46}\right)$$

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_R

πR
1.0
1.1
1.2
1.4
1.8

Potentiometer Taps Factor - π_{TAPS}

	N TAPS	π TAPS	N TAPS	π _{TAPS}	N TAPS	*TAPS
	3	1.0	13	2.7	23	5.2
	4	1.1	14	2.9	24	5.5
	5	1.2	15	3.1	25	5.8
	6	1.4	16	3.4	26	6.1
	7	1.5	17	3.6	27	6.4
İ	8	1.7	18	3.8	28	6.7
	9	1.9	19	4.1	29	7.0
	10	2.1	20	4.4	30	7.4
1	11	2.3	21	4.6	31	7.7
	12	2.5	22	4.9	32	8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

Number of Potentiometer Taps, including the Wiper and Terminations.

9.13 RESISTORS, VARIABLE, NONWIREWOUND

Voltage Factor - π_V

Applied Voltage* Rated Voltage			π_{\bigvee}
0 to 0.8			1.00
>0.8 to	>0.8 to 0.9		
>0.9 to	>0.9 to 1.0		
PApplied PApplied VRated	= =	√RpPApplied Nominal Total Potent Resistance Power Dissipation 200 Volts for RJ and RJ and RJR50 300 Volts for All Other	RJR26;

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	3.0
G _B G _F G _M	14
N _S	6.0
NU	24
A _{IC}	5.0
A _{IF}	7.0
A _{UC}	12
A _{UF}	18
A _{RW}	39
s _F	.50
M _F	22
ML	57
CL	1000

Quality Factor - π_Q

Quality	πQ
S	.020
R	.060
Р	.20
М	.60
MIL-R-22097	3.0
Lower	10

9.14 RESISTORS, VARIABLE, COMPOSITION

SPECIFICATION MIL-R-94

STYLE

DESCRIPTION

Variable, Composition, Low Precision

 $\lambda_p = \lambda_b \pi_{TAPS} \pi_R \pi_V \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

			Stress					
T _A (℃)	.1	.3	.5	.7	.9			
0	.027	.030	.032	.035	.038			
10	.028	.031	.034	.038	.042			
20	.029	.033	.037	.042	.048			
30	.031	.036	.041	.048	.056			
40	.033	.039	.047	.056	.067			
50	.036	.044	.054	.067	.082			
60	.039	.050	.065	.083	.11			
70	.045	.060	.08	.11	.14			
80	.053	.074	.10	.15				
90	.065	.096	.14					
100	.084	.13						
110	.11							

$$\lambda_{b} = .0246 \exp\left(.459 \left(\frac{T+273}{343}\right)^{9.3}\right) x$$

$$\exp\left(\frac{S}{2.32} \left(\frac{T+273}{273}\right)^{5.3}\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
50 to 50K	1.0
>50K to 100K	1.1
>100K to 200K	1.2
>200K to 500K	1.4
>500K to 1M	1.8

Potentiometer Taps Factor - π_{TAPS}

N TAPS	π TAPS	N	TAPS	NTAPS	π TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5. 5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

N_{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations.

9.14 RESISTORS, VARIABLE, COMPOSITION

Voltage Factor - π_{V}

voluge : uslov Hy					
Applied Voltage* Rated Voltage πV					
0 to 0.	1.00				
>0.8 to	1.05				
>0.9 to	1.0)	1.20		
*V Applied	-	$\sqrt{R_P^P_Applied}$			
R _P	=	Nominal Total Potent Resistance	tiometer		
PApplied	-	Power Dissipation			
V Rated	=	500 Volts for RV4X	XA&XB		
	=	500 Volts for 2RV7X	XA&XB		
	-	350 Volts for RV2X	XA&XB		
	=	350 Volts for RV4X	XA&XB		
	E.	350 Volts for RV5X	XA&XB		
	=	350 Volts for RV6X	XA&XB		
	-	250 Volts for RV1X	XA&XB		
	=	200 Volts for All Othe	er Types		

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	19
N _S	8.0
N _U	29
A _{IC}	40
A _{IF}	65
A _{UC} A _{UF}	48
A _{UF}	78
A _{RW}	46
S _F	.50
M _F	25
ML	66
M _L Cլ	1200

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2.5
Lower	5.0

RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION 9.15

SPECIFICATION

MIL-R-39023 MIL-R-23285

STYLE RQ **RVC**

DESCRIPTION

Variable, Nonwirewound, Film, Precision

Variable, Nonwirewound, Film

$$\lambda_p = \lambda_b^{\pi} \pi_{APS}^{\pi} \pi_{Q}^{\pi} \pi_{Q}^{\pi}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

(RQ Style Only)							
Stress							
T _A (℃)	.1	.3	.5	.7	.9		
	000	004	000	000	001		
0	.023	.024	.026	.028	.031		
10	.024	.026	.029	.031	.034		
20	.026	.029	.032	.035	.039		
30	.028	.032	.036	.040	.045		
40	.032	.036	.041	.047	.053		
50	.037	.042	.049	.057	.065		
60	.044	.051	.060	.070	.083		
70	.053	.064	.076	.091	.11		
80	.068	.083	.10	.12			
90	.092	.11	.14				
100	.13	.17					
110	.20						
				-			
		/T. 27	2174				

$$\lambda_{b} = .018 \exp\left(\frac{T + 273}{343}\right)^{7.4} \times \exp\left(\left(\frac{S}{2.55}\right) \left(\frac{T + 273}{273}\right)^{3.6}\right)$$

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_{D}

	<u> </u>
Resistance Range (Ohms)	π _R
Up to 10K	1.0
>10K to 50K	1.1
>50K to 200K	1.2
>200K to 1M	1.4
>1M	1.8

Base Failure Rate - λ_h (RVC Style Only)

TA (°C) .1 .3 .5 .7 .9 0 .028 .031 .033 .036 .039 10 .029 .032 .035 .038 .042 20 .030 .033 .037 .041 .046 30 .031 .035 .040 .045 .051 40 .032 .037 .043 .050 .058 50 .034 .040 .047 .056 .066 60 .036 .044 .053 .064 .078 70 .039 .049 .060 .075 .093 80 .043 .055 .070 .09 .11 90 .048 .063 .083 .11 .15
10 .029 .032 .035 .038 .042 20 .030 .033 .037 .041 .046 30 .031 .035 .040 .045 .051 40 .032 .037 .043 .050 .058 50 .034 .040 .047 .056 .066 60 .036 .044 .053 .064 .078 70 .039 .049 .060 .075 .093 80 .043 .055 .070 .09 .11
100 .055 .075 .10 .14 .19 110 .064 .091 .13 .18 .26 120 .077 .11 .17 .25 .37 130 .096 .15 .23 .36 .55 140 .12 .20 .33 .53 150 .17 .29 .50 160 .24 .44 170 .37

$$\lambda_{b} = .0257 \exp\left(\frac{T+273}{398}\right)^{7.9} x$$

$$\exp\left(\left(\frac{S}{2.45}\right) \left(\frac{T+273}{273}\right)^{4.3}\right)$$

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

9.15 RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION

Potentiometer Taps Factor - π_{TAPS}

N	TAPS	NTAPS	TAPS	N TAPS	TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0

πTAPS = $\frac{\left(N_{TAPS}\right)^{\frac{3}{2}}}{25} + 0.792$ Number of Potentiometer Taps, including the Wiper and Terminations.

Voltage Factor - π

Voltage Factor - π _V					
Applied Voltage* Rated Voltage πV					
0 to 0.8	0 to 0.8				
>0.8 to 0	>0.8 to 0.9				
>0.9 to 1	>0.9 to 1.0				
*V Applied =	√R _P P _{Applied}				
R _P =	Nominal Total Potent Resistance	tiometer			
PApplied =	Power Dissipation 250 Volts for RQ090, 110, 150, 200, 300				
V Rated =					
=	500 Volts for RQ100,	, 160, 210			
=	350 Volts for RVC5, 6	6			

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2
Lower	4

Environment	π _E
G _B	1.0
G _F	3.0
G _M	14
N _S	7.0
N _U	24
A _{IC}	6.0
A _{IF}	12
A _{UC}	20
^A UF	30
A _{RW}	39
S _F	.50
M _F	22
M_L	57
CL	1000

9.16 CALCULATION OF STRESS RATIO FOR POTENTIOMETERS

Stress Ratio (S) Calculation for Rheostats

Factor to correct for the

reduction in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged together on a common shaft. See below.

*GANGED

Stress Ratio (S) Calculation for Potentiometers Connected Conventionally

OUTHOUSE OUTFORD THE STATE OF T					
S = PAPPLIED					
π	GANGED ^{X P} RATED				
-	Equivalent power input to the potentiometer when it is not loaded (i.e., wiper lead disconnected). Calculate as follows:				
-	$\frac{{\rm V_{in}}^2}{{\rm R_P}}$				
-	Input Voltage				
_	Nominal Total Potentiometer				
	Resistance				
	710515141100				
-	Power Rating of Potentiometer				
_	Factor to correct for the reduction				
	in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged together on a common shaft. See below.				
_	Correction factor for the electrical				
	loading effect on the wiper contact of the potentiometer. Its value is a function of the type of potentiometer, its resistance, and the load resistance. See next page.				

Ganged-Potentiometer Factor - π_{GANGED}

Number of Sections	First Potentiometer Next to Mount	Second in Gang	Third in Gang	Fourth in Gang	Fifth in Gang	Sixth in Gang
Single	1.0			Not Applicable		
Two	0.75	0.60		Not	Applicable	
Three	0.75	0.50	0.60	Not	Applicable	
Four	0.75	0.50	0.50	0.60	Not	Applicable
Five	0.75	0.50	0.40	0.50	0.60	Not Applicable
Six	0.75	0.50	0.40	0.40	0.50	0.60

9.16 CALCULATION OF STRESS RATIO FOR POTENTIOMETERS

Loaded Potentiometer Derating Factor - π_{EFF}

		Herel Del		UI - KEFF		
R _L /R _P	0.2	0.3	Н 0.5	1.0		
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 3.0 4.0 5.0 10.0	.04 .13 .22 .31 .38 .45 .51 .55 .59 .63 .74 .80 .87 .90 .92	.03 .09 .16 .23 .29 .35 .40 .45 .49 .53 .65 .73 .81 .86 .88	.02 .05 .10 .15 .20 .25 .29 .33 .37 .40 .53 .62 .72 .78 .82 .90	.01 .03 .05 .08 .11 .14 .17 .20 .22 .25 .36 .44 .56 .64 .69 .83 .98		
^π EFF	$\pi_{\text{EFF}} = \frac{R_L^2}{R_L^2 + K_H \left(R_P^2 + 2R_P R_L\right)}$					
RL	■ Load resistance (If R _L is variable, use lowest value). R _L is the total resistance between the wiper arm and one end of the potentiometer.					
R _P	 Nominal Total Potentiometer Resistance 					
КН	- Sty	yle Constai	nt. See K _H	Table.		

Style Constant - KH

Potentiometer MiL-SPEC	Style Type	ĸ _н
MIL-R-19	RA	0.5
MIL-R-22	RP	1.0
MIL-R-94	RV	0.5
MIL-R-12934	RR1000, 1001,	0.3
	1003, 1400,	
	2100, 2101,	
	2102, 2103	
MIL-R-12934	All Other Types	0.2
MIL-R-22097	RJ11, RJ12	0.3
MIL-R-22097	All Other Types	0.2
MIL-R-23285	RVC	0.5
MIL-R-27208	RT22, 24, 26, 27	0.2
MIL-R-27208	All Other Types	0.3
MIL-R-39002	RK	0.5
MIL-R-39015	RTR 22, 24	0.2
MIL-R-39015	RTR12	0.3
MIL-R-39023	RQ	0.3
MIL-R-39035	RJR	0.3

9.17 RESISTORS, EXAMPLE

Example

Given:

Type RV1SAYSA505A variable 500K ohm resistor procured per MIL-R-94, rated at 0.2 watts is being used in a fixed ground environment. The resistor ambient temperature is 40°C and is dissipating 0.06 watts. The resistance connected to the wiper contact varies between 1 megohm and 3 megohms. The potentiometer is connected conventionally without ganging.

The appropriate model for RV style variable resistors is given in Section 9.14. Based on the given information the following model factors are determined from the tables shown in Section 9.14 and by following the procedure for determining electrical stress for potentiometers as described in Section 9.16.

From Sec	PAPPLIED πEFF πGANGED πRATED	=======================================	.06W .62 1.0	K _H = .5 for MIL-R-94 (Section 9.16 Table) Not Ganged (Section 9.16 Table, Single Section, First Potentiometer)
	s	=	P _{APPLIE} ^π EFF ^{x π} GANGEI	$\frac{6D}{D^{\times}\pi RATED} = \frac{.06}{(.62)(1.0)(.2)} = .48$
From Sec	tion 9.14			
	λ _b	=	.047	$T_A = 40$ °C, S Rounded to .5
	π_{R}	=	1.4	500K ohms
	πTAPS	=	1.0	3 Taps, Basic Single Potentiometer
	π_{\bigvee}	=	1.0	V _{RATED} = 250 Volts for RV1 prefix
				$V_{APPLIED} = \sqrt{(500,000)(.06)} = 173 \text{ volts}$
				$V_{APPLIED}/V_{RATED} = \frac{173}{250} = .69$
	^π Q	=	2.5	
	πE	=	2.0	
	λ _p	=	λb πTAPS πR πV πQ	
		=	(.047)(1.0)(1.4)(1.0)(2	2.5)(2.0) = .33 Failures/10 ⁶ Hours

10.1 CAPACITORS, FIXED, PAPER, BY-PASS

SPECIFICATION

MIL-C-25 MIL-C-12889 STYLE CP

CA

DESCRIPTION

Paper, By-pass, Filter, Blocking, DC Paper, By-pass, Radio Interference Reduction AC

$$\lambda_p = \lambda_b^{\pi} c_V^{\pi} Q^{\pi}_E$$
 Failures/10⁶ Hours

Base Failure Rate - λb

(T = 85°C Max Rated)
(All MIL-C-12889; MIL-C-25 Styles CP25, 26, 27, 28, 29, 40, 41, 67, 69, 70, 72, 75, 76, 77, 78, 80, 81, 82; Characteristics E, F)

	r	Stress				
T _A (℃)	.1	.3	.5	.7	.9	
0	.00088	.0011	.0036	.015	.051	
10	.00089	.0011	.0036	.016	.052	
20	.00092	.0011	.0037	.016	.054	
30	.00097	.0012	.0039	.017	.057	
40	.0011	.0013	.0044	.019	.063	
50	.0013	.0016	.0052	.022	.075	
60	.0017	.0021	.0069	.030	.10	
70	.0027	.0034	.011	.048	.16	
80	.0060	.0074	.024	.10	.35	

$$\lambda_{b} = .00086 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated) (MIL-C-25 Styles CP 4, 5, 8, 9, 10, 11, 12 13;

Characteristic K)							
T _A (℃)	.1	.3	Stress .5	.7	.9		
0	.00086	.0011	.0035	.015	.051		
10	.00087	.0011	.0035	.015	.051		
20	.00087	.0011	.0035	.015	.051		
30	.00088	.0011	.0035	.015	.051		
40	.00089	.0011	.0036	.015	.052		
50	.00091	.0011	.0037	.016	.053		
60	.00095	.0012	.0039	.017	.056		
70	.0010	.0013	.0041	.018	.060		
80	.0011	.0014	.0046	.020	.067		
90	.0014	.0017	.0056	.024	.081		
100	.0019	.0023	.0076	.033	.11		
110	.0030	.0037	.012	.052	.18		
120	.0063	.0078	.026	.11	.37		

$$\lambda_{b} = .00086 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.1 CAPACITORS, FIXED, PAPER, BY-PASS

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
MIL-C-25* .0034 .15 2.3	0.7 1.0 1.3
16. MIL-C-12889 All	1.6
• π _{CV} = 1.2C ^{.095}	

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	3.0
Lower	7.0

Environment Factor - $\pi_{\rm E}$

Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	9.0
N _S	5.0
N _U	15
	6.0
A _{IF}	8.0
A _{IC} A _{IF} A _{UC}	17
A _{UF}	32
A _{RW}	22
S _F	.50
M _F	12
ML	32
M _L C _L	570

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH

SPECIFICATION MIL-C-11693

STYLE CZR and CZ DESCRIPTION

Paper, Metallized Paper, Metallized Plastic, RFI Feed-Through Established Reliability and Non-Established Reliability

$$\lambda_p = \lambda_b^{\pi} c v^{\pi} Q^{\pi} E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_D (T = 85°C Max Rated) (Characteristics E. W)

(Characteristics E, VV)					
		S	tress		
T _A (℃)	.1	.3	.5	.7	.9
0	.0012	.0014	.0047	.020	.069
10	.0012	.0015	.0048	.021	.070
20	.0012	.0015	.0050	.021	.072
30	.0013	.0016	.0053	.023	.076
40	.0014	.0018	.0058	.025	.084
50	.0017	.0021	.0069	.030	.10
60	.0023	.0028	.0092	.039	.13
70	.0037	.0045	.015	.064	.21
80	.0080	.0099	.032	.14	.47_
			AND DESCRIPTION OF THE PARTY OF		

$$\lambda_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_D
(T = 125°C Max Rated)
(Characteristic K)

		S	tress		
T _A (℃)	.1	.3	.5	.7	.9
0	.0012	.0014	.0047	.020	.068
10	.0012	.0014	.0047	.020	.068
20	.0012	.0014	.0047	.020	.068
30	.0012	.0014	.0047	.020	.069
40	.0012	.0015	.0048	.021	.070
50	.0012	.0015	.0049	.021	.072
60	.0013	.0016	.0052	.022	.075
70	.0014	.0017	.0055	.024	.08
80	.0015	.0019	.0062	.027	.09
90	.0019	.0023	.0075	.032	.11
100	.0025	.0031	.010	.044	.15
110	.0040	.005	.016	.07	.24
120	.0084	.010	.034	.15	.49

$$\lambda_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 150°C Max Rated)
(Characteristic P)

(Characteristic F)							
l i		Stress_					
T _A (℃)	.1	.3	.5	.7	.9		
0	.0012	.0014	.0047	.020	.068		
10	.0012	.0014	.0047	.020	.068		
20	.0012	.0014	.0047	.020	.068		
30	.0012	.0014	.0047	.020	.068		
40	.0012	.0014	.0047	.020	.068		
50	.0012	.0015	.0048	.020	.069		
60	.0012	.0015	.0048	.021	.070		
70	.0012	.0015	.0049	.021	.071		
80	.0013	.0016	.0051	.022	.074		
90	.0013	.0017	.0055	.023	.079		
100	.0015	.0018	.0060	.026	.087		
110	.0017	.0022	.0071	.03	.10		
120	.0022	.0028	.0091	.039	.13		
130	.0033	.0040	.013	.057	.19		
140	.0058	.0072	.024	.10	.34		
150	.014	.017	.057	.24	.82		
l	ı						

$$\lambda_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] exp \left(2.5 \left(\frac{T + 273}{423} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
0.0031	.70
0.061	1.0
1.8	1.5
$\pi_{\text{CV}} = 1.4 \text{C}^{0.12}$	

Quality Factor - π_Q

Quality	πQ
М	1.0
Non-Established Reliability	3.0
Lower	10

Environment Factor - $\pi_{\rm F}$

Environment	π _E
G _B	1.0
G _F	2.0
G _F	9.0
N _S	7.0
N _U	15
A _{IC}	6.0
A _{IF}	8.0
Auc	17
A _{UF}	28
A _{RW}	22
S _F	.50
M _F	12
	32
M _L Ել	570

10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

SPECIFICATION

MIL-C-14157 MIL-C-19978 STYLE CPV CQR and CQ DESCRIPTION

Paper and Plastic Film, Est. Rel.

Paper and Plastic Film, Est. Rel. and Non-Est. Rel.

 $\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 65°C Max Rated) (MIL-C-14157 Style CPV07;

(MIL-C-14157 Style CPV07; MIL-C-19978 Characteristics P, L)

	WIL-O-19978 CHARACTERISTICS F, E)				
1	ł		Stress		
TA (°C	.1	.3	.5	.7	.9
0	.0005	.0006	.0021	.0092	.031
10	.0005	.00069	.0022	.0096	.032
20	.0006	.00075	.0025	.011	.036
30	.0007	² 1 .00088	.0029	.012	.042
40	.0009	.0012	.0038	.016	.055
50	.0015	.0019	.0061	.026	.088
60	.0034	.0042	.014	.059	.20

$$\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{338} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated)

(MIL-C-14157 Style CPV09 and MIL-C-19978 Characteristics K.O.S)

Characteristics N, Q, S)						
I		Stress				
T _A (°C)	.1	.3	.5	.7	.9	
0	.00050	.00062	.0020	.0087	.029	
10	.00050	.00062	.0020	.0088	.029	
20	.00051	.00062	.0020	.0088	.030	
30	.00051	.00063	.0021	.0089	.030	
40	.00052	.00064	.0021	.009	.030	
50	.00053	.00066	.0021	.0092	.031	
60	.00055	.00068	.0022	.0096	.032	
70	.00059	.00073	.0024	.010	.035	
80	.00067	.00083	.0027	.012	.039	
90	.00081	.0010	.0033	.014	.047	
100	.0011	.0013	.0044	.019	.064	
110	.0018	.0022	.0071	.030	.10	
120	.0037	.0045	.015	.064	.21	

$$\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λb

(T = 85°C Max Rated) (MIL-C-14157 Style CPV17;

MIL-C-19978 Characteristics E, F, G, M)

MIL-0-13976 CHATACIONSICS E, F, G, M)						
		Stress				
T _A (°C)	.1	.3	.5	.7	.9	
0	.00051	.00063	.0021	.0089	.030	
10	.00052	.00064	.0021	.0090	.030	
20	.00054	.00066	.0022	.0093	.031	
30	.00057	.00070	.0023	.0099	.033	
40	.00063	.00077	.0025	.011	.037	
50	.00074	.00092	.0030	.013	.043	
60	.00099	.0012	.0040	.017	.058	
70	.0016	.0020	.0064	.028	.093	
80	.0035	.0043	.014	.061	.20	

$$\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

= Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage

and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 170°C Max Rated)
(MIL-C-19978 Characteristic T)

		Stress				
T _A (℃)	.1	.3	.5	.7	.9	
0	.00050	.00062	.0020	.0087	.029	
10	.00050	.00062	.0020	.0087	.029	
20	.00050	.00062	.0020	.0087	.029	
30	.00050	.00062	.0020	.0087	.029	
40	.00050	.00062	.0020	.0087	.029	
50	.00050	.00062	.0020	.0088	.030	
60	.00051	.00063	.0021	.0088	.030	
70	.00051	.00063	.0021	.0089	.030	
80	.00052	.00065	.0021	.0091	.031	
90	.00054	.00066	.0022	.0093	.031	
100	.00056	.00069	.0023	.0097	.033	
110	.00060	.00074	.0024	.010	.035	
120	.00067	.00083	.0027	.012	.039	
130	.00079	.00098	.0032	.014	.046	
140	.0010	.0013	.0041	.018	.060	
150	.0015	.0018	.006	.026	.087	
160	.0026	.0032	.011	.046	.15	
170	.0061	.0075	.025	.11	.36	

$$\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{443} \right)^{18} \right)$$

= Ambient Temperature (°C)

and made A C subbana

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

and made A.C. valtage

10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
MIL-C-14157: * .0017 .027 .20 1.0 MIL-C-19978: ** .00032 .033 1.0 15.0	.70 1.0 1.3 1.6 .70 1.0 1.3 1.6
$\pi_{CV} = 1.6C^{0.13}$	
$\pi_{CV} = 1.3C^{0.077}$	

Quality Factor - π_Q

Quality	πQ
s	.03
R	.10
P	.30
м	1.0
L	3.0
MIL-C-19978, Non-Est. Rel.	10
Lower	30

	C
Environment	π _E
G _B	1.0
G _F	2.0
G _M	8.0
N _S	5.0
N _U	14
A _{IC}	4.0
A _{IF}	6.0
Auc	11.0
A _{UF}	20
A _{RW}	20
S _F	.50
M_{F}	11
м _L Ել	29
CĹ	530

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

SPECIFICATION

MIL-C-18312 MIL-C-39022 STYLE CH CHR **DESCRIPTION**

Metallized Paper , Paper-Plastic, Plastic Metallized Paper, Paper-Plastic, Plastic, Established Reliability

 $\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated) (MIL-C-39022 Characteristic 9 and 12 (50 Volts rated), Characteristic 49; and MIL-C-18312 Characteristic R)

	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.00070	.00087	.0029	.012	.041
10	.00072	.00089	.0029	.012	.042
20	.00074	.00091	.0030	.013	.043
30	.00078	.00097	.0032	.014	.046
40	.00086	.0011	.0035	.015	.051
50	.0010	.0013	.0041	.018	.06
60	.0014	.0017	.0055	.024	.08
70	.0022	.0027	.0089	.038	.13
80	.0048	.0059	.019	.084	.28

$$\lambda_{b} = .00069 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b

(T = 125°C Max Rated)
(MIL-C-39022 Characteristic 9 and 12 (above 50 Volts rated), Characteristics 1, 10, 19, 29, 59; and
Mil -C-18312 Characteristic N

MIL-C-18312 Characteristic N)					
T _A (°C)	.1	.3	tress .5	.7	.9
0	.00069	.00086	.0028	.012	.041
10	.00069	.00086	.0028	.012	.041
20	.00070	.00086	.0028	.012	.041
30	.00070	.00087	.0028	.012	.041
40	.00071	.00088	.0029	.012	.042
50	.00073	.00090	.003.	.013	.043
60	.00076	.00094	.0031	.013	.045
70	.00082	.0010	.0033	.014	.048
80	.00092	.0011	.0037	.016	.054
90	.0011	.0014	.0045	.019	.065
100	.0015	.0019	.0061	.026	.088
110	.0024	.0030	.0098	.042	.14
120	.0051	.0063	.020	.088	.30

$$\lambda_{b} = .00069 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

Capacitance Factor - π_{CV}

Capacitance, C (μF)	πCV
0.0029	.70
0.14	1.0
2.4	1.3
π _{CV} = 1.2C ^{0.092}	

Quality Factor - π_Q

Quality	πQ
S	0.03
R	.10
Р	.30
М	1.0
L	3.0
MIL-C-18312, Non-Est. Rel.	7.0
Lower	20

<u> </u>		
Environment	πΕ	
G _B	1.0	
G _F	2.0	
G _M	8.0	
N _S	5.0	
N _U	14	
	4.0	
^A IC ^A IF	6.0	
Auc	11.0	
A _{UF}	20	
A _{RW}	20	
S _F	.50	
M _F	11	
M_L	29	
M _L C _L	530	

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

SPECIFICATION MIL-C-55514

STYLE CFR **DESCRIPTION**

Plastic, Metallized Plastic, Est. Rel.

 $\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b
(T = 85°C Max Rated)
(Characteristics M. N)

	Stress					
T _A (℃)	.1	.3	.5	.7	.9	
0	.0010	.0012	.0041	.018	.059	
10	.0010	.0013	.0042	.018	.060	
20	.0011	.0013	.0043	.018	.062	
30	.0011	.0014	.0045	.020	.066	
40	.0012	.0015	.0050	.022	.073	
50	.0015	.0018	.0059	.026	.086	
60	.0020	.0024	.0079	.034	.11	
70	.0032	.0039	.013	.055	.18	
80	.0069	.0085	.028	.12	.40	

$$\lambda_{b} = .00099 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_D (T = 125°C Max Rated) (Characteristics O. R. S)

	(Characteristics Q, R, S) Stress					
T _A (°C)	.1	.3	.5	.7	.9	
0	.00099	.0012	.0040	.017	.058	
10	.0010	.0012	.0040	.017	.058	
20	.0010	.0012	.0041	.017	.059	
30	.0010	.0012	.0041	.018	.059	
40	.0010	.0013	.0041	.018	.060	
50	.0011	.0013	.0043	.018	.062	
60	.0011	.0014	.0044	.019	.064	
70	.0012	.0015	.0048	.020	.069	
80	.0013	.0016	.0054	.023	.077	
90	.0016	.0020	.0065	.028	.094	
100	.0022	.0027	.0087	.038	.13	
110	.0035	.0043	.014	.06	.20	
120	.0073	.0090	.029	.13	.43	

$$\lambda_{b} = .00099 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _{CV}
0.0049	.70
0.33	1.0
7.1	1.3
38.	1.5
$\pi_{\text{CV}} = 1.1 \text{C}^{0.085}$	

Quality Factor - π_Q

Quality	π _Q
S	.030
R	.10
Р	.30
м	1.0
Lower	10

Environment Factor - $\pi_{\rm F}$

	<u> </u>
Environment	π_{E}
GB	1.0
G _F	2.0
G _B G _F G _M N _S N _U A _{IC} A _{IF} A _{UC} A _{HF} A _{HF} A _{HF} A _{HF} A _{HF} A _{HF}	10
N _S	5.0
N _U	16
A _{IC}	6
AIF	11
AUC	18
A _{UF}	30
A _{RW}	23
S _F	.50
M _F	13
	34
Mլ Cլ	610

10.6 CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC

SPECIFICATION MIL-C-83421

STYLE CRH **DESCRIPTION**

Super-Metallized Plastic, Est. Rel.

 $\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(1 ± 125°C Max Haleo)					
Stress					
T _A (℃)	.1	.3	.5	.7	.9
0	.00055	.00068	.0022	.0096	.032
10	.00055	.00068	.0022	.0096	.032
20	.00056	.00069	.0023	.0097	.033
30	.00056	.00069	.0023	.0098	.033
40	.00057	.00070	.0023	.0099	.033
50	.00058	.00072	.0024	.010	.034
60	.00061	.00075	.0025	.011	.036
70	.00065	.00081	.0026	.011	.038
80	.00073	.00091	.0030	.013	.043
90	.00089	.0011	.0036	.015	.052
100	.0012	.0015	.0049	.021	.07
110	.0019	.0024	.0078	.033	.11
120	.0040	.0050	.016	.070	.24
					Į.

$$\lambda_b = .00055 \left[\left(\frac{S}{.4} \right)^5 + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right]$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor - π_Q

Quality	π _Q
S	.020
R	.10
Р	.30
М	1.0
Lower	10

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _{CV}
.001	.64
0.14	1.0
2.4	1.3
23	1.6
$\pi_{CV} = 1.2C^{0.092}$	

Environment	π _E		
G _B	1.0		
G _F	4.0		
G _M	8.0		
N _S	5.0		
Nυ	14		
Aic	4.0		
A _{lf}	6.0		
AUC	13.0		
A _{UF}	20		
A _{RW}	20		
S _F	.50		
M _F	11		
ML	29		
M _L C _L	530		

10.7 CAPACITORS, FIXED, MICA

SPECIFICATION

MIL-C-5 MIL-C-39001 STYLE CM CMR **DESCRIPTION**

MICA (Dipped or Molded)

MICA (Dipped), Established Reliability

 $\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b
(T=70°C Max Rated)

(MIL-CS, 10mp. Hange M)					
	Stress				
T _A (°C)	.1	.3	.5	.7	.9
0	.00030	.00041	.00086	.0019	.0036
10	.00047	.00066	.0014	.0030	.0058
20	.00075	.0011	.0022	.0047	.0092
30	.0012	.0017	.0035	.0075	.015
40	.0019	.0027	.0056	.012	.023
50	.0031	.0043	.0089	.019	.037
60	.0049	.0068	.014	.030	.059
70	.0078	.011	.023	.049	.095

$$\lambda_b = 8.6 \times 10^{-10} \left[\left(\frac{s}{.4} \right)^3 + 1 \right] \exp \left(16 \left(\frac{T + 273}{343} \right) \right]$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T=125°C Max Rated)
(MIL-C-5, Temp. Range O; MIL-C-39001 Temp. Range O)

Stress T_A (℃) .3 .5 .7 .9 . 1 .00032 n .00005 .00007 .00015 .00062 10 80000. .00011 .00022 .00048 .00093 20 .00011 .00016 .00033 .00071 .0014 30 .00017 .00024 .00050 .0011 .0021 40 .00025 .00036 .00074 .0016 .0031 50 .00038 .00053 .0011 .0024 .0046 .0069 60 .00057 .0008 .0036 .0017 70 .00085 .0025 .0012 .0053 .010 80 .0013 .0018 .0037 .008 .016 90 .0019 .0027 .0055 .012 .023 100 .0028 .0040 .0083 .018 .035 110 .0042 .0059 .012 .027 .052

$$\lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T + 273}{398} \right) \right)$$

.018

040

.077

T = Ambient Temperature (°C)

.0089

.0063

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T=85°C Max Rated)
(Mil -C-5, Temp. Barne N

(MIL-C-5, Temp. Hange N)						
		Stress				
T _A (°C)	.1	.3	.5	.7	.9	
0	.00017	.00024	.00051	.0011	.0021	
10	.00027	.00038	.00079	.0017	.0033	
20	.00042	.00059	.0012	.0027	.0052	
30	.00066	.00093	.0019	.0042	.0081	
40	.0010	.0015	.003	.0065	.013	
50	.0016	.0023	.0047	.010	.020	
60	.0025	.0036	.0074	.016	.031	
70	.0040	.0056	.012	.025	.048	
80	.0062	.0087	.018	.039	.076	

$$\lambda_b = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^3 + 1 \right] \exp \left(16 \left(\frac{T + 273}{358} \right) \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T=150°C Max Rated)

(MIL-C-5, Temp. Range P; MIL-C-39001, Temp. Range P

(MIL-C-5	Temp. Hange P; MIL-C-39001, Temp. Hange P)						
	1	Stress					
TA (°C)	.1	.3	.5	.7	.9		
0	.00003	.00004	.00008	.00017	.00033		
10	.00004	.00005	.00011	.00024	.00047		
20	.00006	.00008	.00017	.00036	.00069		
30	.00008	.00012	.00024	.00052	.0010		
40	.00012	.00017	.00035	.00076	.0015		
50	.00018	.00025	.00051	.0011	.0022		
60	.00026	.00036	.00075	.0016	.0031		
70	.00038	.00053	.0011	.0024	.0046		
80	.00055	.00077	.0016	.0034	.0067		
90	.0008	.0011	.0023	.0050	.0098		
100	.0012	.0016	.0034	.0073	.014		
110	.0017	.0024	.0050	.011	.021		
120	.0025	.0035	.0073	.016	.030		
130	.0036	.0051	.011	.023	.044		
140	.0053	.0074	.015	.033	.065		
150	.0078	.011	.023	.049	.095		

$$\lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] exp \left(16 \left(\frac{T + 273}{423} \right) \right)$$

= Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

120

10.7 CAPACITORS, FIXED, MICA

Capacitance Factor - π_{CV}

•	CV
Capacitance, C (pF)	π _{CV}
2	.50
38	.75
300	1.0
2000	1.3
8600	1.6
29000	1.9
84000	2.2
π _{CV} = 0.45C ^{.14}	

Quality Factor - π_Q

Quality	πQ
Т	.010
S	.030
R	.10
P	.30
М	1.0
L	1.5
MIL-C-5, Non-Est. Rel. Dipped	3.0
MIL-C-5, Non-Est. Rel. Molded	6.0
Lower	15

Environment	π _E		
G _B	1.0		
G _F	2.0		
G _M	10		
N _S	6.0		
N _U	16		
AIC	5.0		
A _{IF}	7.0		
Auc	22		
A _{UF}	28		
A _{RW}	23		
S _F	.50		
M _F	13		
M _L C _L	34		
CL	610		

10.8 CAPACITORS, FIXED, MICA, BUTTON

SPECIFICATION MIL-C-10950

STYLE CB **DESCRIPTION**MICA, Button Style

$$\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b
(T = 85°C Max Rated)
(Style CB50)

(Style CB50) Stress						
T _A (℃)	.1	.3	.5	.7	.9	
0	.0067	.0094	.019	.042	.082	
10	.0071	.0099	.021	.044	.086	
20	.0076	.011	.022	.047	.092	
30	.0082	.011	.024	.051	.10	
40	.009	.013	.026	.056	.11	
50	.010	.014	.029	.063	.12	
60	.012	.016	.033	.072	.14	
70	.013	.019	.039	.084	.16	
80	.016	.023	.047	.10	.20	

$$\lambda_{b} = .0053 \left[\left(\frac{s}{.4} \right)^{3} + 1 \right] exp \left(1.2 \left(\frac{T + 273}{358} \right)^{6.3} \right)$$

T - Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 150°C Max Rated)
(All Types Except CB50)

T (00)			tress		
T _A (℃)	.1	.3 	.5	.7	.9
0	.0058	.0081	.017	.036	.071
10	.0059	.0083	.017	.037	.072
20	.0061	.0085	.018	.038	.074
30	.0062	.0087	.018	.039	.076
40	.0064	.009	.019	.040	.079
50	.0067	.0094	.019	.042	.082
60	.0070	.0098	.020	.044	.086
70	.0074	.010	.022	.046	.090
80	.0079	.011	.023	.049	.096
90	.0085	.012	.025	.053	.10
100	.0093	.013	.027	.058	.11
110	.010	.014	.03	.064	.12
120	.011	.016	.033	.072	.14
130	.013	.018	.038	.082	.16
140	.015	.021	.044	.095	.18
150	.018	.025	.052	.11	.22

$$\lambda_{b} = .0053 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(1.2 \left(\frac{T + 273}{423} \right)^{6.3} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.8 CAPACITORS, FIXED, MICA, BUTTON

Quality Factor - π_Q

Quality	πQ
MIL-C-10950	5.0
Lower	15

Capacitance Factor - π_{CV}

Capacitance, C (pF)	π _{CV}
8	.50
50	.76
160	1.0
500	1.3
1200	1.6
2600	1.9
5000	2.2
$\pi_{CV} = .31C^{0.23}$	

Environment Factor - $\pi_{\rm F}$

	-
Environment	π _E
G _B	1.0
G _F	2.0
G _M	10
N _S	5.0
N _U	16
A _{IC} A _{IF}	5.0
A _{IF}	7.0
AUC	22
A _{UF}	28
A _{RW}	23
S _F	.50
M _F	13
M _L C _L	34
Cլ	610

CAPACITORS, FIXED, GLASS 10.9

SPECIFICATION

MIL-C-11272 MIL-C-23269 STYLE

CY **CYR** DESCRIPTION

Glass

Glass, Established Reliability

$$\lambda_p = \lambda_b^{\pi} c_V^{\pi} q^{\pi} E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

(T=125°C Max Rated) (All MIL-C-23296 and MIL-C-11272 Temp. Range C)

17 (17 1017)	-0-23230	dila iviil		10111p. 11	unge of
T _A (℃)	.1	.3	Stress .5	.7	.9
0	.00005	.00005	.00010	.00023	.00055
10	.00007	.00008	.00014	.00035	.00083
20	.00011	.00012	.00022	.00052	.0012
30	.00016	.00018	.00032	.00078	.0018
40	.00024	.00027	.00048	.0012	.0028
50	.00036	.00041	.00072	.0017	.0041
60	.00054	.00061	.0011	.0026	.0062
70	.0008	.00091	.0016	.0039	.0092
80	.0012	.0014	.0024	.0058	.014
90	.0018	.0020	.0036	.0087	.021
100	.0027	.0030	.0054	.013	.031
110	.0040	.0045	.0080	.019	.046
120	.0060	.0068	.012	.029	.069

$$\lambda_b = 8.25 \times 10^{-10} \left[\left(\frac{S}{.5} \right)^4 + 1 \right] exp \left(16 \left(\frac{T + 273}{398} \right) \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 200°C Max Rated)

(MIL-C-11272 Temp. Range D)						
T _A (℃)	.1	.3	Stress .5	.7	.9	
0	.00001	.00001	.00002	.00004	.00010	
10	.00001	.00001	.00002	.00006	.00014	
20	.00002	.00002	.00003	.00008	.00019	
30	.00002	.00003	.00005	.00011	.00027	
40	.00003	.00004	.00007	.00016	.00038	
50	.00005	.00005	.00009	.00022	.00053	
60	.00006	.00007	.00013	.00031	.00074	
70	.00009	.00010	.00018	.00044	.0010	
80	.00013	.00014	.00025	.00061	.0015	
90	.00018	.00020	.00035	.00086	.0020	
100	.00025	.00028	.00050	.0012	.0029	
110	.00035	.00039	.00070	.0017	.0040	
120	.00049	.00055	.00098	.0024	.0056	
130	.00069	.00078	.0014	.0033	.0079	
140	.00096	.0011	.0019	.0047	.011	
150	.0014	.0015	.0027	.0065	.016	
160	.0019	.0021	.0038	.0092	.022	
170	.0027	.0030	.0053	.013	.031	
180	.0037	.0042	.0075	.018	.043	
190	.0052	.0059	.010	.025	.060	
200	.0073	.0083	.015	.035	.084	

$$\lambda_b = 8.25 \times 10^{-10} \left[\left(\frac{S}{.5} \right)^4 + 1 \right] \exp \left(16 \left(\frac{T_{+273}}{473} \right) \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.9 CAPACITORS, FIXED, GLASS

Capacitance Factor - π_{CV}

Capacitance, C (pF)	π _C V			
1	.62			
4	.75			
30	1.0			
200	1.3			
900	1.6			
3000	1.9			
8500	2.2			
$\pi_{CV} = 0.62C^{0.14}$				

Quality Factor - π_Q

Quality	πQ
s	.030
R	.10
Р	.30
М	1.0
L	3.0
MIL-C-11272, Non-Est. Rel.	3.0
Lower	10

	<u> </u>		
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _B G _F G _M	10		
N _S	6.0		
N _U	16		
A _{IC} A _{IF} A _{UC} A _{UF}	5.0		
A _{IF}	7.0		
Auc	22		
A _{UF}	28		
A _{RW}	23		
S _F	.50		
M _F	13		
Mլ Cլ	34		
CL	610		

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

SPECIFICATION

MIL-C-11015 MIL-C-39014 STYLE

CKR

DESCRIPTION

Ceramic, General Purpose

Ceramic, General Purpose, Est. Rel.

$$\lambda_p = \lambda_b \pi_{CV} \pi_O \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b
(T = 85°C Max Rated)
(MiL-C-39014 Styles CKR13, 48, 64, 72;
Mil -C-11015 Type A Rated Temperature

MIL-C-11015 Type A Hated Temperature)					
	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.00067	.0013	.0036	.0088	.018
10	.00069	.0013	.0037	.0091	.019
20	.00071	.0014	.0038	.0093	.019
30	.00073	.0014	.0039	.0096	.020
40	.00075	.0014	.004	.0099	.020
50	.00077	.0015	.0042	.010	.021
60	.00079	.0015	.0043	.010	.021
70	.00081	.0016	.0044	.011	.022
80	.00083	.0016	.0045	.011	.023

$$\lambda_{\rm b} = .0003 \left[\left(\frac{\rm S}{.3} \right)^3 + 1 \right] \exp \left(\frac{\rm T + 273}{358} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated)

(MIL-C-39014 Styles CKR05-12, 14-19, 73, 74; MIL-C-11015 Type B Rated Temperature)

WILE-O-TTOTS Type B hated Temperature)					
ı	1	Stress			
T _A (℃)	.1	.3	.5	.7	.9
0	.00062	.0012	.0033	.0082	.017
10	.00063	.0012	.0034	.0084	.017
20	.00065	.0013	.0035	.0086	.018
30	.00067	.0013	.0036	.0088	.018
40	.00068	.0013	.0037	.0090	.018
50	.00070	.0014	.0038	.0093	.019
60	.00072	.0014	.0039	.0095	.019
70	.00074	.0014	.0040	.0097	.020
80	.00076	.0015	.0041	.010	.020
90	.00077	.0015	.0042	.010	.021
100	.00079	.0015	.0043	.010	.021
110	.00081	.0016	.0044	.011	.022
120	.00084	.0016	.0045	.011	.023

$$\lambda_{b} = .0003 \left[\left(\frac{S}{.3} \right)^{3} + 1 \right] \exp \left(\frac{T + 273}{398} \right)$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T =150°C Max Rated)
(MIL-C-11015 Type C Rated Temperature)

			Stress		
T _A (℃)	.1	.3	.5	.7	.9
0	.00059	.0011	.0032	.0078	.016
10	.00061	.0012	.0033	.008	.016
20	.00062	.0012	.0034	.0082	.017
30	.00064	.0012	.0035	.0084	.017
40	.00065	.0013	.0035	.0086	.018
50	.00067	.0013	.0036	.0088	.018
60	.00068	.0013	.0037	.009	.018
70	.00070	.0013	.0038	.0092	.019
80	.00072	.0014	.0039	.0095	.019
90	.00073	.0014	.0040	.0097	.020
100	.00075	.0014	.0041	.0099	.020
110	.00077	.0015	.0042	.010	.021
120	.00079	.0015	.0043	.010	.021
130	.00081	.0016	.0044	.011	.022
140	.00083	.0016	.0045	.011	.022
150	.00085	.0016	.0046	.011	.023

$$\lambda_{\rm b} = .0003 \left[\left(\frac{\rm S}{.3} \right)^3 + 1 \right] \exp \left(\frac{\rm T+273}{423} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

NOTE: The rated temperature designation (type A. B, or C) is shown in the part number, e.g., CKG1AW22M).

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

Capacitance Factor - π_{CV}

Capacitance, C (pF)	π _{CV}
6.0	.50
240	.75
3300	1.0
36,000	1.3
240,000	1.6
1,100,000	1.9
4,300,000	2.2
$\pi_{\text{CV}} = .410^{0.11}$	

Quality Factor - π_Q

Quality	πQ
S	.030
R	.10
Р	.30
М	1.0
L	3.0
MIL-C-11015, Non-Est. Rel.	3.0
Lower	10

πE	
1.0	
2.0	
9.0	
5.0	
15	
4.0	
4.0	
8.0	
12	
20	
.40	
13	
34	
610	

CAPACITORS, FIXED, CERAMIC, TEMPERATURE COMPENSATING AND CHIP 10.11

SPECIFICATION

MIL-C-20

MIL-C-55681

STYLE

CCR and CC

CDR

DESCRIPTION

Ceramic, Temperature Compensating, Est.

and Non Est. Rel.

Ceramic, Chip, Est. Rel.

 $\lambda_p = \lambda_b^{\pi} \kappa_C^{\pi} \kappa_C^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - 1

(T = 85°C Max Rated) (MII -C-20 Styles CC 20 25 30 32 35 45 85 95-97)

(MIL-C-20 Styles CC 20, 23, 30, 32, 33, 43, 83, 83-81)					
		Stress			
TA (°C)	.1	.3	.5	.7	.9
0	.00015	.00028	.00080	.0019	.0040
10	.00022	.00042	.0012	.0029	.0059
20	.00033	.00063	.0018	.0043	.0088
30	.00049	.00094	.0026	.0064	.013
40	.00073	.0014	.0039	.0096	.020
50	.0011	.0021	.0059	.014	.029
60	.0016	.0031	.0088	.021	.044
70	.0024	.0046	.013	.032	.065
80	.0036	.0069	.019	.047	.097

$$\lambda_{b} = 2.6 \times 10^{-9} \left[\left(\frac{S}{.3} \right)^{3} + 1 \right] \exp \left(14.3 \left(\frac{T + 273}{358} \right) \right)$$

Ambient Temperature (°C) Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

> Base Failure Rate - λb (T = 125°C Max Rated)

(MIL-C-20 Styles CC 5-9,13-19, 21, 22, 26, 27, 31, 33, 36, 37, 47, 50-57, 75-79, 81-83, CCR 05-09,13-19, 54-57, 75-79, 81-83, 90; MIL-C-55681 All CDR Styles)

	Stress				
TA (°C)	.1	.3	.5	.7	.9
0	.00005	.00009	.00027	.00065	.0013
10	.00007	.00014	.00038	.00093	.0019
20	.00010	.00019	.00055	.0013	.0027
30	.00014	.00028	.00078	.0019	.0039
40	.00021	.00040	.0011	.0027	.0056
50	.00030	.00057	.0016	.0039	.008
60	.00042	.00082	.0023	.0056	.011
70	.00061	.0012	.0033	.008	.016
80	.00087	.0017	.0047	.011	.023
90	.0012	.0024	.0068	.016	.034
100	.0018	.0034	.0097	.024	.048
110	.0026	.0049	.014	.034	.069
120	.0037	.0071	.020	.048	.099
$\lambda_{b} = 2.6 \times 10^{-9} \left[\left(\frac{s}{.3} \right)^{3} + 1 \right] \exp \left(14.3 \left(\frac{T + 273}{398} \right) \right)$					
T = Ambient Temperature (°C)					

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor - π_{CV}

Capacitance, C (pF)	πCV		
1	.59		
7	.75		
81	1.0		
720	1.3		
4,100	1.6		
17,000	1.9		
58,000	2.2		
$\pi_{CV} = .59C^{0.12}$			

Quality Factor - π_{Q}

Quality	π _Q
S	.030
R	.10
P	.30
M	1.0
Non-Est. Rel.	3.0
Lower	10

	E E
Environment	π _E
GB	1.0
G _F	2.0
$G_{\mathbf{M}}$	10
N _S	5.0
N _U	17
A _{IC}	4.0
A _{IF}	8.0
A _{UC}	16
A _{UF}	35
A _{RW}	24
S _F	.50
M _F	13
М	34
M _L C _L	610
<u> </u>	

10.12 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, SOLID

SPECIFICATION MIL-C-39003

STYLE **CSR**

DESCRIPTION

Tantalum Electrolytic (Solid), Est. Rel.

 $\lambda_p = \lambda_b^{\pi} \kappa_{CV}^{\pi} \kappa_{SR}^{\pi} \kappa_{Q}^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λ_h

		Stress			
T _A (℃)	.1	.3	.5	.7	.9
0	.0042	.0058	.012	.026	.051
10	.0043	.0060	.012	.027	.052
20	.0045	.0063	.013	.028	.055
30	.0048	.0067	.014	.030	.058
40	.0051	.0072	.015	.032	.063
50	.0057	.0079	.016	.035	.069
60	.0064	.009	.019	.040	.078
70	.0075	.011	.022	.047	.092
80	.0092	.013	.027	.058	.11
90	.012	.017	.034	.074	.14
100	.016	.023	.047	.10	
110	.024	.034	.07	.15	
120	.039	.054	.11	.24	
					THE RESIDENCE OF SECTION ASSESSMENT

$$\lambda_{b} = .00375 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(2.6 \left(\frac{T + 273}{398} \right)^{9} \right)$$

Ambient Temperature (°C)
Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor - π_{CV}

The state of the s	- CV
Capacitance, C (μF)	π _C V
.003	0.5
.091	.75
1.0	1.0
8.9	1.3
50	1.6
210	1.9
710	2.2
$\pi_{\rm CV} = 1.00^{0.12}$	

Quality Factor - TO

Quality	π_{Q}
D	0.0010
С	0.010
S	0.030
В	0.030
R	0.10
Р	0.30
M	1.0
L	1.5
Lower	10

Series Resistance Factor - TCD

	1
Circuit Resistance, CR (ohms/volt)	πSR
>0.8	.066
>0.6 to 0.8	.10
>0.4 to 0.6	.13
>0.2 to 0.4	.20
>0.1 to 0.2	.27
0 to 0.1	.33

Eff. Res. Between Cap. and Pwr. Supply Voltage Applied to Capacitor

Environment Factor - π_

E E E E E E E E E E E E E E E E E E E			
Environment	πE		
G _B	1.0		
G _F	2.0		
G _B G _F	8.0		
N _S	5.0		
N _U	14		
Aic	4.0		
A _{IF}	5.0		
Auc	12		
A _{UF}	20		
A _{RW}	24		
S _F	.40		
M _F	11		
ML	29		
CL	530		
A _{UF} A _{RW} S _F	.40 11 29		

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-3965 MIL-C-39006 CL CLR Tantalum, Electrolytic (Non-Solid)
Tantalum, Electrolytic (Non-Solid), Est. Rel.

 $\lambda_p = \lambda_b \pi_{CV} \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated) (MIL-C-3965 Styles CL24-27, 34-37)

[MIL-0-3303 SIVIUS OLZ4-27, 34-37]					
	Stress				
T _A (℃)	.1	.3	.5	.7	.9_
0	.0021	.0029	.0061	.013	.026
10	.0023	.0032	.0067	.014	.028
20	.0026	.0036	.0075	.016	.031
30	.0030	.0042	.0087	.019	.036
40	.0036	.0051	.011	.023	.044
50	.0047	.0066	.014	.029	.057
60	.0065	.0091	.019	.041	.079
70	.0098	.014	.029	.062	.12
80	.017	.023	.048	.10	.20

$$\lambda_{b} = .00165 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] exp \left(2.6 \left(\frac{T + 273}{358} \right)^{9.0} \right]$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b

(T = 125°C Max Rated)

(MIL-C-3965 Styles CL20-23, 30-33, 40-43, 46-56, 64-67, 70-73; and all MIL-C-39006 Styles)

	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0018	.0026	.0053	.011	.022
10	.0019	.0026	.0055	.012	.023
20	.0020	.0028	.0057	.012	.024
30	.0021	.0029	.0061	.013	.026
40	.0023	.0032	.0066	.014	.028
50	.0025	.0035	.0072	.016	.030
60	.0028	.0040	.0082	.018	.034
70	.0033	.0046	.0096	.021	.040
80	.0041	.0057	.012	.025	.049
90	.0052	.0073	.015	.033	.064
100	.0071	.010	.021	.045	
110	.011	.015	.031	.066	
120	.017	.024	.050	.11	

$$\lambda_b = .00165 \left[\left(\frac{S}{.4} \right)^3 + 1 \right] \exp \left(2.6 \left(\frac{T + 273}{398} \right)^{9.0} \right]$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b

(T = 175°C Max Rated) .-C-3965 Styles CL10, 13, 14, 16-18)

(MIL-C-3965 Styles CL10, 13, 14, 16-18)					
T _A (℃)	.1	.3	ress .5	.7	.9
0	.0017	.0024	.0050	.011	.021
10	.0017	.0024	.0051	.011	.021
20	.0018	.0025	.0052	.011	.022
30	.0018	.0025	.0053	.011	.022
40	.0019	.0026	.0054	.012	.023
50	.0019	.0027	.0056	.012	.023
60	.002	.0028	.0058	.013	.024
70	.0021	.0030	.0062	.013	.02ს
80	.0023	.0032	.0066	.014	.028
90	.0025	.0035	.0072	.016	.030
100	.0028	.0039	.0080	.017	.034
110	.0032	.0044	.0092	.020	.039
120	.0037	.0052	.011	.023	
130	.0046	.0064	.013	.029	
140	.0059	.0082	.017	.037	
150	.0079	.011	.023	.049	
160	.011	.016	.033	.071	
170	.018	.025	.051		

$$\lambda_{b} = .00165 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(2.6 \left(\frac{T + 273}{448} \right)^{9.0} \right)$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
.091 20 1100	.70 1.0 1.3
$\pi_{\text{CV}} = .82\text{C}^{0.066}$	

Construction Factor - π_C

Construction Type	π _C
Slug, All Tantalum	.30
Foil, Hermetic *	1.0
Slug, Hermetic *	2.0
Foil, Non-Hermetic *	2.5
Slug, Non-Hermetic *	3.0

*Type of Seal Identified as Follows:

1) MIL-C-3965 (CL) - Note Last Letter in Part Number: G - Hermetic E - Non-Hermetic

Example: CL10BC700TPG is Hermetic

2) MIL-C-39006 (CLR) - Consult Individual Part Specification Sheet (slash sheet)

NOTE:

Foil Types - CL 20-25, 30-33, 40, 41, 51-54, 70-73 CLR 25, 27, 35, 37, 53, 71, 73

Slug Types - CL 10, 13, 14, 16, 17, 18, 55, 56,

64-66, 67

CLR 10, 14, 17, 65, 69, 89

All Tantalum - CL 26, 27, 34-37, 42, 43, 46-49 **CLR 79**

Quality Factor - π_Q

Quality	πQ
S	.030
R	.10
Р	.30
М	1.0
L	1.5
MIL-C-3965, Non-Est. Rel.	3.0
Lower	10

Environment ruster "E			
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _F G _M	10		
N _S	6.0		
N _U	16		
AIC	4.0		
^A IC A _{IF} A _{UC} A _{UF} A _{RW}	8.0		
AUC	14		
A _{UF}	30		
^A RW	23		
S _F	.50		
M _F	13		
Mլ Cլ	34		
CL	610		

10.14 CAPACITORS, FIXED, ELECTROLYTIC, ALUMINUM

SPECIFICATION MIL-C-39018

STYLE **CUR and CU** DESCRIPTION

Electrolytic, Aluminum Oxide, Est. Rel. and Non-Est. Rel.

 $\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{O}^{\pi}_{F}$ Failures/10⁶ Hours

Base Failure Rate - λ_h (T = 85°C Max Rated) (MII -C-39018 Style 71)

	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0095	.011	.019	.035	.064
10	.012	.015	.024	.046	.084
20	.017	.020	.033	.062	.11
30	.023	.028	.046	.087	.16
40	.034	.042	.068	.13	.23
50	.054	.0 6 5	.11	.20	.36
60	.089	.11	.18	.33	.60
70	.16	.19	.31	.58	1.1
80	.29	.35	.58	1.1	2.0

$$\lambda_{b} = .00254 \left[\left(\frac{S}{.5} \right)^{3} + 1 \right] \exp \left(5.09 \left(\frac{T + 273}{358} \right)^{5} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

> Base Failure Rate - λ_h (T = 105°C Max Rated) (MIL-C-39018 Styles 16 and 17)

		Stress				
T _A (℃)	.1	.3	.5	.7	.9	
0	.0070	.0084	.014	.026	.047	
10	.0085	.010	.017	.031	.057	
20	.011	.013	.021	.040	.072	
30	.014	.017	.027	.051	.094	
40	.019	.022	.037	.069	.13	
50	.026	.031	.052	.097	.18	
60	.038	.046	.076	.14	.26	
70	.059	.071	.12	.22	.40	
80	.095	.11	.19	.35	.64	
90	.16	.20	.32	.61	1.1	
100	.30	.36	.59	1.1	2.0	

$$\lambda_{b} = .00254 \left[\left(\frac{S}{.5} \right)^{3} + 1 \right] \exp \left(5.09 \left(\frac{T + 273}{378} \right)^{5} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated) (All MIL-C-39018 Styles Except 71, 16 and 17)

	Stress					
T _A (℃)	.1	.3	.5	.7	.9	
	0055	0067	011	021	USB	

	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0055	.0067	.011	.021	.038
10	.0065	.0078	.013	.024	.044
20	.0077	.0093	.015	.029	.052
30	.0094	.011	.019	.035	.064
40	.012	.014	.023	.044	.080
50	.015	.019	.030	.057	.10
60	.021	.025	.041	.077	.14
70	.029	.035	.057	.11	.20
80	.042	.050	.083	.16	.28
90	.064	.077	.13	.24	.43
100	.10	.12	.20	.38	
110	.17	.21	.34	.63	
120	.30	.37	.60	1.1	
l					

$$\lambda_{b} = .00254 \left[\left(\frac{S}{.5} \right)^{3} + 1 \right] exp \left(5.09 \left(\frac{T + 273}{398} \right)^{5} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.14 CAPACITORS, FIXED, ELECTROLYTIC, ALUMINUM

Capacitance Factor - π_{CV}

Capacita ice i acioi	· · · · · · · · · · · · · · · · · · ·
Capacitance, C (μF)	πCV
2.5	.40
55	.70
400	1.0
1700	1.3
5500	1.6
14,000	1.9
32,000	2.2
65,000	2.5
120,000	2.8
$\pi_{CV} = .34C^{0.18}$	

Quality Factor - π_Q

Quality	πQ
S	.030
R	.10
P	.30
М	1.0
Non-Est. Rel.	3.0
Lower	10

	E
Environment	πE
GB	1.0
G _F	2.0
G _M	12
N _S	6.0
N _U	17
	10
A _{IC} A _{IF}	12
Auc	28
A _{UF}	35
A _{RW}	27
S _F	.50
M _F	14
ML	38
CL	690

10.15 CAPACITORS, FIXED, ELECTROLYTIC (DRY), ALUMINUM

SPECIFICATION

MIL-C-62

STYLE

CE

DESCRIPTION

Aluminum, Dry Electrolyte, Polarized

$$\lambda_p = \lambda_b^{\pi} c_V^{\pi} q^{\pi} E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 85°C Max Rated)

	1	S	tress		
T _A (℃)	.1	.3	.5	.7	.9
0	.0064	.0074	.011	.020	.034
10	.0078	.009	.014	.024	.042
20	.0099	.011	.017	.030	.053
30	.013	.015	.023	.040	.070
40	.018	.021	.031	.055	.096
50	.026	.030	.046	.08	.14
60	.041	.047	.071	.12	.22
70	.068	.078	.12	.21	.36
80	.120	.14	.21	.37	.65

$$\lambda_{b} = .0028 \left[\left(\frac{S}{.55} \right)^{3} + 1 \right] \exp \left(4.09 \left(\frac{T + 273}{358} \right)^{5.9} \right]$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
3.2 62 400 1600 4800 12,000 26,000 50,000 91,000	.40 .70 1.0 1.3 1.6 1.9 2.2 2.5 2.8
$\pi_{\text{CV}} = .320^{0.19}$	

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	3.0
Lower	10

	C
Environment	π _E
G _B	1.0
G _F	2.0
G _M	12
N _S	6.0
N _U	17
A _{IC}	10
A _{IF}	12
AUC	28
A _{UF}	35
A _{RW}	27
S _F	.50
M _F	14
j M _L	38
M _L C _L	690

10.16 CAPACITORS, VARIABLE, CERAMIC

SPECIFICATION MIL-C-81

STYLE CV

DESCRIPTION Variable, Ceramic

 $\lambda_p = \lambda_b^{} \pi_O^{} \pi_E^{}$ Failures/10⁶ Hours

Base Failure Rate - λ_h

(T = 85°C Max Rated) (MIL-C-81 Styles CV 11, 14, 21, 31, 32, 34, 40, 41)

	(MIL-0-01 Styles OV 11, 14, 21, 31, 32, 34, 40, 41)					
		Stress				
TA	(℃)	.1	.3	.5	.7	.9
	0	.0030	.016	.066	.18	.37
1	10	.0031	.017	.069	.18	.39
1 :	20	.0033	.018	.073	.20	.41
	30	.0036	.020	.080	.21	.45
	40	.0041	.022	.089	.24	.50
	50	.0047	.026	.10	.28	.59
	60	.0058	.031	.13	.34	.72
	70	.0076	.041	.17	.45	.94
	80	.011	.058	.24	.63	1.3

$$\lambda_{b} = .00224 \left[\left(\frac{S}{.17} \right)^{3} + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{358} \right)^{10.15} \right)$$

Ambient Temperature (°C)
Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated) (MIL-C-81 Styles CV 35, 36)

	Stress				
T _A (℃)	. 1	.3	.5	.7	.9
Ō	.0028	.015	.061	.16	.35
10	.0028	.015	.062	.17	.35
20	.0029	.016	.064	.17	.36
30	.0030	.016	.066	.18	.37
40	.0031	.017	.068	.18	.39
50	.0033	.018	.072	.19	.41
60	.0035	.019	.077	.21	.44
70	.0038	.021	.084	.23	.48
80	.0043	.023	.095	.25	.54
90	.0050	.027	.11	.30	.63
100	.0062	.033	.14	.36	.76
110	.0079	.043	.17	.47	.98
120	.011	.059	.24	.64	1.4

$$\lambda_b = .00224 \left[\left(\frac{S}{.17} \right)^3 + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{398} \right)^{10.1} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor - π_Q

Quality	π _Q
MIL-SPEC	4
Lower	20
	ì

Environment	πE
G _B	1.0
G _F	3.0
G _F G _M	13
N _S	8.0
N _U	24
	6.0
^A IC ^A IF ^A UC	10
Auc	37
A _{UF}	70
A _{RW}	36
S _F	.40
MF	20
M_L	52
CL	950

10.17 CAPACITORS, VARIABLE, PISTON TYPE

SPECIFICATION

MIL-C-14409

STYLE PC

DESCRIPTION

Variable, Piston Type, Tubular Trimmer

 $\lambda_p = \lambda_b^{\pi} \pi_Q^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 125°C Max Rated) (MIL-C-14409 Styles G, H, J, L, T)

	(MILE-0-14-03 Otyles O, 11, 0, E, 1)					
ı		ł	Stress			
	T _A (°C)	.1	.3	.5	.7	.9
1	0	.0030	.0051	.013	.031	.063
ı	10	.0041	.0070	.018	.042	.085
1	20	.0055	.0094	.024	.057	.11
ł	30	.0075	.013	.033	.077	.16
ı	40	.010	.017	.044	.10	.21
ı	50	.014	.024	.060	.14	.29
١	60	.019	.032	.082	.19	.39
ı	70	.025	.043	.11	.26	.53
۱	80	.034	.059	.15	.35	.71
١	90	.047	.079	.20	.48	.96
Į	100	.063	.11	.27	.65	1.3
١	110	.086	.15	.37	.88	1.8
İ	120	.12	.20	.51	1.2	2.4

Ambient Temperature (°C)
Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

> Base Failure Rate - λ_b (T = 150°C Max Rated) (MIL-C-14409 Characteristic Q)

(WILE O 14403 Characteristic Q)					
Į.	Stress				
T°C	.1	.3	.5	.7	.9
0	.0019	.0032	.0081	.019	.038
10	.0025	.0042	.011	.025	.051
20	.0033	.0056	.014	.034	.068
30	.0044	.0074	.019	.045	.09
40	.0058	.0099	.025	.060	.12
50	.0077	.013	.034	.079	.16
60	.010	.018	.045	.11	.21
70	.014	.023	.060	.14	.28
80	.018	.031	.079	.19	.38
90	.024	.041	.11	.25	.50
100	.032	.055	.14	.33	.67
110	.043	.073	.19	.44	.89
120	.057	.097	.25	.59	1.2
130	.076	.13	.33	.78	1.6
140	.10	.17	.44	1.0	2.1
150	.13	.23	.59	1.4	2.8

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor - π_Q

πQ
3
10

Environment Factor - π_

Environment actor kE			
Environment	πE		
G _B	1.0		
G _F	3.0		
G _M	12		
N _S	7.0		
N _U	18		
A _{IC}	3.0		
A _{IF}	4.0		
AUC	20		
A _{UF}	30		
A _{RW}	32		
S _F	.50		
M _F	18		
ML	46		
Cլ	830		

10.18 CAPACITORS, VARIABLE, AIR TRIMMER

SPECIFICATION MIL-C-92

STYLE CT DESCRIPTION Variable, Air Trimmer

 $\lambda_p = \lambda_b^{\pi} \pi_Q^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

<u> </u>	(T = 85°C Max Rated) Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0074	.013	.032	.076	.15
10	.010	.017	.044	.10	.21
20	.014	.023	.059	.14	.28
30	.018	.031	.08	.19	.38
40	.025	.042	.11	.26	.52
50	.034	.057	.15	.35	.70
60	.046	.078	.20	.47	.94
70	.062	.10	.27	.63	1.3
80	.083	.14	.36	.85	1.7

$$\lambda_{b} = 1.92 \times 10^{-6} \left[\left(\frac{S}{.33} \right)^{3} + 1 \right] \exp \left(10.8 \left(\frac{T + 273}{358} \right) \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Environment Factor - π_F

E			
Environment	πE		
G _B	1.0		
G _F	3.0		
G _F G _M N _S N _U	13		
N _S	8.0		
N _U	24		
A _{IC} A _{IF} A _{UC} A _{UF}	6.0		
A _{IF}	10		
A _{UC}	37		
A _{UF}	70		
A _{RW}	36		
S _F	.50		
M _F	20		
M_L	52		
Mլ Ել	950		

Quality Factor - π_Q

	
Quality	$\pi_{\mathbf{Q}}$
MIL-SPEC	5
Lower	20

CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM

SPECIFICATION

MIL-C-23183

STYLE

CG

DESCRIPTION

Gas or Vacuum Dielectric, Fixed and Variable, Ceramic or Glass Envelope

 $\lambda_p = \lambda_b^{\pi}_{CF}^{\pi}_{Q}^{\pi}_{F}$ Failures/10⁶ Hours

Base Failure Rate - λ_h (T = 85°C Max Rated) (Styles CG 20, 21, 30, 31, 32, 40-44, 51, 60-64,

		6	/)				
	Stress						
T℃	.1	.3	.5	.7	.9		
0	.015	.081	.33	.88	1.9		
10	.016	.084	.34	.92	1.9		
20	.017	.090	.37	.98	2.1		
30	.018	.098	.40	1.1	2.2		
40	.020	.11	.45	1.2	2.5		
50	.024	.13	.52	1.4	2.9		
60	.029	.16	.64	1.7	3.6		
70	.038	.20	.83	2.2	4.7		
80	.054	.29	1.2	3.2	6.6		

$$\lambda_b = .0112 \left[\left(\frac{S}{.17} \right)^3 + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{358} \right)^{10.1} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

> Base Failure Rate - λ_h (T = 100°C Max Rated) (Styles CG 65, 66)

	i		Stress		
T℃	.1	.3	.5	.7	.9
0	.014	.078	.30	.85	1.8
10	.015	.080	.33	.87	1.8
20	.015	.084	.34	.91	1.9
30	.016	.088	.36	.96	2.0
40	.018	.095	.39	1.0	2.2
50	.020	.11	.43	1.2	2.4
60	.022	.12	.49	1.3	2.8
70	.027	.14	.59	1.6	3.3
80	.034	.18	.74	2.0	4.2
90	.045	.24	.99	2.7	5.6
100	.066	.36	1.5	3.9	8.2

$$\lambda_{b} = .0112 \left[\left(\frac{S}{.17} \right)^{3} + 1 \right] exp \left(1.59 \left(\frac{T + 273}{373} \right)^{10.1} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_h (T = 125°C Max Rated) (Style CG 50)

	(Style CG 50) Stress						
T℃	.1	.3	.5	.7	.9		
0	.014	.075	.31	.82	1.7		
10	.014	.077	.31	.83	1.8		
20	.014	.078	.32	.85	1.8		
30	.015	.08	.33	.88	1.9		
40	.016	.084	.34	.91	1.9		
50	.016	.088	.36	.96	2.0		
60	.018	.095	.39	1.0	2.2		
70	.019	.10	.42	1.1	2.4		
80	.022	.12	.48	1.3	2.7		
90	.025	.14	.55	1.5	3.1		
100	.031	.17	.68	1.8	3.8		
110	.04	.21	.87	2.3	4.9		
120	.055	.29	1.2	3.2	6.8		

$$\lambda_b = .0112 \left[\left(\frac{S}{.17} \right)^3 + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{398} \right) 10.1 \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.19 CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM

Configuration Factor - π_{CF}

Configuration	π _{CF}
Fixed	.10
Variable	1.0

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	3.0
Lower	20

Environment	π _E
G _B	1.0
G _B	3.0
G _M	14
N _S	8.0
NU	27
A _{IC}	10
A _{IF}	18
A _{UC}	70
A _{UF}	108
A _{RW}	40
S _F	.50
M _F	N/A
ML	N/A
Mլ Cլ	N/A

10.20 CAPACITORS, EXAMPLE

Example

Given:

A 400 VDC rated capacitor type CQ09A1KE153K3 is being used in a fixed ground environment, 55°C component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz. The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a Non-Established Reliability quality level. The 1st "K" in the designation indicates characteristic K. The "E" in the designation corresponds to a 400 volt DC rating. The "153" in the designation expresses the capacitance in picofarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picofarads. (NOTE: Pico = 10^{-12} , $\mu = 10^{-6}$)

The appropriate model for CQ style capacitors is given in Section 10.3. Based on the given information the following model factors are determined from the tables shown in Section 10.3. Voltage stress ratio must account for both the applied DC volts and the peak AC voltage, hence,

$$S = .68$$

$$S = \frac{DC \text{ Volts Applied} + \sqrt{2} \text{ (AC Volts Applied)}}{DC \text{ Rated Voltage}} = \frac{200 + \sqrt{2} (50)}{400} = .68$$

$$\lambda_{D} = .0082$$

$$Substitute S = .68 \text{ and } T_{A} = 55^{\circ}C \text{ into equation shown with Characteristic K } \lambda_{D} \text{ Table.}$$

$$\pi_{CV} = .94$$

$$\pi_{Q} = .94$$

$$\pi_{Q} = .0082$$
Use Table Equation (Note 15,000 pF = .015 μ F)
$$\pi_{Q} = .0082$$

 $\lambda_{\rm D} = \lambda_{\rm b} \, \pi_{\rm CV} \, \pi_{\rm Q} \, \pi_{\rm E} = (.0082)(.94)(10)(2) = .15 \, {\rm Failures/10^6 \, Hours}$

11.1 INDUCTIVE DEVICES, TRANSFORMERS

SPECIFICATION

MIL-T-27

MIL-T-21038 MIL-T-55631 STYLE TF TP DESCRIPTION

Audio, Power and High Power Pulse

Low Power Pulse

IF, RF and Discriminator

$$\lambda_p = \lambda_b^{} \pi_Q^{} \pi_E^{}$$
 Failures/10⁶ Hours

Base Failure Rate - λh

	Maximum Rated Operating Temperature (°C)					
T _{HS} (℃)	85 ¹	105 ²	130 ³	155 ⁴	170 ⁵	>170 ⁶
30	.0024	.0023	.0022	.0021	.0018	.0016
35	.0026	.0023	.0023	.0022	.0018	.0016
40	.0028	.0024	.0024	.0022	.0019	.0016
45	.0032	.0025	.0025	.0022	.0019	.0016
50	.0038	.0027	.0026	.0023	.0020	.0017
55	.0047	.0029	.0027	.0023	.0020	.0017
60	.0060	.0032	.0029	.0023	.0021	.0017
65	.0083	.0035	.0030	.0024	.0021	.0017
70	.012	.0040	.0033	.0025	.0022	.0017
75	.020	.0047	.0035	.0026	.0023	.0017
80	.036	.0057	.0039	.0027	.0024	.0017
85	.075	.0071	.0043	.0028	.0024	.0017
90	ľ	.0093	.0048	.0029	.0025	.0018
95	ļ.	.013	.0054	.0031	.0026	.0018
100	1	.019	.0062	.0033	.0027	.0018
105	1	.030	.0072	.0035	.0028	.0018
110	}	1	.0085	.0038	.0030	.0019
115	}	1	.010	.0042	.0031	.0019
120	İ	i i	.013	.0046	.0032	.0019
125	į.	İ	.016	.0052	.0034	.0020
130		İ	.020	.0059	.0036	.0020
135	}			.0068	.0038	.0021
140	I			.0079	.0040	.0021
145	İ	İ		.0095	.0042	.0022
150	Ì	ì		.011	.0044	.0023
155	į	ŀ		.014	.0047	.0024
160		•			.0050	.0025
165	!	ł			.0053	.0026
170					.0056	.0027
175		1				.0029
180	į	j				.0030
185					Į.	.0032

NOTE: The models are valid only if THS is not above the temperature rating for a given insulation class.

$$\lambda_{\rm b} = .0018 \exp\left(\frac{{\rm T}_{\rm HS} + 273}{329}\right)$$
 15.6

MIL-T-27 Insulation Class Q, MIL-T-21038 Insulation Class Q, and MIL-T-55631 Insulation Class Q.*

$$\lambda_{b} = .002 \exp \left(\frac{T_{HS} + 273}{352}\right)^{14}$$

MIL-T-27 Insulation Class R, MIL-T-21038 Insulation Class R, and MIL-T-55631 Insulation Class A.*

 $\lambda_{b} = .0018 \exp\left(\frac{T_{HS} + 273}{364}\right) 8.7$

MiL-T-27 insulation Class S, MiL-T-21038 insulation Class S, and MiL-T-55631 Insulation Class B.*

 $\lambda_{b} = .002 \exp \left(\frac{T_{HS} + 273}{400} \right) 10$

MIL-T-27 Insulation Class V, MIL-T-21038 Insulation Class T, and MIL-T-55631 Insulation Class C.*

5 $\lambda_b = .00125 \exp\left(\frac{T_{HS} + 273}{398}\right) 38$

MIL-T-27 Insulation Class T and MIL-T-21038 Insulation Class U.*

 $\lambda_{b} = .00159 \exp\left(\frac{T_{HS} + 273}{477}\right) 8.4$

MIL-T-27 Insulation Class U and MIL-T-21038 Insulation Class V.*

 T_{HS} = Hot Spot Temperature (°C), See Section 11.3.

*Refer to Transformer Application Note for Determination of Insulation Class

11.1 INDUCTIVE DEVICES, TRANSFORMERS

Quality Factor - π_O

Family Type*	MIL-SPEC	Lower
Pulse Transformers	1.5	5.0
Audio Transformers	3.0	7.5
Power Transformers and Filters	8.0	30
RF Transformers	12	30

* Refer to Transformer Application Note for Determination of Family Type

Environment Factor - π₌

<u> </u>			
Environment	π _E		
G _B	1.0		
G _F	6.0		
G _M	12		
N _S	5.0		
NU	16		
A _{IC}	6.0		
A _{IF}	8.0		
A _{IF} A _{UC}	7.0		
A _{UF}	9.0		
A _{RW}	24		
S _F	.50		
S _F M _F M _L C _L	13		
ML	34		
CL	610		

TRANSFORMER APPLICATION NOTE: Insulation Class and Family Type Determination

Grade 1 - For Use When Immersion and
Moisture Resistance Tests are
Required

For Use When Moisture Resistance Test is Required

Grade 3 - For Use in Sealed Assemblies

Class O - 85°C Maximum Operating Temperature

Grade 2

Class A - 105°C Maximum Operating Temperature

Class B - 125°C Maximum Operating Temperature

Class C - > 125°C Maximum Operating Temperature

s denotes the maximum on

The class denotes the maximum operating temperature (temperature rise plus maximum ambient temperature).

INDUCTIVE DEVICES, COILS

SPECIFICATION

MIL-C-15305 MIL-C-39010 STYLE

DESCRIPTION

Fixed and Variable, RF Molded, RF, Est. Rel.

 $\lambda_p = \lambda_b \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λμ

			0		
		Maximum Operating Temperature (°C)			
T _{HS} (°C)	85 ¹	105 ²	125 ³	150 ⁴	
30	.00044	.00043	.00039	.00037	
35	.00048	.00044	.0004	.00037	
40	.00053	.00046	.00042	.00037	
45	.0006	.00048	.00043	.00038	
50	.00071	.00051	.00045	.00038	
55	.00087	.00055	.00048	.00039	
60	.0011	.0006	.00051	.0004	
65	.0015	.00067	.00054	.00041	
70	.0023	.00076	.00058	.00042	
75	.0037	.00089	.00063	.00043	
80	.0067	.0011	.00069	.00044	
85	.014	.0013	.00076	.00046	
90		.0018	.00085	.00047	
95		.0024	.00096	.0005	
100		.0036	.0011	.00052	
105		.0057	.0013	.00055	
110			.0015	.00059	
115			.0018	.00063	
120			.0022	.00068	
125	ł		.0028	.00075	
130				.00083	
135	:			.00093	
140				.0011	
145				.0012	
150				.0014	

NOTE: The models are valid only if THS is not above the temperature rating for a given insulation class.

2
$$\lambda_{b} = .000379 \exp\left(\frac{T_{HS} + 273}{352}\right)^{-14}$$

1. $\lambda_b = .000335 \exp\left(\frac{T_{HS} + 273}{329}\right)$ 15.6

MIL-C-15305 Insulation Class A and MIL-C-39010 Insulation Class A.*

MIL-C-15305 Insulation Class O.*

$$\lambda_{b} = .000319 \exp \left(\frac{T_{HS} + 273}{384} \right) 8.7$$

MIL-C-15305 Insulation Class B and MIL-C-39010 Insulation Class B.*

$$\lambda_{b} = .00035 \exp \left(\frac{T_{HS} + 273}{409} \right)^{10}$$

MIL-C-15305 Insulation Class C and MIL-C-39010 Insulation Class F.*

THS = Hot Spot Temperature (°C), See Section 11.3.

*Refer to Coil Application Note for Determination of Insulation Class.

Construction Factor - π_C

π _C
1
2

Quality Factor - πQ

Quality	πQ
s	.03
R	.10
Р	.30
М	1.0
MIL-C-15305	4.0
Lower	20

11.2 INDUCTIVE DEVICES, COILS

Environment Factor - π_⊏

	_
Environment	π _E
G _B	1.0
G _F	4.0
G _F G _M	12
N _S	5.0
N _U	16
	5.0
A _{IC} A _{IF}	7.0
A _{UC}	6.0
A _{UF}	8.0
A _{RW}	24
S _F	.50
M _F	13
ML	34
Mլ Cլ	610

11.3 INDUCTIVE DEVICES, DETERMINATION OF HOT SPOT TEMPERATURE

Hot Spot temperature can be estimated as follows:

$$T_{HS} = T_A + 1.1 (\Delta T)$$

where:

T_{HS} = Hot Spot Temperature (°C)

T_A = Inductive Device Ambient Operating Temperature (°C)

 ΔT = Average Temperature Rise Above Ambient (°C)

ΔT can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below.

ΔT Approximation

Information Known		ΔT Approximation	
1.	MIL-C-39010 Slash Sheet Number MIL-C-39010/1C-3C, 5C, 7C, 9A, 10A, 13, 14	ΔT = 15°C	
	MIL-C-39010/4C, 6C, 8A, 11, 12	$\Delta T = 35^{\circ}C$	
2.	Power Loss Case Radiating Surface Area	$\Delta T = 125 \text{ W}_{L}/A$	
3.	Power Loss Transformer Weight	$\Delta T = 11.5 W_L/(Wt.)^{.6766}$	
4.	Input Power Transformer Weight (Assumes 80% Efficiency)	$\Delta T = 2.1 \text{ W}_{1}/(\text{Wt.})^{-6766}$	

 W_1 = Power Loss (W)

A = Radiating Surface Area of Case (in2). See below for MIL-T-27 Case Areas

Wt. = Transformer Weight (lbs.)

W_i = Input Power (W)

NOTE: Methods are listed in preferred order (i.e., most to least accurate). MIL-C-39010 are microminiature devices with surface areas less than 1 in². Equations 2-4 are applicable to devices with surface areas from 3 in² to 150 in². Do not include the mounting surface when determining radiating surface area.

	MIL-T-27 Case Radiating Areas (Excludes Mounting Surface)				
Case	Area (in ²)	Case	Area (in ²)	Case	Area (in ²)
AF	4	GB	33	LB	82
AG	7	GA	43	LA	98
AH	1 11	HB.	42	MB	98
AJ	18	HA	53	MA	115
EB	21	JB	58	NB	117
EA	23	JA	71	NA	139
FB	25	KB	72	OA	146
FA	31	KA	84		

12.1 ROTATING DEVICES, MOTORS

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as well as various other motor applications. The model is based on Reference 4, which contains a more comprehensive treatment of motor life prediction methods. The reference should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous fallure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period "t". The motor operating time period (t-hours) is selected by the analyst. Each motor must be replaced when it reaches the end of this period to make the calculated λ_p valid. The average failure rate, λ_p , has been obtained by dividing the cumulative hazard rate by t, and can be treated as a constant failure rate and added to other part failure rates from this Handbook.

$$\lambda_p = \left[\frac{t^2}{\alpha_B 3} + \frac{1}{\alpha_W} \right] \times 10^6 \text{ Failures/} 10^6 \text{ Hours}$$

Bearing & Winding Characteristic Life - α_R and α_W

T _A (°C)	α _B (Hr.)	α _W (Hr.)	T _A (°C)	α _B (Hr.)	α _W (Hr.)
-40	310	1.9e+08	55	44000	2.3e+05
-35	310	1.2e+08	60	35000	1.8e+05
-30	330	7. 4e +07	65	27000	1.49+05
-25	370	4.7 e +07	70	22000	1.1e+05
-20	46 0	3.1e+07	75	17000	8.8e+04
-15	660	2.0e+07	80	14000	7.0e+04
-10	1100	1.4e+07	85	11000	5.7e+04
-5	1900	9.2e+06	90	9100	4.6e+04
0	3600	6.4e+06	95	7400	3.8e+04
0 5	6700	4.5e+06	100	6100	3.1e+04
10	13000	3.2e+06	105	5000	2.5e+04
15	23000	2.3e+06	110	4200	2.1e+04
20	39000	1.6e+06	115	3500	1.8e+04
25	60000	1.29+06	120	2900	1.5e+04
30	78000	8.9e+05	125	2400	1.2e+04
35	86000	6.6e+05	130	2100	1.0e+04
40	80000	5.0e+05	135	1700	8.9e+03
45	68000	3.8e+05	140	1500	7.5e+03
50	55000	2.9e+-5		. 300	7.00100

$$\alpha_{B} = \left[10^{\left(2.534 \cdot \frac{2357}{T_{A} + 273}\right)} + \frac{1}{\left(20 \cdot \frac{4500}{T_{A} + 273}\right) + 300} \right]$$

$$\left[\frac{2357}{T_A + 273} - 1.83\right]$$

α_B = Weibull Characteristic Life for the Motor Bearing

α_W = Weibull Characteristic Life for the Motor Windings

T_A = Ambient Temperature (°C)

t = Motor Operating Time Period (Hours)

NOTE: See next page for method to calculate α_R and α_W when temperature is not constant.

12.1 ROTATING DEVICES, MOTORS

a Calculation for Cycled Temperature

The following equation can be used to calculate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute α_B for all α 's in equation).

$$\alpha = \frac{\begin{pmatrix} h_1 + h_2 + h_3 + \dots + h_m \end{pmatrix}}{\frac{h_1}{\alpha_1} + \frac{h_2}{\alpha_2} + \frac{h_3}{\alpha_3} + \dots + \frac{h_m}{\alpha_m}}$$

where:

 $\alpha = \text{either } \alpha_B \text{ or } \alpha_W$

 h_1 = Time at Temperature T_1

 h_2 = Time to Cycle From Temperature T_1 to T_3

 h_3 = Time at Temperature T_3

 h_m = Time at Temperature T_m

 α_1 = Bearing (or Winding) Life at T_1

 α_2 = Bearing (or Winding) Life at T_2

NOTE:
$$T_2 = \frac{T_1 + T_3}{2}$$
, $T_4 = \frac{T_3 + T_1}{2}$

Hours (h)

Thermal Cycle

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$\lambda_p = \lambda_b^{\pi} \pi_N^{\pi} \pi_E$$
 Failures/10⁶ Hours

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λh

Daso Fallato 746					
T _F (℃)	λ _b	T _F (℃)	λ _b		
30 35 40 45 50 55 60 65 70 75 80	.0083 .0088 .0095 .010 .011 .013 .014 .016 .019 .022	85 90 95 100 105 110 115 120 125 130 135	.032 .041 .052 .069 .094 .13 .19 .29 .45 .74		

$$\lambda_{b} = .00535 \exp\left(\frac{T + 273}{334}\right)^{8.5}$$

T_F = Frame Temperature (°C)

If Frame Temperature is Unknown Assume T_F = 40 °C + Ambient Temperature

Size Factor - π_S

		πS	
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Synchro	2	1.5	1
Resolver	3	2.25	1.5

Number of Brushes Factor - π_N

Number of Brushes	π_{N}
2	1.4
3	2.5
4	3.2

Environment Factor - π_E

E.M.O.M.O.C. AE		
Environment	π _E	
G _B	1.0	
G _F	2.0	
G _F G _M	12	
N _S	7.0	
N _U	18	
A _{IC}	4.0	
A _{IF}	6.0	
Auc	16	
A _{UF}	25	
A _{RW}	26	
S _F	.50	
M _F	14	
ML	36	
CL	680	

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTIONElapsed Time Meters

 $\lambda_p = \lambda_b^{\pi} \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λ _b
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Temperature Stress Factor - π_T

Operating T (°C)/Rated T (°C)	πΤ
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor - π_E

	<u> </u>
Environment	πE
G _B	1.0
G _B	2.0
G _M	12
N _S	7.0
N _U	18
A _{IC}	5.0
A _{IF}	8.0
A _{UC}	16
A _{UF}	25
A _{RW}	26
S _F	.50
M _F	14
M _L	38
Mլ Cլ	N/A

12.4 ROTATING DEVICES, EXAMPLE

Example

Given:

Fractional Horsepower Mctor operating at a thermal duty cycle of: 2 hours at 100°C, 8 hours at 20°C, 0.5 hours from 100°C to 20°C, and 0.5 hours from 20°C back to 100°C. Find the average failure rate for 4000 hours operating time.

The basic procedure is to first determine operating temperature at each time interval (or averge temperature when traversing from one temperature to another, e.g. $T_2 = (100 + 20)/2 = 60^{\circ}$ C. Determine α_B and α_W at each temperature and then use these values to determine a weighted average α_B and α_W to use in the λ_D equation.

13.1 RELAYS, MECHANICAL

SPECIFICATION

DESCRIPTION Mechanical Relay

MIL-R-5757

MIL-R-19648

MIL-R-6106 MIL-R-19523 MIL-R-83725

MIL-R-39016

MIL-R-83726 (Except Class C, Solid State Type)

$\lambda_p = \lambda_b \pi_L \pi_C \pi_{CYC} \pi_F \pi_O \pi_E \text{ Failures/10}^6 \text{ Hours}$

Rase Failure Rate - 1

Base Failure Hate - Ab			
	Rated	Temperature	
T _A (°C)	85°C ¹	125°C ²	
25	.0060	.0059	
30	.0061	.0060	
35	.0063	.0061	
40	.0065	.0062	
45	.0068	.0064	
50	.0072	.0066	
55	.0077	.0068	
60	.0084	.0071	
65	.0094	.0074	
70	.011	.0079	
75	.013	.0083	
80	.016	.0089	
85	.020	.0097	
90		.011	
95	l	.012	
100		.013	
105		.015	
110		.018	
115		.021	
120		.025	
125		.031	

1.
$$\lambda_b = .00555 \exp\left(\frac{T_A + 273}{352}\right)^{15.7}$$

2. $\lambda_b = .0054 \exp\left(\frac{T_A + 273}{377}\right)^{10.4}$

TA Ambient Temperature (°C)

Contact Form Factor - π_C

(Applies	to	Active	Conducting	Contacts)

(Applies to Active Conducting Contacts)		
Contact Form	π _C	
SPST	1.00	
DPST	1.50	
SPDT	1.75	
3PST	2.00	
4PST	2.50	
DPDT	3.00	
3PDT	4.25	
4PDT	5.50	
6PDT	8.00	

Load Stress Factor - π_1

	Load Type		
S	Resistive 1	Inductive ²	Lamp ³
.05	1.00	1.02	1.06
.10	1.02	1.06	1.28
.20	1.06	1.28	2.72
.30	1.15	1.76	9.49
.40	1.28	2.72	54.6
.50	1.48	4.77	
.60	1.76	9.49	
.70	2.15	21.4	
.80	2.72		
.90	3.55		
1.00	4.77		

1.
$$\pi_L = \exp\left(\frac{S}{.8}\right)^2$$
 3. $\pi_L = \exp\left(\frac{S}{.2}\right)^2$

2.
$$\pi_L = \exp\left(\frac{S}{.4}\right)^2$$
 $S = \frac{\text{Operating Load Current}}{\text{Rated Resistive Load Current}}$

For single devices which switch two different load types, evaluate π_l for each possible stress load type combination and use the worse case (largest π_i).

Cycling Factor - TCYC

Cycle Rate (Cycles per Hour)	π _{CYC} (MIL-SPEC)	
	Cycles per Hour	
≥ 1.0	10	
< 1.0	0.1	

Cycle Rate (Cycles per Hour)	π _{CYC} (Lower Quality)
> 1000	(Cycles per Hour) ²
10 - 1000	Cycles per Hour 10
< 10	1.0

NOTE: Values of π_{CYC} for cycling rates beyond the basic design limitations of the relay are not valid. Design specifications should be consulted prior to evaluation of π_{CYC} .

13.1 RELAYS, MECHANICAL

Quality Factor - π_Q

Quality	*0
R	.10
P	i .30
X	.45
U	.60
M	1.0
L	1.5
Non-Est. Rel.	3.0

Environment Factor - *E

	π _E	
Environment	MIL-SPEC Lower Quality	
G [₿]	1.0	2.0
G _F G _M	2.0	5.0
G _M	15	44
N _S	8.0	24
N _U	27	78
AIC	7.0	15
A _{IF}	9.0	20
Auc	11	20
A _{UF}	12	38
Auc Auf Arw	46	1:40
SF	.50	1.0
S _F	25	72
ML	66	200
M լ Cլ	N/A	N/A

Application and Construction Factor - $\boldsymbol{x}_{\boldsymbol{F}}$

			*F	
Contact Rating	Application Type	Construction Type	MIL- SPEC	Lower Quality
Signel	Dry Circuit	Armature (Long)	4	8
Current		Dry Reed	6	18
(Low my		Mercury Wetted	1	3
and ma)		Magnetic Latching	4	8
		Balanced Armature Solenoid	7 7	14 14
0-5 Amp	General	Armeture (Long)	3	6
1	Purpose	Balanced Armature	5	10
		Solenoid	6	12
	Sensitive (0 - 100 mw)	Armature (Long and Short)	5	10
·		Mercury Wetted	2	6
į į		Magnetic Latching	6	12
		Meter Movement	100	100
1		Balanced Armature	10	20
	Polarized	Armature (Short)	10	20
i :		Meter Movement	100	100
1	Vibrating	Dry Reed	6	12
1	Reed	Mercury Wetted	2	3
	High Speed	Armature (Balanced and Short)	25	NA
]		Dry Reed	6	NA
	Thermal Time Delay	Bimetal	10	20
	Electronic Time Delay, Non- Thermal		9	12
	Latching,	Dry Reed	10	20
	Magnetic	Mercury Wetted	5	10
		Balanced Aramture	5	10
5-20 Amo	High Voltage	Vacuum (Glass) Vacuum (Ceramic)	20 5	40 10
	Medium Power	Armature (Long and Short)	3	6
	, оже	Mercury Wetted	1	3
		Magnetic Latching	2	6
		Mechanical Latching		
		Balanced Armature	3 2	6
		Solenoid		6
25-600	Contactors	Armature (Short)	7	14
25-600 Amo	(High	Mechanical Latching	12	24
And A	(mgri Current)	Balanced Armsture	10	20
		Solenoid	5	10
	·		لستسيا	

13.2 RELAYS, SOLID STATE AND TIME DELAY

SPECIFICATION MIL-R-28750

MIL-R-83726

DESCRIPTION

Relay, Solid State

Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the models provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm Q} \pi_{\rm E}$$
 Failures/10⁶ Hours

Base Failure Rate - λμ

	U
Relay Type	λ _b
Solid State	.40
Solid State Time Delay	.50
Hybrid	.50

Quality Factor - π_{Q}

Quality	πΩ
MIL-SPEC	1.0
Lower	4.0

Environment Factor - π_E

Environment	π _E
GB	1.0
G _F	3.0
G _M	12
N _S	6.0
N _U	17
A _{IC}	12
A _{IC} A _{IF}	19
Auc	21
A _{UF}	32
A _{UC} A _{UF} A _{RW}	23
S _F	.40
M _F	12
ML	33
мլ Ել	590

14.1 SWITCHES, TOGGLE OR PUSHBUTTON

SPECIFICATION

MIL-S-3950 MIL-S-8805 MIL-S-22885

MIL-S-8834

MIL-S-83731

DESCRIPTIONSnap-action, Toggle or Pushbutton, Single Body

$\lambda_p = \lambda_b^{\pi} C Y C^{\pi} L^{\pi} C^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Description	MIL-SPEC	Lower Quality
Snap-action	.00045	.034
Non-snap Action	.0027	.040

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Load Stress Factor - π_{l}

Stress		Load Type	
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		<u></u> j
			
1	_		

S = Operating Load Current Rated Resistive Load Current

 π_L = exp (S/.8)² for Resistive Load π_L = exp (S/.4)² for Inductive Load π_I = exp (S/.2)² for Lamp Load

NOTE: When the switch is rated by inductive load, then use resistive π_l .

Contact Form and Quantity Factor - π_C

Contact Form	π _C
SPST	1.0
DPST	1.5
SPDT	1.7
3PST	2.0
4PST	2.5
DPDT	3.0
3PDT	4.2
4PDT	5.5
6PDT	8.0

Environment Factor - π_{\sqsubseteq}

	<u> </u>
Environment	π _E
G _B	1.0
G _F	3.0
G _M	18
N _S	8.0
N _U	29
A _{IC}	10
A _{IF}	18
A _{UC}	13
^A UF	22
A _{RW}	46
S _F	.50
M _F	25
ML	67
M _L Ել	1200

14.2 SWITCHES, BASIC SENSITIVE

SPECIFICATION MIL-S-8805

DESCRIPTION Basic Sensitive

$$\lambda_p = \lambda_b \pi_{CYC} \pi_L \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

 $\lambda_b = \lambda_{bE} + n \lambda_{bC}$ (if Actuation Differential is > 0.002 inches) $\lambda_b = \lambda_{bE} + n \lambda_{b0}$ (if Actuation Differential is ≤ 0.002 inches)

n = Number of Active Contacts

Description	MIL-SPEC	Lower Quality
λ _{bE}	.10	.10
λьс	.00045	.23
λ _{b0}	.0009	.63

Load Stress Factor - π_{\parallel}

Stress		Load Type	
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

S = Operating Load Current
Rated Resistive Load Current

 π_L = exp (S/.8)² for Resistive Load π_L = exp (S/.4)² for Inductive Load π_1 = exp (S/.2)² for Lamp Load

NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_L .

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Environment Factor - π_E

	· · · · E
Environment	πΕ
G _B	1.0
G _F	3.0
G _F G _M	18
Ns	8.0
N _U	29
	10
A _{IC} A _{IF}	18
^A UC	13
A _{UF}	22
A _{UF} A _{RW}	46
S _F	.50
M _F	25
M_L	67
M _L Ել	1200

14.3 SWITCHES, ROTARY

SPECIFICATION MIL-S-3786

DESCRIPTION

Rotary, Ceramic or Glass Wafer, Silver Alloy Contacts

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm CYC} \pi_{\rm L} \pi_{\rm E}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Base failure rate model (λ_h):

 $\lambda_b = \lambda_{bE} + n\lambda_{bF}$ (for Ceramic RF Waters)

 $\lambda_b = \lambda_{bE} + n \lambda_{bG}$ (for Rotary Switch Medium Power Wafers)

n = Number of Active Contacts

Description	MIL-SPEC	Lower Quality
λ _b E	.0067	.10
λ _{bF}	.00003	.02
λ _{bG}	.00003	.06

Load Stress Factor - π_l

Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

S = Operating Load Current
Rated Resistive Load Current

 $\pi_{L} = \exp(S/.8)^2 \qquad \text{fo}$

for Resistive Load

 $\pi_{\perp} = \exp(S/.4)^2$

for Inductive Load

 $\pi_{L} = \exp(S/.2)^{2}$

for Lamp Load

NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_L .

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Environment Factor - π_E

	E
Environment	πE
G _B	1.0
G _F	3.0
G _M	18
N _S	8.0
N _U	29
A _{IC} A _{IF} A _{UC} A _{UF}	10
A _{IF}	18
AUC	13
A _{UF}	22
A _{RW}	46
S _F	.50
M _F	25
м _L Ել	67
CL	1200

14.4 SWITCHES, THUMBWHEEL

SPECIFICATION MIL-S-22710 Line

DESCRIPTION

Switches, Rotary (Printed Circuit) (Thumbwheel, Inand Pushbutton)

$$\lambda_p = (\lambda_{b1} + \pi_N \lambda_{b2}) \pi_{CYC} \pi_L \pi_E$$
 Failures/10⁶ Hours

CAUTION:

This model applies to the switching function only. The model does not consider the contribution of any discrete components (e.g., resistors, diodes, lamp) which may be mounted on the switch. If significant (relative to the switch failure rate), the failure rate of these devices must be calculated using the appropriate section of this Handbook and added to the failure rate of the switch.

This model applies to a single switch section. This type of switch is frequently ganged to provide the required function. The model must be applied to each section individually.

Base Failure Rate - λ_{b1} and λ_{b2}

Description	MIL-SPEC	Lower Quality
λ _{b1}	.0067	.086
λ _{b2}	.062	.089

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Number of Active Contacts Factor - π_N

 π_N = Number of Active Contacts

Load Stress Factor - π_l

Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

 $S = \frac{\text{Operating Load Current}}{\text{Rated Resistive Load Current}}$ $\pi_{L} = \exp(S/.8)^{2} \text{ for Resistive Load}$ $\pi_{L} = \exp(S/.4)^{2} \text{ for Inductive Load}$ $\pi_{L} = \exp(S/.2)^{2} \text{ for Lamp Load}$

NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_1 .

Environment Factor - π_{F}

F	
Environment	πE
G _B	1.0
G _F	3.0
G _M	18
N _S	8.0
N _U	29
A _{IC}	10
A _{IF}	18
A _{UC} A _{UF}	13
A _{UF}	22
A _{RW}	46
S _F	.50
M _F	25
M_L	67
CL	1200
S _F M _F M _L	.50 25 67

14.5 SWITCHES, CIRCUIT BREAKERS

SPECIFICATION

MIL-C-55629 MIL-C-83383 MIL-C-39019 W-C-375

DESCRIPTION

Circuit Breakers, Magnetic, Unsealed, Trip-Free Circuit Breakers, Remote Control, Thermal, Trip-Free Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service Circuit Breakers, Molded Case, Branch Circuit and Service

$\lambda_p = \lambda_b^{\pi} \pi_C^{\pi} \pi_Q^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Description	λ_{b}
Magnetic	.020
Thermal	.038
Thermal-Magnetic	.038

Quality Factor - TO

Quality	πQ
MIL-SPEC	1.0
Lower	8.4

Configuration Factor - π_C

Configuration	π _C
SPST	1.0
DPST	2.0
3PST	3.0
4PST	4.0

Environment Factor - $\pi_{\mathbf{F}}$

Environment	πE
G _B	1.0
G _F	2.0
G _F	15
NS	8.0
NU	27
Aic	7.0
AIF	9.0
A _{UC}	11
A _{UF}	12
A _{RW}	46
S _F	.50
M _F	25
M_L	66
M _L C _L	N/A

Use Factor - π.,

Use	πυ
Not Used as a Power On/Off Switch	1.0
Also Used as a Power On/Off Switch	10

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

SPECIFICATION* MIL-C-24308 MIL-C-28748 MIL-C-28804 MIL-C-83513 MIL-C-83733	DESCRIPTION Rack and Panel	SPECIFICATION* MIL-C-3607 MIL-C-3643 MIL-C-3650 MIL-C-3655 MIL-C-25516	DESCRIPTION Coaxial, RF
MIL-C-5015 MIL-C-26482 ML-C-28840	Circular	MIL-C-39012 MIL-C-55235 MIL-C-55339	
MIL-C-38999 MIL-C-81511 MIL-C-83723		MIL-C-3767 MIL-C-22992	Power
	age for connector configurations.	MIL-C-49142	Triaxial, RF

$$\lambda_p = \lambda_h \pi_K \pi_p \pi_F$$
 Failures/10⁶ Hours

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign half of the overall mated pair connector (i.e., single connector) failure rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is for input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide λ_p by two

Base Failure Rate - λ_b

	Insert Material*				
ł	1				
T _o (°C)	A ¹	B ²	c ₃	D ⁴	
0	.00006	.00025	.0021	.0038	
10	.00008	.00033	.0026	.0048	
20	.00009	.00044	.0032	.0062	
30	.00011	.00057	.0040	.0078	
40	.00014	.00073	.0048	.0099	
50	.00016	.00093	.0059	.013	
60	.00020	.0012	.0071	.016	
70	.00023	.0015	.0087	.020	
80	.00027	.0019	.011	.026	
90	.00032	.0023	.013	.033	
100	.00037	.0029	.016	.043	
110	.00043	.0036	.020	.056	
120	.00050	.0045	.024	.074	
130	.00059	.0056			
140	.00069	.0070		1	
150	.00080	.0087		ı	
160	.00094	.011			
170	.0011	.014		ŀ	
180	.0013	.018			
190	.0016	.022		i	
200	.0019	.029		1	
210	.0023			ł	
220	.0028			J	
230	.0034			İ	
240	.0042			1	
250	.0053				

^{*} If a mating pair of connectors uses two types of insert materials, use the average of the base failure rates for the two insert material types. See following page for insert material determination.

Base Failure Rate - λ_b (∞nt'd)

1.
$$\lambda_b = .020 \exp\left(\left(\frac{-1592.0}{T_o + 273}\right) + \left(\frac{T_o + 273}{473}\right)^{5.36}\right)$$

2. $\lambda_b = .431 \exp\left(\left(\frac{-2073.6}{T_o + 273}\right) + \left(\frac{T_o + 273}{423}\right)^{4.66}\right)$

3. $\lambda_b = .190 \exp\left(\left(\frac{-1298.0}{T_o + 273}\right) + \left(\frac{T_o + 273}{373}\right)^{4.25}\right)$

4. $\lambda_b = .770 \exp\left(\left(\frac{-1528.8}{T_o + 273}\right) + \left(\frac{T_o + 273}{358}\right)^{4.72}\right)$

To a Internal Contact Operating Temperature (°C)

To a Connector Ambient Temperature + Insert Temperature Rise See following page for Insert Temperature Rise Determination.

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

insert	Mat	erial	Determ	ination

		F		ole In erials	sert
Configuration	Specification	Α	В	C	D
Rack and Panel	MIL-C-28748 MIL-C-83733 MIL-C-24308 MIL-C-28804 MIL-C-83513	X X	X X X X		
Circular	MIL-C-5015 MIL-C-26482 MIL-C-28840 MIL-C-38999 MIL-C-81511 MIL-C-83723	×××	X X X X		×
Power	MIL-C-3767 MIL-C-22992		X X		X X
Coaxial	MIL-C-3607 MIL-C-3643 MIL-C-3650 MIL-C-3655 MIL-C-25516 MIL-C-39012 MIL-C-55235 MIL-C-55339		x	× × × × × × × × ×	
Triaxial	MIL-C-49142		Х	Х	
Insert					

Triaxial	MIL-C-49142	<u> </u>
Insert Material		Temperature
Type	Common Insert Materials	Range (°C)*
Α	Vitreous Glass, Alumina Ceramic, Polyimide	-55 to 250
В	Diallylphtalate, Melamine, Fluorosilicione, Silicone	-55 to 200
С	Rubber, Polysulfone, Epoxy Resin Polytetrafluorethylene (Teflon),	-55 to 125
D	Chlorotrifluorethylene (Kel-f) Polyamide (Nylon), Polychloroprene (Neoprene), Polyethylene	-55 to 125

^{*}These temperature ranges indicate maximum capability of the insert material only. Connectors using these materials generally have a reduced temperature range caused by other considerations of connector design. Applicable connector specifications contain connector operating temperature range.

Insert Temperature Rise (AT °C) Determination

Amperes	Contact Gauge			
Per Contact	22	20	16	12
2	4	2	1	0
3	8	5	2	1
4	13	8	4	1
5	19	13	5	2
6	27	18	8	3
7	36	23	10	4
8	46	30	13	5
9	57	37	16	6
10	70	45	19	7
15		96	41	15
20			70	26
25			106	39
30				54
35				72
40				92

		0.989 (i) ^{1.85}	22 Gauge Contacts
		0.640 (i) ^{1.85}	20 Gauge Contacts
		0.274 (i) ^{1.85}	16 Gauge Contacts
ΔT	=	0.100 (i) ^{1.85}	12 Gauge Contacts

 ΔT = Insert Temperature Rise i = Amperes per Contact

RF Coaxial Connectors $\Delta T = 5^{\circ}C$

RF Coaxial Connectors

(High Power Applications) $\Delta T = 50^{\circ}C$

Mating/Unmating Factor - π_K

Mating/Unmating Cycles* (per 1000 hours)	π _K	
0 to .05	1.0	
> .05 to .5	1.5	
> .5 to 5	2.0	
> 5 to 50	3.0	
> 50	4.0	

*One cycle includes both connect and disconnect.

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

Active Pins Factor - π_P

700170 1 1110 1 doto1 7/P				
Number of		Number of		
Active	- -	Active	.	
Contacts	π _P	Contacts	π _P	
1	1.0	65	13	
2 3	1.4	70	15	
3	1.6	75	16	
4	1.7	80	18	
5	1.9	85	19	
5 6 7	2.0	90	21	
	2.2	95	23	
8	2.3	100	25	
9	2.4	105	27	
10	2.6	110	30	
11	2.7	115	32	
12	2.9	120	35	
13	3.0	125	37	
14	3.1	130	40	
15	3.3	135	43	
16	3.4	140	46	
17	3.6	145	50	
18	3.7	150	53	
19	3.9	155	57	
20	4.0	160	61	
25	4.8	165	65	
30	5.6	170	69	
35	6.5	175	74	
40	7.4	180	78	
45	8.4	185	83	
50	9.5	190	89	
55	11	195	94	
60	12.	200	100	

$$\pi_P = \exp\left(\frac{N-1}{10}\right)^q$$

q = 0.51064

N = Number of Active Contacts

An active contact is the conductive element in a connector which mates with another element for the purpose of transferring electrical energy. For coaxial and triaxial connectors, the shield contact is counted as an active contact.

Environment Factor - π_E

	<u> </u>		
	π _E		
Environment	MIL-SPEC	Lower Quality	
GB	1.0	2.0	
G _F	1.0	5.0	
G _M	8.0	21	
N _S	5.0	10	
N _U	13	27	
A _{IC}	3.0	12	
4 _F	5.0	18	
Auc	8.0	17	
A _{UF}	12	25	
A _{RW}	19	37	
S _F	.50	.80	
M _F	10	20	
M_L	27	54	
M _L C _L	490	970	

CONNECTORS, PRINTED CIRCUIT BOARD

SPECIFICATION

MIL-C-21097 MIL-C-55302 DESCRIPTION

One-Piece Connector Two-Piece Connector

 $\lambda_p = \lambda_b \pi_K \pi_p \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

T _o (°C)	λ _b	T _o (℃)	λ_{b}
0 10 20 30 40 50 60 70 80 90	.00012 .00017 .00022 .00028 .00037 .00047 .00059 .00075 .00093 .0012	110 120 130 140 150 160 170 180 190 200	.0018 .0022 .0028 .0035 .0044 .0055 .0069 .0088 .011

$$\lambda_{b} = .216 \exp\left(\left(\frac{-2073.6}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{423}\right)^{4.66}\right)$$

To = Internal Contact Operating Temperature (°C)

Connector Temperature Rise (AT °C) Determination

CONTROLO TO TO TO THE CALL OF BOTO THE CALL				
Amperes	Contact Guage			
Per Contact	26	20		
1 2 3 4 5	2 8 16 27 41	1 4 8 13 19	1 2 5 8 13	

 $\Delta T = 2.100 (i)^{1.85}$ $\Delta T = 0.989 (i)^{1.85}$ $\Delta T = 0.640 (i)^{1.85}$

26 Guage Contacts

22 Guage Contacts 20 Guage Contacts

 ΔT = Contact Temperature Rise

= Amperes per Contact

Mating/Unmating Factor - π_K

Mating/Unmating Cycles*	πK
(Per1000 Hours)	
0 to .05 > .05 to .5 > .5 to 5 > 5 to 50 > 50	1.0 1.5 2.0 3.0 4.0

A cycle is defined as the mating and unmating of a connector.

15.2 CONNECTORS, PRINTED CIRCUIT BOARD

Active	Pins	Factor -	πρ
--------	------	----------	----

Number of		Number of	
Active	1 _	Active	_
Contacts	^π P	Contacts	π _P
1	1.0	65	13
2 3	1.4	70	15
3	1.6	75	16
4	1.7	80	18
4 5 6	1.9	85	19
6	2.0	90	21
7	2.2	95	23
1 8	2.3	100	25
9	2.4	105	27
10	2.6	110	30
11	2.7	115	32
12	2.9	120	35
13	3.0	125	37
14	3.1	130	40
15	3.3	135	43
16	3.4	140	46
17	3.6	145	50
18	3.7	150	53
19	3.9	155	57
20	4.0	160	61
25	4.8	165	65
30	5.6	170	69
35	6.5	175	74
40	7.4	180	78
45	8.4	185	83
50	9.5	190	89
55	11	195	94
60	12	200	100

Environment Factor - π_{\square}

<u> </u>		
	π	E
Environment	MIL-SPEC	Lower Quality
GB	1.0	2.0
G _F	3.0	7.0
G _F G _M	8.0	17
N _S	5.0	10
NU	13	26
A _{IC}	6.0	14
4 _F	11	22
Auc	6.0	14
A _{UF}	11	22
A _{RW}	19	37
S _F	.50	.80
M _F	10	20
M_L	27	54
Mլ Cլ	490	970

$$\pi_P = \exp\left(\frac{N-1}{10}\right)^Q$$

q = 0.51064

N = Number of Active Pins

An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.

15.3 CONNECTORS, INTEGRATED CIRCUIT SOCKETS

SPECIFICATION MIL-S-83734

DESCRIPTION IC Sockets, Plug-in

$$\lambda_p = \lambda_b \pi_p \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

	· · · · · · · · · · · · · · · · · · ·
Туре	λ _b
All MIL-S-83734	.00042

Active Pins Factor - π_P

Number of Active Contacts	π _P
6	2.0
8	2.3
10	2.6
14	3.1
16	3.4
18	3.7
20	4.0
22	4.3
24	4.6
28	5.3
36	6.7
40	7.4
48	9.1
50	9.5
64	13

$$\pi_P = \exp\left(\frac{N-1}{10}\right)^{Q}$$

q = 0.51064

N = Number of Active Contacts

An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.

Environment Factor - π_E

Environment	πE
G _B	1.0
G _B	3.0
G _M	14
NS	6.0
N _U	18
A _{IC}	8.0
A _{IF} A _{UC} A _{UF}	12
Auc	11
A _{UF}	13
A _{RW}	25
S _F	.50
M _F	14
M_L	36
мլ Ել	650

16.1 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

DESCRIPTION

Circuit Boards, Printed (PCBs) and Discrete Wiring

$$\lambda_p = \lambda_b [N_1 \pi_C + N_2 (\pi_C + 13)] \pi_Q \pi_E$$
 Failures/10⁶ Hours

APPLICATION NOTE: For assemblies not using Plated Through Holes (PTH), use Section 17, Connections. A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through hole problems (e.g., barrel cracking).

Base Failure Rate - λ_b

Technology	λ _b
Printed Wiring Assembly/Printed Circuit Boards with PTHs	.000041
Discrete Wiring with Electroless Deposited PTH (≤ 2 Levels of Circuitry)	.00026

Number of PTHs Factor - N₁ and N₂

Factor	Quantity
N ₁	Quantity of Wave Soldered Functional PTHs
N ₂	Quantity of Hand Soldered PTHs

Complexity Factor - π_{C}

Number of Circuit Planes, P	π_{C}
≤ 2	1.0
3	1.3
4 5	1.6
5	1.8
6	2.0
7	2.2
8	2.4
9	2.6
10	2.8
11	2.9
12	3.1
13	3.3
14	3.4
15	3.6
16	3.7
Discrete Wiring w/PTH	1
$\pi_{\rm C} = .65 \rm P^{.63}$	2 ≤ P ≤ 16

Quality Factor - π_Q

Quality	πQ
MIL-SPEC or Comparable Institute for Interconnecting, and Packaging Electronic Circuits (IPC) Standards	1
Lower	2

Environment Factor - π_{\sqsubseteq}

Environment	πE
G _B	1.0
G _F	2.0
G _M	7.0
N _S	5.0
N _U	13
	5.0
A _{IF}	8.0
A _{UC} A _{UF}	16
A _{UF}	28
A _{RW}	19
S _F	.50
M _F	10
ML	27
Mլ Cլ	500

17.1 CONNECTIONS

DESCRIPTION

Connections Used on All Assemblies Except Those Using Plated Through Holes (PTH)

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes. Use the Interconnection Assembly Model in Section 16 to account for connections to a circuit board using plated through hole technology. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post, whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Connection Type	λ _b (F/10 ⁶ hrs)
Hand Solder, w/o Wrapping	.0026
Hand Solder, w/Wrapping	.00014
Crimp	.00026
Weld	.00005
Solderless Wrap	.0000035
Clip Termination	.00012
Reflow Solder	.000069

Quality Factor - π_Q

Quality Grade	πQ	Comments
Crimp Types		
Automated	1.0	Daily pull tests recommended.
Manual		
Upper	1.0	Only MIL-SPEC or equivalent tools and terminals, pull test at beginning and end of each shift, color coded tools and terminations.
Standard	2.0	MIL-SPEC tools, pull test at beginning of each shift.
Lower	20.0	Anything less than standard criteria.
All Types Except Crimp	1.0	

Environment Factor - π_E

Environment	πE
G _B	1.0
G _F	2.0
G _M	7.0
N _S	4.0
NU	11
A _{IC}	4.0
A _{IF}	6.0
AUC	6.0
A _{UF}	8.0
A _{RW}	16
S _F	.50
M _F	9.0
ML	24
M _L C _L	420

18.1 METERS, PANEL

SPECIFICATION MIL-M-10304

DESCRIPTION

Meter, Electrical Indicating, Panel Type, Ruggedized

$\lambda_p = \lambda_b^{\pi} A^{\pi} F^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λ _b
Ali	.090

Quality Factor - π_{O}

Quality	πQ
MIL-M-10304	1.0
Lower	3.4

Application Factor - π_A

Application	πA
Direct Current	1.0
Alternating Current	1.7

Function Factor - π_F

Function	π _F
Ammeter	1.0
Voltmeter	1.0
Other*	2.8

* Meters whose basic meter movement construction is an ammeter with associated conversion elements.

Environment Factor - π_{\sqsubset}

	**E
Environment	π _E
G _B	1.0
G _F	4.0
G _M	25
N _S	12
N _U	35
A _{IC}	28
A _{IF}	42
Auc	58
A _{UF}	73
A _{RW}	60
S _F	1.1
M _F	60
	N/A
Mլ Cլ	N/A

19.1 QUARTZ CRYSTALS

SPECIFICATION MIL-C-3098

DESCRIPTIONCrystal Units, Quartz

$$\lambda_p = \lambda_b^{\pi} \pi_Q^{\pi}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_h

Dase I andle hate - Mb		
Frequency, f(MHz)	λ _b	
0.5 1.0 5.0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105	.011 .013 .019 .022 .024 .026 .027 .028 .029 .030 .031 .032 .033 .033 .034 .035 .035 .036 .036 .037 .037 .037	
$\lambda_b = .013(f)^{.23}$		

Environment Factor - π_E

Carrier and a st	
Environment	π _E
G _B G _F	1.0
G _F	3.0
G _M	10
N _S	6.0
N _U	16
AIC	12
A _{IF}	17
Auc	22
AUF	28
A _{RW}	23
SF	.50
M _F	13
м լ Ել	32
CL	500

Quality Factor - π_{O}

Quality	π _Q
MIL-SPEC	1.0
Lower	2.1

SPECIFICATION MIL-L-6363

W-L-111

DESCRIPTION

Lamps, Incandescent, Aviation Service Lamps, Incandescent, Miniature, Tungsten-Filament

$\lambda_p = \lambda_b^{} \pi_U^{} \pi_A^{} \pi_E^{}$ Failures/10⁶ Hours

APPLICATION NOTE: The data used to develop this model included randomly occurring catastrophic failures and failures due to tungsten filament wearout.

Base Failure Rate - λh

Rated Voltage, V _r (Volts)	λ _b
5 6 12 14 24 28 37.5	.59 .75 1.8 2.2 4.5 5.4 7.9
$\lambda_b = .074(V_r)^{1.29}$	

Utilization Factor - π_U

π _U
0.10
0.72
1.0

Application Factor - π_A

Application	πA
Alternating Current Direct Current	1.0 3.3

Environment Factor - π₌

Environment	πE
G _B	1.0
G _F	2.0
G _M	3.0
N _S	3.0
N _U	4.0
A _{IC}	4.0
A _{IF}	4.0
A _{UC}	5.0
A _{UF}	6.0
A _{RW}	5.0
S _F	.70
M _F	4.0
M _L	6.0
Сլ	27

21.1 ELECTRONIC FILTERS, NON-TUNABLE

SPECIFICATION

MIL-F-15733 MIL-F-18327

DESCRIPTION

Filters, Radio Frequency Interference Filters, High Pass, Low Pass, Band Pass, Band Suppression, and Dual Functioning (Non-tunable)

The most accurate way to estimate the failure rate for electronic filters is to sum the failure rates for the individual components which make up the filter (e.g., IC's, diodes, resistors, etc.) using the appropriate models provided in this Handbook. The Parts Stress models or the Parts Count method given in Appendix A can be used to determine individual component failure rates. If insufficient information is available then the following default model can be used.

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

λ _b
.022
.12
.12
.27

Quality Factor - πO

Quality	πQ
MIL-SPEC	1.0
Lower	2.9

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	6.0
N _S	4.0
NU	9.0
A _{IC}	7.0
A _{IF}	9.0
A _{UC}	11
A _{UF}	13
A _{RW}	11
S _F	.80
M _F	7.0
M_L	15
CL	120

SPECIFICATION

W-F-1726 W-F-1814 MIL-F-5372 ML-F-23419 MIL-F-15160 DESCRIPTION

Fuse, Cartridge Class H

Fuse, Cartridge, High Interrupting Capacity

Fuse, Current Limiter Type, Aircraft

Fuse, Instrument Type

Fuse, Instrument, Power and Telephone

(Nonindicating), Style F01

 $\lambda_p = \lambda_b \pi_E \text{ Failures/10}^6 \text{ Hours}$

APPLICATION NOTE: The reliability modeling of fuses presents a unique problem. Unlike most other components, there is very little correlation between the number of fuse replacements and actual fuse failures. Generally when a fuse opens, or "blows," something else in the circuit has created an overload condition and the fuse is simply functioning as designed. This model is based on life test data and represents fuse open and shorting failure modes due primarily to mechanical fatigue and corrosion. A short failure mode is most commonly caused by electrically conductive material shorting the fuse terminals together causing a failure to open condition when rated current is exceeded.

Base Failure Rate - λ_h

Туре	λ _b
W-F-1726, W-F-1814, MIL-F- 5372, MIL-F-23419, ML-F-15160	.010

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M N _S N _U	8.0
N _S	5.0
N _U	11
A _{IC}	9.0
^A IC ^A IF	12
A _{UC}	15
A _{UC} A _{UF}	18
ARW	16
S _F	.90
S _F M _F	10
ML	21
Mլ Cլ	230

23.1 MISCELLANEOUS PARTS

 λ_{D} - Failure Rates for Miscellaneous Parts (Failures/10 6 Hours)

Part Type	Failure Rate
Vibrators (MIL-V-95) 60-cycle 120-cycle 400-cycle	15 20 40
Lamps Neon Lamps	0.20
Fiber Optic Cables (Single Fiber Types Only)	0.1 (Per Fiber Km)
Single Fiber Optic Connectors*	0.10
Microwave Elements (Coaxial & Waveguide) Attenuators (Fixed & Variable)	See Resistors, Type RD
Fixed Elements (Directional Couplers, Fixed Stubs & Cavities)	Negligible
Variable Elements (Tuned Stubs & Cavities)	0.10
Microwave Ferrite Devices Isolators & Circulators (≤100W)	0.10 × π _E
Isolators & Circulators (>100W)	0.20 x π _E
Phase Shifter (Latching)	0.10 x π _E
Dummy Loads < 100W	0.010 x π _E
100W to ≤ 1000W	0.030 x π _E
> 1000W	0.10 x π _E
Terminations (Thin or Thick Film Loads Used in Stripline and Thin Film Circults)	0.030 × π _E

^{*}Caution: Excessive Mating-Demating Cycles May Seriously Degrade Reliability

23.1 MISCELLANEOUS PARTS

Environment Factor - π_E
(Microwave Ferrite Devices)

(Microwave Ferrite D	
Environment	πE
G _B	1.0
G _F	2.0
G _F G _M	8.0
N _S	5.0
N _U	12
A _{IC}	5.0
A _{IF}	8.0
A _{UC}	7.0
A _{UF}	11
A _{RW}	17
S _F	.50
M _F	9.0
ML	24
M _L Ել	450

Environment Factor - π_E
(Dummy Loads)

(Dummy Load	
Environment	πE
G _B	1.0
G _F G _M	2.0
G _M	10
NS	5.0
NU	17
A _{IC}	6.0
A _{IF}	8.0
AIF A _{UC} A _{UF} A _{RW}	14
A _{UF}	22
A _{RW}	25
S _F	.50
M _F	14
ML	36
M _L C _L	660

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_g \pi_Q)_i$$
 Equation 1

for a given equipment environment where:

λ_{FOURP} = Total equipment failure rate (Failures/10⁶ Hours)

 λ_0 = Generic failure rate for the i th generic part (Failures/10⁶ Hours)

 π_{O} = Quality factor for the i th generic part

N_i = Quantity of i th generic part

n = Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited (A_{\parallel}) and uninhabited (A_{\parallel}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_L factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircults. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

Generic Fallure Rate, Ag (Fallures/10⁶ Hours) for Microcircuits. See Page A-4 for x_Q Values

	9	En Shown	Solder or	S PIOM L	Seal DIPe/PGAs		(No. Pine	as Shov	Shown Below), R.	. Y	1 (Devic	(Device in Production	duction	2 2 Yr.))	_	
Section .	Part Type	Environ. +	ති	y.	₹	ş	z	70	YE	Acc	AF	ARW	بيا	¥		ß
·	Pivole Technology	1000	22	9	92	8	65	22	75	90	8	75	- 20	- 92	72,	.8
5.1	Gate/Look Arrays, Diotral (Ea = 4)															
	1 - 100 Gathe	듄	.0036	.012	.024	.024	035	025	030	033	070	770		9	٤	
	101 - 1000 Gaies	듄	0900	.020	980.	8	550	980	948	0.51	720	0.74	000	3	<u> </u>	70
	1001 to 3000 Gather	듄	5	8	990.	8	.0 6 0	.070	.085	6	<u>+</u>	13	1	. G	. .	· 6
	3001 to 10,000 Galles	٤		7.	22	.22	.33	83	.28	8	8	7	033	28	. S	3.0
	30,000 to 60,000 Galler	(224 Pro PGA)	200.	- 8	E 7	E 4	4 . 8	8 .	24.	4 .	89.6	٠ ا	.052	4 .	8	1.
5.1	Gate/Lopic Arrays, Unear (Ea = .65)			3		?	3		į,	آة	Si.	g	2075	53	2	21
	1 - 100 Transistora	듄	.0095	.024	600	034	049	057	082	5	ç	970	2000	3	9	,
	101 - 300 Transistors	돈	.017	<u>\$</u>	.085	5.00	920	9	=			5 =	500	5 6	9	<u> </u>
	301 - 1000 Iransistors 1001 - 10.000 Transistors	(24 Pr. OP)		.074	= =	8 8 •	<u>.</u> .	6.6	<u>0</u>	Ę	7	55	.033	12	ę R	2.0
5.1	Programmable Logic Amays (En = .4)					2	191	63:	3	2	اة	SE	.050	2	Ŧ	3.
	Up to 200 Galled	(18 Pin DIP)	.0061	016	.029	.027	040	.032	.037	044	8	054	1800	936	0.78	·
	201 to 1000 Gates	(24 Ph DIP)	28	.028	0.48	5	.065	.054	.063	.077	2	080	<u>.</u>	.057	2.7	10
		(40 Min UIP)	727	.052	.087	80.	.12	660	Ξ.	Ξ.	6	€.	.022	2	75	
	MASS SCHOOLOGY															
'n	GENLOGIC Arrays, Ulgital (Es = .35)	É	-	;												
	10 100 Gallet	5 2	.0057	515	.027	.027	.039	.029	.035		.058	.052	.0057	033	.074	-
	100 to 10	Ē	0.0	.028	50.		.062	90.	.057		.092	.083	0.0	.053	7	
	2000 to 2000 calls	Ē	9.0	3 ;	86.	.70	Ξ,	980	<u>e</u> .		.17	.15	9	90.	<u>~</u>	6
	10 000 to 30 000 0	2	200	- 6	ş	77.	နှင့်	.27	.32		2	4 .	9	စ္တ	e	12
	30.000 to 60.000 Gaine			77.	ين د د	ان د		7 . 5	đ.	8. S	6	2.	7 80	9	.	1
5.1	Gate/Locic Arrays, Theer (Fin., 85)				3	ē	2	ñ	2	-	-	8	=	5	- -	21
	1 to 100 Transistors	ڇ	0005	100	030	Š	9	1	5	ç	,	į				
	101 to 300 Translators	듄	.017	3	900	5.5	. c	ÿ ç	, 10, 1	7 6	<u>.</u> .	, 9,	9095	4	8	<u>-</u>
	301 to 1,000 Transistors	(24 Pin DIP)	.033	470	=	085	<u>بر</u>	.	.	7 1	, 1	? ?	933	2/2	ر د د	4.0
	Contraction of the contraction	되	S.	12	2	5	12	.29	30	.63	.67	35	5	<u>.</u>	; =	9 6
;	Logic Array, MOS (En = 36)															
	Up to 16K Cels	둩	.0048	0.0	.035	938	050	35	77	3	0.0	6	•	;	,	
	- SK BOKCES	듄	.0058	021	045	Ş	3 6	50	5 6))) (900	9 6	2.	3
	64K to 256K Cells	(28 Pin DIP)	.0081	.022	.043	9	063	043	0.54	5.00 5.00 5.00 5.00	980	5 6 4	900	200	N 65	, c
	COOK TO THE CARS	뒨	.0095	.033	.084	9 6.	94	.065	080	083			2000	07.0	9	
S.	Maroprosesors, Bipolar (Ea = .4)											2	3			3
		(40 Pin DIP)	.028	8	860	6	5	12	5	.17	.22	==	0.28	11	3.4	6.
	Up 20 88	(9t PH PGA)	ξ. •	- 8	÷.	€ 6	; ;	₹:	.24	.32	.3 6	į.	.052	.20	Ę	5.0
5.1	Moroprosesors MOS (F.s. 35)	(U)		3	5	히		\$	\$	92	80.	2	=	2	8	12
	Co to 888	(40 Pin Dip)	670	080		5	9	•	;		;	i				
	Up to 16 Bits	(64 Pin PGA)	0.00	<u>-</u>	24	<u> </u>	2 6	چ ج	<u> </u>	, i ,		.22	ې ق	. 5	8 2	4.6
	Up to 32 Bits	(128 Pin PGA)	6	8	6	5.	9	ğ 6	 	·	, .	₹ , G	<u> </u>	, i	۲. در	5.6
									۶		-	70.	=	ņ	2	_

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	_	Locimo	1					i			,					
		1 1 2 2 2	<u>9</u>	ሁ	3	12		ï	Shown Below), R	1	1 (Dev	ice in Pi	= 1 (Device in Production	≥ 2 Yr.))	=	
5.2	2		-	8	65	3 8	2 S	Šř	u k ∀ r	3	\$	VB.V	25	1	1	
5.2	Up to 16K	-									8	2	- 20	- 5	1 12	್ €
5.2	10K 10 64K	(28 Pin Dif			.036	.035	053	5								
	_	(28 Pin DIP)	7900.	.022	0. 6. 7.	9.5	0.00	.045	0.55 5.55	9. 8. 6.	, 4,0,0	170.	.0047	240.	Ξ.	-
	_	TIO UIL	4	i	.068	99	9 6 9 6	.048 77	050	880	8	9 60	0050	.053	5 . €	N .
	POTE 1 • Animal in Engage								360	=	51	=	914	.083	2 %	S. C.
	Co 8 18	(24 Pin Dip			į											
	16K to 64K	(28 Pin DIP)		9 C	938	036	.053	.037	048	970	ţ	į				
ľ	\dashv	(26 Pr DP)	.0072		940	2 2	96.	970	0.05	0.00	0.0 0.00 0.00	.070 7 8 0	.0048 8400	.045	-	-
5.2	3	TO III.	+	i	.071	8	<u></u>	0.00	.061	.073	0	00.	.0062 .0072	2 2 2 3 3 4	<u>.</u> ق د	S. 6
	197 to 1987	(18 Pin DIP)		2	1					2	اءِ	7.	.012	860	28.	N 6
	04K to 250K	(22 Pin DIP)	0055	5 6	.027	25.	.040	.029	035	6						3
ķ	4	3.5	_	.023	5.0 6.43	1 0	50.	.039	.047	900	920	555	0040	.034	0 8 0:	-
S.	2 (7	+	.032	.057	0.50	5 5 6 7	0. 6.50	.058	.076	2) 0 4	.0056	.043	2	1.
	S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								080	2	5	=	.0.	780	<u>.</u>	~ c
	16K 10 64K	(18 Ph DP)	_	022	880	Š										3
	64K to 256K	2 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		.034	.057	5. C.			.054	.083	01.	2,5	9			
5.2	Booler Technol	S Pin OF	0.023		.084	.071	Ş₽.	20.0	.085	<u> </u>	17	š - .	•	0.044 0.044	86.	4.
	Memorine, ROM, PROM (Ea. 6)		├-			=		.22	23	6 4. 6 4.	72.4	÷.	623	.092	<u>. e</u>	 -
	100 100 100 100 100 100 100 100 100 100	(24 Pin DIP)	-	į									1	2	틹	2.3
	19K 10 64K	Se Pin Dip	2 6	970	020	<u>\$</u>		083	64.0	;						
	256K to 1 MB	(SP Prop)	.028	5 65	0. 1. 1. 1.	8	8	560	Ş	0 E	<u></u> 5	_			13	0
2.5	Memories, SRAM (Ea = .6)	A Zuo OP	.053	2	89			.15 76	9 : 0	9		<u> </u>	7.0.	.081	= 6	23
	- 25 5 1 5 K	(24 Pin DIP)	.0075	•60		!	1	ابر		.58					8 8	
_	94K 10 256K	(28 Pr 29 Pr 20 Pr	210.	. S. S.	. 65 83 83	- 45 - 45 - 45	90.0	.050	.058		9		1			;
5.3	VISION DE LA COMPANION DE LA C	(40 Ph DIP	5 O	9.5 5.5 5.5	.074			2/5	~	2.5	5	,		0.052	<u>~</u> ;	. .
5.4	Gava MAC (Fa - 1 K)		ا	Policy of the Control	ŀ				. 20			- .			2 5	N 0
	1 to 10 Active and/or Passive		ĺ		3	4355	ş		l	1		1	1		8	
	Elements	(distribute)	910	.034	.046	680	052	Jac								П
	Elements	(18 Pin DIP)	.025	742	787		•			<u>-</u>	. 12	920	0.0	040	086	ī
5.4	Galde Digital (Fa . 4 A)				•). 9 /0:	.091	. 760.		.17	-	960			•
	to 1000 Active and/or Passive											-	•		₹	6.
_	1001 in 10 mos A	(36 Fin DIP)	.0085	.030	. 750.	, 057	780									
7	Passive Elements	(64 Pin PGA)	.014	630	ç).	.073	. 080	.12	. II.	.0085	.071	1,	•
						· .	 	. E.	.13	41.	8	,				2

APPENDIX	A:	PARTS	COUNT

Clearing English			Custiny Factors (contd): Ro Calculation for Custom Screening Programs	
		Seco	ML-STO-BITS Sement and Other St	2 200
Description	ç		TM 1010 (Temperature Cycle, Cond B Manimum) and TM 2001 (Constant	
			Accidention, Cond B Minimum) and TM 5004 (er 5008 for Hybrids) (Final	
Clara S Categories;		:	Becinicals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C)	8
			TAI OLD Compension Code Code Difference Code Code Code Code Code Code Code Cod	
1. Procured in full accordance with MRL-NA-38510, Class S requirements.			Accidention, Cond B Minhum	
2. Procured in full accordance with MIL-1-38536 and Appendix B thersto (Class U).	.25	~	TM 5004 (or 5008 for Hybrids) Final Electricals @ Temp Extremes) and TM 1014 (Seel Test Cond & See C.) and TM 5000 (Electrical Medical Cond & See C.)	37
3. Hybride: (Procund to Class Shequingments (Outlin) and Ki of Mil. H-28534			Pre-Burn in Electricate	
- 1		e0	TM 1015 (Burn-in B-LevelS-Level) and TM 5004 (or 500t) for Hybrids)	8
Class R Catacoctas				8
		÷ —	TM:2020 Pind (Particle Impact Noise Detection)	Ξ
1. Procured In full accordance with MIL-M-38510, Class B requirements.		ю	TM 5004 (or 5008 for Hybrids) #Final Electricals @ Temporalise	5
2. Procured in full accordance with Milt.+38536, (Class C).	0.		Externes)	:
3. Hydrida: Procued to Class B requirements (Quality Level H) of Mit-+38634.		•	TM 2010/17 (Internal Visual)	7
		'n	TM 1014 (Seal Test, Cond A, B, or C)	2
Class B-1 Category		•	TM 2012 (Radiography)	7
Fully compliant with all requirements of paragraph 1.2.1 of MiL-STD-863 and procured to a Mil design. DESC designs for other recommend a necessary described to the new contractions of the contraction of	2.0	-	TM 2009 (External Vieual)	۲ ۲
include hybride). For hybride use custom screening section below.		2	TM 5007/5013 (GaAs) (Wilder Acceptance)	-
		=	TA 2023 (Along Control of the Contro	•

n full accordance with MIL+38535, (Class O).	. (D):	<u>.</u>		Емтелев)	
recured to Class B requirements (Quality	(Quality Level H) of Mit-H-38634.		•	TM 2010/17 (internal Vieuel)	7
				TM 1014 (Seal Test, Cond A, B, or C)	7 (Note 2)
			•	TM 2012 (Radiography)	7
sal requirements of paragraph 1.2.1 of MRL-STD-863 and procured to a desirable by other representations are removed that removalish and the paragraph of the pa	AL-STD-863 and procured to a	20	-	TM 2009 (External Visual)	7 (Note 2)
or hybrids use custom screening section	section below.	}	2	TM 5007/5013 (GaAs) (Witter Acceptance)	-
			=	TM 2023 (Non-Destructive Bond Pull)	1
				FO = 2 + T Dolor Valuetone	
Learning Factor - R					
ears in Production, Y	₹.		NOI VE	"NOT APPROPINATE FOR PLASTIC PARTS.	
1.2	2.0			Point valuation only assigned I used independent of Groups 1, 2 or 3.	
ĸċ	æ.			Course, account of a series of	
1.0	€.		<u>.</u>	Nonheimetic parts should be used only in controlled environments (i.e., Gg and other sementiative normalised environments)	
1.5	5.				
> 2.0	1.0		EXAMPLES:	.ES: 87 Burnorms Group 1 test and Class B burn-fn; so = 2 + 27 = 3.1	
.01 exp(5.3535Y)			5	Mig. performs internal visual test, seed lest and final electrical test: $\pi_Q = 2 + \frac{87}{7+7+1} = 5.5$	5.5
ears generic device type has been in	been in production			Other Commercial or Unknown Screening Levels 80 = 10	

AF	PP	:N	DIY	A •	PARTS	COUNT
		- 14	UIA.		FANIS	

		Generic	Fallure	Rate - $\lambda_{\rm S}$	(Fallure	18/10€ H	lours) fo	r Discre	Generic Fallure Rate - Ag (Fallures/10 ¹⁵ Hours) for Discrete Semiconductors	onducto					
Section	Part Type	Env.→ GB	å	₫	ž	<u> </u>	۲	₽	\$	4	₹	8	¥.	₹,	ۍ
'		T _J (°C) → 50	8	88	09	38	ĸ	82	8	86	75	8	18	75	8
	DIODES														
6.1	General Purpose Analog	9000	.028	949	.043	₽.	260	24	50	7	71.	818	.076	R	8.
6.1	Switching	76 000.	.0075	.013	110.	.027	.024	.054	.054	21.	246	.00047	.020	8	9
6.1	Fast Recovery Pwr. Rectilier	380.	.52	6 6	.78	1.9	1.7	3.7	3.7	8.0	3.1	.032	<u>*</u> :	Ţ	78
6.1	Power Rectilier/ Schottky Pwr.	.0028	.022	.03	.034	.082	.073	9:	91.	35	5.	4100.	8	89	2.
6.1	Translent Suppressor/Varistor	.0029	.023	9.	.035	8 6	.075	17	.17	36	7	.0015	.062	.18	1.2
6.1	Voltage Rel/Reg. (Avalanche	.0033	.024	.039	.035	.082	990:		.13	72	5.	.0016	990	9-	£.
	and Zener)														
6.1	Current Regulator	.0058	.040	990.	990	<u>+</u>	Ë.	1 3	.22	9	2	.0028	₽.	8 87	2.1
6.2	Si Impett (1 s 35 GHz)	98:	2.8	8.0	5.6	ୡ	=	=	36	8	4	4 .	6	87	350
6.2	GunvBulk Effect	٤٠	.76	5 .	1.5	4 .	2.0	5. 5.	8.4	7.6	7.9	9	3.7	2	3
6.2	Turnel and Back	96.	9600	92.00	9100.	890	.025	<u>8</u>	750.	700.	2.	86.	.048	£.	1.2
6.2	Ni.	.028	990	€.	7.	₹.	.	8j	9.	8	۲.	4.0.	\$	1.1	8.5
6.2	Schottky Barrier and Point	.047	Ξ.	<u>.</u>	.23	8	8.	.37	.67	Ξ	1.2	130	.56	89:	7
	Confact (200 MHz s1 s 35 GHz)														
6.2	Varactor	.0043	010	.029	.021	.063	.028	.034	.062	Ξ	Ŧ,	.0022	.052	11.	5.7
6.10	Thyristor/SCR	.0025	.020	.034	030	.072	.	7	7	£.	12	2100.	.053	9 .	Ξ
	TRANSISTORS														
6.3	NPWPNP (1 < 200 MHz)	.00015		7	.0017	.0037	.0030	.0067	0900	.013	9500	.000073	.0027	.0074	920
6.3	Power NPN/PNP (f < 200 MHz)	.0057	.042	690	8 6	51.	5.	52	53	S .	ង	.0029	=	8	2.2
6.4	SI FET (1 s 400 MHz)	410.	660	91.	£.	.34	.28	8	.53	Ξ	٤ć	6900	.25	89	5.3
6.9	SI FET (1 > 400 MHz)	660	.24	9 ,	14.	4.	19.	92:	1.3	2.3	2.4	940.	5.1	3.6	8
6.8	GaAs FET (P < 100 mM)	71.	25	1 .8	1.0	3.4	8.1	د د:	5.4	9.2	7.2	.080	2.8	Ξ	8
8.8	GaAs FET (P ≥ 100 mW)	24	£.	3.6	2.5	8.5	4.5	9.6	13	ន	6	12.	6.9	27	35
6.5 6.5	Unijunction	.016	12	.20	5 -	2 4:	36.	86	7.	9.	8	9200	.31	88.	6.4
9.9	RF, Low Noise (I > 200 MHz, P < 1W)	9. 2.	.23	S.	4 .	4:	8	27.	£.	2.3	2.4	.	7	3.6	88
6.7	RF, Power (P≥1W)	.074	5	.37	.29	18:	.29	37	.52	88	.037	.33	89.	1.8	18

		Generic Fall	lure Rat) by . e.	ric Failure Rate . A. (Failures/10 ⁶ Hours) for Discrete Semiconductors (cont'd)	10 ⁶ Hot	irs) for	Discrete	Semicol	nductore	(cont'd)				
Section	Part Type	Ev. ↓ GB	9	8	S	2	A PC	AlF	3	F 5	AR A	8	¥	₹	S
•		T, (C) → 35	8	123	8	8	75	75	8	&	75	8	65	, 15	, 8
	OPTO-ELECTRONICS														
6.11	Photodetector	.011	.029	.08 0	650.	8	8 6	Ξ	12.	35	34	.0057	5.	r.	3.7
6.11	Opto-isolator	.027	070	50	*	.43	20	.25	40	83	8	.013	85.	5	8.7
6.11	Emitter	.00047	.0012	.0035	.0025	7200	.0035	.0044	98 00.	510.	410	.00024	.0063	.021	5
6.12	Alphanumeric Display	.0062	910	.0. 24 0	.032	9 .	946	.058	Ξ.	.19	₩.	.0031	.082	.28	5.0
6.13	Laser Diode, GaAs/Al GaAs	5.1	9	9	88	1 10	88	72	8	170	230	2.6	87	88	2000
6.13	6.13 Laser Diode, in GaAs/in GaAsP	8.9	88	22	R	6	8	130	98	300	007	2 .5	051	000	3500
7	TUBES	98		7 (Includes	Section 7 (includes Receivers, CRTs, Cross Field Amplifiers, Klystrons, TWTs, Magnetrons)	CRTs, CR	Ses Field Ar	Tplifiers, K	lystrons, T	MTs. Magn	trons)				
æ	S8584	3	Cortion	٥											

Section Number	Part Types	JANDKV	JANTK	JAN	Lower	Plastic
6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	Non-RF Devices/ Opto-Electronics*	0Z:	1.0	4.2	5.55	8.0
6.2	High Freq Diodes	.5G	1.0	5.0	25	50
6.2	Schottky Diodes	.50	1.0	4 .8	2.5	:
6.6, 6.7, 6.8, 6.9	RF Transistors		0.1	5.0	ۍ. ٥.	;
6.13	*Laser Diodes	Q	7.0 = 1.0 Hermetic Package = 1.0 Nonhermetic with F = 3.3 Nonhermetic without	1.0 Hermetic Package 1.0 Nonhermetic with Facet Coating 3.3 Nonhermetic without Facet Coating	o ating	

							2		4					ž			
Section	edy I ype	Style	MIL-R	Env. → GB TA(*C) → 30	ዓ. å	² Σ v̂	χ ς	N 0 €	ဦး	A ₹ 35	3 ₽	ع ر	gr ₹	∦ 8	¥. ₹	₹ %	್ಕ
<u>.</u>	Composition	Æ	39008	00020	2200.	1700.	.0037	210.	.0052	.0065	.016	.025	.025	.00025	8600	.035	36.
<u>.</u>	Composition	8	=	000020	2200:	.007	7600.	.012	.0052	.0065	.016	025	.025	.00025	8600	.035	36
9.5	Film, Insulated	5	39017	2100.	.0027	110.	.0054	.08 80	.0063	.013	.018	683	8	.00025	410.	440.	9
9.5	Film, Insulated	E	22684	2100.	.0027	110.	.0054	.020	.0063	.013	.018	833	.030	.00025	410.	0.	69
9.2	FIM FIN (R C or N)	£	55182	4100.	1003	.013	.0061	.023	2/00.	410.	.021	880	8 8.	.00028	810.	050	.78
9.5	Ē	Æ	10509	.001	.003	.013	1900.	.023	2/00.	410.	.021	88	8	.00028	016	.050	.78
9.3	Film, Power	B	11804	.012	.025	£.	.062	2	.078	₽.	6 .	₹.	.32	0900	₽ .	74.	8.2
7.	Film, Network	Æ	83401	.0023	9900:	.031	.013	.055	0220	.043	720.	. 5	₽.	1100	.055	.15	1.7
6.5	Wirewound, Accurate	£	38005	.0085	910.	9.	.045	9-	51.	1 .	8	86.	92.	8900	5.	.37	4.6
9.5	Wirewound, Accurate	2	æ	.0085	810.	£.	.045	91.	51.	.	8	S	8,	.0068	5	.37	5.4
9.6	Wirewound, Power	E	38007	10 .	8	9 F.	720.	%	670	<u></u>	4 .	8 6.	3 .	.0042	2.	.62	.
9.6	Wirawound, Power	₹	8	.013	.028	.15	070.	2 ;	990	<u>.</u>	2 .	35	88	.0038	2	9 5.	9.6
9.7	Wrewound, Power, Change Mounted	£	38008	0800	810.	980	.045	.15	440	880.	12	7 2.	.25	.0040	<u>.</u>	.37	5.5
6.7	Wirewound, Power, Chassis Mounted	H	18546	0800	810.	980	.045	.15	440	980	. 12	7 2.	52	.0040	€.	.37	5.5
8.8	Thermistor	Ē	23648	.065	.32	7.	۲.	1.6	۲.	2	1.0	2.7	2.4	.032	1.3	3.4	62
8.	Wirewound, Variable	Æ	38015	.025	.055	.35	5 .	8 5.	.16	.26	35	38	Ξ	.013	S,	1.6	75
6. 6.	Wirewound, Variable	Æ	27208	.025	350.	.35	91.	.58	9 .	92:	35	38	1.1	.013	83	1.6	24
9.10	Wirewound, Variable, Predision	Æ	12034	£.	£7.	2.0	5.9	12	3.5	5.3	7.1	8.6	ន	.16	=	æ	510
9.1	Wirewound, Variable,	₹	19	51.	.35	3.1	1.2	5.4	1.9	2.8	•	•	0.6	920.	•	•	•
9.11	Wirewound, Veriable,	¥	39002	51.	.35	3.1	1.2	5.4	6.	28	•	•	0.6	.075		•	•
9.12	Wirewound, Variable,	æ	23	51.	34	5.9	1.2	5.0	1.6	2.4	•	•	9.7	920.		•	•
9.13	Norwirewound, Variable	2	38035	.033	₽.	8	12.	.87	€.	72.	25	67.	1.5	.017	6 2.	2.2	35
9.13	Norwirewound, Variable	3	22097	.033	<u>6</u> .	S;	13.	.87	2 .	72.	55	۶.	1.5	.017	6 2.	2.2	35
9.14	Composition, Variable	≩	2	050.	Ξ.	1.1	.45	1.7	8.2	9.	4 .6	7.5	3.3	.025	1.5	4.7	87
9.15	Norwirewound Variable Precision	8	38023	.043	5.	.75	.35	. .3	.39	8 7.	8.	2.8	2.5	.021	1.2	3.7	3
9.15	Film, Variable	2	23285	.048	9 .	92.	8.	1.3	36.	.72	4.	2.2	23	.024	1.2	3.4	52

NOTE: 1) . Not Normally used in fils Environment 2) T_A = Default Component Ambient Temperature (°C)

APPENDIX A: PARTS COUNT

Section	Part Ivna or			,	7	3	ş	2	7	A.	7	A.F.	3	N	*	73	k
•	Dialectric	920	ر چ	Env. + GB	y-	E	j)	2	<u>+</u>	3	Ş	È	-	-	ڀ	54
			}	T _A (°C)→ 30	4	5	\$	æ.	55	55	R	٤	18	30	8	32	4
5.	Paper, By-Pass	8	×	.0036	2700.	.033	.018	.055	.023	8	070	ŧ.	8	8100.	140.	51.	2
10.1	Paper, By-Pass	క	12889	6000	.0087	.042	20.	070.	.035	740	6 .	35	£.	.002	950	9	2.5
202	Paper/Plastic, Feed- through	8	11883	.0047	9600	.044	.034	£70.	.030	.040	.	£1:	Ξ.	.0024	980	9 .	2.7
10.3	Paper/Plastic Film	ğ	14157	.0021	.0042	710.	010	.030	8800	.013	.026	9. 88	ş	000.	83	88	7
10.3	Paper/Plastic Film	8	19978	.0021	.0042	710.	010.	.030	.0088	.013	.026	8	4	.0010	520	.063	=
4.0	Metalized Paper/Plestic	#	39022	.0029	9500:	.023	410.	.041	210.	810.	760.	990:	8	4100.	.032	880.	£.
4.	Metalized Plastic	8	18312	.0029	.0058	.023	410.	.041	210.	810.	.037	990:	980	4100.	.032	.088	5.5
10.5	Metalized Paper/Plastic	₩.	55514	.0041	.8083	.042	.021	.067	970.	048	980	Ξ.	5.	989	48	35	2.5
10.6	Metalized Plastic	₹	83421	.0023	.0092	910	.012	.033	9600	410.	48	.050	3	.001	920	.07	<u>~</u>
10.7	MICA (Dipped or Molded)	8	39001	.0005	3100.	1800	440	410.	900:	5600	.054	69 0:	189	.00025	210.	940.	4.
10.7	MICA (Dipped)	₹	S.	.0005	.0015	.0091	.0044	.014	9900:	.0095	.054	690	150.	.00025	.012	940	Ą.
9.0	MICA (Button)	8	10950	910.	.037	6 .	7	31	.10	4.	74.	28	\$.	1600	.25	3	Ξ
6.0	Glass	E E	23289	.0003	96000	.0059	.0029	7600 :	.004	.0062	.035	.045	80.	.00016	9200.	060	8
9.0	Glass	Շ	11272	.0003	98000	6500	0028	.0094	.004	.0062	.035	340	030	91000	9200.	030	8
	Ceramic (Gen. Purpose)	ŏ	11015	.0036	.0074	.034	8 10.	950	510.	.015	.032	9. 88	720.	4100.	949	<u>.</u>	2.3
	Ceramic (Gen. Purpose)	8	39014	.0036	.0074	.034	8 10.	950	510.	.015	.032	840	770	4100.	940	£.	2.3
	Centralic (Temp. Comp.)	8	ล	82000.	.0022	.013	9500	82 0	7200.	.015	.053	21.	§	96000	710.	.065	89
	Cenumic Chip	8	55681	8/000	2200	.013	9500	.023	7200.	.015	.053	5.	.046	90000	710.	.065	89
	Tantatum, Solid	3	39003	8100.	.003	.016	7600.	.028	1600	.011	.034	.057	.065	.00072	89	980	1.0
·	Tantalum, Non-Solid	ਝ	39006	.006	.013	690	038	Ę	.031	.061	£.	8,	.	.0030	68 0.	8,	0.4
	Tentalum, Non-Solid	ಠ	3865	.0061	.013	690	.039	=	.03	.061	£.	8	5 .	.0030	90.	8	4 .0
	Aluminum Oxide	5	39018	.024	198.	.42	8 F.	38	3 4.	55.	2.1	2.8	1.2	210.	7	1.7	72
	Aluminum Dry	Ħ	29	.029	.081	85.	75.	8	82.	88	£.3	Ą.	20	510.	89.	2.8	8
	Variable, Ceramic	ર્ડ	2	8 0.	.27	+ 5	Κ.	2.3	69.	1.1	6.2	12	1.	.032	1.0	5.0	2
	Variable, Piston	5	14409	.033	£1.	.62	.31	.83	12.	.28	2.2	3.3	2.2	910.	86	3.2	37
_	Variable, Air Trimmer	5	8	08 0.	.33	1.6	78.	3.0	1.0	1.7	6.8	9	6.1	.032	2.5	8	8
10.19	Variable, Vacuum	ខ	23183	0.4	1.3	6.7	3.6	13	5.7	10	38	8	ន	8	•	•	:

NOTE: 1) * Not Normally used in this Environment 2) T_A = Default Component Amblent Temperature (*C)

Ouality S R P M L Mit.SPEC 70 .030 .10 .30 1.0 3.0 3.0

9

	1	Ö	Generic Fallure Rate, $\lambda_{\mathbf{Q}}$ (Fallures/10 ⁶ Hours) for inductive and Electromechanical Parts	re Rate,	(Fell	Ures/10 ⁶	Hours)	or Induc	live and	Electron	echanic	Il Perts				
7 6 CD 0		ž	Env. + GB	ታ	5	s S	z	Ç V	γlt	δ	4	Ath.	ď	¥	3	ن
•			7A PC → 30	\$	4 5	4	45	88	52	2	R	52	. 8	. ਨੰ	55	, 5
	NOUCTIVE DEVICES	1	i													T
= ;	LOW POWER PUBLIC AT INC.	1-21038	.0035	20.	9	910.	86	.027	.037	20.	.062	Ξ.	8. 8.	.053	<u>9</u>	2.3
	Audio XI-IMH	1-27	.007	9. 9.	69 .	938	£.	85 85	.073	180	우.	8	3003	Ξ.	E :	4.7
=	High Pwr. Pulse and Pwr.	1-27	28. 28.	9.	한. 학	. 13	.45	₹,	.27	.35	.45	.82	110.	.37	1.2	*
1.1	FF XPAR	1.55631	880.	<u>~</u>	9	15	23	22	8	ξ	73	a	7	ç	Ç	9
11.2	PF Coils, Fixed or	C-15305	.001	520	ğ	1600		1 5	5 5	3 5	2 2	8 5	5 6	i k	. E	<u> </u>
11.2	Molded RF Coils, Variable	C-38010	566	2	ğ	9	į		2					j ;	? !	-
	ROTATING DEVICES		3		٤	5	8	Zi.	3	250	3	2	.08.	S.	<u>.</u>	2.2
12.1	Motors		1.6	2.4	8	2.4	6	7.1	7.1	7	7	7.4	4	•	=	
12.2	Synchros		.07	8	1.5	۶.	2.5	8 2	<u>~</u>	6.7	5 2	. ru	58	1.7	7.1	8
12.2	Resolvers		Ξ.	S,	22	6.	9.3	5	60	12	\$	7.8	553	. 6	: =	ξ
	ELAPSED TIME							!	<u></u>	!	?	?	3	ì	:	3
12.3	ETIMAC		5	8	5	Ę	Ē	S	S	ş	ş	8	6	9	Ş	•
12.3	ETM-Invertor Driver		. tz	8	<u> </u>	Ş	ß É	3 ×	8 8	3 5	8 8	3 9) k	2 5	2 5	
13.3	ETM-Community DC		\$	2	§	2 6	2 2	? {	3 8	3 5	5	3 5	<u>.</u> 8	2 :	2 ;	
	PEI AVE			3		3	3	8	ŝ	040	3	040	R	8	<u>ş</u>	
13.1	General Purpose		13	8	-	-	9	÷	•	•	č	,	8		;	•
13.1	Contactor, High Current		? \$	2 2	- a	- e		<u> </u>	• :	.	7 .	e (8	ري دي.	₽ ;	•
13	Latching		? \$	ş 8	o c	o •	2 6	.	•	6.2	6.7	87	~	=	35	•
	Pare		? ;	ġ 8	- ·	<u>:</u> 8		<u>.</u>	<u>+</u> (.	7	0.	98	85 52	우	•
	Thermal B.		<u> </u>	ġ 8	.	28.	.	8	~	<u>~</u>	23	6 0	26	3.0	0	•
· •	Marie Marie and		8 8	3 ;	7	77	~	S	0	₹.	, 5	ħ	7 .	7.6	ដ	•
. 6	Solit State		<u> </u>		<u>.</u>	* :	% ;	7.	<u>-</u>	.	=	4	3 .	24	6 7	•
. č	Underland Colla Contr		₹ 8	7.	10 (2.4	6	~	9.	∞	₹.	9.5	9 -	8.4	ŧ.	\$
1	Time Delay		8.	c.	9	3.0	1.0 10	0	.	=	5	72	Ŗ,	9	17	8
	SWITCHES															
<u> </u>	Toggle or Pushbutton		00.	.0030	810.	0000	.0X	910	810	.013	020	970	9000	025	0£7	
1.2	Sensitive	8-80 05	5.	‡	2.7	1.2	₹.3	1.5	7.3	9.	3.3	8	.074	3.7	0	8
	Hotary Water	3786	<u>ج</u>	8	œ œ	5.6	.	3.3	8.8	4 .3	7.2	5	9 :	8.2	æ	96
· :	in in in in in in in in in in in in in i	\$-22/10	58 .	1.7	ę	4.5	9	5.6	2	7.3	5	83	87.	=	38	29
	Circuit Breaker, Thermal	C-83383	Ξ.	នុ	7,7	<u>e</u>	. .	2	<u>.</u>	£.	7.	2,5	.067	2.8	7.5	¥
7.5	Circuit Breaker,	C.55629	8 8.	5 .	<u>ę</u>	₹.	9.	4	Ŋ	8 5	22.	2.8	8 9.	. 6	0.4	≨
	CONNECTORS															
15.1	Circular/Pack/Panel		0.011	0.1	=	690	8	9	ğ	8	7	44	Š	9	Ş	•
15.1	Coexie		.012	.015	5	075	<u>.</u>	8	<u>;</u>	3 8	; e	; ?	ş ş	? \$	¥ :	
15.2	Printed Circuit Board		0054	120	550	203	į =	§ §	? ;	7 8	۲, د	, ,	3 8	P 6	ă, a	<u>ر</u>
76.9	Connector					} ;	• :	}	-	3	?	<u>•</u>	ž	•	-	•
19.5	Intercopaction		B100.	868	.027	215	8 8	.015	.023	120.	.025	946 84	76000.	.027	070.	1.3
	Assembles (PCBs)		3.	F.	Ę,	3 9	.27	72	đ	8 .	5:	0.	.027	53	4.	27

NOTE: 1) * Not normally used in this environment 2) T_{A} = Default Component Ambient Temperature (*C)

			Generic	Generic Fellure Rate, Ag	Rate, A		1res/10 ⁶	Hours) fi	or Miscel	(Failures/10 ⁶ Hours) for Miscellaneous Parts	Parts					
Section	Part Type Dielectric	N	Env.→ GB	g.	o [∓]	S _N	حدٍ	<u>ک</u>	A _{IF}	ş	4	Ē	J.	*	₹	S
•			T _A (*C)→ 30	9	4 5	\$	â	22	88	R	R	12	30	₩.	55	1 \$
	SINGLE CONNECTIONS															
17.1	Hand Solder, w/o Wrapping		.0026	.0052	.018	010.	80.	0.0	910.	910.	.021	25.	.0013	620.	8	
17.1	Hand Solder, wWnapping		41000.	.00028	86000	95000.	3100.	95000	.00084	.00084	1100	2200	70000	.0013	4600	020
17.1	Crimp		92000	.00052	810	0100	.0029	0100	9100.	9100.	.0021	9	.00013	200.	.0062	Ξ.
17.1	Pew		050000	C01000.	.000350	.0002000	000550	.000200	000300	006300	.000400	000000	.000025	.000450	.001200	.021000
17.1	Solderless Wrap		.0000035	700000.	.000025	410000	600000	410000	000021	.000021	.000028	950000	.0000018	.000031	.000084	5100.
17.1	Clip Termination		.00012	.00024	9000	.00048	.0013	.00048	27000.	.00072	96000	9100.	90000	.001	.0029	050
17.1	Reflow Solder		690000	.000138	.000483	.000276	.000759	.000276	000414	.000414	.000552	100	.000035	000621	001656	80800
	METERS, PANEL															
181	DC Arrenater or Voltmater	M-10304	0.09	0.36	23	7	3.2	2.5	3.8	5.2	9.	4.0	0.088	5.4	Ž	¥ X
a	AC Ammeter or Voltmeter	M-10304	0.15	0.61	8.8	1.8	5.4	4.3	4.	C3.	=	9.5	0.17	8.5	Ž	¥.
19.	Quentz Crystals	C-3086	.032	960.	.32	6 1.	15 :	38	25,	۶.	8	7.	916	42	6	â
8	Lamps, Incandescent, AC		3.9	7.8	12	12	ā	عو	5	9	ន	2	2.7	₽	ន	Š
8	Lamps, Incandescent, DC		13	58	38	8	20	5	51	3	2	3	0	ī.	1	2
	ELECTRONIC FILTERS															3
21.1	Corumic-Fornite	F-15733	.022	0.044	£.	880:	8	51.	Rį	7 2.	84	2.	810.	5.	8	5.6
21.1	Discrete LC Comp.	F-15733	21.	.24	.72	84	:	8.	7	1.3	1.6	1.3	960	8 .	8 .	* *
21.1	Discrete LC & Crystal Comp.	F-18327	.27	.54	1.6	1.1	2.4	1.9	2.4	3.0	9 .5	3.0	22	6.7	7	8
ğ	FUSES		010	020	8	050	1.	060	.12	.15	8 <u>-</u> .	9 -	600	2	~	2.3

 $\pi_{\rm O}$ Factor for Use with Section 11-22 Devices

Section #	Part Type	Established Reliability	MIL-SPEC	Non-MIL
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	N/A
13.1	Relays, Mechanical	09:	3.0	0.6
13.2	Relays, Solid State and Time Delay (Hybrid &	N/A	1.0	4
	Solid State)			
14.1, 14.2	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
14.3	Switches, Rotary Wafer	N/A	1.0	20
14.4	Switches, Thumbwheel	N/A	1.0	10
14.5	Circuit Breakers, Thermal	N/A	1.0	∞ 4.
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
16.1	Interconnection Assemblies	N/A	1.0	2.0
17.1	Connections	N/A	N/A	N/A
18.1	Meters, Panel	N/A	1.0	හ ආ.
19.1	Quartz Crystals	N/A	1.0	2.1
20.1	Lamps, incandescent	N/A	N/A	N.A
21.1	Electronic Filters	N/A	1.0	2.9
22.1	Fuses	N/A	∀ X	N/A

* Category applies only to MIL-C-39010 Coils.

00'8	Comments		Voltage Stress = .7, Metallurgically Bonded	Contacts Voltage Stress = .7, Metallurgically Bonded	Contacts Voltage Stress = .7, Metallurgically Bonded	Contacts Metallurgically Bonded Contacts Voltage Stress = .7, Metallurgically Bonded	Contacts Metallurgically Bonded Contacts	Metallurgically Bonded Contacts		nation Fower = 1000W	Multiplier Application Voltage Stress = .7, Risted Forward Current = 1 Amp	Voltage Stress = .5, Switching Application, Rated	Power = .5W Voltage Stress = .8, Unear Application, Flated	MOSFET, Small Signal Switching MOSFET MOSFET Daw Notes Analysis 4 (1) (1) (1)	Output Matching CW Application, 5 GHz, 1W Average Output Power.	Input and Output Matching Voltage Streas 7 Reted Power _ 5W	1 GHz, 100W, T _J = 130°C for all Environments,	Voltage Stress = .45, Gold Metallization Pulsed Application, 20% Duty Factor, Pulse Width = 5ms, Input and Output Matching
Semiconductors	я ^я							0	0.00))	1.0	77.	5.5			77.		
Semic	۸A							0	000	?		02.	5.	70	0.1		1.6	
Discrete	ပ္	λg Table	1.0	1.0	1.0	0.0	1.0	1.0		1.0	1.0							
و 0	န်	ded with	54.	54.	54.	1.0	1.0	1.0		0.0	2.5	.21	₹.			36		Ī
Parameters	ř.	All Defaults provided with $\lambda_{\mathbf{g}}$												0.1	1.0		1.0	
t Para	T.	All Defa															36	
Default	م		.0038	.001	690	.003	.002	.0034	.0023 1800	.027	.0025	.00074	.00074	.060 .052	5.	.0083	89.	
	Part Type	MICROCIRCUITS	DIODES General Purpose Analog	Switching	Fast Recovery Power Rectifier	Transient Suppressor/Varistor Power Rectifier	Voltage Ref/Reg. (Avalanche & Zaner)	Current Regulator SI Impatt (s 35 GHz)	Gunn/Bulk Effect Tunnel and Back PIN	Schottky Barrier and Point Contact	Varactor Thyristor/SCR	TRANSISTORS NPN/PNP (1 < 200 MHz)	Power NPN/PNP (f < 200 MHz)	Si FET (I s 400 MHz) Si FET (I > 400 MHz) GaAs FET (P < 100 mW)	GaAs FET (P ≥ 100 mW)	Unijunction RF, Low Noise, Bipolar	(f > 200 MHz, P < 1W) RF, Power (P ≥ 1W)	
	Section *	5.0	6.1	6.1	6.1	6.1	6.1	6.1	0 0 0 0 0 0	6.2	6.2 6.10	6.3	6.3	4.0 8.0	6.8	6.5 6.6	6.7	

8	Comments	Phototransistor Phototransistor, Single Device LED 7 Character Segment Explay GaAs/Al GaAs, Hermelic, for Environments with T _J > 75°C, assume T _J = 75°C, Forward Peak Current = .5 Amps (π_i = .62) Duty Cycle = .6, Pr/Ps = .5 (π_p = 1) GaAs/Al GaAs, Hermelic, for Environments with T _J > 75°C, assume T _J = 75°C, Forward Peak Current = .5 Amps (π_i = .62) Duty Cycle = .6, Pr/Ps = .5 (π_p = 1)
onduct	ř.	
Semic	¥.	t. t.
Default Parameters for Discrete Samiconductors	ပ္	
ē O	ညီ	1.0 (πp) 1.0 (πp)
meters	×	
# Para	K	
Defau	ۍ	.0055 .013 .00023 .0030 3.23 5.65
	Part Type	OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter Alphanumeric Display Laser Dlode, GaAs/Al GaAs Laser Dlode, In/GaAs/In GaAsP
	Section #	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.

	Comments	Pwr. Strace = 5 1M chm	Pwr. Stress = .5, 1M ohm	Pwr. Stress = .5, 1M ohm	Pwr. Stress = .5, 1M ohm	Pwr. Stress = .5. 1M ohm	Pwr. Street = 5. 1M ohm	Par Street A 100 ober	Stress .	Pwr. Stress = 5.100K chms	Pwr. Stress = .5. 100K ohms	Pwr. Stress = 5.5K ohme RWR 84	Pwr. Stress # 5.5K ohms. RW10	Pwr. Stress = .5, Noninductively Wound, 5K ohm, RER 55	Pwr. Stress = .5, MIL-R-18546, Char. N, 5K ohm, RE75	Disk Tyde	Par Street 5 5K ohme 2 Tene Voltnoe Street 5	PAT STREET S. 3 Table Voltage Street R.	Pwr. Stress = .5, Construction Class 5 (n, = 1.5),	50K ohm, 3 Tape, Voltage Stress = .5 Pwr. Stress = .5, 5K ohms, 3 Taps, Voltage Stress = .5	Dur Opens A Tone Walter	PWT. Stress II. 5. 3 Tage. Voltage Stress II. 5	Unenclosed (x _c = 1)	Pwr. Strees a. 5. 200K ohm 3 Tane Voltage Strees - R	a.5. 200K ohm. 3 Tane Voltage Strees	* .5. 200K ohm. 3 Tack Voltace Stress =	Stress = .5, 200K ohm, 3 Taps,	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
Parameters for Resistors	*TAPS																1.0	0.	0.1	0.1	C	. 0.		0.	1.0	1.0	1.0	1.0
ers for	٨																-	=	1:	1.0	10	9		0:	0.	0.1	0.0	1.0
Paramet	å	==	-	-:	=		=	0.1	!	1.7	1.7	1.1	0.	Ξ	Ξ		4.	4.	4.	4.1	4.	₹.		<u></u>		<u>-</u>	1.2	1.2
Detault	Style MIL-R-SPEC 1	39006	=	39017	22684	55182	10509	11804	83401	39005	83	39007	58	39009	18546	23648	39015	27208	12834	6	39002	22		39035	22097	3	39023	23285
	Style	85	8	5	ద	ž	æ	8	Ŋ	2	82	HWR	<u>*</u>	£	#	E	Æ	듄	Œ	₹	Ě	8		2	-	≩	8	FAC C
	Part Type	Composition	Composition	Film, Insulated	Film, Insulated	Film, RN (R, Cor N)	<u>E</u>	Film, Power	Fixed, Network	Wirewound, Accurate	Wirewound, Accurate	Wirewound, Power	Wirewound, Power	Wirewound, Power, Chassis Mounted	Wirewound, Power, Chassis Mounted	Thermistor	Wirewound, Variable	Wirewound, Variable	Wirewound, Variable, Precision	Wirewound, Variable, Semionaciation	Wirewound, Semipreciation	Wirewound, Variable, Power		Norwirewound, Variable	Norwirewound, Variable	Composition, Variable	Nonwirewound, Variable Precision	Film, Variable
	Section	9.1	 	9.5	9.5	9.5	9.5	6.9	7 .6	9.5	9.5	9.6	9.6	9.7	9.7	8.6	6.6	œ. 6	6. 5	9.11	9.1	9.12		9.13	9.13	9.14	و د د	9.15

tors		Comments	Voltace Stress	Volume Street A A A A A	71 01: 10: 10: 10: 10: 10: 10: 10: 10: 10	THE POOL OF THE PO	Ti. coo M . coops one to	Value of the second of the sec	TITLE: (C. II SECTION DESCRIPTION IN THE PROPERTY OF THE PROPE	THE COM THE SECTION	A to the second of the second	Voltage Streets = 5, 300 of		Voltage Stress = .5. 160 of	Voltage Stress = .5, 30 pF	Voltage Stress = .5, 30 pF	Voltage Stress = .5, 3300 pF	Voltage Stress = .5, 3300 pF	Voltage Stress = .5, 81 pF	Voltage Stress = .5, 81 pF	Voltage Stress = .5, 1.0 µF, .6 ohms/volt, series	resistance, 75g = .13	Voltage Stress = .5, Foll, Hermetic, 20 µF, n = 1	Voltage Stress = 5 Foil Hermetic 20 = =	Out 12 02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And an an an an an an an an an an an an an	Voltage Stress = .5, 1600 µF	Voltage Stress = .5	Voltage Stress = .5	Voltage Stress = .5	Voltage Stress = .5, Variable Configuration
for Capacitors	Temp.	Rating	125	88	125	525	53	52	\$	\$	\$3	5	28	<u>8</u>	73	2 3	1 25	\$2	র	ফ	52		125	125	125	4	3	8	125	ક્ષ	8
		ည္	0.	0.1	1.0	0.1	1.0	1.0	1.0	1.0	0.1	0.1	0.1	0.	0.	0.	0.	0.	1.0	0.	- 0:		0.	0.1	1.3		<u>.</u> 5				
Default Parameters		MIIC.SPEC	25	12889	11693	14157	19978	39022	18312	55514	83421	38001	ĸ	10950	23269	11272	11015	39014	ଛ	55681	38003		90066	3965	39018	63	3 3	18	14409	95	23183
		Style	8	গ্ৰ	8	S	8	#	ઠ	Æ	₹	8	₹	8	₹	ъ	8	<u>&</u>	8	5	7		5	ರ	5	8	} }	38	21	চ {	3
	Part Type or	Dielectric	Paper, By-Pass	Paper, By-Pass	Paper/Plastic, Feed-through	Paper/Plastic Film	Paper/Plastic Film	Metalitzed Paper/Plastic	Metallized Piestic/Plastic	Metallized Paper/Plastic	Metallized Plastic	MICA (Dipped or Molded)	MICA (Dipped)	MICA (Button)	200	Giass	Ceramic (Gen. Purpose)	Ceramic (Gen. Purpose)	Ceramic (Temp. Comp.)	Coramic Crip	enterior, cord		Tantalum, Non-Solid	Tantalum, Non-Solid	Aluminum Oxide	Aluminum Dry	Vedebb Commis	Variable Ceramic	Variable, Piston	Variable, Ar Immer	Validacie, Vacuum
	Section	*	1.0	10.1	10.2	10.3	10.3	10.4	10.4	10.5	10.6	10.7	10.7	10.8	10.9	10.9	9.9	2 ;		= \$	2.5		10.13	10.13	10.14	10.15	4	5.5	2 5	5.5	8.2

Electromechanical Parts	Comments	Max. Rated Temp. = 130°C, ΔT = 10	Max. Rated Temp. = 130°C, ΔT = 10	Max. Rated Temp. = 130°C, AT = 30	Max. Rated Temp. = 130°C, AT = 10	Max. Rated Temp. = 125°C. AT = 10	Max. Rated Temp., = 125°C, AT = 10	t = 15.000 hours (Assumed Reciscsment Time)	T _F = T _A + 40, Size 10 - 16, 3 Brushes	T _F = T _A + 40, Size 10 - 16, 3 Brushes	Op. Temp/Rated Temp. = .5 (sr. = .5)	Op. Temp/Rated Temp. = .5 (fr. = .5)	Op. Temp/Rated Temp. = .5 (π _T = .5)	Max. Rated Temp. = 125°C, DPDT, MIL-SPEC, 10 Cycles/Hour, 4 Amp., General Purpose, Balanced Armature, Resistive Load.	IO. II O	Max. Rated Temp. = 125°C, DPDT, MIL-SPEC, 10 Cycles/Hour, 600 Amp., Solendid, Inductive Load, s = .5	Max. Rated Temp. = 125°C, MIL-SPEC, 4 Amp., Mercury Wetted, 10 Cyles/Hour, DPDT, Realstive Load, s = .5	Max. Rated Temp. = 85°C, MilSPEC, Signal Current, Dry Reed, 20 Cycles/Hour, SPST, Relative Load, s = .5	Max. Rated Temp. = 125°C, MiL-SPEC, Bi-Metal, 10 Cycles/Hour, SPST, Inductive Load, 5 Amp., s = .5	Max. Rated Temp. = 125°C, MilSPEC, Polarized Meter Movement, 10 Cycles/Hour, SPST, Resistive Load, s. = .5	No Defaults	No Defaults
	ĮL.	_												'n		40	ro.	ø	9	100		_
8 • A	CYC.													-		-	-	N	-	-		-
	ပ္					-	8				// 			က		က	က	-	-	-		
Deleuit Teleuiteleis 101 Indictive and	MIL-SPEC	MIL-T-21038	MIL-T-27	MIL-T-27	MIL-T-55631	MIL-C-15305	MIL-C-15305														MILR-28750	MIL-R-83726
	Part Type	INDUCTIVE Low Pwr. Pulsed, XFMR	Audio XFMR	High Pwr. Pulse and Pwr. XFMR, Filter	RF Transformers	RF Colls, Fixed or Molded	RF Coils, Variable	ROTATING DEVICES Motors	Synchros	Resolvers	Elapsed Time Meters (ETM) ETM-AC	ETM-Inverter Driver	ETM-Commutator DC	RELAYS General Purpose		Contactor, High Current	Latching	Reed	Thermal Bi-Metal	Meter Movement	Solid State	Time Delay Hybrid and Solid State
Saction	. 1		_				_						i									÷ 22

		Default Parameters for Inductive and Electromechanical Parts	meters	for Inc	luctive	and El	ectrom	echani	
Section **	Part Type	MIL-SPEC	م	^π U	ပ္	πcyc	لئ	K Q	Cymnoste
14.1	SWITCHES Toggle & Pushbutton		00045		4		9		
					<u>?</u>	?	<u>.</u>		Shap-action, MIL-SPEC, s.1 Cycle/Hour, Resistive Load, Current Stress = .5, DPST
4. 2.	Sensitive	MIL-S-8805	2 .	-		1.0	 84.		Actuation Differential > .002 inches, 1 Active Contact, MIL-SPEC, ≤ 1 Cycle/Hour, Resistive
14.3	Rotary Wafer	MIL-S-3786	4/00.			30	1.48		Load, Current Stress5 MIL-SPEC, Resistive Load, Current Stress = .5,
14.4	Thumbwheel	MIL-S-22710	86.			1.0	84.		30 Cycles/Hour, 24 Autive Contact MIL-SPEC, Resistive Load, .Current Stress = .5, <
14.5	Circuit Breaker, Thermal	MIL-C-83383	980.	1.0	3.0				1 Cycle/Hour, 6 Active Contacts 3PST, Not Used as a Doues On/Off Cuttoh
14.5	Circuit Breaker, Magnetic	MIL-C-55629	.020	1.0	3.0				3PST, Not Used as a Power On/Off Switch
15.1	CONNECTORS Circular/Rack/Panel							7.4	T _o = T _A + 10°C, Insert Material B. 3 Matino/
									Unmating Cycles per 1000 Hours, 40 Active Contacts, MIL-SPEC 71E
15.1	Coaxial							4.1	To = TA + 5°C, Insert Material C, 3 Mating/ Unmating Cycles per 1000 Hours, 2 Active
15.2	Printed Circuit Board							7.4	Contacts, MIL-SPEC #E
									1000 Hours, 40 Active Pins, MIL-SPEC TE
5 4	ic socretis		.00042					9.	24 Active Contacts
	Assemblies (PCBs)		.0000.						Printed Winng Assembly, 1000 Wave Soldered Functional PTHs, 3 Circuit Planes, No Hand Soldering, π _E
			1						<u> </u>

neous Parts	Comments	No Defaults	No Defaults	50 MHz	Rated Voltage 28 Volts, Utilization Rate .5, Atternating Current	Rated Voltage 28 Volts, Utilization Rate .5, Direct Current	MIL-SPEC	MIL-SPEC	MIL-SPEC	
iscella	ΑA				· ·	3.3				
for M	π _U				.72	.72	-			
meters	_گ و			.032	5.4	5.4	.022	.12	.27	.010
Default Parameters for Miscellaneous Parts	MIL-SPEC			MIL-C-3098			MIL-F-15733	MIL-F-15733	MIL-F-18327	
	Part Type	Connections	Meters, Panel	Quartz Crystals	LAMPS, INCANDESCENT AC Applications	DC Applications	ELECTRONIC FILTERS Ceramic-Ferrite	Discrete LC Comp	Discrete LC & Crystal Comp.	FUSES
	Section **	17.1	18.1	19.1	20.1	20.1	21.1	21.1	21.1	22.1

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

This appendix contains the detailed version of the VHSIC/VLSI CMOS model contained in Section 5.3. It is provided to allow more detailed device level design trade-offs to be accomplished for predominate failure modes and mechanisms exhibited in CMOS devices. Reference 30 should be consulted for a detailed derivation of this model.

VHSICNHSIC-LIKE FAILURE RATE MODEL

$$\lambda_{P}(t) = \lambda_{OX}(t) + \lambda_{MET}(t) + \lambda_{HC}(t) + \lambda_{CON}(t) + \lambda_{PAC} + \lambda_{ESD} + \lambda_{MIS}(t)$$

λ_P(t) = Predicted Failure Rate as a Function of Time

 $\lambda_{OX}(t)$ = Oxide Failure Rate

 $\lambda_{MET}(t)$ = Metallization Failure Rate

 $\lambda_{HC}(t)$ = Hot Carrier Failure Rate

 $\lambda_{CON}(t)$ = Contamination Failure Rate

 λ_{PAC} = Package Failure Rate

 λ_{ESD} = EOS/ESD Failure Rate

 $\lambda_{MIS}(t)$ = Miscellaneous Failure Rate

The equations for each of the above failure mechanism failure rates are as follows:

OXIDE FAILURE RATE EQUATION

$$\lambda_{\text{OX}} (\text{in F/10}^6) = \frac{A A_{\text{TYPEOX}}}{A_{\text{R}}} \left(\frac{D_{0_{\text{OX}}}}{D_{\text{R}}} \right) \left[(.0788 \, \text{e}^{-7.7 \, \text{t0}}) (A_{\text{ToX}}) (\text{e}^{-7.7 \, \text{AT}_{\text{OX}} t}) \right]$$

$$+ \frac{.399}{(t + t_0) \sigma_{\text{OX}}} \exp \left(\frac{-.5}{\sigma_{\text{OX}}^2} \left(\ln (t + t_0) - \ln t_{50_{\text{OX}}} \right)^2 \right) \right]$$

A = Total Chip Area (in cm²)

A_{TYPEOx} = .77 for Custom and Logic Devices, 1.23 for Memories and Gate Arrays

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

OXIDE FAILURE RATE EQUATION (CONTINUED)

 $A_R = .21 \text{ cm}^2$

D₀_{ox} = Oxide Defect Density (If unknown, use $\left(\frac{X_0}{X_S}\right)^2$ where X₀ = 2 μm and X_S is the feature size of the device)

 $D_R = 1 \text{ Defect/cm}^2$

t₀ = Effective Screening Time

= (Actual Time of Test (in 10⁶ hrs.)) * (A_{Tox} (at junction screening temp.) (in °K))*

A_{Tox} = Temperature Acceleration Factor, = $\exp\left[\frac{-.3}{8.617 \times 10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298}\right)\right]$ (where T_J = T_C + θ _{JC}P (in °K))

 $A_{V_{OX}} = e^{-192 \left(\frac{1}{E_{OX}} - \frac{1}{2.5}\right)}$

E_{ox} = Maximum Power Supply Voltage V_{DD}, divided by the gate oxide thickness (in MV/cm)

 $t_{50_{OX}} = \frac{1.3 \times 10^{22} \text{ (QML)}}{AT_{OX} AV_{OX}}$ (in 10⁶ hrs.)

(QML) = 2 if on QML, .5 if not.

 $\sigma_{\rm OX}$ = Sigma obtained from test data of oxide failures from the same or similar process. If not available, use a $\sigma_{\rm OX}$ value of 1.

t = time (in 10^6 Hours)

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

METAL FAILURE RATE EQUATION

$$\lambda_{\text{MET}} = \left[\frac{A A_{\text{TYPEMET}}}{A_{\text{R}}} \frac{D_{\text{0MET}}}{D_{\text{R}}} (.00102 e^{-1.18 t_0}) (A_{\text{TMET}}) (e^{-1.18 A_{\text{TMET}}}) \right] + \left[\frac{.399}{(t + t_0) \sigma_{\text{MET}}} exp \left(\frac{-.5}{\sigma_{\text{MET}}^2} \left(\ln (t + t_0) - \ln t_{50 \text{MET}} \right)^2 \right) \right]$$

A = Total Chip Area (in cm²)

A = .88 for Custom and Logic Devices, 1.12 for Memory and Gate Arrays

 $A_{D} = .21 \text{ cm}^2$

 D_{0MET} = Metal Defect Density (If unknown use $(\frac{X_0}{X_S})^2$ where $X_0 = 2 \mu m$ and X_S is the feature size of the device)

 $D_{D} = 1 \text{ Defect/cm}^2$

A_{TMET} = Temperature Acceleration Factor

$$= \exp \left[\frac{-.55}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298} \right) \right] \left(T_{J} = T_{CASE} + \theta_{JC} P \quad (in \, ^{\circ}K) \right)$$

 t_0 = Effective Screening Time (in 10⁶ hrs.)

= A_{TMET} (at Screening Temp. (in °K)) * (Actual Screening Time (in 10⁶ hrs))

 $t_{50_{MET}} = (QML) \frac{.388 \cdot (Metal Type)}{J^2 A_{TMET}}$ (in 10⁶ hrs.)

(QML) = 2 if on QML, .5 if not.

Metal Type = 1 for Al, 37.5 for Al-Cu or for Al-Si-Cu

J = The mean absolute value of Metal Current Density (in 10⁶ Amps/cm²)

 σ_{MET} = sigma obtained from test data on electromigration failures from the same or a similar process. If this data is not available use σ_{MET} = 1.

t = time (in 10^6 hrs.)

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

HOT CARRIER FAILURE RATE EQUATION

$$\lambda_{HC} = \frac{.399}{(t+t_0)\sigma_{HC}} \exp\left[\frac{-.5}{\sigma_{HC}^2} \left(\ln(t+t_0) - \ln t_{50} \right)^2 \right]$$

$$t_{50_{HC}} = \frac{(QML)3.74x10^{-5}}{A_{T_{HC}}} {\binom{l_{sub}}{l_d}}^{-2.5}$$

(QML) = 2 if on QML, .5 if not

$$A_{T_{HC}} = exp \left[\frac{.039}{8.617x10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298} \right) \right] \text{ (where } T_J = T_C + \theta_{JC}P \text{ (in °K))}$$

Id = Drain Current at Operating Temperature. If unknown use $I_d = 3.5 e^{-.00157} T_J (in °K)$ (mA)

 I_{sub} = Substrate Current at Operating Temperature. If unknown use I_{sub} = .0058 e -.00689 T_J (in °K) (mA)

 σ_{HC} = sigma derived from test data, if not available use 1.

t₀ = A_{THC} (at Screening Temp.(in °K)) • (Test Duration in 10⁶ hours)

 $t = time (in 10^6 hrs.)$

CONTAMINATION FAILURE RATE EQUATION

$$\lambda_{CON}$$
 = .000022 e -.0028 t₀ $A_{T_{CON}}$ e -.0028 $A_{T_{CON}}$ t

$$A_{TCON} = \exp\left[\frac{-1.0}{8.617 \times 10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298}\right)\right] \text{ (where } T_J = T_C + \theta_{JC}P \text{ (in °K))}$$

t₀ = Effective Screening Time

= A_{Tcon} (at screening junction temperature (in °K)) • (actual screening time in 10⁶ hrs.)

t = time (in 10⁶ hrs.)

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

PACKAGE FAILURE RATE EQUATION

 $\lambda_{PAC} = (.0024 + 1.85 \times 10^{-5} \text{ (#Pins)}) \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{PH}$

 π_E = See Section 5.10

 π_{Q} = See Section 5.10

Package Type Factor (Π_{PT})

Package Type	ПРТ
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7

 λ_{PH} = Package Hermeticity Factor

 λ_{PH} = 0 for Hermetic Packages

$$\lambda_{PH} = \frac{.399}{t\sigma_{PH}} \exp\left[\frac{-.5}{\sigma_{PH}^2} \left(\ln(t) - \ln(t_{50_{PH}}) \right)^2 \right]$$
 for plastic packages

$$t_{50_{PH}} = 86 \times 10^{-6} \exp \left[\frac{.2}{8.617 \times 10^{-5}} \left(\frac{1}{T_A} - \frac{1}{298} \right) \right] \exp \left[\frac{2.96}{RH_{EFF}} \right]$$

T_A = Ambient Temp. (in °K)

RH_{eff} =
$$(DC)(RH) \left[e^{5230} \left(\frac{1}{T_J} - \frac{1}{T_A} \right) \right] + (1-DC)(RH)$$
 where $T_J = T_C + \theta_{JC}P$ (in °K) (for example, for 50% Relative Humidity, use RH = .50)

 $\sigma_{PH} = .74$

t = time (in 10^6 hrs.)

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

EOS/ESD FAILURE RATE EQUATION

$$\lambda_{EOS} = \frac{-\ln (1 - .00057 e^{-.0002 V_{TH}})}{.00876}$$

V_{TH} = ESD Threshold of the device using a 100 pF, 1500 ohm discharge model

MISCELLANEOUS FAILURE RATE EQUATION

$$\lambda_{MIS} = (.01 e^{-2.2 t_0}) (A_{TMIS}) (e^{-2.2 A_{TMIS} t})$$

A_{TMIS} = Temperature Acceleration Factor

$$= \exp\left[\frac{-.423}{8.6317 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right]$$

where
$$T_J = T_C + \theta_{JC}P$$
 (in °K)

to = Effective Screening Time

= A_{TMIS} (at Screening Temp. (in °K)) * Actual Screening Time (in 10^6 hours)

 $t = time (in 10^6 hrs.)$

APPENDIX C: BIBLIOGRAPHY

Publications listed with "AD" numbers may be obtained from:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22151 (703) 487-4650

U.S. Defense Contractors may obtain copies from:

Defense Technical Information Center Cameron Station - FDA, Bldg. 5 Alexandria, VA 22304-6145 (703) 274-7633

Documents with AD number prefix with the letter "B" or with the suffix "L": These documents are in a "Limited Distribution" category. Contact the Defense Technical Information Center for ordering procedures.

Copies of MIL-STDS's, MIL-HDBK's, and specifications are available from:

Standardization Document Order Desk 700 Robins Ave. Building 4, Section D Philadelphia, PA 19111-5094 (215) 697-2667

The year of publication of the Rome Laboratory (RL) (formerly Rome Air Development Center (RADC)) documents is part of the RADC (or RL) number, e.g., RADC-TR-88-97 was published in 1988.

- 1. "Laser Reliability Prediction," RADC-TR-75-210, AD A016437.
- 2. "Reliability Model for Miniature Blower Motors Per MIL-B-23071B," RADC-TR-75-178, AD A013735.
- 3. "High Power Microwave Tube Reliability Study," FAA-RD-76-172, AD A0033612.
- 4. "Electric Motor Reliability Model," RADC-TR-77-408, AD A050179.
- 5. "Development of Nonelectronic Part Cyclic Failure Rates," RADC-TR-77-417, AD A050678.

This study developed new failure rate models for relays, switches, and connectors.

6. "Passive Device Failure Rate Models for MIL-HDBK-217B," RADC-TR-77-432, AD A050180.

This study developed new failure rate models for resistors, capacitors and inductive devices.

- 7. "Quantification of Printed Circuit Board Connector Reliability," RADC-TR-77-433, AD A049980.
- 8. "Crimp Connection Reliability," RADC-TR-78-15, AD A050505.
- 9. "LSI/Microprocessor Reliability Prediction Model Development," RADC-TR-79-97, AD A068911.
- 10. "A Redundancy Notebook," RADC-TR-77-287, AD A050837.
- 11. "Revision of Environmental Factors for MIL-HDBK-217B," RADC-TR-80-299, AD A091837.

APPENDIX C: BIBLIOGRAPHY

- 12. "Traveling Wave Tube Failure Rates," RADC-TR-80-288, AD A096055.
- 13. "Reliability Prediction Modeling of New Devices," RADC-TR-80-237, AD A090029.

This study developed failure rate models for magnetic bubble memories and charge-coupled memories.

- 14. "Failure Rates for Fiber Optic Assemblies," RADC-TR-80-322, AD A092315.
- 15. "Printed Wiring Assembly and Interconnection Reliability," RADC-TR-81-318, AD A111214.

This study developed failure rate models for printed wiring assemblies, solderless wrap assemblies, wrapped and soldered assemblies and discrete wiring assemblies with electroless deposited plated through holes.

- 16. "Avionic Environmental Factors for MIL-HDBK-217," RADC-TR-81-374, AD B064430L.
- "RADC Thermal Guide for Reliability Engineers," RADC-TR-82-172, AD A118839.
- 18. "Reliability Modeling of Critical Electronic Devices," RADC-TR-83-108, AD A135705.

This report developed failure rate prediction procedures for magnetrons, vidicions, cathode ray tubes, semiconductor lasers, helium-cadmium lasers, helium-neon lasers, Nd: YAG lasers, electronic filters, solid state relays, time delay relays (electronic hybrid), circuit breakers, I.C. Sockets, thumbwheel switches, electromagnetic meters, fuses, crystals, incandescent lamps, neon glow lamps and surface acoustic wave devices.

19. "Impact of Nonoperating Periods on Equipment Reliability," RADC-TR-85-91, AD A158843.

This study developed failure rate models for nonoperating periods.

20. "RADC Nonelectronic Reliability Notebook," RADC-TR-85-194, AD A163900.

This report contains failure rate data on mechanical and electromechanical parts.

"Reliability Prediction for Spacecraft," RADC-TR-85-229, AD A149551.

This study investigated the reliability performance histories of 300 Satellite vehicles and is the basis for the halving of all model π_E factors for MIL-HDBK-217E to MIL-HDKB-217E, Notice 1.

- 22. "Surface Mount Technology: A Reliability Review," 1986, Available from Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, 800-526-4802.
- "Thermal Resistances of Joint Army Navy (JAN) Certified Microcircuit Packages," RADC-TR-86-97, AD B108417.
- "Large Scale Memory Error Detection and Correction," RADC-TR-87-92, AD B117765L.

This study developed models to calculate memory system reliability for memories incorporating error detecting and correcting codes. For a summary of the study see 1989 IEEE Reliability and Maintainability Symposium Proceedings, page 197, "Accounting for Soft Errors in Memory Reliability Prediction."

25. "Reliability Analysis of a Surface Mounted Package Using Finite Element Simulation," RADC-TR-87-177, AD A189488.

APPENDIX C: BIBLIOGRAPHY

- 26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
- 27. "Reliability Assessment of Surface Mount Technology," RADC-TR-88-72, AD A193759.
- 28. "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new failure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, Infrared LEDs, Diode Array Displays and Current Regulator Diodes.

- 29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
- 30. "VHSIC/VHSIC Like Reliability Prediction Modeling," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.

31. "Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's plated-thru-hole (PTH) connections. The report gives a detailed account of the factors to be considered when performing an FEA and the procedure used to transfer the results to a reliability figure-of-merit.

32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microcircuit models (except VHSIC and Bubble Memories) appearing in MIL-HDBK-217F, Section 5.

- 33. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-81-1052.
- 34. "Reliability/Design Thermal Applications," MIL-HDBK-251.
- 35. "NASA Parts Application Handbook," MIL-HDBK-978-B (NASA).

 This handbook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, failure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
- 36. "Nonelectronic Parts Reliability Data 1991," NPRD-91.
 This report contains field failure rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies (1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17

Project No. RELI-0064

APPENDIX C: BIBLIOGRAPHY

Review Activities:

Army - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 14, 15, 18,
19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85 INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in aubmitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)

(Fold along this line)

DEPARTMENT OF THE AIR FORCE **RL/ERSS** Griffiss AFB, NY 13441-5700

NO POSTAGE NECESSARY IF MAILED IN THE **UNITED STATES**

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

FIRST CLASS **PERMIT NO. 73236** WASHINGTON D.C. POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE AIR FORCE

Rome Laboratory ATTN: RL/ERSS

Griffiss AFB, NY 13441-5700

•	STÄNDARDIZATION DOCUMI (See Instructi			
1.	DOCUMENT NUMBER 2. DOCUMENT NUMBER	EIT	TITLE	0.000
l "				ediction of Electronic Equipment
3.		14.	TVDE	OF ORGANIZATION (Mark one)
	NAME OF GODMITTING ONGANIZATION			VENDOR USER
l]		
T.	ADDRESS (Street, City, State, ZIP Code)	7		MANUFACTURER
				OTHER (Specify):
5.	PROBLEM AREAS	ــــــــــــــــــــــــــــــــــــــ		
	a Paragraph Number and Wording:			
	b. Recommended Wording:			
	c. Reason/Rationale for Recommendation:			
6.	REMARKS			
7a.	NAME OF SUBMITTER (Last, First, MI) - Optional	Ъ.		TELEPHONE NUMBER
Ġ.	MAILING ADDRESS (Street, City, State, ZIP Code) - Optional	.	(Include	Area Code) - Optional OF SUBMISSION (YY/MM/DD)
4	MANIERTO MEDITICOS (SE SEL GILY, SURIE, ZIP GP09) - UPDONSI	5.	UAIE	F SUBMISSION (TT/MM/UU)

NOT MEASUREMENT SENSITIVE

MIL-HDBK-217F NOTICE 1 10 JULY 1992

MILITARY HANDBOOK RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

New Page(s)	Date	Superseded Page(s)	D a te
vii		vii	2 December 1991
5-3		5-3	2 December 1991
5-4		5-4	2 December 1991
5-7		5-7	2 December 1991
5-8	2 December 1991	5-8	Reprinted without change
5-9		5-9	2 December 1991
5-10	2 December 1991	5-10	Reprinted without change
5-11	2 December 1991	5-11	Reprinted without change
5-12		5-12	2 December 1991
5-13		5-13	2 December 1991
5-14	2 December 1991	5-14	Reprinted without change
5-19		5-19	2 December 1991
5-20	2 December 1991	5-20	Reprinted without change
6-15		6-15	2 December 1991
6-16	2 December 1991	6-16	Reprinted without change
7-1	2 December 1991	7-1	Reprinted without change
7-2		7-2	2 December 1991
12-3		12-3	2 December 1991
12-4	2 December 1991	12-4	Reprinted without change
A-1	2 December 1991	A-1	Reprinted without change
A-2		A-2	2 December 1991
A-3		A-3	2 December 1991
A-4	2 December 1991	A-4	Reprinted without change
A-5		A-5	2 December 1991
A-6		A-6	2 December 1991
A -7		A-7	2 December 1991
A-8		A-8	2 December 1991
A-9		A-9	2 December 1991
A-10	2 December 1991	A-10	Reprinted without change
A-11	2 December 1991	A-11	Reprinted without change
A-12		A -12	2 December 1991
A-13		A-13	2 December 1991
A-14		A-14	2 December 1991
A-15	2 December 1991	A-15	Reprinted without change
A-16		A-16	2 December 1991

AMSC N/A

DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited.

- 2. Retain the pages of this notice and insert before the Table of Contents.
- 3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17.

Project No. RELI-0068

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 14, 15, 18, 19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

FOREWORD

MIL-HDBK-217F, Notice 1 is issued to correct minor typographical errors in the basic F Revision. MIL-HDBK-217F (base document) provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

- New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
 - Monolithic Bipolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monolithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C_1 factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The C_2 factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q) , the learning factor (π_L) , and the environmental factor (π_E) . The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect fallure rate contributions, and to provide a method of calculating chip junction temperatures.

- 2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- 3. The reformatting of the entire handbook to make it easier to use.
- 4. A reduction in the number of environmental factors (π_{F}) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- 2. MOS Devices, Digital and Linear Gate/Logic Arrays
- 3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
- 4. Microprocessors

 $\lambda_D = (C_1 \pi_T + C_2 \pi_E) \pi_O \pi_L$ Failures/10⁶ Hours

Bipolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C4

	Digital			Linear		PLA/PAL	
No. Ga	ates	C ₁	No. Tra	ansistors	C ₁	No. Gates	C ₁
10,001 to	100 1,000 3,000 10,000 30,000 60,000	.0025 .0050 .010 .020 .040	1 to 101 to 301 to 1,001 to	300	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1*

		Digital				Linear		PLA/PAL	
N	o. G	ates	C ₁	No.	Trai	nsistors	C ₁	No. Gates	C ₁
1 101 1,001 3,001 10,001 30,001	to	100 1,000 3,000 10,000 30,000 60,000	.010 .020 .040 .080 .16 .29	1 101 301 1,001	to to to	100 300 1,000 10,000	.010 .020 .040 .060	Up to 500 501 to 2,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

<u>Microprocessor</u> Die Complexity Failure Rate - C₁

	Bipolar	MOS
No. Bits	C ₁	C ₁
Up to 8	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
C ₂	Section 5.9
π _E , π _Q , π _L	Section 5.10

5.2 MICROCIRCUITS, MEMORIES

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- 3. Ultraviolet Eraseable PROMs (UVEPROM)
- 4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
- 5. Static Random Access Memories (SRAM)
- 6. Dynamic Random Access Memories (DRAM)

$$\lambda_p$$
 = (C₁ π_T + C₂ π_E + λ_{cyc}) π_Q π_L Failures/10⁶ Hours

Die Complexity Failure Rate - C1

		MC	OS		Bip	olar
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BiCMOS)	ROM, PROM	SRAM
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031	.0094 .019 .038 .075	.0052 .011 .021 .042

A_1 Factor for λ_{CVC} Calculation

Total No. of Programming Cycles Over EEPROM Life, C	Flotox ¹	Textured- Poly ²
Up to 100 100 < C ≤ 200 200 < C ≤ 500 500 < C ≤ 1K 1K < C ≤ 3K 3K < C ≤ 7K 7K < C ≤ 15K 15K < C ≤ 20K 20K < C ≤ 30K 30K < C ≤ 100K 100K < C ≤ 200K 200K < C ≤ 400K 400K < C ≤ 500K	.00070 .0014 .0034 .0068 .020 .049 .10 .14 .20 .68 1.3 2.7 3.4	.0097 .014 .023 .033 .061 .14 .30 .30 .30 .30

- 1. $A_1 = 6.817 \times 10^{-6} (C)$
- No underlying equation for Textured-Poly.

A_2 Factor for λ_{cyc} Calculation

Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A ₂
Up to 300K	0
300K < C ≤ 400K	1.1
400K < C ≤ 500K	2.3

All Other Model Parameters

Parameter	Refer to	
π _T	Section 5.8	
C ₂	Section 5.9	
π _E , π _Q , π _L	Section 5.10	
λ _{cyc} (EEPROMS only)	Page 5-5	
λ _{me} = 0 For all other devices		

5.3 MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS

DESCRIPTIONCMOS greater than 60,000 gates

 $\lambda_{p} = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS} \text{ Failures/10}^6 \text{ Hours}$

Die Base Failure Rate - λ_{RD}

2.0 2200 : 2 :	.BU
Part Type	λ _{BD}
Logic and Custom	0.16
Gate Array and Memory	0.24

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
π _E , π _Q	Section 5.10

Manufacturing Process Correction Factor - π_{MFG}

3	MEG
Manufacturing Process	^π MFG
QML or QPL	.55
Non QML or Non QPL	2.0

Package Type Correction Factor - π_{PT}

	πрŢ	
Package Type	Hermetic	Nonhermetic
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7	1.3 2.9 6.1

Die Complexity Correction Factor - π_{CD}

Feature Size			Die Area (cm ²)		
(Microns)	A ≤ .4	.4 < A ≤ .7	.7 < A ≤ 1.0	$1.0 < A \le 2.0$	$2.0 < A \le 3.0$
.80	8.0	14	19	38	58
1.00	5.2	8.9	13	25	37
1.25	3.5	5.8	8.2	16	24
$\pi_{CD} = \left(\frac{A}{21}\right) \left(\frac{2}{X}\right)$			ed Chip Die Area in	cm ² X _s = Featu	re Size (microns)
Die Area Conversi	on: cm ² = MIL ²	² ÷ 155,000			

Package Base Failure Rate - λ_{BP}

	اب
Number of Pins	λ _{BP}
24	.0026
28	.0027
40	.0029
44	.0030
48	.0030
52	.0031
64	.0033
84	.0036
120	.0043
124	.0043
144	.0047
220	.0060
,	- \

 $\lambda_{BP} = .0022 + ((1.72 \times 10^{-5}) (NP))$

NP = Number of Package Pins

Electrical Overstress Failure Rate - $\lambda_{\mbox{EOS}}$

	EU3
V _{TH} (ESD Susceptibility (Volts))*	λ _{EOS}
0 - 1000	.065
> 1000 - 2000	.053
> 2000 - 4000	.044
> 4000 - 16000	.029
> 16000	.0027

 λ_{EOS} = (-In (1 - .00057 exp(- .0002 V_{TH})) /.00876

V_{TH} = ESD Susceptibility (volts)

 Voltage ranges which will cause the part to fail. If unknown, use 0 - 1000 volts.

5.4 MICROCIRCUITS, GAAS MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

 $\lambda_{\rm p} = [C_1 \pi_{\rm T} \pi_{\rm A} + C_2 \pi_{\rm E}] \pi_{\rm L} \pi_{\rm Q}$ Failures/10⁶ Hours

MMIC: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁
1 to 100 101 to 1000	4.5 7.2
C ₁ accounts for the elements: transisto	_

Digital: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁
1 to 1000 1,001 to 10,000	25 51
C ₁ accounts for the following active elements: transistors, diodes.	

Device Application Factor - π_A

Application	πA
MMIC Devices Low Noise & Low Power (≤ 100 mW) Driver & High Power (> 100 mW) Unknown	1.0 3.0 3.0
Digital Devices All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
C ₂	Section 5.9
π _E , π _L , π _Q	Section 5.10

DESCRIPTIONHybrid Microcircuits

 $\lambda_{\rm D} = [\Sigma N_{\rm C} \lambda_{\rm C}] (1 + .2 \pi_{\rm E}) \pi_{\rm F} \pi_{\rm Q} \pi_{\rm L}$ Failures/10⁶ Hours

N_c = Number of Each Particular Component

 λ_{c} = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_F), screening level (π_Q), and maturity (π_L). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., (1 + .2 π_E)). Only the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_Q = 1$, $\pi_E = 1$ and $T_A = \text{Hybrid Case Temperature for these calculations}$.

Determination of λ_c

Determine λ _C for These Component Types	Handbook Section	Make These Assumptions When Determining λ_{C}
Microcircults	5	$C_2 = 0$, $\pi_Q = 1$, $\pi_L = 1$, T_J as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC), $\pi_E = 1$ (for SAW).
Discrete Semiconductors	6	$\pi_{Q} = 1$, T _J as Determined from Section 6.14, $\pi_{E} = 1$.
Capacitors	10	$\pi_Q = 1$, $T_A = Hybrid Case Temperature,\pi_E = 1.$

NOTE:

If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

Circuit Function Factor - π_F

Circuit Type	π _F
Digital	1.0
Video, 10 MHz < f < 1 GHz	1.2
Microwave, f > 1 GHz	2.6
Linear, f < 10 MHz	5.8
Power	21

All Other Hybrid Model Parameters

π _L , π _Q , π _E	Refer to Section 5.10

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTION

Surface Acoustic Wave Devices

$\lambda_{\rm p}$ = 2.1 $\pi_{\rm Q}$ $\pi_{\rm E}$ Failures/10⁶ Hours

Quality Factor - π_Q

Screening Level	πQ
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10
None beyond best commerical practices.	1.0

Environmental Factor - π_E

Environment	π _E
G _B	.5
G _B	2.0
G_{M}	4.0
G _M N _S	4.0
N _U	6.0
A _{IC}	4.0
A _{IF}	5.0
A _{UC}	5.0
A _{UF}	8.0
ARW	8.0
S _F	.50
M _F	5.0
ML	12
CL	220

MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES 5.7

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, 2. coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_p = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

 λ_1 = Failure Rate of the Control and Detection Structure

$$\lambda_1 = \pi_O [N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E] \pi_D \pi_L$$

 λ_2 = Failure Rate of the Memory Storage Area

$$\lambda_2 = \pi_Q N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Chips Per Package - NC

 $N_{\mathbb{C}}$ Number of Bubble Chips per Packaged Device

Temperature Factor – π_T

$$\pi_{T} = (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right]$$

Use: $E_a = .8$ to Calculate π_{T1}

 $E_a = .55$ to Calculate π_{T2}

 $T_{,l}$ = Junction Temperature (°C), $25 \le T_1 \le 175$

T_J = T_{CASE} + 10℃

Device Complexity Failure Rates for Control and Detection Structure - C₁₁ and C₂₁

$$C_{11} = .00095(N_1)^{.40}$$

$$C_{21} = .0001(N_1)^{.226}$$

Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), $N_1 \le 1000$

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

Write Duty Cycle Factor - π_W

Duty Cycle Factor - π_D

 π_{W} by 4, or use 1, whichever is

$$\pi_D$$
 = .9D + .1

D = $\frac{\text{Avg. Device Data Rate}}{\text{Mfg. Max. Rated Data Rate}} \le 1$

Device Complexity Failure Rates for Memory Storage Structure - C₁₂ and C₂₂

$$C_{12} = .00007(N_2)^{.3}$$
 $C_{22} = .00001(N_2)^{.3}$
 $N_2 = \text{Number of Bits, } N_2 \le 9 \times 10^6$

All Other Model Parameters

Parameter Parameter	Section
C ₂	5.9
^π Ε ^{, π} Ω ^{, π} L	5.10

greater.

	GaA's Digital	4.7	1.00 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.
	GaAs MMIC	5:1	3.20E-08 8.40E-08 5.210E-08 5.210E-08 1.30E-07 1.30E-07 1.30E-07 1.40E-08 1.40E-08 1.30E-04 1.40E-08 1.30E-02 1.30E-02 1.30E-02 1.40E-03 1.50E-04 1.40E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01	$\left(\frac{1}{473}\right)$ GaAs Devices is). ection 5.11 for the closest abon.
· π· Γ	Memories (Bipolar & MOS), MNOS	9.	0-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	Fa T x 10 ⁻¹
Temperature Factor For All Microcircuits	Lineur (Bipolar & MOS)	99.	115 23 23 24 24 25 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	exp $\left(\frac{-E_B}{8.617 \times 10^{-6}} \left(\frac{1}{T_J + 273} - \frac{1}{280}\right)\right)$ Silton Devices $\kappa_T = .1 \exp\left(\frac{-E_B}{8.617 \times 10^{-5}} \left(\frac{1}{T_J + 273} - \frac{1}{4}\right)\right)$ Effective Activation Energy (eV) (Shown Above) Worse Case Junction Temperature (Silcon Devices) or Average Active Device Channel Temperature (3aAa Devices). See Section 5.11 (or Section 5.12 for Hybrids) for T _J Determination. 1. T _J = T _C + P θ _{JC} 1. T _J = T _C + P θ _{JC} 1. T _J = Case Temperature (*C) P = Device Power Dissipation (W) 9 _{JC} = Junction to Case Thermal Resistance (*C.W) 9 _{JC} = Auction to Case Thermal Resistance (*C.W) 9 _{JC} should be obtained from the device manufacturer, MitM-38510, or from the default values shown in Sectionalizations. 2. Use Digital MOS column for HC, HCT, AC, ACT, C and FCT auchnologies. 3. Table entries should be considered valid only up to the rated temperature of the component under considerable.
ature Factor For	Digital MOS, VIHSIC CMOS	38.	5.50 2.20 2.20 2.20 2.20 2.20 2.20 2.20	-Ea
Тетрег	III. ISL	æ	6.51.21.25.25.25.25.25.25.25.25.25.25.25.25.25.	1 Silton Devices own Above) Silton Devices
	BICMOS, LSTIL, LTIL, ALSTIL	•vi	6. 54. 54. 54. 54. 54. 54. 54. 54. 54. 54	exp $\left(\frac{-E_B}{8.617 \times 10^{-6}} \left(\frac{1}{T_J + 273} - \frac{1}{296}\right)\right)$ Silkon Devices Effective Activation Energy (eV) (Shown Above) Worse Case Junction Temperature (Silcon Devices) or Average Act See Section 5.11 (or Section 5.12 for Hybrids) for T_J Determination. 1. $T_J = T_C + P \theta_{JC}$ 1. $T_J = T_C + P \theta_{JC}$ 2. Case Temperature (*C) P = Device Power Dissipation (W) $\theta_{JC} = Junction$ to Case Thermal Resistance (*C.W) $\theta_{JC} = Junction$ to Case Thermal Resistance (*C.W) $\theta_{JC} = Junction$ to Case Thermal Resistance (*C.W) $\theta_{JC} = Junction$ to Case Thermal Resistance (*C.W) $\theta_{JC} = Junction to Case Thermal Resistance (*C.W) \theta_{JC} = Junction to Case Thermal Resistance (*C.W) 2. Use Digital MOS column for IHC, HCT, AC, ACT, C and FCT (*C. *C.**) 3. Table entries should be considered valid only up to the rate.$
	ASTR, CAL. HTT, FTT. Off, ECL.	4,	다.다.다.다.다.다.다.다.다.다.다.다.다.다.다.다.다.다.다.	end (8.61) Thechwe A Morse Call To To P P P P P P P P P P P P P P P P P
		Ea(eV) → T _J (°C)	x8x3x8x8x6x8x8x8x3x5x5x3x3x3x3x3x5x	ا = الآ ال = الآ ال = الآ ال = الآ

5.9 MICROCIRCUITS, C2 TABLE FOR ALL

Package Failure Rate for all Microcircuits - C2

	Package Type					
Number of Functional Pins, N _p	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ¹ , SMT (Leaded and Nonleaded)	DIPs with Glass Seal ²	Flatpacks with Axial Leads on 50 Mil Centers ³	Cans ⁴	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ⁵	
3 4 6 8 10 12 14 16 18 22 24 28 36 40 64 80 128 180 224	.00092 .0013 .0019 .0026 .0034 .0041 .0048 .0056 .0064 .0079 .0087 .010 .013 .015 .025 .032 .053 .076	.00047 .00073 .0013 .0021 .0029 .0038 .0048 .0059 .0071 .0096 .011 .014 .020	.00022 .00037 .00078 .0013 .0020 .0028 .0037 .0047 .0058 .0083 .0098	.00027 .00049 .0011 .0020 .0031 .0044 .0060 .0079	.0012 .0016 .0025 .0034 .0043 .0053 .0062 .0072 .0082 .010 .011 .013 .017 .019 .032 .041 .068 .098	

1.
$$C_2 = 2.8 \times 10^{-4} (N_p)^{1.08}$$

2.
$$C_2 = 9.0 \times 10^{-5} (N_p)^{1.51}$$

3.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$$

4.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$$

5.
$$C_2 = 3.6 \times 10^{-4} (N_p)^{1.08}$$

NOTES:

1. SMT: Surface Mount Technology

2. DIP: Dual In-Line Package

3. If DIP Seal type is unknown, assume glass

4. The package fallure rate (C₂) accounts for failures associated only with the package itself. Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR HYBRIDS)

Material	Typical Usage	Typical Thickness, L _i (in.)	Feature From Figure 5-1	Thermal Conductivity, K _i (W/in ² °C/in	$\binom{\frac{1}{K_i}}{(in^2 \circ C/W)}$
Silicon	Chip Device	0.010	Α	2.20	.0045
GaAs	Chip Device	0.0070	A	.76	.0092
Au Eutectic	Chip Attach	0.0001	В	6.9	.000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	.0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	.0060	.58
Epoxy (Conductive)	Chip Attach	0.0035	В	.15	.023
Thick Film Dielectric	Glass Insulating Layer	0.0030	С	.66	.0045
Alumina	Substrate, MHP	0.025	D	.64	.039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	.0038
Kovar	Case, MHP	0.020	F	.42	.048
Aluminum	Case, MHP	0.020	F	4.6	.0043
Copper	Case, PHP	0.020	F	9.9	.0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: ≥ 2W, Typically)

$$\theta_{JC} = \frac{\sum\limits_{i=1}^{n} \left(\frac{1}{K_{i}}\right) \left(L_{i}\right)}{A}$$

n = Number of Material Layers

 K_i = Thermal Conductivity of ith Material $\left(\frac{W/in^2}{{}^{\circ}C/in}\right)$ (User Provided or From Table)

L_i = Thickness of ith Material (in) (User Provided or From Table)

A = Die Area (in²). If Die Area cannot be readily determined, estimate as follows: $A = [.00278 \text{ (No. of Die Active Wire Terminals)} + .0417]^2$

Estimate T_J as Follows:

$$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{C} + (\theta_{\mathsf{JC}}) \, (\mathsf{P}_\mathsf{D})$$

 T_C = Hybrid Case Temperature (°C). If unknown, use the T_C Default Table shown in Section 5.11.

θ_{.IC} = Junction-to-Case Thermal Resistance (°C/W) (As determined above)

P_D = Die Power Dissipation (W)

5.13 MICROCIRCUITS, EXAMPLES

Example 1: CMOS Digital Gate Array

Given:

A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

Castian E 1

			$\lambda_{\rm p} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E}) \pi_{\rm Q} \pi_{\rm L}$ Section 5.1	
C ₁	=	.020	1000 Transistors = 250 Gates, MOS C ₁ Table, D	eigital Column
π _T	=	.29	Determine T _J from Section 5.11 $T_J = 48^{\circ}C + (28^{\circ}C/W)(.075W) = 50^{\circ}C$ Determine π_T from Section 5.8, Digital MOS Col	lumn.
c ₂	=	.011	Section 5.9	
πE	=	4.0	Section 5.10	
πQ	=	3.1	Section 5.10 Group 1 Tests 50 Points Group 3 Tests (B-level) 30 Points TOTAL 80 Points $\pi_Q = 2 + \frac{87}{80} = 3.1$	
πL	=	1	Section 5.10	

Example 2: EEPROM

Given:

A 128K Flotox EEPROM that is expected to have a T_J of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{Cyc}) \pi_{Q} \pi_{L}$$
 Section 5.2

 λ_p = [(.020)(.29) + (.011) (4)] (3.1)(1) = .15 Failure/10⁶ Hours

 $C_1 = .0034$ Section 5.2 $\pi_T = 3.8$ Section 5.8 $C_2 = .014$ Section 5.9

6.8 TRANSISTORS, HIGH FREQUENCY, GRAS FET

Matching Network Factor - π_M

Matching	πM
Input and Output	1.0
Input Only	2.0
None	4.0

Quality Factor - π_Q

Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _E	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC} A _{IF} A _{UC}	4.0
A _{IF}	5.0
AUC	7.0
A _{UF}	12
A _{RW}	16
s _F	.50
S _F M _F	9.0
	24
M _L C _L	250

6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Transistor Type	λ _b
MOSFET	.060
JFET	.023

Quality Factor - π_O

Quality	πQ
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0
Lower	5.0

Temperature Factor - π_T

Temperature Factor - MT					
T _J (°C)	π _T	T _J (°C)	πΤ		
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.5 2.7 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7		
$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$					
T _J = Junction Temperature (°C)					

Environment Factor - π_{F}

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
Aic	4.0
A _{IF}	5.0
A _{UC}	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	9.0
ML	24
c_L	250

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons.
Includes Receivers, CRT, Thyratron, Crossed Field Amplifier,
Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed
Klystron, CW Klystron

$$\lambda_p = \lambda_b \pi_L \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λb

(includes	Both Random	and Wearout Failures)	•
Tube Type	λь	Tube Type	λ _b
Receiver		Klystron, Low Power,	
Triode, Tetrode, Pentode	5.0	(e.g. Local Oscillator)	30
Power Rectifier	10	, ,	ł
CRT	9.6	Klystron, Continuous Wave*	
Thyratron	50	3K3000LQ	9.0
Crossed Field Amplifier		3K50000LF	54
QK681	260	3K210000LQ	150
SFD261	150	3KM300LA	64
Pulsed Gridded		3KM3000LA	19
2041	140	3KM50000PA	110
6952	390	3KM50000PA1	120
7835	140	3KM50000PA2	150
Transmitting		4K3CC	610
Triode, Peak Pwr. ≤ 200 KW, Avg.	75	4K3SK	29
Pwr. ≤ 2KW, Freq. ≤ 200 MHz		4K50000LQ	30
Tetrode & Pentode, Peak Pwr.	100	4KM50LB	28
≤ 200 KW, Avg. Power ≤ 2KW,		4KM50LC	15
Freq. ≤ 200 KW		4KM50SJ	38
If any of the above limits exceeded	250	4KM50SK	37
Vidicon		4KM3000LR	140
Antimony Trisulfide (Sb ₂ S ₃)		4KM50000LQ	79
Photoconductive Material	51	4KM50000LR	57
Silicon Diode Array Photoconductive		4KM170000LA	15
Material	48	8824	130
Twystron		8825 8826	120 280
VA144	850	VA800E	70
VA145E	450	VA853	220
VA145H	490	VA856B	65
VA913A	230	VA888E	230
Klystron, Pulsed*		VACCOL	230
4KMP10000LF	43		
8568	230	* If the CW Klystron of interest is not	listed above,
L3035	66	use the Alternate CW Klystron λ _b Ta	
L3250	69		DIO VII LIIO
L3403	93	following page.	
SAC42A	100		
VA842	18		
Z5010A	150		
ZM3038A	190		

use the Alternate Pulsed Klystron λ_b Table on the following page.

* If the pulsed Klystron of interest is not listed above,

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

Alternate* Base Failure Rate for Pulsed Klystrons - λ_b

				F	(GHz)			
P(MW)	.2	.4	.6	.8	1.0	2.0	4.0	6.0
.01	16	16	16	16	16	16	16	16
.30	16	16	17	17	17	18	20	21
.80	16	17	17	18	18	21	25	30
1.0	17	17	18	18	19	22	28	34
3.0	18	20	21	23	25	34	51	
5.0	19	22	25	28	31	45	75	
~ 8 .0	21	25	30	35	40	63	110	
10	22	28	34	40	45	75		
25	31	45	60	75	90	160		

 $\lambda_{\rm h} = 2.94 \, (\rm F)(\rm P) + 16$

F = Operating Frequency in GHz, $0.2 \le F \le 6$

Peak Output Power in MW, $.01 \le P \le 25$ and $P \le 490 \text{ F}^{-2.95}$

*See previous page for other Klystron Base Failure Rates.

Alternate* Base Failure Rate for CW Klystrons - λ,

1	I			F	(MHz)			
P(KW)	300	500	800		2000	4000	6000	8000
0.1	30	31	33	34	38	47	5 7	66
1.0	31	32	33	34	39	48	57	66
3.0	32	3 3	34	35	40	49	58	
5.0	33	34	35	36	41	50		
8.0	34	3 5	37	38	42			
10	35	36	38	39	43			
30	45	46	48	49				
50	55	56	58	59				
80	70	71	73					
100	80	81						

 $\lambda_b = 0.5P + .0046F + 29$

P = Average Output Power in KW, $0.1 \le P \le 100$ and $P \le 8.0(10)^6(F)^{-1.7}$

F = Operating Frequency in MHz, 300 ≤ F ≤ 8000

*See previous page for other Klystron Base Failure Rates.

Learning Factor - π₁

π∟
10
2.3
1.0

 $\pi_1 = 10(T)^{-2.1}, 1 \le T \le 3$

= 10, T≤1

= 1. T≥3

T = Number of Years since Introduction to Field Use

Environment Factor - π_E

Environment	πΕ
G _B	.50
G _F	1.0
G _M	14
N _S	8.0
N _U	24
A _{IC}	5.0
A _{IF}	8.0
Auc	6.0
A _{UF}	12
A _{RW}	40
S _F	.20
M _F	22
ML	57
Mլ Cլ	1000

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$\lambda_p = \lambda_b \pi_S \pi_N \pi_E$$
 Failures/10⁶ Hours

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ_b

T (00)		T (90)	
T _F (℃)	^b	T _F (℃)	^b
30	.0083	85	.032
35	.0088	90	.041
40	.0095	95	.052
45	.010	100	.069
50	.011	105	.094
55	.013	110	.13
60	.014	115	.19
65	.016	120	.29
70	.019	125	.45
75	.022	130	.74
80	.027	135	1.3
Mr. 1 (march 10.1.) 1 (10.0.) 1 (10.0.)			

$$\lambda_{b} = .00535 \exp\left(\frac{T_{F} + 273}{334}\right)^{8.5}$$

T_F = Frame Temperature (°C)

If Frame Temperature is Unknown Assume $T_F = 40 \, ^{\circ}\text{C} + \text{Ambient Temperature}$

Size Factor - π_S

	πS	
Size 8 or S malle r	Size 10-16	Size 18 or Larger
2	1.5	1
3	2.25	1.5
	Smaller 2	Size 8 or Size 10-16 Smaller 2 1.5

Number of Brushes Factor - π_N

Number of Brushes	π _N
2	1.4
3	2.5
4	3.2

Environment Factor - π_{\sqsubset}

Environment	πE
G _B	1.0
G _F	2.0
G _M	12
G _M N _S	7.0
N _U	18
A _{IC}	4.0
A _{IF}	6.0
AUC	16
A _{IC} A _{IF} A _{UC} A _{UF}	25
l ^A RW	26
S _F	.50
S _F M _F	14
ML	36
Mլ Cլ	680

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION Elapsed Time Meters

$\lambda_p = \lambda_b^{\pi_T} \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

λ _b
20
30
80

Temperature Stress Factor - π_T

Operating T (°C)/Rated T (°C)	πŢ
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor - π_E

Environment	πΕ
G _B	1.0
G _B G _F G _M N _S	2.0
G _M	12
N _S	7.0
N _U	18
N _U AC AIF AUC AUF ARW SF	5.0
A _{IF}	8.0
AUC	16
AUF	25
A _{RW}	26
S _F	.50
M _F	14
M _L Cլ	38
Cլ	N/A

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_g \pi_Q)_i$$
 Equation 1

for a given equipment environment where:

 λ_{EQUIP} = Total equipment failure rate (Failures/10⁶ Hours)

 λ_0 = Generic failure rate for the i th generic part (Failures/10⁶ Hours)

 π_{O} = Quality factor for the i th generic part

N_i = Quantity of i th generic part

n = Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited (A_{\parallel}) and uninhabited (A_{\parallel}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_l factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

Part Free Emiliars Color Co		General (Defaults: sy Based on E	oric Fallure Ea Showm,	Rate, Ag (Solder or)	Wed 9	Weld Seel DIPS/PGAn (No. Pins	POA® (N	o. Pine	as Shown Below),	n Below	# L						
Security Characters Continue Contin	Section	Part Type	Emilen. ↓ T.(*C) ↓	چ چ	₩ 2	ي چي	2° 6	Z &	Arc 75	A _{FF}	y∩ 6	₩	ARW 75	50	≱ 80 82	₹ 7. 8.	್ 8
Control Cont		Bippler Technology		ß	3	3	3	3	2								
1001 to 3000 Gases 1007 Holy 1001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.4	General Arrays, Digital (En = .4) 1 - 106 Gene	듄		210	.024	.024	.035	.025	030		8	047	90038	030	690	27.0
Section Colon Barrier Co		101 - 1000 Gales	5		.020 35	80. 0. 0.	3 8	ون و و	850. 020	580		7 4	13	910	0.82	- 2	- C
1,0,000 0,		3001 to 10,000 Gates	Ł		125	55	.22	83	23	28		94	7	633	8 2.	59.	12
Cash Copy Linearies Cash Copy Cops C		10,000 to 30,000 Gabes	24		23	ස් <u>4</u>	& 4	♣ &	¥ 4	58		2 , 8,	86 85 85	.052 .075	± &	2. 5. 2. 5.	22
101 - 1000 Transitions 11 FP to DP 1050	5.1		2	1		950	1	5	19	69	1	2	97.0	2000	2	8	:
Note Programmeth Carth Def) Cast Proper Cast Proper Cast Programmeth Cast Proper Cast Proper Cast Proper Cast Programmeth Cast Proper		1 - 100 Transeters 101 - 500 Transistors		500. 710.	0.02	98 88 88	<u> </u>	870.) 0 1	11.	.22	2 5	3.5	017	072	5	<u> </u>
Programment Lapic Army (En = A) 10 Ph. DPP 200e1 016 029 027 040 032 037 044 0051 054 0061 034 076 112		301 - 1000 Translators 1001 - 10.000 Translators	(24 Pr DP)	88	124	£ 5	90 20 20 20 20 20 20 20 20 20 20 20 20 20	£ 5	.29 29	.30 30	.4. 63	. 4 4	.22 .35	.033 050	2. <u>0</u>	4.2	3.4
Color by Storo Gases Car Phr Dep Color	5.1	Programmable Logic Amays (Bs = .4)															
MACRIFORMISTORY Color Co		Up to 200 Gates	(36 Pr.)	8 5	9.5 8.5	020		0.0 0.0 8.0 8.0	032	.037	0.04	8 .5	0.54 0.09 0.09	0061	0.34	.12	7.0
March Comparison Cart		1001 to 5000 Genes	(40 Pri DP)	.022	925	087	8	.12	660	=	=	19	9	022	2	22	3.3
Communication Communicatio		MOS Technology															
101 in 1000 Games (2.4 fb, DP) (101 0.026 0.045 0.045 0.045 0.057 0.066 0.092 0.083 0.092 0.083 0.092 0.083 0.092 0.093 0.093 0.093 0.003	r. 6	Galantiagic Arraya, Digital (E.S. = .35)	(16 Pty DIP)		510	.027	.027	600	.029	.035		929	.052	0057	033	.074	1.2
Stock be stock cases		101 to 1000 Gates	(24 Pin OP)		026	0.45	3.	.082	049	.057		.98		6 6	ර කි	<u>~</u> ;	<u> </u>
Court Digital Cases Case		1001 to 3000 Games	(40 Pin DP)		3.	080. 40.) (0. 2	<u> </u>	980	2.6		÷ •	. .	9	5 8	- 69 - 69	
Committee Comm		10,001 to 30,000 Gates	(180 Pn PGA)		: 23	9.0	76:	.	4	2		67.	22	86	9 9	0.	2
Construction Care		to 60,000 Gener	(224 Pin PGA)		انع ا	53	2	52	52	.69	١	-	8	2	S	-	Ę
101 to 500 Translators (18 Pin DiP) 037 041 065 054 078 10 11 22 24 13 017 072 073 074 11 092 13 19 19 14 22 033 12 12 100 to 100 Translators (24 Pin DiP) 033 074 11 092 13 15 15 15 15 15 15 15	-	pe Araya, Unear (Ea D Translators	(14 Pin DiP)		024	039	8	949	.057	.062	1.	5	076	.0095	4	980	Ξ
SOI IB 1,000 Transistors (24 Pm DP7 .033 . 1074 . 11 . 1082 . 13 . 19 . 19 . 19 . 14 . 15 15 19 . 19 . 19 . 19 15 15 105 19		101 to 300 Transistors	(18 Pin DIP)	710.	3	990	8	9.00	2.5	Ξ,	55	7.	E 6	7.0.	270:	5. 50	7.0
Floating Gaine Programmed Cogic Array, MOS (Ea = 35) (2.4 Pin Dilt) Code 0.18 Code Cod		301 to 1,000 Translators	22.5		12. C	<u> </u>	.15 2	. . .	£ 8.	2 8	63	.07	35	3.8	2.0	.41	3.4
Up to 16K Gates C24 Pin DP7 C046 O18 C035 C052 C052 C054 C044 C047 C070 C070 C046 C044 C047 C048 C052 C053 C054 C053 C054 C055 C053 C054 C055 C053 C054 C055 C053 C054 C055 C053 C054 C055 C053 C054 C055 C053 C054 C055 C053 C054 C055 C053 C054 C055 C053 C054 C055	5.	Floreing Gate Programmable															
16K to e4K Galbo (28 Pin DP) (2005 021 042 062 042 052 053 054 058 0061 053 054 065		Up to 16K Gates	(24 Pin DIP)	9400	0.18	035	88	.052	.035	10.0	044	070	070	.0046	440	5.5	0.0
Microprocessors, Micr		10K to 64K Gates	(28 Pr DP)	8.5	25	0.0	3 3	985	20.00 20.0	.052	.053	480	.083	900 900 1	0.052	<u> </u>	, o
Microprocessors, Blooks (Ea. 4) (40 An DP) (22		256K to Line Callin	40 20 00 00 00 00 00 00 00 00 00 00 00 00	288 288	83	064	. 8. 5. 8.	9 9	265	080		13	13	9000	36	2	3.3
Up to 16 Bits (44 Pin PGA) .052 11 18 16 23 21 24 32 39 31 .052 .20 Up to 16 Bits (46 Pin DiPP) .048 .049 .13 .12 .14 .49 .65 .91 .65 .11 .42 .15 .14 .15	5.5	Manaprassans, Broler (Ea4)	(A) (B) (A)		ž	860	ē	13	12	13	11	22	—	928	Ŧ.	.24	63 63
Up to 25 Bits (125 Pin PGA) 11 23 36 35 47 44 49 65 11 65 11 72 14 64 15 15 15 15 15 15 15 1			OA PIN POA)		=	60	= 8	23	15:	24	22.5	6	£.	.052	8:5	<u>4</u> g	7 9. č
	Ŀ	Up to St. Bits	(128 FIN PGA)	4	2	.36	3			a a	8	1	69			S	-
10 10 10 10 10 10 10 10 10 10 10 10 10 1	ri n		(40 Pin DP)	2.5	680	£. 5	÷.	÷. 6	= 8	7:	2, 4	8 ;2	25	0. 840 60	51.	2 , 5	4.6
			128 Pr POA	36.	. 3	67	3 4 .	9	3 5	89.	6		95	19	54	9	12

	Gehauffs: x _T Based on I	I	Rete, ^λ g Joider of	(Fallur Weld	(Fallures/10 ⁶ Hours) for Microcircuits. See Page A-4 Weld Seal DiPe/PGAIs (No. Pins as Shown Below), r _L	PGA ()	Microcin	oute. Start	See Page A-4 own Below), x		for R _Q Values = 1 (Device in	ser or or or or or or or or or or or or or	for π_Q Values = 1 (Device in Production $\geq 2 \ Yr.$))	: 2 Yr.))		
Section	Part Type	Environ. +	<u>چ</u>	હ ર	; ₹ق	y Z	2 7	ပ္	ų,	3	₽.	ARW	S.	¥	ž	ای
5.2	MOS Technolony			8	2		ç	9	2	2	8	75	20	92	75	8
!	Memories, ROM (Es = .6)															
	Uo e 16K	(24 Pin DIP)	.0047	810.	.036	388	.053	.037	.045	.048	.074	.071	.0047	044	=	6.
	16K to 64K	(28 FE OFF)	.8059	.022	640	.042	8	045	.055	080	06 0.	.086	.0059	.053	.13	23
	64K to 256K	(20 E 20 E 20 E 20 E 20 E 20 E 20 E 20 E	986	.023 8.03	0. 8. 8.	3 8	990	9.0 8.0 9.0	.059	88.	6	680.	7900.	.055	د و	62.0
5.2	Memories, PROM, UVE PROM,						960	Ş	3				5	200		2
	(NOTE 1 O Assessed to REPROSE															
	Uo 10 10 10 10 10 10 10 10 10 10 10 10 10	(24 Pin DIP)	0049	810	938	80	053	037	840	0.00	770	070	9,00	946	:	
	16K to 64K	(28 Pin DIP)	.00	.022	044	943	80	940	850	082	600	780	0062	054	- 62	
	64K to 256K	(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	.0072	.024 8.024	.046	25. 8	786	50.	190.	.073	2:	260	200.	750	<u>د</u> و	200
5.2	Memories, DRAM (Es 6)			3	5	3	2	200	2	2		•	215	99	2	
	Up to tex	(18 Pin OfP)	.0040	914	.027	.027	040	020	.035		650	055	0040	034	080	
	16K to 64K	(22 Pin DIP)	.0055	910	980	8	150	030	.047		070	.070	.0055	043	9	
	64K to 256K	(24 m OF)	.007	023	643	940	90.	040	.058	970.	ę.	.084	.0074	.05	.12	6.1
-	GM I DI VOCZ	2012		E	.057	53	64	070	80		15	=	.01	.067	.15	2.3
2.2	Merrores, SRAM, (MOS & BMOS)															
		748 PL DED	20.00	6,00	900	Š	9	9	,	6		6	•	;	6	•
	16K to 64K	22 10 10 10 10 10 10 10 10 10 10 10 10 10	25.0	200	5.5	5 S	3 2	5 6	5 4 4 4	283.		? ? -	8 5	4 4	50 50 50 50 50 50 50 50 50 50 50 50 50 5	.
	64K to 256K	(24 Pin DP)	.023	.053	0.084	5.70	2	<u>.</u> 2		. 52	.27	9	023	200	- 0	0 0
	256K to 1 MB	(28 Pin DIP)	.043	.092	1	11	.16	.22	.23	9.		92	.043	5	8	23
2.5	Bipoler Lectrology															
	The to 16K	(24 Pin DIP)	9	0.24	5	Š	5	5	020	ç	ç	900	6	820	:	•
	16K to 64K	(28 Pin OP)	25	3	3.5	8	96	280	2 -	2 5	<u> </u>	14	2.6	80	2 5	. C
	64K to 250K	(28 Pln DIP)	.028	.065	2	8. 8.	12	5	9	8	88	19	.028	=	.23	2.3
	256K to 1 M8	10 I		2	=	5	.21	.27	.29	8 5	.61	.33	.053	6-	.39	3.4
2.5	Memories, SRAM (Es = .6)	(34.6)	0075	ç	6	į	0	616	040		,					
	16K 10 64K	(28 Pin DP)	.012	033	9 6	2 8	200	5 C	0 0) ; ;	<u>.</u> 4		20.5	70.0	<u>;</u> ‡	- c
	64K to 256K	(28 Pin DIP)	910	045	.074	89	560	. 2	<u> </u>	. 2	25	=	80	80.	<u> </u>	5 65
		(40 Pin DIP)	.033	.079	.13	Ξ.	9	₽ .	27	86.	ଝ	.24	.033	₹.	8	4.60
5.	VHSIC Mencirula, CMOS			Refer to S	Section 5.3	VHSIC	MOS									
4.	Gade MMC (Ee = 1.5)	60.00		2	910	9		,	9	,	8	3		;		
	40° to 4000 Aprilia Claman		2 6	3.5	5 6	5 6	D. 6	5.5	5.0	5.5	220.	120.	.0013	.013	.031	2
	(Defent Diver and High Fearer (> 100 mVF))	(10 111 011)	9700	5	.022	.082	T	.023	920	030	3	.045	.0028	.028	990	2: 2
	GeAs Digital (Es = 1.4)															
5.	1 to 1000 Active Elements	(36 Pin DIP)	900.	.028 616	.052	86.	870.	.054	790.	870.	27.	Ξ.	9900	.065	97	5.9
	1001 to 10,000 Active Elements	43 LL 45	.013	S	P.	2	5	2	.13	5	-23	.50	.013	.13	.30	5.5

	Quality Factors - 160		Oggo	
	Description	Š.		TM 1010 (Temperature
Clear S. Categories:	Objection;		÷	Beciricals @ Temp Es
<u>-</u> :	Procured in Auf accordance with MIL-AH-38510, Class S requirements.			TM 1010 (Temperature Acceleration, Cond B.)
*	Procured in full accordance with MEL-1-28556 and Appendix 8 thereto (Class U).	۲ <u>۶</u>	*	TM 5004 (or 5008 for 17M 1014 (Seal Test, C
e,	Hybrids: (Procured to Class S requirements (Outlify Level K) of MIL-H-38534.		က	Pre-Burn in Electrical TM 1015 (Burn-in B-La
Cham B Catagoriae:	theories.		÷	TM 2020 Pind (Partical
<u>-</u>	Procured in full accordance with MFL-M-38510, Class B requirements.		ω	TM 5004 (or 5008 for 5
~	Procured in full accordance with MIL+38635, (Class O).	0.		Extremes
6	Heintde: Procured to Cleas B regularments (Quelly Level H) of Mil. 24:38534.		•	TM 2010/17 (Internal)
			<u>،</u>	TM 1014 (Seal Test, C
Class B-1 Category:	Crisquog:		•	TM 2012 (Radiograph)
3	Fully compliant with all requirements of paragraph 1.2.1 of Mil. STD-883 and procured to a		•	TM 2009 (External Vis
100	ms. Careving, UCCA, careving or other government approve construction. (Code for include hybrida). For hybrida use custom screening section below.		2	TM 5007/3013 (GaAs)
			-	4 0000

	Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final			_
-	Bectricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	8		
	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum)			_
*	TM 5004 (or 5008 for Hybrids) (Final Electricats © Temp Extremes) and TM 1014 (Seal Test. Cond. B. or C) and TM 2009 (Extremes Men.).	37		
6	Pre-Burn in Electricals TM 1015 (Burn-18-LevelS-Level) and TM 5004 (or 5006 for Hybrids) (page 18-18-18-18-18-18-18-18-18-18-18-18-18-1	8	(B Level)	7
<u> </u> ;	TAY ONCE DISTRIBUTED TO THE PROPERTY OF THE PR		S (exe)	1
•	I'M CUCO I'I'M (I'BINGO I'MPRO NOBO Delection)	=		
6	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperaturu Extrames)	=	(Note 1)	
•	TM 2010".7 (Internal Visual)	^		
٠	TM 1014 (Seal Test, Cond A, B, or C.)	~	(INDIe 2)	
60	TM 2012 (Radiography)	^		
۰	TM 2009 (External Visual)	7	(Note 2)	
2	TM 5007/5013 (GaAs) (Wafer Acceptance)	-		
=	TM 2023 (Non-Destructive Bond Pyli)	1		
····	*Q=2+ E Point Valuations			
NOT A	NOT APPROPRIATE FOR PLASTIC PARTS			
AOTES: 3.2. 3.2.	Point valuation only assigned if used independent of Groups 1, 2 or 3. Point valuation only sasigned if used independent of Groups 1 or 2. Sequending of tests within groups 1, 8 and 3 must be followed. The latest to this MitSTD-883 Test Natrod. Nonhermetic parts should be used only in controlled environments (i.e., Gg and other temperature.)	d oth-		
EXAMPLES	LES:			_
÷	Mig. performs Group 1 test and Class B burn-In: $\kappa_Q = 2 + \frac{87}{50+30} = 3.1$			
'	Mig. performs internal visual test, seel test and final electrical test: $R_0 = 2 + \frac{87}{7+71}$	7.7.11 - 5.5	ı.	
	Other Commercial or Unknown Screening Levels	=		т —

A - M amilian series	first problem in a land	from - peroletic for m	for - problem for m
		Vector personal devices have been to time money	V . Vence nament desire these hear in tendention

	<u> </u>	<u> </u>								•		~	•	_		es		PEN					RT	<u>8</u>	<u>CO</u>	# #	
ປີ 88		1.5	4	58	1.2	1.2	1.3		2.1	350	3	1.2	89. 8.	7		1.3	1.1		4 .056	2.2	5.3	೫	8				Ξ
M ₇ 57		83	98	4.1	8 .	6	9.		.28	29	12	.	=	1.8		4:	91.		. 0074	.29	3 8	3.6	=	27	88.	3.6	1.1
¥ 8		920	020	4.	090	.062	090		6	9	3.7	.048	3 6.	.56		.052	.053		.0027	Ξ.	.25	1.2	2.8	6.9	.31	1.1	14.
ጭ ሜ		.0018	.00047	.032	4100	.0015	9100		.0028	4 .	91.	.002	410.	023		.0022	.0012		.000073	.0029	6900	.049	.083	. 2	6200	.047	.023
Araw 25		71.	.045	3.1	£.	=	51.		۲	2	7.9	2.	۲.	1.2		Ξ.	.12		9900	8	2 0	2.4	7.2	82	8	5.4	.73
\$ 8		7	.12	8 0.0	35	36.	72.		.46	8	7.6	760	6 9.	=		Ŧ.	.31		.013	.50	=	2.3	9.5	ឧ	. 5.	2.3	.55
્રેકે &		.20	.054	3.7	9	.17	£.		75	36	8.4	750.	₽.	.67		983	.		0000	.23	ŖĊ.	£.	5.4	13	7.	£.	35
A 7i €	i 	2	.054	3.7	9	17.	5 .		\$ 2.	7	5.5	.032	23	.37		034	1 .		.0067	8,	88	9/.	2.3	5.6	86	.75	.23
δ K		.092	.024	1.7	.073	.075	990		Ξ.	=	5.0	920	6 .	.30		.028	.064		.0030	54.	.28	2 6.	6.	4 .	.36	9.	18
2 8		6.	.027	9:	0. 280	.	280		7	8	4. Đ	.058	4.	9		.063	.072		.0037	.15	E .	7 .	9. 9.	9 .6	₹.	1 .6	Ŗ.
χ 3		0.43	110	.78	8 8	.035	.035		99.	5.6	5.	910.	7	8		.021	030		.0017	8	<u>.</u>	74.	1.0	2.5	8 .	4 .	9
o [™] 88		9. 8	.013	6 8	660.	040	.039		999	8	2.1	.027	6 .	흔		.029	.034		7100.	690	9	3 9.	5.	6 .	27	(63	23
<u>ዋ</u> 8		920	.0073	.52	220	83	.024		9.0	2.8	.76	980	8	Ε.		010	.020		.01	.042	8	%	2 6	1.3	51.	.23	8 6
Env.→ Gg T ₃ (*C) → \$6		.0036	₩	8 6	.0028	.0029	.0033		.0068	8 6	.S.	96.	8 .	2		.0043	.0025		.00015	7500.	410.	680.	11.	.42	910.	750.	.045
Part Type	DIODES	General Purpose Analog	Switching	Fast Recovery Pwr. Reciffer	Power Recilier/ Schottly Pwr.	Transient SuppressonVaristor	Voltage Ref/Reg. (Avalanche	and Zener)	Current Regulator	Si impeti (f < 35 GHz)	Gunn/Bulk Effect	Tunnel and Back	PIN	Schottly Barrier and Point	Contact (200 MPtz s1s 35 GHz)	Varactor	Thyriston/SCR	TRANSISTORS	NPWPNP (1 < 200 MHz)	Power NPN/PNP (f < 200 MHz)	SI FET (1 5 400 MHz)	SIFET (1 > 400 MPtz)	GaAs FET (P < 100 mW)	GeAs FET (P ≥ 100 mW)	Unjunction	RF, Low Noise (1 > 200 MHz, P < 1W)	RF, Power (P≥1W)
Section		6.1	6.1	6.7	6.1	6.1	6.1		-6	B.2	6.2	6.2	6.2	6.2		6.2	6.10		6.3	6.3	9.4	6.9	6.8	6.8	6.5	9.9	6.7

		Generic	Fall	re Rate	ت مر -	ric Fallure Rate - 3g (Fallures/10 ⁶ Hours) for Discrete Semiconductors (contd)	10 ⁶ Hou	ira) for	Discrete	Semicor	ductors	(cont'd)				
Section	Part Type	EN. T	æ	S.	g₹	ž	Z	Ş	yiŁ ViE	کر کر	4	AFIW	S _r	¥	₹,	٦
•		7,000	8	8	88	09	88	75	75	8	8	75	8	88	75	8
	OPTO-BLECTHONICS															
6.11	Photodefector		.011	620	51.	.074	50	78 0	.13	11.	.23	36	7500.	±. ₹	.	9.9
6.11	Opto-lacintor	-,	.027	070	£.	.17	74.	50	.30	42	99	8 6	.013	35	5.	ā
6.11	Emilier	8	20047	. 2100.	9500.	.0031	48 00	.0035	.0053	.0074	8600	210.	.00024	.0063	.021	.28
6.12	Aphanumeric Display	0.	2300	.016	.073	.040	Ξ.	946	690	960	.13	.20	.0031	082	.28	3.6
6.13	Laser Diede, GaAe/Al GaAs		5.1	5	78	39	8	88	88	28	110	240	2.6	87	380	3800
6.13	Laser Diede, in GeAavin GeAsP		0.0	83	135	69	500	9 <u>0</u>	150	051	500	004	4.5	150	000	6200
7	TUBES		3	Section 7 (Includes	Section 7 (Includes Fieceivers, CRTs, Cross Field Amplifiers, Klystrons, TWTs, Magnetrons)	CRTs, Cr	Ped Fleid A	mplifiers, H	ystrone, T	WTs, Magn	etrons				
8	LASERS		8	Section	•			ļ								

	Disci	ete Semicondu	ctor Quality	Discrete Semiconductor Quality Factors - TQ		
Section Number	Part Types	JANTXV	JANTX	NAU	Lower	Plastic
6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	Non-RF Devices/ Opto-Electronics*	0.7	0.1	5. 4.	ري دي	8 .0
6.2	High Freq Diodes	95.	1.0	5.0	25	20
6.2	Schottky Diodes	S.	1.0	1.8	2.5	;
6.6, 6.7, 6.8, 6.9	RF Transistors	50	1.0	2.0	5.0	:
8.18	*Laser Diodes	P. D. H. H. H. H. H. H. H. H. H. H. H. H. H.	r _Q = 1.0 Hermetic Package = 1.0 Nonhermetic with F = 3.3 Nonhermetic withou	1.0 Hermetic Package 1.0 Nonhermetic with Facet Coating 3.3 Nonhermetic without Facet Coating	ng Mating	

_		_									_												Al	APPE	APPEND	APPENDIX	APPENDIX A:	APPENDIX A: F	APPENDIX A: PARTS
k	ל \$	36	8	8	9	92	82	8.2	1.7		7.0	, ç	, , , , ,			ए ए के क ए ए 4 4 4 कि ए ए			0	2	. 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						4. 4. 4. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	2	2 2 2 2 2 2 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	£ 8	.035	.035	40	9	080	050	74.	<u>. </u>	į		, E:	. 15. 13. 15. 13.	. E. 8.	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5). 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.), tc. 82, tc. 52, 54, 57, 52, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54	7. 6. 7. 6.			, ci & ci & ci & ci & ci & ci & ci & ci		, ci ni ni ci ci ei		, v. v. v. v. v. v. v. v. v. v. v. v. v.	, ci é	, c; e; c; c; e; +; +; c; · · · · · · · · · · · · · · · · · ·	, c; c; c; c; c; c; c; c; c; c; c; c; c;	, E. & E. E. E. E
	ਜੂ ਦੇ	8600	9600	410.	410.	0.016	910	9	.055	5	:	£.	£ 5.	. 13 . 13	. 2. 13 15 15 15 15	. t. 12	Et 12 8 Et Et Et	5	E	E. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	E		: :: : : : : : : : : : : : : : : : : :				Et 12. Et 13. Et 21. Et	
U	# R	.00025	.00025	.00025	.00025	.00028	00028	0900	1100	8900		8900	.0068	0042	0040	.0042 .0038 .0040	.0042 .0038 .0040 .0040	.0040 .0040 .0040 .0040	.0068 .0042 .0038 .0040 .032	.0068 .0040 .0040 .0040 .013	.0068 .0042 .0038 .0040 .0040 .032 .013	.0068 .0040 .0040 .0040 .013 .013 .013	.0068 .0042 .0038 .0040 .0040 .013 .013 .013	.0068 .0040 .0040 .0040 .013 .013 .013 .013 .013	.0068 .0042 .0038 .0040 .0032 .013 .013 .013 .013 .015	.0068 .0042 .0040 .0040 .0032 .013 .013 .013 .075 .075	.0068 .0042 .0038 .0040 .0032 .013 .013 .013 .075 .075 .075	.0068 .0042 .0038 .0040 .0040 .013 .013 .013 .075 .075 .075 .075 .075	.0068 .0042 .0038 .0040 .0040 .013 .013 .013 .013 .015 .017 .017 .025
•	£ 52	.025	.025	8	930	8	460.	.32	£ .	8	į	8	8 2 24	2 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25 24 26 25 25 25 25 25 25 25 25 25 25 25 25 25	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24 25 25 27 42 42 42 42 42 42 42 42 42 42 42 42 42	86. 22. 22. 2. 1.1. 1.1	5 2 4 5 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 2 8 2 2 2 7 7 7 8	8 6 2 5 5 5 5 7 1 1 1 8 8 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 5 4 5 5 5 5 7 1 1 1 1 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25	24 24 25 25 25 26 26 26 26 27 1.1 1.1 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	25	24 24 25 25 25 27 1.1. 2 26 26 27 1.1. 2 26 27 27 27 27 27 27 27 27 27 27 27 27 27	6 5 4 5 5 5 7 7 1 1 1 1 2 2 2 3 8 5 5 5 7 1 1 1 1 1 1 2 2 3 8 6 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25 25 25 25 25 25 25 25 25 25 25 25 25 2
	3 5	320	88	8	88	88	88	7.	1 .	.38		86 :	86. G.	85. G. 85.	86 6 8 8	8 8 8 8 4 4	86 66 85 4 4 7	86 85 85 84 85 65 65 65 65 65 65 65 65 65 65 65 65 65	86 65 85 84 84 87 96 95	86 62 4 2 4 5 5 5 5 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 8 8 4 4 5 9 5 F ·	86 66 45 45 75 00 00 E · ·	8 8 8 4 4 2 8 9 5	86 66 42 42 42 69 E · · · · · · · · · · · · · · · · · ·		86 66 84 84 85 65 65 65 65 65 65 65 65 65 65 65 65 65	86 66 84 84 75 00 00 to	86 66 84 44 75 69 12 · · · · 67 7 7 5 8 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	38	910.	910.	910	810.	.021	.02	<u>6</u>	720.	8		8	8. c .	6. c. s.	. 18 1. 25 1. 26	30 81 21 21 21 21 22 21 21 21 21 21 21 21 21	06. 85 1. 5. 1. 0.1. 0.1. 22 1. 0.1.	30 1.0 1.0 36	.30 .18 .12 .12 .36 .36	36 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	36 8.7	36	36 81	36 36 36 36 36 36 36 36	96 1. 2. 1. 2. 3. 8. 3. 8. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	36. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	36	36	86 52 52 56 88 7 5 5 5 5 5 5 5 5 7 5 6 5 6 5 6 5 6 5 6
	30 31 10 10 10 10 10 10 10 10 10 10 10 10 10	3000	900	.013	.013	410	410	₽.	043	.17		.17	15	t: t: t:	.17 .13 .088	.15 .13 .088	.15 .13 .088 .088	.15 .13 .088 .088 .1.9	.17 .13 .088 .088 .088	.15 .13 .088 .088 .088 .27 .27	. 17 . 13 . 13 . 088 . 088 . 088 . 1.9 . 27 . 27 . 27 . 28	. 17 . 15 . 13 . 088 . 088 . 088 . 27 . 27 . 27 . 28 . 2.8	. 17 . 13 . 088 . 088 . 088 . 088 . 27 . 27 . 27 . 27 . 28 . 2.8 . 2.8	.17 .13 .088 .088 .088 .27 .27 .27 .27 .27 .27	. 17 . 13 . 13 . 088 . 088 . 088 . 27 . 27 . 27 . 27 . 27 . 27	. 17 . 15 . 13 . 088 . 088 . 088 . 27 . 27 . 27 . 27 . 27 . 27 . 27 . 27	.17 .13 .088 .098 .098 .27 .27 .27 .27 .27 .27 .27	. 17 . 15 . 13 . 088 . 088 . 088 . 27 . 27 . 27 . 27 . 27 . 27 . 27 . 27	17 15 13 10 10 10 10 10 10 10 10 10 10 10 10 10
	ည်း	2500.	.0052	5905	.0063	.0072	.0072	870.	220:	5.		£.	.15 .073	.073 .066	21. 2073 2066 440.	. 15 . 0.073 . 0.066 . 0.044	.073 .066 .044 .044	.073 .066 .044 .71.	21.0.033 .0066 .0044 .017.	.15 .0073 .0066 .044 .044 .77 .71	21. 20.073 20.066 20.044 27. 71. 71. 8.8	.15 .0073 .0066 .0044 .017 .71 .71 .98 .99 .91	21. 20.073 20.066 20.044 21. 21. 21. 21. 21. 21. 21. 21.	315 306 306 307 317 318 318 318 319 319	215 200.073 200.066 2044 21.7 21.7 21.9 2	.15 .006 .006 .0044 .0044 .17 .17 .17 .19 .19	.15 .073 .066 .044 .044 .17 .17 .17 .19 .19 .19 .19	.15 .0073 .066 .044 .044 .17 .17 .19 .19 .19 .19 .19 .19 .19 .19 .19	21. 10.73 10.74 10.73 10.73 10.74 10
	. ₹	210.	210.	80.	80.	20.	8	۲.	.055	9		9	9. %	5 8 2	5. 8. 4. 5.	5 8 4 5 1	6 6 4 E E E	6 6 4 5 5 8 8 8	6 8 4 5 5 5 5 8 8 8	6 4 4 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 4 4 5 5 8 8 8 8 5 4 8	8 4 4 5 5 5 8 8 8 8 8 8 8 4 4 8		6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	85. 42. 55. 85. 85. 85. 87. 88. 85. 87. 88. 87. 88. 87. 88. 87. 88. 87. 88. 87. 88. 87. 88. 87. 88. 88	36. 22. 23. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	36. 42. 25. 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	36. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	85 42 55 85 85 85 85 85 85 85 85 85 85 85 85
١	ν ક	0037	7500	7,0	1 50	198	1906	790	510	.045		0.45	.045	.045 .077	.045 .077 .045	045 070 045	045 077 070 045 045	045 077 070 045 045 .71	045 070 045 045 17.	045 070 045 045 17 17 3.2	045 070 045 045 17 17 17 17 17	045 070 045 045 17 17 17 17 17 17 12	045 070 045 045 045 17 17 17 17 17 17 12 12	045 070 070 045 045 1.7 1.7 1.2 1.2 1.2	045 070 045 045 045 171 171 172 172 172 172 172 172 173 173 174 175 175 175 175 175 175 175 175 175 175	048 048 048 171 171 172 172 172 172 172 173 173 174 175 175 175 175 175 175 175 175 175 175	045 046 048 048 048 048 1.17 1.17 1.12 1.12 1.12 1.12 1.12 1.12	046 070 070 045 045 1.17 1.12 1.12 1.12 1.12 1.12 1.13 1.13 1.13	048 048 048 048 048 048 117 117 117 112 112 112 112 113 114 115 115 115 115 115 115 116 116 117 117 117 117 117 117 117 117
	2 ₹	0071	0. 1700). 110	0. 110	0. 610.	0. 810.	.13	180	5 .		. 01.								, , , , ,									
			•																										
	m 9	0 .0022	0 .0022	2 .0027	2 .0027	.003	10031	2 .025	3 .0066	5 .018		810. 2																	
	TA(TC) → 38	05000:	.00050	2100.	2100.	4100.	4100.	210.	.0023	.0085		.0085	.0085	.0085 410.	.0085 .013	.00800.	. 0000. . 0000. . 0000.		.0080 .013 .0080 .0080 .0080 .0080	90 c. to 80 80 80 50 50 50 6.	8 0 0 0 8 8 8 0 0 0 0 0 0	90 0 0 8 8 8 5 5 5 5 5 1 1 1		2000. 2000. 2000. 2000. 200. 200. 201. 201		2 800. 2 800. 2 800. 3 800.	2000. 2000.	2800. 0800. 2800. 3800. 381. 381. 381. 381. 381. 381. 381. 381	p
	¢	39008	Ξ	71086	7887	55162	10509	11804	10461	38008		8	88 000 70008	25 55 50 55	52 26 26 36 30 36	25 25 25 25 25 25 25 25 25 25 25 25 25 2	28 28 28 28 28 28 28 28 28 28 28 28 28 2	39007 26 39009 18546 22849	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28 280007 280009 1185-46 220048 227208 1189-4	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28 22009 2800009 2800009 280000000000	28 28 28 28 28 28 28 28 28 28 28 28 28 2	28 280009 2800009 280009 280009 280009 280009 280009 280009 280009 280009 2800009 2800009 2800009 2800009 2800009 280000000000	28 28 28 49 28 28 49 28 28 49 28 28 28 28 28 28 28 28 28 28 28 28 28	Mrewound, Accurate RM 28 Mrewound, Power RW 28 Mrewound, Power, RER 38009 Chassis Mounted Chassis Mounted Mrewound, Variable Mr
	ŧ,	2	8	5	<u></u>	Ž	æ	£	ĸ	£		æ	£ £	£ £ 3	P \ 2 2 5	E				E		E	6 	6 % 5 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 %	6 % 3 % 5 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 %	6 			
-		-				ž				*		4 5	4 .	4 • •							1	1	1	1	1				Composed
	Part Type	Composition	Composition	Film, Insulated	Film, insulated	PL PN (R.Cark)			Film, Network	Wirewound, Accurate		Miswound, Accurate	Miswound, Accur Miswound, Power	Mrewound, Accum Mrewound, Powe Mrewound, Powe	Miswound, Accum Measound, Power Miswound, Power	Missound, Accura Messound, Poser Messound, Poser Chassis Mounted Messound, Poser,	Newcund, Accuratemental Power Personnel, Power Chassis Mounts, Power Chassis Mounts, Power Chassis Mounts Power Chassis Mounts Power	Mrewound, Accurate Measound, Power Measound, Power Chassis Mourbed Measound, Power, Chassis Mourbed Thermiston Measound, Variable Measound, Variable	Mrewound, Accurate Mrewound, Power Mrewound, Power, Chassis Mounted, Marwound, Power, Chassis Mounted Mrewound, Variable Mrewound, Mre	Memound, Power Memound, Power Memound, Power Chassis Mounted Mississis Mounted Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable	Memound, Accurate Memound, Power, Memound, Power, Chassis Mouned, Memound, Power, Chassis Mouned, Memound, Variable Memo	freecount, Power freecount, Power freecount, Power Chassis Mourbed freecount, Power, Chassis Mourbed freecount, Variable freec	Mrewound, Accurate Mrewound, Power Chassis Mounted Mrewound, Power Chassis Mounted Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Mrewound, Variable Serripreciation Mrewound, Variable Serripreciation Mrewound, Variable Serripreciation Mrewound, Variable Serripreciation Mrewound, Variable Serripreciation Mrewound, Variable Serripreciation Mrewound, Variable	Mreecund, Aco Messand, Pow Messand, Pow Chassis Mount Chassis Mount Messand, Vari Messand, eecund, Pow Meecund, Pow Chassis Mount Chassis Mount Chassis Mount Meecund, Vari Meecund,	Mreecound, Accurate Mreecound, Power Mreecound, Power Chassis Mourtaid Mreecound, Variable	Mreecund, Aco Messeund, Pow Gressis Mount Gressis Mount Messeund, Vari Messeund, Messeund, Messeund, Vari Messeund, Messeund,	Memound, Power Memound, Power Memound, Power Chassis Moursed Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable Sempreciation Memound, Variable Sempreciation Memound, Variable Sempreciation Memound, Variable Memound, Variable Memound, Variable Memound, Variable Memound, Variable	eund, Acea eund, Pow eund, Pow euse Mount vietor cound, Vari cound,	
		Š	8	£	£	E	Ē	Flat Power	Ē	Wiles	_	¥	¥ ¥			1 1 1616	Mrewound Mrewound Chasses Mrewound Chasses Thermistor	N N N N N N N N N N N N N N N N N N N	* * * * * * * * * * * * * * * * * * *					Memory Me					<u> </u>
	ection	-	<u>-</u>	97	9.2	9.2	9.5	6.3	7.	5.5		5.	8.8 8.6	9.0	9.5 9.6 9.7	8. 9. 9. 6. 9. 7. 9. 7. 9.	8: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	8 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 6 7 7 8 8 8 8	8. 9. 9. 9. 9. 9. 9. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	6. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	6.55 6.00 7.00 6.00 7.00 6.00 7.00 7.00 7.00	8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 9 9 9 9 9 9 9 9 9 9 9 1 8 1 8 1 8 1 8	9.5 9.6 9.7 9.10 9.11 9.13 9.13 9.15 9.15

				•0	neric	Generic Fallure Rate, λg		(Fallures/10 ⁶ Hours) for Capacitors	10 ⁶ Hour	s) for Ca	pacitors	_					
Section	Part Type or Dielectric	Style	MLC	Em.→ GB TA(*C)→30	g. å	₹ \$	3 , 5	3 5	اد 55	^ 55	Ş₽	250	₹ %	ዱ 8	ች &	7. 25.	ડ ફ
10.1	Paper, By-Pass	გ	18	9600	2700.	.033	.018	.055	620	£0:	070	61.	280	8100	9.	12	2.2
10.1	Paper, By-Pass	5	12800	6000	.0067	.042	022	070.	.035	047	6	35	13	200	950	6	2.5
10.2	Paper/Pleste, Feed- through	5	 58	.0047	9600	9.	46 0.	670	.030	040	.0 8 0	ž.	Ε.	.0024	.058	91:	2.7
10.3	Paper/Please Film	ğ	14157	.0021	.0042	710	010	.030	.0088	.013	920	.048	ş	0100	.023	983	7
10.3	Paper/Pastle Film	8	<u>\$</u>	.002	.842	710.	010	030	.0088	.013	980	.048	4	0100	.020	.063	Ξ
10.4	Metalized PoperiPlastic	₩	39022	.0029	9500.	.023	410.	.041	.012	810	780.	990	86	4100	.032	980	£.
10.4	Metalized Pleaticy Pleatic	ठ	18312	.0029	.0058	623	410.	.041	.012	910	037	990	89	4100	.032	.088	1.5
10.5	Metalized Paper/Plastic	£	55514	1400.	.0083	045	.021	790.	920	870	980	=	2.	.0020	4 50	÷.	2.5
10.6	Motestred Pleasts	₹	83421	.0023	.0092	010	.012	.033	9800	410.	8	.05 <u>8</u>	8	1100	950	.07	1.2
10.7	MICA (Dipped or Moldan)	8	3800	.0005	.0015	1600	4400	410.	8900	5600	2	69 0:	8	.00025	210.	.046	45
10.7	MICA (Dipped)	8	•	5000	5100	1009	4400	.014	8900	3600	450	8 90	8	.00025	210.	.046	₹.
10.8	MICA (Button)	8	5000	810.	.637	19	8 6.	٤	9.	7	74.	99	84.	1600	.25	8	Ξ
10.9	Glass	٤	2320	.00032	96000	.0059	0020	8	4400	.0062	88	.046	82	91000	8700.	930	8
10.9	Gless	ઇ	11222	.0003	96009	9500	.0028	8 6	.004	.0062	8.	.046	020	91000	9200.	030	8
10.10	Ceramic (Gen. Purpose)	ర	1915	9600	4200.	.034	.018	920.	.015	.015	.032	.046	720.	4100	949	£.	2.3
10.10	Ceremie (Gen. Purpose)	8	39014	9600.	4200.	.034	910.	.056	510.	.015	.032	40	720	4100.	949	£.	2.3
10.11	Ceremic (Temp. Comp.)	8	R	87,000.	.0022	.013	9500	.020	7200.	.015	.053	51.	946	66000	710	.065	82
10.11	Ceremit Chip	8	55681	87.000.	.0022	.013	9500	.023	7200	.015	.063	5.	046	.00039	710.	965	8
10.12	Tentelun, Bold	5 5	39003	818	.003 8	910.	7600.	.028	.0091	.011	8	.057	.055	.00072	022	990	1.0
10.13	Tentatum, Non-Solid	5	39006	1906.	.013	690	620	F.	150.	198	₽.	8	<u>.</u>	0030	080	8	0.4
10.13	Tertalum, Non-Solid	ರ	388	1906	.013	690	800	Ŧ.	.031	196	£.	₹.	#	0030	080	8,	0.4
10.14	Aluminum Odde	8	5 66	.024	8.	.42	9	65.	9	55	23	2.6	1.2	210.	84,	1.7	2
10.15	Aluminum Dry	8	8	620.	8 6	8 5.	.24	8	£7.	88	4.3	5.4	5.0	.015	89.	5.8	8
10.16	Variable, Ceremic	ઠ	=	8	27	1.2	۲.	2.3	69		6.2	12	7	.032	1.9	5.9	88
10.17	Variable, Piston	8	140	88 9.	.t3	.62	.31	.93	21	.28	2.2	3.8	2.2	.016	.93	3.2	37
10.18	Variable, At Trimmer	ช	8	980	.33	1.6	.87	3.0	1.0	1.7	6.6	÷.	6.1	040	2.5	8.9	5
0. 5.	Variable, Vacuum	8	23183	0.4	5	6.7	3.6	51	5.7	01	88	8	8	8			
-	NOTE: 1) - Not Norm 2) T _A = Default	mally used R Compon	din this E	1) . Not Normally used in this Environment (2) $T_{\rm A}=$ Default Component Ambient Temperature (*C)	٤												
					-		tablished R.	Established Refiability Styles					[
					+	١	ב !	■	-	Ē	MIL-SPEC	100	7				

		ĕ	Generic Fallure Rete, Ag	Hete, >	(Fe)	ures/10°	Hours) 1	(Failures/10° Hours) for Inductive and Electromechanical Parts	ive and	Electron	nechanics	al Perts				
	1	37	Erw.→ GB	ቶ	₹	SN	ş	S A	AIF	ş	4	Æ. V	S.	₹.	₹,	لی
			7A (*C)→30	9	45	Q	45	52	55	20	R	55	30	45	55	\$
	NOUCTIVE DEVICES															
1.1	Low Power Pulse XFMR	T-21038	.0035	ğ	96	0.0	.085	.027	.037	.041	.052	=	8100	.053	.	2.3
11.1	Audio XFNR	1-27	202	Ş.	760.	.038	.13	.055	.073	180	₽.	27.	.0035	Ŧ.	<u>د</u>	4 .7
Ξ:	High Par. Putes and Par.	1-21	5 20.	9 .	3 6.	. 1 3	. 4 .	12.	.27	.35	.45	.82	110	.37	1.2	91
1111	A-FX-T-	1.55631	880.	€	39	51.	Ŋ	.22	8	33	42	88	410	4	5	- 61
11.2	HF Colle, Fand or	7.5805	7100	20	8	1600	8	150	015	910	025	052	00083	.025	0.73	=
:	Moided	01000	£	4	970	Č	ğ	<u> </u>				9	2	¥	¥	ç
<u>!</u>	DATE TO DE LEGISTRE	200	Para		3			1,62	3	222	ţ	2	3	3	2	Ţ
12.1	Motors			2.4	3.3	2.4	3.3	1.7	7.1	31	6	7.1	9.	•	•	
122	Synchros		.00	R,	5.	R	2.2	7.	1.2	7.9	12	5.1	.035	1.7	7.1	89
122	Recovers		Ŧ.	8	2.2	0.	3.3	1.2	6.0	12	2	9.7	053	5.6	Ξ	8
	ELAPSED TIME															
12.3	ETHE		9	ล	8	8	5	8	8	8	98	8	5.0	8	380	•
123	ETIA-Inverter Driver		ā	9	8	105	270	75	8	240	375	330	7.5	210	920	•
13.3	ETIA-Commutator DC		\$	8	9	28 0	82	8	320	640	0001	040	8	8	52	
	HELAYS															
13.1	General Purpose		2.	8	2.1	Ξ	9 .	Ξ	₹.	6 .	2 .	7.0	98	3.5	5	•
13.1	Contactor, High Current		2 .	8 į	6 .	3.6	22	3.4	₹.	8 .2	6. 7	ឌ	<u>~</u>	=	35	•
13.	Letching		5.	Ŗ	2,	Ξ.	8. 8.	₽	₹.	e :	~	7.0	980	3.5	9	•
13.1	1		Ξ.	83	60	8.	6	£	1.2	2.	5 3	6.3	3 5	3.0	9.0	•
13.1	Thermal, El-metal		8	8	9.7	2.4	9 .2	23	5.8	7	4.5	5	Ξ.	7.6	ผ	•
13.1	Meter Movement		8 .	.	=	7.4	R	7.	9 .1	€	=	\$	į	*	29	•
13.2	Solid State		₹.	~	9 .	2.4	8.9 9	4 .	7.6	8 .	5	9.2	9 .	4 .8	5	240
13.2	Hybrid and Solid Seets		<u>8</u>	.	9 .0	3.0	69	0.9	6.5	=	ş	12	Ŗ	6.0	17	8
	Time Dates															
77	Torole or Purity iton		0000	0030	810	0800	020	010	810	\$10	220	046	9000	025	28	5
14.2	Sensitive	8-8EDS	15	1	2.7	1.2	₽.3	5.5	2.7	.	8 9	6.8	.074	3.7	6.6	6
14.3	Rotery Water	8-3786	8	8	9 .0	2.6	9.5	3.3	5.9	4.9	7.2	ŧ.	₽.	8.2	8	9
4.4	Thumbeheel	\$-22710	8	1.7	2	4.5	9	9.	5	Z.	2	18	58	7	88	2 9
14.5	Circuit Breaker, Thermal	C-623623	Ξ.	Ŋ	1.7	5 .	 	8	0.	.	<u></u>	5.2	.057	2.8	7.5	Ž
14.5	Circuit Breaker,	C.58829	8.	5	6	97	5.	.42	2	3	2.	2.8	030	R.	4.0	ž
	Magnetic Action of the Control of th															
15.1	Circular/Pack/Panel		0.011	0.14	12	090	8	950.	860	8	34	.37	1500	1 .	S.	8.8
15.1	Course		210.	310.	5.	.075	7.	8	₽.	Ħ	32	8	.006	91.	\$	7.3
15.2	Printed Circuit Board		.0054	.021	.063	.035	₽.	.059	Ξ.	980	16	6	.0027	.078	.27	3.4
	Cornector IC Sockete		9100	9500	027	012	035	510.	.023	120	.025	840	26000	.027	8	5.3
	Programman		053	=	37	8	27	27	5	88	5	9	027	3	=	27
•	Assembles (PCBs)															

NOTE: 1) * Not normally used in this environment 2) T_A = Default Component Ambient Temperature (*C)

			Leven	Fellure	Generic Fellure Hate, Ag		(Fallures/10°	Hours)	Hours) for Miscellaneous Parts	Snoous	Perts					
Section	Part Time	5	Em.→ GB	ىق	∂ ₹	NS	₹ S	ک م	Alf	ç	۴	₩	<u></u>	¥	¥	ى
	Dielectric		TA (*C)+30	9	45	8	45	55	55	ይ	R	88	30	\$	22	\$
	SWOLE CONNECTIONS															
17.1	Hend Solder, wto Wrapping		.0028	.0052	910	010	.028	010	910.	910.	.021	.042	.0013	023	.062	Ξ
17.1	Hand Solder, wWinspping		41000.	.00028	86000	95000	810 .	95000	.00084	19000	1108.	2200	70000	6100	.0034	.059
17.1	Crimp		92000	.00052	8100	0010	8 200.	8 .	9100	.0016	1206.	.0042	.00013	.0023	.0062	=
17.1			050000	.000100	.000350	002000	.000560	.000200	.000300	000000	0004000	000000	.000025	.000450	001200	021000
17.1	Solderless Wrap		.0000035	.000007	. 200000.	410000	.000039	410000	.000021	.000021	820000	950000	8100000	.000031	.000084	20015
17.1	City Termination		.00012	.00024	00084	.00048	813	.00048	.00072	2,000.	.00096	6100.	90000	.00.	.0029	950
17.1	Reflow Solder		690000	.000138	.000483	.000278	.000759	.000278	.000414	414000	.000562	401106	.000035	.000621	.001656	02898
	METERS, PANEL			i												
18.1	DC Ammeter or Voltmeter	M-10304	80.0	0.36	23	5	3.2	2.5	3.8	5.2	9 .	5.4	0.090	4.	ž	₹ Ž
181	AC Ammeter or Voltmeter	M-10504	0.15	0.61	3.8	1.8	5.4	4.3	6.4	8.0	Ξ	9.2	0.17	9.2	N/A	N/A
5	Quertz Crystale	C-3088	.002	960	.32	9	19	.38	z,	£.	06.	77.	.016	.42	1.0	91
20.1	Lemps, Incendescent, AC		a e	7.8	12	2	16	91	16	5 1	ន	19	2.7	16	ន	\$
8.1	Lamps, Incandescent, DC		13	8	38	88	51	51	51	2	77	2	9.0	51	11	350
	ELECTRONIC FLIEPS															
21.7	Committee Formition	F-15738	226	140	£.	880	8	5.	&	7 2.	8,	72.	.018	.15	.33	5.6
21.1	Discrete LC Comp.	F-15733	21.	57	.72	4 .	=	8	7	1.3	1.6	1.3	98 0	48.	÷.	=
21.1	Discrete LC & Crystel Comp.	F-18027	72.	2	1.6		2.4	1.0	2.4	3.0	3.5	3.0	22.	1.9	4.1	32
8	FUSES		010	020	080	050	Ξ.	96	12	5	£.	91.	8	2.	12	2.3

	SECTION OF THE PROPERTY OF THE	OII 11-22 DEVICES		
Section #	Part Type	Established Reliability	MIL-SPEC	Non-Mil.
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	N/A
13.1	Relays, Mechanical	09.	3.0	9.0
13.2	Relays, Solid State and Time Delay (Hybrid &	N/A	1.0	4
	Solid State)			
14.1, 14.2	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
14.3	Switches, Rotary Wafer	N/A	1.0	50
14.4	Switches, Thumbwheel	A/N	1.0	10
14.5	Circuit Breakers, Thermal	N/A	1.0	8.4
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
16.1	Interconnection Assemblies	N/A	1.0	2.0
17.1	Connections	N/A	N/A	N/A
18.1	Meters, Panel	N/A	1.0	3.4
19.1	Quartz Crystals	N/A	1.0	2.1
20.1	Lamps, Incandescent	N/A	N/A	N/A
21.1	Electronic Filters	N/A	1.0	2.9
22.1	Fuses	N/A	N/A	A/N

* Category applies only to MIL-C-39010 Coils.

APPENDIX	Δ.	PARTS	COUNT
AFFERDIA	л.		VVVII

		Default Parameters for Discrete	Param	neters	for Dis		Semiconductors	nduct	513
Section	Part Type	ۍ	7 <u>7</u>	ž.	RS S	ပ္	¥ A	å	Comments
5.0	MICROCIRCUITS	-	Alt Defau	All Defaults provided with $\lambda_{\mathbf{g}}$	ed with λ	g Table			
6.1	DIODES General Purpose Analog	.0038			.42	1.0			Vottage Stress ≈ .7. Metallurgically Bonded
6.1	Switching	.001			.42	1.0			Contacts Voltage Stress = .7, Metallurgically Bonded
6.1	Fast Recovery Power Rectifier	690			.42	1.0			Contacts Voltage Stress = .7, Metallurgically Bonded
6.6	Transient Suppressor/Varistor Power Rectifier	.003 .003			0.7	0.0			Contacts Metallurgically Bonded Contacts Voltage Stress = .7. Metallurgically Bonded
6.1	Voltage Ref/Reg. (Avalanche &	.002			1.0	0.			Contacts Metallurgically Bonded Contacts
6.1	Current Regulator	.0034			1.0	1.0			Metallurgically Bonded Contacts
, e, e,	SI Impatt (s 35 GHz) Gunn/Bulk Effact Tunnel and Back	.22 .0023					0 0 0	0 0 0	
6.6 6.62	PIN Schottky Barrier and Point Contact	.0081			1.0	1.0	1.0	5.0	Rated Power = 1000W
6.2	(200 MHz s frequency s 35 GHz) Verector Thyristor/SCR	.0025			2.5	0.1		0.1	Multiplier Application Voltage Stress = .7, Rated Forward Current = 1 Amp
6.3	TRANSISTORS NPWPNP (1 < 200 MHz)	.00074			15.		02.	17.	Voltage Stress = .5, Switching Application, Rated
6.3	Power NPINPNP (I < 200 MHz)	.00074			45.		5.	5.5	Power = .5W Voltage Stress = .8, Linear Application, Rated
4.0	SE FET (15 400 MHz)	.012 060					.70		Power = 100W MOSFET, Small Signal Switching
	GaAs FET (P < 100 mW)	.052		1.0			1.0		No. of the Application, 1 ≤ 1 ≤ 10 GHz, Input and
6.8	GaAs FET (P≥100 mW)	<u>5.</u>		1.0			1.0		Culput Matching S GHz, 1W Average Output Pouser bourt and Output Matching
80.80 80.80	Unijunction RF, Low Noise, Bipolar	.0083			38			11.	Voltage Stress = .7, Rated Power = .5W
6.7	(1 > 200 MP-2, P < 1W) RIF, Power (P ≥ 1W)	80.	.36	1.0			6 .		1 GHz, 100W, T _J = 130°C for all Environments.
									Voltage Stress = .45, Gold Metallization, Pulsed Application, 20% Duty Factor, Input and Output Matching

		Default Parameters for Discrete Semiconductors	Param	eters	for Di	Screte	Semico	nducte	9.10
Section #	Part Type	_ያ	7 <u>7</u>	π _M	₹S	ပ္	π A	ā	Comments
	OPTO-ELECTRONICS								
6.1	Photodetector	.0055							Phototransistor
6.11	Opto-isolator	.013							Phototransistor, Single Device
6.11	Emitter	.00023							LED
6.12	Alphanumeric Display	.0030							7 Character Segment Display
6.13	Laser Diode,	3.23			0.		71.		For Environments with T , > 75°C. assume T , ≈
	GaAe/Al GaAs				_				
					ğ				75°C, Forward Peak Current ≖ .5 Amps (ਸ ≔ .62),
									Pulsed Application, Duty Cycle = .6,
									$Pr/P_8 = .5 (\pi_D = 1)$
6.13	Laser Diode,	5.65			1.0		<i>Lt.</i>		For Environments with T _J > 75°C, assume T _J =
					(Ap)				75°C, Forward Peak Current = .5 Amps (x ₁ = .6/2),
									Pulsed Application, Duty Cycle = .5, Pt/Ps = .5 (πρ

			Default F	Parameters for		Resistors	
Section	Part Type	Style	MIL-R-SPEC	ភិជ	χ. Δ.	*TAPS	Comments
1.6	Composition	\$	39008	-:			
-	Composition	¥	=	Ξ			STRESS =
9.5	Film, Insulated	2	39017	=			Pwr. Stress = .5, 1M ohm
9.5	Film, Insulated	æ	22684	=			Pwr. Stress = .5, 1M ohm
9.5	Film. RN (R, C or N)	Œ.	55182	- :			Pwr. Stress = .5, 1M ohm
9.5	E.	æ	10509	7			Pwr. Stress = .5, 1M ohm
9.3	Film, Power	8	11804	1.0			Pwr. Stress = .5, 100 ohm
4.6	Fixed, Network	B	83401				Pwr. Stress = .5, T _C = T _A + 28°C, 10 Film Resistors
9.5	Wirewound, Accurate	H8H	39008	1.7			Pwr. Stress = .5,100K ohms
9.5	Wirewound, Accurate	8	86	1.7			Pwr. Stress = .5, 100K ohms
9.6	Whrawound, Power	HAR H	29007			-	Pwr. Stress = .5, 5K ohms, RWR 84
9.0	Wirewound, Power	₹	92	0.1			Pwr. Strass = .5, 5K ohms, RW10
8.7	Wirewound, Power, Chassis	E	39009	-			Pwr. Stress = .5, NonInductively Wound, 5K ohm, RER 55
•	Mounted	Ł	70640	•			27 St. 14 - 17 St. 20 S
7.8	Wirewound, Fower, Chassis	¥	C#C0	=			LWI. OURSINE D. MIL-11-10040, CIRE N. D. CIIII, TE. D.
60	Themistor	E	23648				Disk Type
6.6	Wirewound, Variable	E	39015	4.	Ξ	0.1	Pwr. Stress = .5, 5K ohms, 3 Taps, Voltage Stress = .1
0.0	Wirewound, Variable	듄	2720B	₹ .	=	0.	Pwr. Stress = .5, 3 Taps, Voltage Stress = .1
9.10	Wirewound, Variable, Precision	Œ	12934	₹.	=	0.	Pwr. Stress = .5, Construction Class 5 (π_c = 1.5),
							50K ohm, 3 Tape, Voltage Stress = .1
9.11	Wirewound, Variable,	Æ	<u></u>	<u>*</u>	0.1	0.	Pwr. Stress = .5, 5K ohms, 3 Taps, Voltage Stress = .5
5	Winwound Semioracision	ž	39002	4.	0:	0.	Pwr. Sress = .5. 3 Taps. Voltage Siress = .5
9.12	Wrewound, Variable, Power	2	22	4.	0.	0.1	Pwr. Stress = .5, 3 Taps, Voltage Stress = .5,
							Unenclosed $(\pi_c = 1)$
9.13	Norwhewound, Variable	<u>g</u>	39035	1.2	0.0	0.1	X ohm, 3 Taps
9.13	Norwfrewound, Variable	2	22097	1.2	0.1	0.	Pwr. Stress = .5, 200K ohm, 3 Tape, Voltage Stress = .5
9.14	Composition, Variable	€	94	1.2	0.	0.	200K ohm, 3 Tape
9.15	Norwtewound, Variable	8	39023	1.2	o: -	0.	Pwr. Stress = .5, 200K ohm, 3 Tapa, Voltage Stress = .5
9.15	Precision Film, Variable	PA C	23285	1.2	0.1	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5

			Default Parameters		for Capacitors	078
Section	o edd Lined				Temp.	
•	Dielectric	Style	MIL-C-SPEC	₹CV	Rating	Comments
10.1	Paper, By-Pass	ક	25	1.0	53	Voltage Stress = .5, .15 uF
<u>5</u>	Paper, By-Pass	క	12889	1.0	88	•
10.2	Paper/Plastic, Feed-through	E	11693	1.0	125	Volade Stress = .5. 061 uF
10.3	Paper/Plastic Film	ਨੂ	14157	1.0	125	Voltage Stress = .5027 LF
10.3	Paper/Plastic Film	8	19978	1.0	125	Volace Stress = .5. 033 LP
10.4	Metallized Paper/Plastic	뚱	39022	1.0	125	Voltage Stress = 5. 14 LF
10.4	Metalized Plastic/Plastic	8	18312	0.	125	Voltage Stresse . 5. 14 LF
10.5	Metallized Paper/Plastic	Æ	55514	1.0	125	Voltage Stress = 5, 33 u.F.
10.6	Metalized Plastic	₹	83421	1.0	125	Voltage Stress = 5. 14.15
10.7	MICA (Dipped or Molded)	S S	39001	0.1	125	Voltage Stress = .5, 300 pF
10.7	MICA (Dipped)	₹	ιΩ	1.0	125	Stress = .5,
10.8	MICA (Button)	8	10950	1.0	2 50	Voltage Stress = .5, 160 pF
30.0	G1886	٤	53269	0.1	125	Voltage Stress = .5, 30 pF
10.9	Glass	ઠ	11272	0.	125	Voltage Stress = .5, 30 pF
10.10	Ceremic (Gen. Purpose)	ð	11015	1.0	125	
10.10	Ceramic (Gen. Purpose)	8	39014	0.1	125	Voltage Stress = .5, 3300 pF
10.11	Ceramic (Temp. Comp.)	8	ୡ	0.	1 2	Voltage Stress = .5, 81 pF
10.11	Ceramic Chip	8	55681	0.	125	Voltage Stress = .5, 81 pF
21.01	i snikivin, Solid	§	39003	0.	2	Voltage Stress = .5, 1.0 µF, .6 ohms/volt, series
						resistance, 7.5g = .13
10.13	Tentalum, Non-Solid	5	33006	1.0	85	Voltage Stress = .5, Foil, Hermetic, 20 µF, n. = 1
10.13	Tantalum, Non-Solid	ರ	3965	1.0	125	Voltage Stress = .5, Foil, Hermetic, 20 uF. r. = 1
10.14	Auminum Oxide	5	39018	1.3	125	Voltace Stress 5, 1700 ut
10.15	Aluminum Dry	ଞ	62	1.3	88	Voltage Streng = 5 1800 in
10.16	Variable, Ceramic	ર્જ	18		88	Voltage Stress = 5
10.17	Variable, Piston	8	14409		125	Voltage Stress = .5
10.18	Variable, Air Trimmer	ნ (95		8	Voltage Stress = .5
10.18	vanacie, vacuum	8	23183		88	Voltage Stress = .5, Variable Configuration

APPENDIX A: PARTS COUN	AP	PENDIX	A:	PARTS	COUNT
------------------------	----	--------	----	-------	-------

	Default Po	arameters for	E P	tive ar	d Elec	Parameters for Inductive and Electromechanical Parts
Section	Part Type	MIL-SPEC	ပ္	₹CYC	ř.	Comments
1.1	INDUCTIVE Low Pwr. Pulsed, XFMR	MIL-T-21038				Max. Rated Temp. = 130°C, ΔT = 10°C
11.1	Audio XFIVIR	MIL-T-27				Max. Rated Temp. = 130°C, ΔT = 10°C
1.1	High Pwr. Pulse and Pwr. XFMR, Filter	MIL-T-27				Max. Rated Temp. ≥ 130°C, ∆T = 30°C
1.1	RF Transformers	MIL-T-55631				Max. Rated Temp. = 130°C, ΔT = 10°C
11.2	RF Colls, Fixed or Molded	MIL-C-15305	-			Max. Rated Temp. = 125°C, ∆T = 10°C
11.2	RF Coits, Variable	MIL-C-15305	8			Max. Rated Temp., = 125°C, ΔT = 10°C
12.1	ROTATING DEVICES Motors					t = 15,000 hours (Assumed Replacement Time)
12.2	Synchros					T _F = T _A + 40, Size 10 - 16, 3 Brushes
12.2	Resolvers					T _F = T _A + 40, Size 10 - 16, 3 Brushes
12.3	Elepsed Time Meters (ETM) ETM-AC					Op. Temp/Rated Temp. = .5 (x _T = .5)
12.3	ETM-Inverter Oriver					Op. Temp/Rated Temp. = .5 (Arr = .5)
12.3	ETIA-Commutator DC					Op. Temp/Rated Temp. = .5 (Ar = .5)
13.1	RELAYS General Purpose		က	-	10	Max. Rated Temp. = 125°C, DPDT, MIL-SPEC, 10 Cycles/Hour,
						4 Amp., General Purpose, Balanced Armature, Resistive Load, s = .5
13.1	Contactor, High Current		၈	-	ιΩ	Max. Rated Temp. = 125°C, DPDT, MIL-SPEC, 10 Cycles/Hour, 600 Amp., Solenoid, Inductive Load, s = .5
13.1	Letching		က	-	က	Max. Rated Temp. = 125°C, MIL-SPEC, 4 Amp., Mercury Wetted, 10 Cytes/Hour, DPDT, Resistive Load, s = .5
13.1	Heed d		-	8	ဖ	Max. Reted Temp. = 85°C, MilL-SPEC, Signal Current, Dry Reed, 20 Cycles/Hour, SPST, Resistive Load, s = .5
13.1	Thermal Bi-Metal		-	-	9	Max. Rated Temp. = 125°C, MitSPEC, Bi-Metal, 10 Cycles/Hour, SPST, Inductive Load, 5 Amp., s = .5
13.1	Meter Movement		-	-	8	Max. Rated Temp. = 125°C, MIL-SPEC, Polarized Meter Movement, 10 Cycles/Hour, SPST, Resistive Load, s = .5
13.2	Solid State	MIL-R-28750				No Defaults
13.2	Time Delay Hybrid and Solid State	MIL-R-83726]	No Defaults

NOT MEASUREMENT SENSITIVE

THIS HANDBOOK IS FOR GUIDANCE ONLY DO NOT CITE THIS DOCUMENT AS A REQUIREMENT

MIL-HDBK-217F NOTICE 2 28 February 1995

MILITARY HANDBOOK RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

December 1991	Front Cover iii iv v vi vii New Page 1-1 New Page 2-1	2 December 1991 Reprinted without change 2 December 1991 2 December 1991 2 December 1991 10 July 1992 2 December 1991 2 December 1991
December 1991	iv v vi vii New Page 1-1 New Page 2-1	2 December 1991 2 December 1991 2 December 1991 10 July 1992 2 December 1991
	v vi vii New Page 1-1 New Page 2-1	2 December 1991 2 December 1991 10 July 1992 2 December 1991
	vi vii New Page 1-1 New Page 2-1	2 December 1991 10 July 1992 2 December 1991
	vii New Page 1-1 New Page 2-1	10 July 1992 2 December 1991
	New Page 1-1 New Page 2-1	2 December 1991
	1-1 New Page 2-1	
	New Page 2-1	
	2-1	2 December 1991
		2 December 1991
	2-2	2 December 1991
	2-3	2 December 1991
	2-4	2 December 1991
	2-5	2 December 1991
	2-6	2 December 1991
	New Page	
	New Page	
	5-3	10 July 1992
0 July 1992	5-4	Reprinted without change
	5-5	2 December 1991
	5-6	2 December 1991
	5-9	10 July 1992
December 1991	5-10	Reprinted without change
	5-23	2 December 1991
	5-24	2 December 1991
December 1991	6-1	Reprinted without change
	6-2	2 December 1991
	7-3	2 December 1991
December 1991	7-4	Reprinted without change
	9-1 through 9-29	2 December 1991
	10-1 through 10-32	2 December 1991
	11-1	2 December 1991
	11-2	2 December 1991
	11-3	2 December 1991
	11-4, 11-5	2 December 1991
	12-1	2 December 1991
		2 December 1991
	December 1991 December 1991	2-3 2-4 2-5 2-6 New Page New Page New Page 5-3 0 July 1992 5-4 5-5 5-6 5-9 December 1991 5-10 5-23 5-24 December 1991 6-1 6-2 7-3 December 1991 7-4 9-1 through 9-29 10-1 through 10-32 11-1 11-2 11-3 11-4, 11-5

1

New Page(s)	Date	Superseded Page(s)	Date
12-3		12-3	10 July 1992
12-4		12-4	2 December 1991
12-5		12-5	2 December 1991
13-1		13-1	2 December 1991
13-2		13-2	2 December 1991
13-3		13-3	2 December 1991
14-1 through 14-2		14-1 through 14-4	2 December 1991
14-3		14-5	2 December 1991
15-1 through 15-3		15-1 through 15-6	2 December 1991
16-1		16-1	2 December 1991
16-2		New Page	
16-3		New Page	
16-4		New Page	
17-1		17-1	2 December 1991
Appendix A		A-1 through A-18	2 December 1991, 10 July 1992
C-3		C-3	2 December 1991
C-4		C-4	2 December 1991

- 2. Retain the pages of this notice and insert before the Table of Contents.
- 3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity:
Air Force - 17

Project No. RELI-0074

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS

Air Force - 11, 13, 15, 19, 99

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

AMSC N/A

<u>DISTRIBUTION STATEMENT A:</u> Approved for public release; distribution unlimited.

FSC RELI

NOT MEASUREMENT SENSITIVE

MIL-HDBK-217F 2 DECEMBER 1991

SUPERSEDING MIL-HDBK-217E, Notice 1 2 January 1990

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

THIS HANDBOOK IS FOR GUIDANCE ONLY - DO NOT CITE THIS DOCUMENT AS A REQUIREMENT

FSC-RELI

DEPARTMENT OF DEFENSE WASHINGTON DC 20301

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

- 1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
- 2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
- 3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Rome Laboratory/ERSR, Attn: Seymour F. Morris, 525 Brooks Rd., Griffiss AFB, NY 13441-4505, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

																			Ţ	ABL	LE	OF	(ĊŌ	NT	ENT	<u>S</u>
SECTION	1 .	\$	COF)F																							
1.1																										1-	1
1.2																										1-	
1.3					Relia																					1-	
1.3	Con	npı	uleni	zeu r	Tella	IUIII	ııy	rie(uici	HOH		•••••	•••••	••••	• • • • •	••••	•••••	• • • • •	••••	• • • • • •	••••	•••••	•••	• • • • •	•••	,-	1
SECTION	2:	F	REF	ERE	NCE	<u></u>	DO	CU	ME	ENT	۲ S	••••					• • • • • •	• • • • •	• • • • •		•••••	•••••	•••	• • • •	•••	2-	1
SECTION	3:	11	NTR	ODL	JCTI	01	N																				
3.1	Reli	iab	ility I	Engi	neeri	ing	.			· • • • •																3-	1
3.2					eliab																					3-	
3.3	Limi	iita	tions	of I	Relia	abil	lity	Pre	edic	ctio	ns	• • • • •										• • • • • • •				3-	2
3.4	Part	t S	tress	. Ana	alysis	s P	rec	dictio	on .	· • • • •	• • • • •	•••••			• • • • •			• • • • •	••••	• • • • • •	•••••	•••••	•••	• • • •	•••	3-	2
SECTION	4:	R	RELI	ABII	LITY	, μ	٩N	ALY	YSI	S	E۷	ALI	JA.	TIO	N.		•••••		••••	•••••	••••	•••••	•••	• • • •	•••	4-	1
SECTION	5:		MICE	SOC.	IRCL	1117	TS.	ŧN	JTE	301	DH	CTI	ON	1												5-	. 1
5.1					ays a																					5-	
5.2																										5-	
5.3					Like																					5-	
5.4	GaA	As	MMI	Can	d Dig	rital	I D	evic	es																	5-	
5.5																										5-	
5.6																										5-1	
5.7					le M																					5-1	
5.8	πŢ	Ta	able	for #	AII							· · · · · ·											•••	••••		5-1	
5.9	•				١																					5-1	
5.10	_				Table																					5-1	5
5.11	_	_	-	_	ion, (5-1	7
5.12					ion,																					5-1	8
5.13	•				•																					5-2	'n
3.10	LAG	A11 M	pies.	•••••	••••••	• • • • •	••••		••••		•••••	•••••	• • • • •	••••	••••	• • • • •	•••••	••••	•••••		• • • • •	• • • • • • •	• • •	••••	•••	J-2	.0
SECTION	6:				TE !																					_	
6.0					condi																					6.	
6.1	Dio	de	S, LC	W F	requ	en	су.			• • • • •	•••••		• • • • •	• • • • •	••••	• • • • •	••••	• • • • •	• • • • •	• • • • • • •	• • • • •	• • • • • • •	•••	••••	•••		-2
6.2					reque																						-4
6.3					w Fr																						-6
6.4	I rai	เทรเ	istor	5, LC	ow F	rec	que	∍ncy	y, s	÷ا اذ	EI.	•••••	••••	•••••	••••	• • • • •	•••••	•••••	•••••	•••••	• • • • •	•••••	•••	• • • • •	••••	6-	
6.5	ı raı	เทร	istor	s, u	nijun	ıctı	ion			• • • • •	• • • • • •					• • • • •	•••••	• • • • •	•••••	• • • • • •	• • • • •	• • • • • • •	•••	• • • •	• • • •		-9
6.6	Trai	เทรเ	ISTOR	š, LO	w No	DISE	e, r	ngn	ነ Ի Ր	equ	ueno	cy, i	RID	olar	「 .	• • • • • • •	•••••	• • • • •	•••••	•••••	• • • • •	••••••	• • •	• • • •	•••	6-1	
6.7	Trai	เทร	istor	5, m	igh P	-0V	ver	, m	ign	FIE	sdn e	enc	y, t	sipo	olar	•••••	•••••	•••••	•••••	• • • • • •	• • • • •	•••••	•••	• • • • •	• • • •	6-1	
6.8	Irai	INS	ISTOR	s, Hig	gh Fr	req	lna	ncy,	, G	aas	;	: 1	• • • • •	••••	••••	• • • • • •	• • • • • •	• • • • •	• • • • • •	• • • • • •	• • • • •	• • • • • • •	• • •	••••	• • • •	6-1	
6.9	I Fal	ınsı	ISTOR	5, MK	gh Fr	req	lue	ncy,	, SI	FE	. I	• • • • •	• • • • •	••••	••••	• • • • •	•••••	•••••	•••••	•••••	••••	• • • • • • •	•••	• • • •	•••	6-1	
6.10	Iny	yns	iors	and	SCR	·. 21		•••••	1 4				• • • • •	••••	••••	••••	•••••	••••	•••••	•••••	• • • • •	• • • • • •	• • •	• • • •	••••	6-1	
6.11	Opt	108	PIECT	ONIC	s, De	916	Cto	rs, I	ISO	lato	ors,	∟mi	ıπe	rs	• • • •	• • • • •	•••••	••••	• • • • • •	•••••	• • • • •	• • • • • •	•••	• • • •	• • • •	6-1	
6.12	Opt	100	HOCT	ONIC	s, Al	pna	anı	nwe	IUC	UIS	spia	ys	• • • • •	••••	••••	••••	• • • • • •	••••	•••••	••••	••••	• • • • • •	• • •	• • • •	•••	6-2	
6.13					s, La																					6-2	
6.14	J				on																					6-2	
6.15	Exa	am	ple			• • • •																				6-2	25

TABLE OF CONTENTS	
SECTION 7: TUBES 7.1 All Types Except TWT and Magnetron 7.2 Traveling Wave	7-1 7-3 7-4
SECTION 8: LASERS 8.0 Introduction 8.1 Helium and Argon 8.2 Carbon Dioxide, Sealed 8.3 Carbon Dioxide, Flowing 8.4 Solid State, ND:YAG and Ruby Rod	8-1 8-2 8-3 8-4 8-5
SECTION 9: RESISTORS 9.1 Resistors	9-1
SECTION 10: CAPACITORS 10.1 Capacitors	10-1 10-6
SECTION 11: INDUCTIVE DEVICES 11.1 Transformers 11.2 Coils 11.3 Determination of Hot Spot Temperature	11-1 11-3 11-4
SECTION 12: ROTATING DEVICES 12.1 Motors	12-1 12-4 12-5
SECTION 13: RELAYS 13.1 Mechanical	13-1 13-3
SECTION 14: SWITCHES 14.1 Switches	14-1 14-2
SECTION 15: CONNECTORS 15.1 Connectors, General	15-1 15-3
SECTION 16: INTERCONNECTION ASSEMBLIES 16.1 Interconnection Assemblies with Plated Through Holes	. 16-1 . 16-2
SECTION 17: CONNECTIONS 17.1 Connections	
SECTION 18: METERS 18.1 Meters, Panel	
SECTION 19: QUARTZ CRYSTALS 19.1 Quartz Crystals	

	TABLE OF CONT	ENTS
SECTION 2	0: LAMPS amps	20-1
SECTION 2	1: ELECTRONIC FILTERS Electronic Filters, Non-Tunable	21-1
SECTION 2 22.1 F	2: FUSES uses	22-1
SECTION 2	23: MISCELLANEOUS PARTS Miscellaneous Parts	23-1
APPENDIX	A: PARTS COUNT RELIABILITY PREDICTION	A-1
APPENDIX	MODEL	B-1
APPENDIX	C: BIBLIOGRAPHY	C-1
	LIST OF TABLES	
Table 3-1: Table 3-2: Table 4-1: Table 6-1: Table 6-2:	Parts with Multi-Level Quality Specifications Environmental Symbol and Description Reliability Analysis Checklist Default Case Temperatures for All Environments (°C) Approximate Thermal Resistance for Semiconductor Devices in Various Package Sizes	3-3 3-4 4-1 6-23 6-24
	LIST OF FIGURES	
Figure 5-1: Figure 8-1:	Cross Sectional View of a Hybrid with a Single Multi-Layered Substrate	5-18 8-1

1.0 THIS HANDBOOK IS FOR GUIDANCE ONLY. THIS HANDBOOK SHALL NOT BE CITED AS A REQUIREMENT. IF IT IS, THE CONTRACTOR DOES NOT HAVE TO COMPLY.

MIL-HDBK-217F, Notice 2 provides the following changes based upon a recently completed study (see Ref. 37 listed in Appendix C):

- Revised resistor and capacitor models, including new models to address chip devices.
- Updated failure rate models for transformers, coils, motors, relays, switches, circuit breakers, connectors, printed circuit boards (with and without surface mount technology) and connections.
- A new model to address surface mounted technology solder connections.
- A revised Traveling Wave Tube model based upon data supplied by the Electronic Industries
 Association Microwave Tube Division. This further lowers the calculated failure rates beyond
 the earlier modifications made in the base document (MIL-HDBK-217F, 2 December 1991).
- Revised the Fast Recovery Power Rectifier base failure rate downward based on a reevaluation of Ref. 28.
- 2.0 MIL-HDBK-217F, Notice 1, (10 July 1992) was issued to correct minor typographical errors in the basic F Revision.
- 3.0 MIL-HDBK-217F, (base document), (2 December 1991) provided the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):
 - 1. New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (including Controllers)
 - Monolithic Bipolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monolithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

The 2 December 1991 revision provided new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and co-processors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C_1 factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The

THE OF LOTE. THE SHIPHINGHOLD IN THIS IS INDICIOUS, INDICED IN

FOREWORD

 C_2 factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q) , the learning factor (π_L) , and the environmental factor (π_E) . The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

- 2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- 3. The reformatting of the entire handbook to make it easier to use.
- 4. A reduction in the number of environmental factors (π_{E}) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- 6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

- 1.1 Purpose This handbook is for guidance only and shall not be cited as a requirement. If it is, the contractor does not have to comply (see Page 1-2). The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reliability of a mature design) of military electronic equipment and systems. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipment. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs. The handbook is intended to be used as a tool to increase the reliability of the equipment being designed.
- 1.2 Application This handbook contains two methods of reliability prediction "Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual hardware and circuits are being designed. The Parts Count Method requires less information, generally part quantities, quality level, and the application environment. This method is applicable during the early design phase and during proposal formulation. In general, the Parts Count Method will usually result in a more conservative estimate (i.e., higher failure rate) of system reliability than the Parts Stress Method.

OFFICE OF THE ASSISTANT SECRETARY OF DEFENSE 3300 DEFENSE PENTAGON WASHINGTON, DC 20301-3300

FEB 28 1995

COMMANDER, ROME LABORATORY (AFMC), ATTN: RL/ERSR, MR. S. MORRIS

SUBJECT: Notice 2 to MIL-HDBK-217F, "Reliability Prediction of Electronic Equipment", Project RELI-0074

Prior to sending the subject notice to the DoD Single Stock Point for printing and distribution, the following additions must be made:

- Across the cover in BIG BOLD BLACK LETTERS ALL CAPS: Insert "THIS HANDBOOK IS FOR GUIDANCE ONLY. DO NOT CITE THIS DOCUMENT AS A REQUIREMENT".
- In the FOREWORD (Page vii of Notice 2), paragraph 1.0: Add "THIS HANDBOOK IS FOR GUIDANCE CNLY. THIS HANDBOOK SHALL NOT BE CITED AS A REQUIREMENT. IF IT IS, THE CONTRACTOR DOES NOT HAVE TO COMPLY."
- Add an entry for the SCOPE, paragraph 1.1 (Purpose): "This
 handbook is for guidance only and shall not be cited as a
 requirement. If it is, the contractor does not have to
 comply."

If you have any questions regarding this request, please contact Ms. Carla Jenkins.

Walter B. Bergmann, I

Chairman,

Defense Standards Improvement

Council

cc: OUSD(A&T)DTSE&E/SE, Mr. M. Zsak

2.0 REFERENCE DOCUMENTS

This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-shelf" equipment which the Department of Defense purchases. The documents cited in this section are for guidance and information.

SPECIFICATION	SECTION #	TITLE	
MIL-C-5	10.1	Capacitors, Fixed, Mica Dielectric, General Specification for	
MIL-R-11	9.1	Resistor, Fixed, Composition (Insulated), General Specification for	
MIL-R-19	9.1	Resistor, Variable, Wirewound (Low Operating Temperature) General Specification for	
MIL-C-20	10.1	Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating), Established Reliability and Nonestablished Reliability, General Specification for	
MIL-R-22	9.1	Resistor, Variable, Wirewound (Power Type), General Specification for	
MIL-C-25	10.1	Capacitor, Fixed, Paper-Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for	
MIL-R-26	9.1	Resistor, Fixed, Wirewound (Power Type), General Specification for	
MIL-T-27	11.1	Transformer and Inductors (Audio, Power, High Power Pulse), General Specification for	
MIL-C-62	10.1	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized), General Specification for	
MIL-C-81	10.1	Capacitor, Variable, Ceramic Dielectric, General Specification for	
MIL-C-92	10.1	Capacitor, Variable, Air Dielectric (Trimmer), General Specification fo	
MIL-R-93	9.1	Resistor, Fixed, Wirewound (Accurate), General Specification for	
MIL-R-94	9.14	Resistor, Variable, Composition, General Specification for	
MIL-V-95	23.1	Vibrator, Interrupter and Self-Rectifying, General Specification for	
W-L-111	20.1	Lamp, Incandescent Miniature, Tungsten Filament	
W-C-375	14.5	Circuit Breaker, Molded Case, Branch Circuit and Service	
W-F-1726	22.1	Fuse, Cartridge, Class H (this covers renewable and nonrenewable)	
W-F-1814	22.1	Fuse, Cartridge, High Interrupting Capacity	
MIL-C-3098	19.1	Crystal Unit, Quartz, General Specification for	
MIL-C-3607	15.1	Connector, Coaxial, Radio Frequency, Series Pulse, General Specifications for	
MIL-C-3643	15.1	Connector, Coaxial, Radio Frequency, Series HN and Associated Fittings, General Specification for	

MIL-C-3650	15.1	Connector, Coaxial, Radio Frequency, Series LC
MIL-C-3655	15.1	Connector, Plug and Receptacle, Electrical (Coaxial Series Twin) and Associated Fittings, General Specification for
MIL-S-3786	14.3	Switch, Rotary (Circuit Selector, Low-Current (Capacity)), General Specification for
MIL-S-3950	14.1	Switch, Toggle, Environmentally Sealed, General Specification for
MIL-C-3965	10.1	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, General Specification for
MIL-C-5015	15.1	Connector, Electrical, Circular Threaded, AN Type, General Specification for
MIL-F-5372	22.1	Fuse, Current Limiter Type, Aircraft
MIL-S-5594	14.1	Switches, Toggle, Electrically Held Sealed, General Specification for
MIL-R-5757	13.1	Relays, Electromagnetic, General Specification for
MIL-R-6106	13.1	Relay, Electromagnetic (Including Established Reliability (ER) Types), General Specification for
MIL-L-6363	20.1	Lamp, Incandescent, Aircraft Service, General Specification for
MIL-S-8805	14.1, 14.2	Switches and Switch Assemblies, Sensitive and Push (Snap Action), General Specification for
MIL-S-8834	14.1	Switches, Toggle, Positive Break, General Specification for
MIL-S-8932	14.1	Switches, Pressure, Aircraft, General Specification for
MIL-S-9395	14.1	Switches, Pressure, (Absolute, Gage, and Differential), General Specification for
MIL-S-9419	14.1	Switch, Toggle, Momentary Four Position On, Center Off, General Specification for
MIL-M-10304	18.1	Meter, Electrical Indicating, Panel Type, Ruggedized, General Specification for
MIL-R-10509	9.1	Resistor, Fixed Film (High Reliability), General Specification for
MIL-C-10950	10.1	Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for
MIL-C-11015	10.1	Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Specification for
MIL-C-11272	10.1	Capacitor, Fixed, Glass Dielectric, General Specification for

MIL-C-11693	10.1	Capacitor, Feed Through, Radio Interference Reduction AC and DC, (Hermetically Sealed in Metal Cases) Established and Nonestablished Reliability, General Specification for	
MIL-R-11804	9.1	Resistor, Fixed, Film (Power Type), General Specification for	
MIL-S-12211	14.1	Switch, Pressure	
MIL-S-12285	14.1	Switches, Thermostatic	
MIL-S-12883	15.3	Sockets and Accessories for Plug-In Electronic Components, General Specification for	
MIL-C-12889	10.1	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC, (Hermetically Sealed in Metallic Cases), General Specification for	
MIL-R-12934	9.1	Resistor, Variable, Wirewound, Precision, General Specification for	
MIL-S-13484	14.1	Switch, Sensitive: 30 Volts Direct Current Maximum, Waterproof	
MIL-C-13516	14.2	Circuit Breakers, Manual and Automatic (28 Volts DC)	
MIL-S-13623	14.1	Switches, Rotary: 28 Volt DC	
MIL-R-13718	13.1	Relays, Electromagnetic 24 Volt DC	
MIL-S-13735	14.1	Switches, Toggle: 28 Volt DC	
MIL-C-14409	10.1	Capacitor, Variable (Piston Type, Tubular Trimmer), General Specification for	
MIL-F-15160	22.1	Fuse, Instrument, Power and Telephone	
MIL-S-15291	14.1	Switches, Rotary, Snap Action and Detent/Spring Return Action, General Specification for	
MIL-C-15305	11.2	Coils, Electrical, Fixed and Variable, Radio Frequency, General Specification for	
MIL-C-15370	15.1	Couplers, Directional, General Specification for	
MIL-F-15733	21.1	Filters and Capacitors, Radio Frequency Interference, General Specification for	
MIL-S-15743	14.1	Switches, Rotary, Enclosed	
MIL-C-18312	10.1	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for	
MIL-F-18327	21.1	Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for	

MIL-R-18546	9.1	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification for	
MIL-S-19500	6.0	Semiconductor Device, General Specification for	
MIL-R-19523	13.1	Relays, Control	
MIL-R-19648	13.1	Relay, Time, Delay, Thermal, General Specification for	
MIL-C-19978	10.1	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for	
MIL-T-21038	11.1	Transformer, Pulse, Low Power, General Specification for	
MIL-C-21097	15.1	Connector, Electrical, Printed Wiring Board, General Purpose, General Specification for	
MIL-S-21277	14.1	Switches, Liquid Level, General Specification for	
MIL-C-21617	15.1	Connectors, Plug and Receptable - Electrical Rectangular, Polarized Shell, Miniature Type	
MIL-R-22097	9.1	Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for	
MIL-S-22614	14.1	Switches, Sensitive	
MIL-R-22684	9.2	Resistor, Fixed, Film, Insulated, General Specification for	
MIL-S-22710	14.4	Switches, Code Indicating Wheel (Printed Circuit), (Thumbwheel, In-line and Pushbutton), General Specification for	
MIL-S-22885	14.1	Switches, Pushbutton, Illuminated, General Specification for	
MIL-C-22992	15.1	Connectors, Plugs and Receptacles, Electrical, Water-Proof, Quick Disconnect, Heavy Duty Type, General Specification for	
MIL-C-23183	10.1	Capacitors, Fixed or Variable, Vacuum or Gas Dielectric, General Specification for	
MIL-C-23269	10.1	Capacitor, Fixed, Glass Dielectric, Established Reliability, General Specification for	
MIL-R-23285	9.1	Resistor, Variable, Nonwirewound, General Specification for	
MIL-F-23419	22.1	Fuse, Cartridge, Instrument Type, General Specification for	
MIL-T-23648	9.1	Resistor, Thermal, (Thermally Sensitive Resistor), Insulated, General Specification for	
MS-24055	15.1	Connector, Plug-Receptacle, Electrical, Hexagonal, 9 Contacts, Female, 7.5 Amps	
MS-24056	15.1	Connector, Plug-Receptacle, Electrical, Hexagonal, 9 Contacts, Male, 7.5 Amps	

MIL-C-24308	15.1	Connectors, Electric, Rectangular, Nonenvironmental, Miniature, Polarized Shell, Rack and Panel, General Specification for	
MIL-S-24317	14.1	Switches, Multistation, Pushbutton (Illuminated and Non-Illuminated), General Specification for	
MIL-C-25516	15.1	Connector, Electrical, Miniature, Coaxial, Environment Resistant Type, General Specification for	
MIL-C-26482	15.1	Connector, Electrical (Circular, Miniature, Quick Disconnect, Environment Resisting), Receptacles and Plugs, General Specification for	
MIL- C-26500	15.1	Connectors, General Purpose, Electrical, Miniature, Circular, Environment Resisting, General Specification for	
MIL-R-27208	9.1	Resistor, Variable, Wirewound, Nonprecision, General Specification for	
MIL-C-28731	15.1	Connectors, Electrical, Rectangular, Removable Contact, Formed Blade, Fork Type (For Rack and Panel and Other Applications), General Specification for	
MIL-C-28748	15.1	Connector, Plug and Receptacle, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for	
MIL-R-28750	13.2	Relay, Solid State, General Specification for	
MIL-C-28804	15.1	Connectors, Plug and Receptacle, Electric Rectangular, High Density, Polarized Center Jackscrew, General Specification for, Inactive for New Designs	
MIL-C-28840	15.1	Connector, Electrical, Circular Threaded, High Density, High Shock Shipboard, Class D, General Specification for	
MIL-M-38510	5.0	Microcircuits, General Specification for	
MIL-S-38533	15.3	Sockets, Chip Carrier, Ceramic, General Specification for	
MIL-H-38534	5.0	Hybrid Microcircuits, General Specification for	
MIL-I-38535	5.0	Integrated Circuits (Microcircuits) Manufacturing, General Specification for	
MIL-C-38999	15.1	Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for	
MIL-C-39001	10.1	Capacitor, Fixed, Mica-Dielectric, Established Reliability, General Specification for	
MIL-R-39002	9.1	Resistor, Variable, Wirewound, Semi-Precision, General Specification for	
MIL-C-39003	10.1	Capacitor, Fixed, Electrolytic, (Solid Electrolyte), Tantalum, Established Reliability, General Specification for	

MIL-R-39005	9.1	Resistor, Fixed, Wirewound (Accurate), Established Reliability, General Specification for		
MIL-C-39006	10.1	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for		
MIL-R-39007	9.1	Resistor, Fixed, Wirewound (Power Type), Established Reliability, General Specification for		
MIL-R-39008	9.1	Resistor, Fixed, Composition (Insulated), Established Reliability, General Specification for		
MIL-R-39009	9.1	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Established Reliability, General Specification for		
MIL-C-39010	11.2	Coils, Electrical, Fixed, Radio Frequency, Molded, Established Reliability, General Specification for		
MIL-C-39012	15.1	Connector, Coaxial, Radio Frequency, General Specification for		
MIL-C-39014	10.1	Capacitor, Fixed, Ceramic Dielectric (General Purpose), Established Reliability, General Specification for		
MIL-R-39015	9.1	Resistor, Variable, Wirewound (Lead Screw Actuated), Established Reliability, General Specification for		
MIL-R-39016	13.1	Relay, Electromagnetic, Established Reliability, General Specification for		
MIL-R-39017	9.1	Resistor, Fixed, Film (Insulated), Established Reliability, General Specification for		
MIL-C-39018	10.1	Capacitor, Fixed, Electrolytic (Aluminum Oxide), Established Reliability and Nonestablished Reliability, General Specification for		
MIL-C-39019	14.5	Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free, General Specification for		
MIL-C-39022	10.1	Capacitors, Fixed, Metallized, Paper-Plastic Film or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal or Ceramic Cases), Established Reliability, General Specification for		
MIL-R-39023	9.1	Resistor, Variable, Nonwirewound, Precision, General Specification for		
MIL-R-39035	9.1	Resistor, Variable, Nonwirewound (Adjustment Type), Established Reliability, General Specification for		
MIL-S-45885	14.1	Switch, Rotary		
MIL-C-49142	15.1	Connectors, Plugs and Receptacle, Electrical Triaxial, Radio Frequency, General Specification for		
MIL-C-55074	15.1	Connectors, Plug and Receptacle, Telephone, Electrical, Subassembly and Accessories and Contact Assembly, Electrical, General Specification for		
MIL-P-55110	15.2	Printed Wiring Board, General Specification for		
MIL-R-55182	9.1	Resistor, Fixed, Film, Established Reliability, General Specification for		

2.0 REFERENCE DOCUMENTS

MIL-C-55235	15.1	Connectors, Coaxial, Radio Frequency, Series TPS		
MIL-C-55302	15.1	Connector, Printed Circuit, Subassembly and Accessories		
MIL-A-55339	15.1	Adaptors, Connector, Coaxial, Radio Frequency, (Between Series and Within Series), General Specification for		
MIL-R-55342	9.1	Resistors, Fixed, Film, Chip, Established Reliability, General Specification for		
MIL-C-55365	10.1	Capacitor, Fixed, Electrolytic (Tantalum), Chip, Established Reliability, General Specification for		
MIL-S-55433	14.1	Switches, Reed, General Specification for		
MIL-C-55514	10.1	Capacitors, Fixed, Plastic (or Metallized Plastic) Dielectric, DC or DC-AC, In Non-Metal Cases, Established Reliability, General Specification for		
MIL-C-55629	14.5	Circuit Breaker, Magnetic, Unsealed, or Panel Seal, Trip-Free, General Specification for		
MIL-T-55631	11.1	Transformer, Intermediate Frequency, Radio Frequency and Discriminator, General Specification for		
MIL-C-55681	10.1	Capacitor, Chip, Multiple Layer, Fixed, Unencapsulated Ceramic Dielectric, Established Reliability, General Specification for		
MIL-C-81511	15.1	Connector, Electrical, Circular, High Density, Quick Disconnect, Environment Resisting and Accessories, General Specification for		
MIL-S-81551	14.1	Switches; Toggle, Hermetically Sealed, General Specification for		
MIL-C-81659	15.1	Connectors, Electrical Rectangular, Crimp Contact		
MIL-S-82359	14.1	Switch, Rotary, Variable Resistor Assembly Type		
MIL-C-83383	14.5	Circuit Breaker, Remote Control, Thermal, Trip-Free, General Specification for		
MIL-R-83401	9.1	Resistor Networks, Fixed, Film and Capacitor-Resistor Networks, Ceramic Capacitors and Fixed Film Resistors, General Specification for		
MIL-C-83421	10.1	Capacitors, Fixed Metallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal or Ceramic Cases, Established Reliability, General Specification for		
MIL-C-83446	11.2	Coils, Radio Frequency, Chip, Fixed or Variable, General Specification for		
MIL-C-83500	10.1	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum Cathode, General Specification for		
MIL-S-83504	14.1	Switches, Dual In-Line Package (DIP), General Specification for		
MIL-C-83513	15.1	Connector, Electrical, Rectangular, Microminiature, Polarized Shell, General Specification for		

New Page 2-7

2.0 REFERENCE DOCUMENTS

MIL-C-83515	15.1	Connectors, Telecommunication, Polarized Shell, General Specification for
MIL-R-83516	13.1	Relays, Reed, Dry, General Specification for
MIL-C-83517	15.1	Connectors, Coaxial, Radio Frequency for Coaxial, Strip or Microstrip Transmission Line, General Specification for
MIL-R-83520	13.1	Relays, Electromechanical, General Purpose, Non-Hermetically Sealed, Plastic Enclosure (Dust Cover), General Specification for
MIL-C-83527	15.1	Connectors, Plug and Receptacle, Electrical, Rectangular Multiple Insert Type, Rack to Panel, Environment Resisting, 150°C Total Continuous Operating Temperature, General Specification for
MIL-R-83536	13.1	Relays, Electromagnetic, Established Reliability, General Specification for
MIL-C-83723	15.1	Connector, Electrical (Circular Environment Resisting), Receptacles and Plugs, General Specification for
MIL-R-83725	13.1	Relay, Vacuum, General Specification for
MIL-R-83726	13.1, 13.2, 13.3	Relays, Hybrid and Solid State, Time Delay, General Specification for
MIL-S-83731	14.1	Switch, Toggle, Unsealed and Sealed Toggle, General Specification for
MIL-C-83733	15.1	Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200°C Total Continuous Operating Temperature, General Specification for
MIL-S-83734	15.3	Sockets, Plug-In Electronic Components, Dual-In-Line (DIPS) and Single-In-Line Packages (SIPS), General Specification for
MIL-C-85028	15.1	Connector, Electrical, Rectangular, Individual Contact Sealing, Polarized Center Jackscrew, General Specification for
STANDARD		TITLE
MIL-STD-756		Reliability Modeling and Prediction
MIL-STD-883		Test Methods and Procedures for Microelectronics
MIL-STD-975		NASA Standard Electrical, Electronic and Electromechanical (EEE) Parts List
MIL-STD-1547		Electronic Parts, Materials and Processes for Space and Launch Vehicles, Technical Requirements for
MIL-STD-1772	!	Certification Requirements for Hybrid Microcircuit Facilities and Lines

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

Standardization Document Order Desk, 700 Robins Ave., Building 4, Section D. Philadelphia, PA 19111-5094, (215) 697-2667

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- 2. MOS Devices, Digital and Linear Gate/Logic Arrays
- 3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
- 4. Microprocessors

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$ Failures/10⁶ Hours

Bipolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1

Digital Linear			PLA/PAL		
No. Gates	C ₁	No. Transistors	C ₁	No. Gates	C ₁
1 to 100 101 to 1,000 1,001 to 3,000 3,001 to 10,000 10,001 to 30,000 30,001 to 60,000	.0025 .0050 .010 .020 .040 .080	1 to 100 101 to 300 301 to 1,000 1,001 to 10,000	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042

MOS Linear and Digital Gate/Logic Array Die Complexity Failure Rate - C1*

Digital		Linear		PLA/PAL	
No. Gates	C ₁	No. Transistors	C ₁	No. Gates	C ₁
1 to 100 101 to 1,000 1,001 to 3,000 3,001 to 10,000 10,001 to 30,000 30,001 to 60,000	.010 .020 .040 .080 .16	1 to 100 101 to 300 301 to 1,000 1,001 to 10,000	.010 .020 .040 .060	Up to 500 501 to 1,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

<u>Microprocessor</u> Die Complexity Failure Rate - C₁

Did Gottipionity i and			
	Bipolar	MOS	
No. Bits	С ₁	C ₁	
Up to 8	.060	.14	
Up to 16	.12	.28	
Up to 32	.24	.56	

All Other Model Parameters

Parameter	Refer to
πΤ	Section 5.8
C ₂	Section 5.9
π _E , π _Q , π _L	Section 5.10

MICROCIRCUITS, MEMORIES 5.2

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- 3. Ultraviolet Eraseable PROMs (UVEPROM)
- 4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
- 5. Static Random Access Memories (SRAM)
- 6. Dynamic Random Access Memories (DRAM)

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$ Failures/10⁶ Hours

Die Complexity Failure Rate - C₁

		Complexity Fa			Bipe	olar
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BiMOS)	ROM, PROM	SRAM
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031 .062	.0094 .019 .038 .075	.0052 .011 .021 .042

$A_{\mbox{\scriptsize 1}}$ Factor for $\lambda_{\mbox{\scriptsize CVC}}$ Calculation

, i		
Total No. of Programming Cycles Over EEPROM Life, C	Flotox ¹	Textured- Poly ²
Up to 100 100 < C ≤ 200 200 < C ≤ 500 500 < C ≤ 1K 1K < C ≤ 3K 3K < C ≤ 7K 7K < C ≤ 15K 15K < C ≤ 20K 20K < C ≤ 30K 30K < C ≤ 100K 100K < C ≤ 200K 200K < C ≤ 400K 400K < C ≤ 500K	2.7	.0097 .014 .023 .033 .061 .14 .30 .30 .30 .30

- 1. $A_1 = 6.817 \times 10^{-6}$ (C)
- 2. No underlying equation for Textured-Poly.

A_2 Factor for λ_{CVC} Calculation

M2 Faciol 101 MCYC					
Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A ₂				
Up to 300K	0				
300K < C ≤ 400K	1.1				
400K < C ≤ 500K	2.3				

All Other Model Parameters

el Parameters Refer to
Section 5.8
Section 5.9
Section 5.10
Page 5-5

EEPROM Read/Write Cycling Induced Failure Rate - λ_{CYC}

EEPROM Read/	Write Cycling	Induced Failure Hate "Acyc
All Memory Devices Except Flotox ar Textured-Poly EEPROMs Flotox and Textured Poly EEPROMs		$\lambda_{\text{cyc}} = 0$ $\lambda_{\text{cyc}} = \left[A_1 B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}}$
Model Factor A ₁ B ₁ A ₂ B ₂ π _Q	Flotox Page 5-4 Page 5-6 $A_2 = 0$ $B_2 = 0$ Section 5.	Textured-Poly Page 5-4 Page 5-6 Page 5-5 Page 5-6 Section 5.10
Error Correction Code (ECC) Options: 1. No On-Chip ECC 2. On-Chip Hamming Code 3. Two-Needs-One Redundant Cell Approach	$\pi_{\text{ECC}} = 1$ $\pi_{\text{ECC}} = .7$ $\pi_{\text{ECC}} = .6$	2

NOTES:

- 1. See Reference 24 for modeling off-chip error detection and correction schemes at the memory system level.
- 2. If EEPROM type is unknown, assume Flotox.
- 3. Error Correction Code Options: Some EEPROM manufacturers have incorporated on-chip error correction circuitry into their EEPROM devices. This is represented by the on-chip hamming code entry. Other manufacturers have taken a redundant cell approach which incorporates an extra storage transistor in every memory cell. This is represented by the two-needs-one redundant cell entry.
- 4. The A₁ and A₂ factors shown in Section 5.2 were developed based on an assumed system life of 10,000 operating hours. For EEPROMs used in systems with significantly longer or shorter expected lifetimes the A₁ and A₂ factors should be multiplied by:

System Lifetime Operating Hours 10,000

5.2 MICROCIRCUITS, MEMORIES

ŗ			<u> </u>									_									_										Í			7
		Ţ.	2.1	0.0		- -	. .	- +	. .	÷ (*	<u>۔</u> ن در	. ~	5.	-:	<u>-</u> :	<u>۔</u> ٥ و	86. 6	9. G	9. 9. 6	g g	9 g	ġ t	; K	22	2	89	.65		. 6	.58 09:				
	,3 (B ₂)	256K	1.5	4.		ے د ئ ر	7 -	- -	- c	و م د	9. G	. 6	83	62	75	72	69	99	\$ 5	ج و	U U	ָהָ עָּ	מיני		200	4.	.46	45	4	4. 4.	273 - 303			
	Textured-Poly ³	64K		0.	ون وي	50 G	6 0 4 C	0, t		7 0	ָ פֿ מ	; c	59.	56	.54	5.	4 .	74.	4 .	4. 4 4. 6	4.	4. 6	ن ن د	, e	i K	, e	8	.32	<u>ن</u> ب	8 8 8				
	Textu	16K	0.76	0.71	0.67	0.63	20.0	8 5		0.50	5.43 A A	. c	. O.	0.39	0.38	0.36	0.35	0.33	0.32	0.31	9.3	S (2	77.0	2 6	25.0	0.24	0.23	0.23	0.22	0.21 0.21	.12 8.617 x 10 ⁻⁵			
		4 X											68		.27	.26	.25	.2 4	.23	.22	ري د ج	2,5	<u> </u>	n a	<u>.</u> c	2 2	9	16	.15	<u> </u>	өхр (8.61	,		
on		Σ	1.9	5.0	2.2	2.3	0.7	7.7	2.8	0.0	3.2	4. G) e	4.0	4.3	4.5	4.7	5.0	5.5	5.5	5.7	0.0	ر ان د	0 0	0 7	- 4	7.7	8.0	8.2	9.6	.25			
Calculation	(B ₁)	256K	1.3	4.4	5.5	9.	æ (9. 6	5.0	2.1		., c	0 ° C	5.9	3.0	3.2	3.4	3.5	3.7	3.9	4.	4. W.	4.	4	6 G		4	5.6	5.9	6.1	= (B (64000)			
and B2 Factors for Acyc	Textured-Poly ² (B ₁)	84X	18	1.0	- -	<u>~</u>	<u>۔</u> ن	ار ن	4.	د .	<u>ب</u> ب	- ·	e 0	2.0	2	2.3	2.4	2.5	5. 6	79 99	6 6 7	ල ල	ည ((၃)	ω c ώ 4	ب ب ب	ن 5 د	e e	0.4	4.2	4. 4 6. 7.			Log	
Factors	Texture	16K	99	7.	1.	.82	86	о. С	0	- ;	- (7.5	ے ہے می ہ	4	5.	9.1	1.7	1.8	0 .	6.	5.0	2.	2.5	5. S	4 u	, c	, c	2.8	5.8	9.0			etermina	
and B2		4	47	.50	.54	28	.62	.67	7.	9/.	8 .	98.	ون و	. t	=	=	4	1.3	1.3	4.	4.	5:	9.	9 1	<u>`</u> ;	. ·	<u>,</u>	2.0	2.1	2.2	333	((spe	1 for T _J [
αά		Σ.	4.3	8.	5.2	5.7	დ ღ	65 85	7.4	6	9		2:	- 2	: 2	5	4	15	16	17	48	6	ୡ	5	8	3 2	; <u>%</u>	2 2	8	88	273	273	ection 5.1	,
	(B ₁)	256K	20	2.4	2.7	2. 9.	3.2	9 .	3.7	4.1	4.4	4.7	5.1	י י י	2 6	6.7	7.7	7.5	8.0	8	0'6	9.5	9	= :	= :	2 5	7 5	<u> </u>	7	to t) 	.). See S	
	Flotox ¹		-	1.2	£.	4.	1.6	1.7	1 .9	5.0	2.5	2.4	, is	, o	. c	- m	(A)	3.8	4.0	4.2	4.5	4.7	2.0	ე	9.6	8. c	- -	r &	2.5	4.6	15 15 17 x 10 -5	— <u>— </u>	rature (°C	024 bits
	"	16K	0.55	0.60	0.66	0.72	0.79	0.86	0.93	1.0	7.	1.2	 .	- + 4 u	. .		æ		20	2.1	2.2	2.4	2.5	2.6	5 .8	2.9	ب ب د	9. K	י ער ס' פי	3.7	exp (8.617	exp (8.6	n Tempel	E: 1K = 1
		↑ ↑	27	<u>,</u> 8	33	98.	4.	£.	.47	.5	.55	65.		8 6	5 2	÷ &	3 8		0		=	1.2	.3	1.3	4.	5. 1		<u> </u>			Z: Z:	.25	e Junctio	its. NOTI
		Memory Size, B(Bits)	(2.1C)	6 C	S 65	3 3	45	20	22	09	65	20	75	80	8 8	S 48	g <u>5</u>	ž Ž	110	1.5	120	125	130	135	140	145	50	200	200	170	175 1. $B_1 = \left(\frac{B}{16000}\right)$	$3. B_2 = \left(\frac{B}{64000}\right)$	T_{J} = Worse Case Junction Temperature (°C). See Section 5.11 for T_{J} Determination	B ≈ Number of bits. NOTE: 1K = 1024

Timon Vanda

DESCRIPTION

Hybrid Microcircuits

$$\lambda_p$$
 = [$\Sigma N_c \lambda_c$] (1 + .2 π_E) $\pi_F \pi_Q \pi_L$ Failures/10⁶ Hours

Number of Each Particular Component

Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_F) , screening level (π_Q) , and maturity (π_L) . The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., (1 + .2 $\pi_{\rm E}$)). Only the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume π_Q = 1, π_E =1 and T_A = Hybrid Case Temperature for these calculations.

Determination of λ_c

Determine λ _C for These Component Types	Handbook Section	Make These Assumptions When Determining $\lambda_{\rm C}$
Microcircuits	5	$C_2 = 0$, $\pi_Q = 1$, $\pi_L = 1$, T_J as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC).
Discrete Semiconductors	6	$\pi_Q = 1$, $\pi_A = 1$, T_J as Determined from Section 6.14, $\pi_E = 1$.
Capacitors	10	$\pi_Q = 1$, $T_A = \text{Hybrid Case Temperature}$, $\pi_E = 1$.

NOTE:

If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors

Circuit Function Factor - π_E

Circuit Type	π _F
Digital	1.0
Video, 10 MHz < f < 1 GHz	1.2
Microwave, f > 1 GHz	2.6
Linear, f < 10 MHz	5.8
Power	21

All Other Hybrid Model Parameters

π _L , π _Q , π _E	Refer to Section 5.10
	i i

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTIONSurface Acoustic Wave Devices

 $\lambda_p = 2.1 \,\pi_Q \,\pi_E \,\text{Failures/} 10^6 \,\text{Hours}$

Quality Factor - π_Q

Screening Level	πQ
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10
None beyond best commerical practices.	1.0

Environmental Factor - π_E

π _E
1
.5
2.0
4.0
4.0
6.0
4.0
5.0
5.0
8.0
8.0
.50
5.0
12
220

MICROCIRCUITS, EXAMPLES 5.13

	LM106	LM741A	Si NPN	Si PNP	Si Diode	Source
No. of Pins	8	14	3	3	2	Vendor Spec. Sheet
Power Dissipation,	.33	.35	.6	.6	.42	Circuit Analysis
P _D (W) Area of Chip (in. ²)	.0041	.0065	.0025	.0025	.0022	Equ. 2 Above
θ _{JC} (°C/W)	30.8	19.4	50.3	50.3	56.3	Equ. 1 Above
T _J (℃)	75	72	95	95	89	Equ. 3 Above

- Calculate Failure Rates for Each Component: 2.
 - A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$\lambda_{D} = [C_{1} \pi_{T} + C_{2} \pi_{E}] \pi_{Q} \pi_{L}$$

Section 5.1

Because $C_2 = 0$;

$$\lambda_D = C_1 \pi_T \pi_Q \pi_L$$

 π_T : Section 5.8; π_Q , π_L Default to 1.0

- = (.01)(3.8)(1)(1) = .038 Failures/10⁶ Hours
- B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

$$\lambda_{\rm p} = C_1 \pi_{\rm T} \pi_{\rm Q} \pi_{\rm L} = (.01)(3.1)(1)(1) = .031 \text{ Failures/} 10^6 \text{ Hours}$$

C) Silicon NPN Transistor, Rated Power = 5W (From Vendor Spec. Sheet), V_{CE}/V_{CEO} = .6, Linear Application

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm T} \pi_{\rm A} \pi_{\rm R} \pi_{\rm S} \pi_{\rm Q} \pi_{\rm E}$$
 Section (= (.00074)(3.9)(1.0)(1.8)(.29)(1)(1)

Section 6.3; π_A , π_Q , π_E Default to 1.0

- = .0015 Failures/10⁶ Hours
- D) Silicon PNP Transistor, Same as C.

$$\lambda_p = .0015 \text{ Failures}/10^6 \text{ Hours}$$

E) Silicon General Purpose Diode (Analog), Voltage Stress = 60%, Metallurgically Bonded Construction.

$$\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_Q \pi_E$$

Section 6.1; π_{O} , π_{E} Default to 1.0

- = (.0038)(6.3)(.29)(1)(1)(1)
 - = .0069 Failures/10⁶ Hours

5.13 MICROCIRCUITS, EXAMPLES

F) Ceramic Chip Capacitor, Voltage Stress = 50%,
TA = TCASE for the Hybrid, 1340 pF, 125°C Rated Temp.

$$\lambda_{\rm p} = \lambda_{\rm b} \, \pi_{\rm CV} \, \pi_{\rm Q} \, \pi_{\rm E}$$
 Section 10.11; $\pi_{\rm Q}$, $\pi_{\rm E}$ Default to 1.0
= (.0028)(1.4)(1)(1)
= .0039 Failures/10⁶ Hours

G) Thick Film Resistors, per instructions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall hybrid failure rate and they may be ignored.

Overall Hybrid Part Failure Rate Calculation:

$$\begin{array}{lll} \lambda_{p} & = & \left[\sum N_{C} \, \lambda_{c} \, \right] (1 + .2 \, \pi_{E}) \, \pi_{F} \, \pi_{Q} \, \pi_{L} \\ \\ \pi_{E} & = & 6.0 & \text{Section 5.10} \\ \\ \pi_{F} & = & 5.8 & \text{Section 5.5} \\ \\ \pi_{Q} & = & 1 & \text{Section 5.10} \\ \\ \pi_{L} & = & 1 & \text{Section 5.10} \\ \\ \lambda_{p} & = & \left[(1)(.038) + (1)(.031) + (2) \, (.0015) + (2) \, (.0015) \\ \\ & & + \, (2)(.0069) + (2)(.0039) \, \right] (1 \, + \, .2 \, (6.0)) \, (5.8) \, (1)(1) \\ \\ \lambda_{p} & = & 1.2 \, \text{Failures/10}^6 \, \text{Hours} \end{array}$$

6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

The semiconductor transistor, diode and opto-electronic device sections present the failure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different failure rate models that vary to some degree. The models apply to single devices unless otherwise noted. For multiple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor (π_T) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device junction to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section.

6.1 DIODES, LOW FREQUENCY

SPECIFICATION MIL-S-19500

DESCRIPTION

Low Frequency Diodes: General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor, Current Regulator, Voltage Regulator, Voltage Reference

$\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Diode Type/Application	λ _b
General Purpose Analog Switching Fast Recovery Power Rectifier Power Rectifier/Schottky Power Diode Power Rectifier with High Voltage Stacks Transient Suppressor/Varistor Current Regulator Voltage Regulator and Voltage Reference (Avalanche and Zener)	.0038 .0010 .025 .0030 .0050/ Junction .0013 .0034 .0020

Temperature Factor - π_T (General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor)

T 1 (°C) πT T, (°C) π_{T} 9.0 105 1.0 25 10 110 1.2 30 115 11 35 1.4 12 120 1.6 40 14 125 45 1.9 15 130 2.2 50 16 2.6 135 55 18 140 3.0 60 20 145 65 3.4 21 150 70 3.9 23 4.4 155 75 25 160 5.0 80 28 165 5.7 85 30 6.4 170 90 32 175 7.2 95 100 8.0

$$\pi_{T} = \exp\left(-3091\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

T_{.1} = Junction Temperature (°C)

Temperature Factor - πγ (Voltage Regulator, Voltage Reference, and Current Regulator)

	and Currer	nt Regulator)	
T _J (°C)	πŢ	T _J (°C)	πŢ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 160 165 170	3.9 4.2 4.5 4.8 5.1 5.7 6.0 6.4 6.7 7.1 7.5 8.3 8.7

$$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

T_J = Junction Temperature (°C)

DESCRIPTIONTraveling Wave Tubes

 $\lambda_p = \lambda_b \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

	Frequency (GHz)								
Power (W)	.1_	1	2	4	6	8	10	14	18
	44		40	16	19	24	29	42	61
10	11	12 12	13 13	16	20	24	29	42	61
100 500	11	12	13	16	20	24	29	42	61
1000	11	12	13	16	20	24	29	42	62
3000	11	12	14	17	20	24	29	43	63
5000	12	13	14	17	20	25	30	44	64
8000	12	13	14	17	21	26	31	45 40	66 68
10000	12	13	15	18	22	26	32 33	46 49	71
15000	13	14	15	19 20	23 24	27 29	35	51	75
20000	14	15 16	16 18	22	26	32	39	56	83
30000 40000	17	18	20	24	29	35	43	62	91

λ_b = 11(1.00001)^P (1.1)^F

P = Rated Power in Watts (Peak, if Pulsed), .001 ≤ P ≤ 40,000

F = Operating Frequency in GHz, .1 ≤ F ≤ 18

If the operating frequency is a band, or two different values, use the geometric mean of the end point frequencies when using table.

Environment Factor - π_E

Environment	π _E
G _B	.5
G _F	1.5
G _M	7.0
N _S	3.0
NU	10
A _{IC}	5.0
A _{IE}	7.0
Auc	6.0
A _{UF}	9.0
A _{RW}	20
S _F	.05
S _F M _F	11
M _I	33
M _L Cլ	500

7.3 TUBES, MAGNETRON

DESCRIPTION

Magnetrons, Pulsed and Continuous Wave (CW)

$\lambda_p = \lambda_b \pi_U \pi_C \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

							Frequ	uency (G	Hz)					
5/14/14		.5	1	5	10	20	30	40 `	5 0	60	70	80	90	100
P(MW)	4.4	4.6	7.6	24	41	67	91	110	130	150	170	190	200	220
.01 .05	1.4 1.9	4.0 6.3	10	34	56	93	120	150	180	210	230	260	280	300
.05	2.2	7.2	12	39	64	110	140	180	210	240	270	290	320	350
.3	2.8	9.0	15	48	80	130	180	220	260	300	330	370	400	430 480
.5	3.1	10	17	54	89	150	200	240	290	330	370	410	440 510	550
1 1	3.5	11	19	62	100	170	230	280	330	380	420	470 580	630	680
3	4.4	14	24	77	130	210	280	350	410	470 500	530 500	640	700	760
5	4.9	16	26	85	140	230	310	390_	460	520	580	040	, 00	. 00

Pulsed Magnetrons:

 $\lambda_h = 19(F)^{.73} (P)^{.20}$

F = Operating Frequency in GHz, .1 ≤ F ≤ 100

P = Output Power in MW,

 $.01 \le P \le 5$

CW Magnetrons (Rated Power < 5 KW):

λ_b = 18

Utillization Factor - π_U

Utilization (Radiate Hours/ Filament Hours)	π _U
0.0	.44
0.1	.50
0.2	.55
0.3	.61
0.4	.66
0.5	.72
0.6	.78
0.7	i .83
0.8	.89
0.9	.94
1.0	1.0

 $\pi_U = 0.44 + 0.56R$

R = Radiate Hours/Filament Hours

Construction Factor - π_C

Construction	π_{C}
CW (Rated Power < 5 KW) Coaxial Pulsed Conventional Pulsed	1.0 1.0 5.4

Environment Factor - π_E

Environment	π _E
GB	1.0
G _F	2.0
G _M	4.0
N _S	15
N _U	47
	10
A _{IC} A _{IF}	16
Auc	12
A _{UF}	23
A _{RW}	80
S _F	.50
M _F	43
ML	133
CL	2000

 $\lambda_p = \lambda_b^{\pi_T \pi_p \pi_S \pi_Q \pi_E}$ Failures/10⁶ Hours

Resistor Style	Specification MIL-R-	Description	λ _b	π _T Table Use Column:	π _S Table Use Column:
RC	11	Resistor, Fixed, Composition (Insulated)	.0017	1	2
RCR	39008	Resistor, Fixed, Composition (Insulated) Est. Rel.	.0017	1	2
RL	22684	Resistor, Fixed, Film, Insulated	.0037	2	1
RLR	39017	Resistor, Fixed, Film (Insulated), Est. Rel.	.0037	2	1
RN (R, C or N)	55182	Resistor, Fixed, Film, Established Reliability	.0037	2	1
RM	55342	Resistor, Fixed, Film, Chip, Established Reliability	.0037	2	1
RN	10509	Resistor, Fixed Film (High Stability)	.0037	2	1
RD	11804	Resistor, Fixed, Film (Power Type)	.0037	N/A, $\pi_T = 1$	1
RZ	83401	Resistor Networks, Fixed, Film	.0019	1	N/A, $\pi_{S} = 1$
RB	93	Resistor, Fixed, Wirewound (Accurate)	.0024	2	1
RBR	39005	Resistor, Fixed, Wirewound (Accurate) Est. Rel.	.0024	2	1
RW	26	Resistor, Fixed, Wirewound (Power Type)	.0024	2	2
RWR	39007	Resistor, Fixed, Wirewound (Power Type) Est. Rel.	.0024	2	2
RE	18546	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted)	.0024	2	2
RER	39009	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Est. Rel.	.0024	2	2
RTH	23648	Thermistor, (Thermally Sensitive Resistor), Insulated	.0019	N/A, $\pi_T = 1$	N/A , $\pi_S = 1$
RT	27208	Resistor, Variable, Wirewound (Lead Screw Activated)	.0024	2	1
RTR	39015	Resistor, Variable, Wirewound (Lead Screw Activated), Established Reliability	.0024	2	1
RR	12934	Resistor, Variable, Wirewound, Precision	.0024	2	1
RA	19	Resistor, Variable, Wirewound (Low Operating Temperature)	.0024	1	1
RK	39002	Resistor, Variable, Wirewound, Semi-Precision	.0024	1	1
RP	22	Resistor, Wirewound, Power Type	.0024	2	1
RJ	22097	Resistor, Variable, Nonwirewound	.0037	2	1
RJR	39035	Resistor, Variable, Nonwirewound Est. Rel.	.0037	2	1
RV	94	Resistor, Variable, Composition	.0037	2	1
RQ	39023	Resistor, Variable, Nonwirewound, Precision	.0037	1	1
RVC	23285	Resistor, Variable, Nonwirewound	.0037	1	1

9.1 RESISTORS

Temperature Factor - π_T

Temperature Factor - π _T						
T(°C)	Column 1	Column 2				
20	.88	.95				
30	1.1	1.1				
40	1.5	1.2				
50	1.8	1.3				
60	2.3	1.4				
70	2.8	1.5				
80	3.4	1.6				
90	4.0	1.7				
100	4.8	1.9				
110	5.6	2.0				
120	6.6	2.1				
130	7.6	2.3				
140	8.7	2.4				
150	10	2.5				

$$\pi_{T} = \exp\left(\frac{-Ea}{8.617 \times 10^{-5}} \left(\frac{1}{T + 273} - \frac{1}{298}\right)\right)$$

Column 1: Ea = .2

Column 2: Ea = .08

T = Resistor Case Temperature. Can be approximated as ambient component temperature for low power dissipation non-power type resistors.

NOTE: π_T values shown should only be used up to the temperature rating of the device. For devices with ratings higher than 150°C, use the equation to determine π_T .

Power Factor - π_P

Power Dissipation (Watts)	πρ
.001	.068
.01	.17
.13	.44
.25	.58
.50	.76
.75	.89
1.0	1.0
2.0	1.3
3.0	1.5
4.0	1.7
5.0	1.9
10	2.5
25	3.5
50	4.6
100	6.0
150	7.1

 π_{P} = (Power Dissipation).³⁹

Power Stress Factor - π_S

Power Stress	Column 1	Column 2
.1	.79	.66
.2	.88	.81
.3	.99	1.0
.4	1.1	1.2
.5	1.2	1.5
.6	1.4	1.8
.7	1.5	2.3
.8	1.7	2.8
.9	1.9	3.4

Column 1: $\pi_S = .71e^{1.1(S)}$

Column 2: $\pi_S = .54e^{2.04(S)}$

S = Actual Power Dissipation
Rated Power

Quality Factor - π_Q

Quality	πQ
Established Reliability Styles S	.03
R	0.1
P	0.3
М	1.0
Non-Established Reliability Resistors (Most Two-Letter Styles)	3.0
Commercial or Unknown Screening Level	10

NOTE: Established reliability styles are failure rate graded (S, R, P, M) based on life testing defined in the applicable military device specification. This category usually applies only to three-letter styles with an "R" suffix.

Environment Factor - π_F

Environment	π _E
G _B	1.0
G _F	4.0
G _M	16
N _S	12
N _U	42
	18
A _{IC} A _{IF}	23
AUC	31
A _{UF}	43
A _{RW}	63
S _F	.50
M _F	37
ML	87
Mլ Cլ	1728

$\lambda_p = \lambda_b^{\pi} T^{\pi} C^{\pi} V^{\pi} S R^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Capacitor Style	Spec. MIL-C-	Description	λъ	π _T Table - Use Column:	π _C Table - Use Column:	π _V Table - Use Column:	πSR
Р		Capacitor, Fixed, Paper- Dielectric, Direct Current (Hermetically Sealed in Metal Cases)	.00037	1	1	1	1
A	12889	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC (Hermetically sealed in Metallic Cases)	.00037	1	1	1	1
CZ, CZR	11693	Capacitor, Feed through, Radio Interference Reduction AC and DC (Hermetically sealed in metal cases), Established and Nonestablished Reliability	.00037	1	1	1	1
CQ, CQR	19978	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically sealed in metal, ceramic or glass cases), Established and Nonestablished Reliability	.00051	1	1	1	1
сн	18312	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases)	.00037	1	1	1	1
CHR	39022	Capacitor, Fixed, Metallized Paper, Paper-Plastic Film or Plastic Film Dielectric	.00051	1	1	1	1
CFR	55514	Capacitor, Fixed, Plastic (or Metallized Plastic) Dielectric, Direct Current in Non-Metal Cases	.00051	1	1	1	1
CRH	83421	Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal Cases, Established Reliability	.00051	1	1	1	1
CM	5	Capacitors, Fixed, Mica Dielectric	.00076	2	1	2	1 1
CMR	39001	Capacitor, Fixed, Mica Dielectric, Established Reliability	.00076	2	1	2	1
СВ	10950	Capacitor, Fixed, Mica Dielectric, Button Style	.00076	2	1	2	
CY	11272	Capacitor, Fixed, Glass Dielectric	.00076	2	1	2	1
CYR	23269	Capacitor, Fixed, Glass Dielectric, Established Reliability	.00076	2	1	2	

10.1 CAPACITORS

Capacitor Style	Spec. MIL-C-	Description	λ _b	π _T Table - Use Column:	π _C Table - Use Column:	π _V Table - Use Column:	πSR
K Style	11015	Capacitor, Fixed, Ceramic Dielectric (General Purpose)	.00099	2	1	3	1
CKR	39014	Capacitor, Fixed, Ceramic Dielectric (General Purpose), Established Reliability	.00099	2	1	3	1
CC, CCR	20	Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating), Established and Nonestablished Reliability	.00099	2	1	3	1
COR	55681	Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability	.0020	2	1	3	1
CSR	39003	Capacitor, Fixed, Electrolytic (Solid Electrolyte), Tantalum, Established Reliability	.00040	1	2	4	See ^π SR Table
CWR	55365	Capacitor, Fixed, Electrolytic (Tantalum), Chip, Established Reliability	.00005	1	2	4	See ^π SR Table
CL.	3965	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum	.00040	1	2	4	1
CLR	39006	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, Established Reliability	.00040	1	2	4	1
CRL	83500	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum Cathode	.00040	1	2	4	1
CU, CUR	39018	Capacitor, Fixed, Electrolytic (Aluminum Oxide), Established Reliability and Nonestablished Reliability	.00012	2	2	1	1
CE	62	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized)	.00012	2	2	1	1
cv	81	Capacitor, Variable, Ceramic Dielectric (Trimmer)	.0079	1	1	5	1
PC	14409	Capacitor, Variable (Piston Type, Tubular Trimmer)		2	1	5	$\frac{1}{1}$
СТ	92	Capacitor, Variable, Air Dielectric (Trimmer)	.000007		1	5	- '
CG	23183	The state of the s	.0060	1	1	5	

Temperature Factor - π_T

T(°C)	Column 1	Column 2
20	.91	.79
30	1.1	1.3
40	1.3	1.9
50	1.6	2.9
60	1.8	4.2
70	2.2	6.0
80	2.5	8.4
90	2.8	11
100	3.2	15
110	3.7	21
120	4.1	27
130	4.6	35
140	5.1	44
150	5.6	56

$$\pi_{T} = \exp\left(\frac{-Ea}{8.617 \times 10^{-5}} \left(\frac{1}{T + 273} - \frac{1}{298}\right)\right)$$

Column 1: Ea = .15

Column 2: Ea = .35

T = Capacitor Ambient Temperature

NOTE: 1. π_T values shown should only be used up to the temperature rating of the device.

2. For devices with ratings higher than 150°C, use the equation to determine π_T (for applications above 150°C).

Capacitance Factor - π_C

Capacitance,		
C(μF)	Column 1	Column 2
.000001	.29	.04
.00001	.35	.07
.0001	.44	.12
.001	.54	.20
.01	.66	.35
.05	.76	.50
.1	.81	.59
.5	.94	.85
1	1.0	1.0
3	1.1	1.3
8	1.2	1.6
18	1.3	1.9
40	1.4	2.3
200	1.6	3.4
1000	1.9	4.9
3000	2.1	6.3
10000	2.3	8.3
30000	2.5	11
60000	2.7	13
120000	2.9	15

Column 1: $\pi_C = C^{.09}$

Column 2: $\pi_C = C^{.23}$

10.1 CAPACITORS

Voltage Stress Factor - π_V

Voltage Stress	Column 1	Column 2	Column 3	Column 4	Column 5
0.1	1.0	1.0	1.0	1.0	1.0
0.2	1.0	1.0	1.0	1.0	1.1
0.3	1.0	1.0	1.1	1.0	1.2
0.4	1.1	1.0	1.3	1.0	1.5
0.5	1.4	1.2	1.6	1.0	2.0
0.6	2.0	2.0	2.0	2.0	2.7
0.7	3.2	5.7	2.6	15	3.7
0.8	5.2	19	3.4	130	5.1
0.9	8.6	59	4.4	990	6.8
1	14	166	5.6	5900	9.0

Column 1: $\pi_V = \left(\frac{S}{.6}\right)^5 + 1$

Column 4: $\pi_V = \left(\frac{S}{.6}\right)^{17} + 1$

Column 2: $\pi_V = \left(\frac{S}{.6}\right)^{10} + 1$

Column 5: $\pi_V = \left(\frac{S}{.5}\right)^3 + 1$

Column 3: $\pi_V = \left(\frac{S}{.6}\right)^3 + 1$

S = Operating Voltage

Note: Operating voltage is the sum of applied DC voltage and peak AC voltage.

Series Resistance Factor (Tantalum CSR Style Capacitors Only) - π_{SR}

SR (* απαίστη σση στη στη στο σαραστοίς στηγ) - πSR		
Circuit Resistance, CR (ohms/volt)	πSR	
>0.8	.66	
>0.6 to 0.8	1.0	
>0.4 to 0.6	1.3	
>0.2 to 0.4	2.0	
>0.1 to 0.2	2.7	
0 to 0.1	3.3	

CR = Eff. Res. Between Cap. and Pwr. Supply Voltage Applied to Capacitor

10.1 CAPACITORS

Quality Factor - π_Q

Quality	πQ
Established Reliability Styles D	.001
С	.01
S,B	.03
R	.1
P	.3
м	1.0
<u> </u>	1.5
Non-Established Reliability Capacitors (Most Two-Letter Styles)	3.0
Commercial or Unknown Screening Level	10.

NOTE: Established reliability styles are failure rate graded (D, C, S, etc.) based on life testing defined in the applicable military device specification. This category usually applies only to three-letter styles with an "R" suffix.

Environment Factor - π_E

	<u> </u>
Environment	π _E
G_B	1.0
G _F	10
G _F G _M	20
N _S	7.0
N _S N _U	15
AIC	12
A _{IC} A _{IF} A _{UC}	15
Auc	25
A _{UF}	30
A _{RW}	40
S _F	.50
M _F	20
ML	50
M _L Cլ	570

10.2 CAPACITORS, EXAMPLE

Example

Given:

A 400 VDC rated capacitor type CQ09A1KE153K3 is being used in a fixed ground environment, 50°C component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz. The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a Non-Established Reliability quality level. The "E" in the designation corresponds to a 400 volt DC rating. The "153" in the designation expresses the capacitance in picofarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picofarads. (NOTE: Pi $\infty = 10^{-12}$, $\mu = 10^{-6}$)

Based on the given information the following model factors are determined from the tables shown in Section 10.1.

$$\lambda_b = .00051$$

$$\pi_T = 1.6$$

$$\pi_{\rm C} = .69$$

Use Table Equation (Note 15,000 pF = $.015 \mu$ F)

$$\pi_{\text{V}} = 2.9$$

$$S = \frac{DC \text{ Volts Applied} + \sqrt{2} \text{ (AC Volts Applied)}}{DC \text{ Rated Voltage}}$$

$$S = \frac{200 + \sqrt{2}(50)}{400} = .68$$

$$\pi_{SR} = 1$$

$$\pi_Q = 3.0$$

$$\pi_E = 10$$

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm T} \pi_{\rm C} \pi_{\rm V} \pi_{\rm SR} \pi_{\rm Q} \pi_{\rm E} = (.00051)(1.6)(.69)(2.9)(1)(3.0)(10)$$

$$\lambda_D = .049 \text{ Failures}/10^6 \text{ Hours}$$

INDUCTIVE DEVICES, TRANSFORMERS 11.1

SPECIFICATION MIL-T-27 MIL-T-21038	STYLE TF TP
MIL-T-55631	-

DESCRIPTION Audio, Power and High Power Pulse

Low Power Pulse

Intermediate Frequency (IF), RF and Discriminator

$$\lambda_p = \lambda_b^{\pi} T^{\pi} Q^{\pi} E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Daserane	
Transformer	λ _b (F/10 ⁶ hrs.)
Flyback (< 20 Volts)	.0054
Audio (15 -20K Hz)	.014
Low Power Pulse (Peak Pwr. < 300W, Avg. Pwr. < 5W)	.022
High Power, High Power Pulse (Peak Power ≥ 300W, Avg. Pwr. ≥ 5W)	.049
RF (10K - 10M Hz)	.13

Quality Factor - π _Q		
Quality	πQ	
MIL-SPEC	1	
	3	
EQ. (V)		

Temperature Factor - π_T

T _{HS} (°C)	πΤ
20	.93
30	1.1
40	1.2
50	1.4
60	1.6
70	1.8
80	1.9
90	2.2
100	2.4
110	2.6
120	2.8
130	3.1
140	3.3
150	3.5
160	3.8
170	4.1
180	4.3
190	4.6

$$\pi_{\text{T}} = \exp\left(\frac{\text{-.11}}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T}_{\text{HS}} + 273} - \frac{1}{298}\right)\right)$$

T_{HS} = Hot Spot Temperature (°C), See Section 11.3. This prediction model assumes that the insulation rated temperature is not exceeded for more than 5% of the time.

Environment Factor - π_E

Environment	πE
GB	1.0
G _F	6.0
G _M	12
N _S	5.0
N _U	16
	6.0
A _{IC} A _{IF}	8.0
Auc	7.0
AUF	9.0
A _{RW}	24
S _F	.50
M _F	13
	34
M _L C _L	610
<u> </u>	

11.1 INDUCTIVE DEVICES, TRANSFORMERS

Transformer Characteristic Determination Note

Temperature

The class denotes the maximum operating temperature (temperature rise plus maximum

ambient temperature)

11.2 INDUCTIVE DEVICES, COILS

SPECIFICATION MIL-C-15305

STYLE

DESCRIPTION

MIL-C-83446 MIL-C-39010

Fixed and Variable, RF Fixed and Variable, RF, Chip

Molded, RF, Est. Rel.

$\lambda_p = \lambda_b^{\pi} T^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λb

	T
Inductor Type	λ _b F/10 ⁶ hrs.
Fixed Inductor or Choke	.000030
Variable Inductor	.000050

Temperature Factor - π_T

T _{HS} (°C)	πŢ
20	.93
30	1.1
40	1.2
50	1.4
60	1.6
70	1.8
80	1.9
90	2.2
100	2.4
110	2.6
120	2.8
130	3.1
140	3.3
150	3.5
160	3.8
170	4.1
180	4.3
190	4.6

$$\pi_{T} = \exp\left(\frac{-.11}{8.617 \times 10^{-5}} \left(\frac{1}{T_{HS} + 273} - \frac{1}{298}\right)\right)$$

T_{HS} = Hot Spot Temperature (°C), See Section 11.3

Quality Factor - TO

Quality	πQ
S	.03
R	.10
Р	.30
м	1.0
MIL-SPEC	1.0
Lower	3.0

Environment Factor - π_E

	E
Environment	πE
G _B	1.0
G _F	6.0
G _M	12
NS	5.0
NU	16
A _{IC}	6.0
A _{IF}	8.0
Auc	7.0
A _{UF}	9.0
A _{RW}	24
S _F	.50
M _F	13
ML	34
c _L	610

11.3 INDUCTIVE DEVICES, DETERMINATION OF HOT SPOT TEMPERATURE

Hot Spot temperature can be estimated as follows:

$$T_{HS} = T_A + 1.1 (\Delta T)$$

where:

T_{HS} = Hot Spot Temperature (°C)

T_A = Inductive Device Ambient Operating Temperature (°C)

ΔT = Average Temperature Rise Above Ambient (°C)

ΔT can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below. For space environments a dedicated thermal analysis should be performed.

ΔT Approximation (Non-space Environments)

Information Known		ΔT Approximation
1.	MIL-C-39010 Slash Sheet Number MIL-C-39010/1C-3C, 5C, 7C, 9A, 10A, 13, 14	ΔT = 15°C
	MIL-C-39010/4C, 6C, 8A, 11, 12	ΔT = 35°C
2.	Power Loss Case Radiating Surface Area	$\Delta T = 125 W_L/A$
3.	Power Loss Transformer Weight	$\Delta T = 11.5 \text{ W}_{L}/(\text{Wt.})^{.6766}$
4.	Input Power Transformer Weight (Assumes 80% Efficiency)	$\Delta T = 2.1 \text{ W}_{p}/(\text{Wt.})^{.6766}$

 $W_1 = Power Loss (W)$

A = Radiating Surface Area of Case (in²). See below for MIL-T-27 Case Areas

Wt. = Transformer Weight (lbs.)

 $W_1 = Input Power(W)$

NOTE: Methods are listed in preferred order (i.e., most to least accurate). MIL-C-39010 are microminiature devices with surface areas less than 1 in². Equations 2-4 are applicable to devices with surface areas from 3 in² to 150 in². Do not include the mounting surface when determining radiating surface area.

	MIL-T-	27 Case Radiating	Areas (Excludes I	Mounting Surface	
Case	Area (in ²)	Case	Area (in ²)	Case	Area (in ²)
AF	4	GB	33	LB	82
AG	7	GA	43	LA	98
AH	11	HB	42	MB	98
AJ	18	HA	53	MA	115
EB	21	JB	58	NB	117
EA	23	JA	71	NA	139
FB	25	KB	72	OA	146
FA	31	KA	84		

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as well as various other motor applications. The model is based on References 4 and 37, which contain a more comprehensive treatment of motor life prediction methods. The references should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous failure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period "t". This time period is either the system design life cycle (LC) or the time period the motor must last between complete refurbishment (or replacement). The model assumes that motors are replaced upon failure and that an effective constant failure rate is achieved after a given time due to the fact that the effective "time zero" of replaced motors becomes random after a significant portion of the population is replaced. The average failure rate, λ_p , can be treated as a constant failure rate and added to other part failure rates from this Handbook.

$$\lambda_p = \left[\frac{\lambda_1}{A\alpha_B} + \frac{\lambda_2}{B\alpha_W} \right] \times 10^6 \text{ Failures/} 10^6 \text{ Hours}$$

Bearing & Winding Characteristic Life - α_B and α_W

T _A (°C)	α _B (Hr.)	α _W (Hr.)	T _A (°C)	α _B (Hr.)	α _W (Hr.)
0	3600	6.40+06	70	22000	1.1e+05
10	13000	3.2e+06	80	14000	7.0e+04
20	39000	1.6e+06	90	9100	4.60+04
30	78000	8.9e+05	100	6100	3.10+04
40	80000	5.0 e+ 05	110	4200	2.1e+04
50	55000	2.9e+05	120	2900	1.5e+04
60	35000	1.8e+05	130	2100	1.0e+04
•	00000		140	1500	7.5e+03

$$\alpha_{B} = \left[10^{\left(2.534 - \frac{2357}{T_{A} + 273}\right)} + \frac{1}{10^{\left(20 - \frac{4500}{T_{A} + 273}\right)} + 300} \right]^{-1}$$

$$\frac{2357}{T_A + 273} - 1.83$$

α_R - Weibull Characteristic Life for the Motor Bearing

α_W = Weibull Characteristic Life for the Motor Windings

T_A = Ambient Temperature (°C)

NOTE: See page 12-3 for method to calculate α_B and α_W when temperature is not constant.

ROTATING DEVICES, MOTORS 12.1

A and B Determination

Motor Type	Determination A	В
Electrical (General)	1.9	1.1
Sensor	.48	.29
Servo	2.4	1.7
Stepper	11	5.4

Example Calculation

A general purpose electrical motor is operating at 50°C in a system with a 10 year design life (87600 hours) expectancy,

$$\alpha_{\rm R}$$
 = 55000 Hrs.

$$\alpha_W = 2.9e + 5 Hrs.$$

$$\frac{LC}{\alpha_B} = \frac{87600 \text{ Hrs.}}{55000 \text{ Hrs.}} = 1.6$$

$$\frac{LC}{\alpha_W} = \frac{87600 \text{ Hrs.}}{2.9e + 5 \text{ Hrs.}} = .3$$

$$\lambda_1 = 1.0 \qquad \left(\text{for } \frac{LC}{\alpha_B} = 1.6 \right)$$

$$\lambda_2 = .23 \qquad \left(\text{for } \frac{LC}{\alpha_W} = .3 \right)$$

$$A = 1.9$$

$$\lambda_{\rm p} = \left[\frac{1.0}{(1.9)(55000)} + \frac{.23}{(1.1)(2.9e+5)} \right] \times 10^6$$

$$\lambda_D = 10.3 \text{ Failures}/10^6 \text{ Hours}$$

 λ_1 and λ_2 Determination

1 and 12 Determination		
$\frac{LC}{\alpha B}$ or $\frac{LC}{\alpha W}$	λ_1 or λ_2	
010	.13	
.1120	.15	
.2130	.23	
.3140	.31	
.4150	.41	
.5160	.51	
.6170	.61	
.7180	.68	
.8190	.76	
> 1.0	1.0	

LC is the system design life cycle (in hours), or the motor preventive maintenance interval, if motors will be periodically replaced or refurbished. Determine λ_1 and λ_2 separately

based on the respective $\frac{LC}{\alpha_B}$ and $\frac{LC}{\alpha_W}$ ratios.

a Calculation for Cycled Temperature

The following equation can be used to calculate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute α_B for all α 's in equation).

$$\alpha = \frac{\begin{pmatrix} h_1 + h_2 + h_3 + \cdots + h_m \end{pmatrix}}{\frac{h_1}{\alpha_1} + \frac{h_2}{\alpha_2} + \frac{h_3}{\alpha_3} + \cdots + \frac{h_m}{\alpha_m}}$$

where:

 $\alpha = \text{either } \alpha_B \text{ or } \alpha_W$

h₁ = Time at Temperature T₁

h₂ = Time to Cycle From Temperature T₁ to T₃

 h_3 = Time at Temperature T_3

 h_m = Time at Temperature T_m

 α_1 = Bearing (or Winding) Life at T_1

 α_2 = Bearing (or Winding) Life at T_2

NOTE: $T_2 = \frac{T_1 + T_3}{2}$, $T_4 = \frac{T_3 + T_1}{2}$

Hours (h)

Thermal Cycle

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$\lambda_p = \lambda_b^{\pi} S^{\pi} N^{\pi} E$$
 Failures/10⁶ Hours

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ_h

$T_{F}(^{\circ}\!$			U	
000	T _F (°C)	λ _b	T _F (℃)	λ _b
30 .0083 85 .032 35 .0088 90 .041 40 .0095 95 .052 45 .010 100 .069 50 .011 105 .094 55 .013 110 13 60 .014 115 .19 65 .016 120 .29 70 .019 125 .45 75 .022 130 .74 80 .027 135 1.3	30 35 40 45 50 55 60 65 70	.0095 .010 .011 .013 .014 .016 .019	95 100 105 110 115 120 125 130	.052 .069 .094 .13 .19 .29 .45

$$\lambda_{b} = .00535 \exp\left(\frac{T_{F} + 273}{334}\right)^{8.5}$$

T_F = Frame Temperature (°C)

If Frame Temperature is Unknown Assume T_F = 40 °C + Ambient Temperature

Size Factor - π_S

	π _S		
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Synchro	2	1.5	1
Resolver	3	2.25	1.5
	<u></u>		

Number of Brushes Factor - π_N

πN
1.4
2.5
3.2

Environment Factor - π_F

Ellanoum i dete	
Environment	π _E
G _R	1.0
G _E	2.0
G _B G _F G _M	12
N _S	7.0
N _S N _U	18
	4.0
^A IC A _{IF}	6.0
Auc	16
Auf	25
A _{UC} A _{UF} A _{RW}	26
S _F	.50
M _F	14
ML	36
c _L	680

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION

Elapsed Time Meters

$\lambda_p = \lambda_b^{\pi} \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λ _b
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Temperature Stress Factor - π_T

Operating T (°C)/Rated T (°C)	π_{T}
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	12
N _S	7.0
N _U	18
A _{IC}	5.0
A _{IF} A _{UC} A _{UF}	8.0
Auc	16
A _{UF}	25
A _{RW}	26
A _{RW} S _F	.50
M _F	14
ML	38
Mլ Cլ	N/A

SPECIFICATION

DESCRIPTION Mechanical Relay

SPECIFICATION	
	MIL-R-83516
MIL-R-5757	MIL-R-83520
MIL-R-6106	
MIL-R-13718	MIL-R-83536
MIL-H-13/10	MIL-R-83725
MAIL - 12-19648	MIT-U-0015

MIL-R-19648 MIL-R-19523

MIL-R-39016

MIL-R-83726 (Except Class C, Solid State Type)

$\lambda_p = \lambda_b^{\pi} L^{\pi} C^{\pi} C Y C^{\pi} F^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λ.

Rated Temperature TA (°C) 85°C¹ 125°C² 25 .0059 .0059 30 .0067 .0066 35 .0075 .0073 40 .0084 .0081 45 .0094 .0089 50 .010 .0098 55 .012 .011 60 .013 .012 60 .013 .012 65 .014 .013 70 .016 .014 75 .017 .015 80 .017 .015 85 .021 .018 90 .021 .019 95 .021 .022 100 .024 .026 110 .027 .029 120 .031 .031
25
25
120

1.
$$\lambda_{b} = .0059 \exp\left(\frac{-.19}{8.617 \times 10^{-5}} \left[\frac{1}{T + 273} - \frac{1}{298}\right]\right)$$

2. $\lambda_{b} = .0059 \exp\left(\frac{-.17}{8.617 \times 10^{-5}} \left[\frac{1}{T + 273} - \frac{1}{298}\right]\right)$
 $T_{A} = \text{Ambient Temperature (°C)}$

Contact Form Factor - π_C

(Applies to Active Conducting Contacts)

(Applies to Active Conducting Contactor)		
Contact Form	π _C	
SPST DPST SPDT 3PST 4PST DPDT	1.00 1.50 1.75 2.00 2.50 3.00 4.25	
3PDT 4PDT 6PDT	5.50 8.00	

Load Stress Factor - π_L

Load Olloso . Lot				
	Load Type			
S	Resistive ¹	Inductive ²	Lamp ³	
.05 .10 .20 .30 .40 .50 .60 .70 .80 .90	1.00 1.02 1.06 1.15 1.28 1.48 1.76 2.15 2.72 3.55 4.77	1.02 1.06 1.28 1.76 2.72 4.77 9.49 21.4	1.06 1.28 2.72 9.49 54.6	
			1612	

1.
$$\pi_L = \exp\left(\frac{S}{.8}\right)^2$$
 3. $\pi_L = \exp\left(\frac{S}{.2}\right)^2$

1.00

1.
$$\pi_L = \exp\left(\frac{S}{.8}\right)^2$$

2. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

3. $\pi_L = \exp\left(\frac{S}{.2}\right)^2$

2. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

3. $\pi_L = \exp\left(\frac{S}{.2}\right)^2$

4.77

3. $\pi_L = \exp\left(\frac{S}{.2}\right)^2$

5. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

6. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

7. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

8. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

9. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

10. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

11. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

12. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

13. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

14. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

15. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

16. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

17. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

18. $\pi_L = \exp\left(\frac{S}{.4}\right)^2$

For single devices which switch two different load types, evaluate π_{\parallel} for each possible stress load type combination and use the worse case (largest $\pi_{\underline{L}}$).

Cycling Factor - πCYC

Cyding Later Cyd		
Cycle Rate (Cycles per Hour)	^π CYC (MIL-SPEC)	
(O) old per	Cycles per Hour	
≥ 1.0	10	
< 1.0	0.1	
₹ 1.0		

< 1.0	
Cycle Rate (Cycles per Hour)	π _{CYC} (Commercial Quality)
> 1000	(Cycles per Hour) ²
10 - 1000	Cycles per Hour 10
< 10	1.0

NOTE: Values of $\pi_{\mbox{CYC}}$ for cycling rates beyond the basic design limitations of the relay are not valid. Design specifications should be consulted prior to evaluation of

13.1 RELAYS, MECHANICAL

Quality Factor - π_Q

.d
πQ
.10
.30
.45
.60
1.0
1.5
1.5
2.9

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	15
N _S	8.0
NU	27
Aic	7.0
AIF	9.0
Auc	11
A _{UC} A _{UF}	12
A _{RW}	46
S _F	.50
M _F	25
M _L	66
CL	N/A

Application and Construction Factor - $\pi_{\mbox{\scriptsize F}}$

Aþ	plication and	Construction ractor RE	
Contact Rating	Application Type	Construction Type	π _F
	Dry Circuit	Armature (Long)	4
Signal	Dry Circuit	Dry Reed	6
Current		Mercury Wetted	1
Low my		Magnetic Latching	4
and ma)		Ralanced Armature	7
ì			7 1
		Solenoid	7 3
0-5 Amp	General	Armature (Long)	5
	Purpose	Balanced Armature	6
		Solenoid	5
	Sensitive	Armature (Long and	5
	(0 - 100 mw)	Short)	2
		Mercury Wetted	6
		Magnetic Latching	100
	1	Meter Movement	
		Balanced Armature	10
	Polarized	Armature (Short)	10
	1	Meter Movement	100
	Vibrating	Dry Reed	6
	Reed	Mercury Wetted	<u> </u>
	High Speed	Armature (Balanced and Short)	25
		Dry Reed	6
	Thermal Time		10
		Bulleta	ł i
	Delay		9
	Electronic		1
	Time Delay,	1	1
	Non-Thermal	5 5 4	10
ì	Latching,	Dry Reed	5
	Magnetic	Mercury Wetted	5
		Balanced armature	20
5-20 Amp	High Voltage	Vacuum (Glass)	5
i		Vacuum (Ceramic)	1 3
	Medium	Armature (Long and	1 3
ţ	Power	Short)	1 .
1		Mercury Wetted	
		Magnetic Latching	2
1]	Mechanical Latching	٥
		Balanced Armature	1 2
	Į.	Solenoid	1 2 3 2 2
25-600	Contactors	Armature (Short)	
Amp	(High	Mechanical Latching	12
1211	Current)	Balanced Armature	10
1	1	Solenoid	5

13.2 RELAYS, SOLID STATE AND TIME DELAY

SPECIFICATION

MIL-R-28750 MIL-R-83726

DESCRIPTION

Relay, Solid State Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the models provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - An

Relay Type	λ _b
Solid State	.029
Solid State Time Delay	.029
Hybrid	.029

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	1.0
Commercial	1.9

Environment Factor - π_F

Environment	πE
G _B	1.0
G _F	3.0
G _F G _M	12
N _S	6.0
NU	17
A _{IC}	12
A _{IC} A _{IF}	19
A _{UC}	21
A _{UC} A _{UF}	32
A _{RW}	23
S _F	.40
MF	12
ML	33
M _L C _L	590

$\lambda_p = \lambda_b^{\pi} L^{\pi} C^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Base Failure Rate - λ _b			
Description	Spec. MIL-S-	λ _b (F/10 ⁶ Hrs.)	
Centrifugal Dual-In-line Package Limit Liquid Level Microwave	N/A 83504 8805 21277 N/A	3.4 .00012 4.3 2.3 1.7	
(Waveguide) Pressure	8932 9395	2.8	
Pushbutton	1211 8805 22885	.10	
Reed Rocker	24317 55433 3950 22885	.0010 .023	
Rotary	3786 13623 15291	.11	
Sensitive	15743 22604 22710 45885 82359 8805 13484	.49	
Thermal	22614 12285 24286	.031	
Thumbwheel Toggle	24286 22710 3950 5594 8805 8834 9419 13735 81551		

Load Stress Factor - π_L

Load Stress / Cere				
	4-000		Load Type	
1 >	tress	Resistive	Inductive	Lamp
	S 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	1.00 1.02 1.06 1.15 1.28 1.48 1.76 2.15 2.72 3.55 4.77	1.02 1.06 1.28 1.76 2.72 4.77 9.49 21.4	1.06 1.28 2.72 9.49 54.6
- I				

$$\pi_L = \exp(S/.8)^2$$
 for Resistive Load
 $\pi_L = \exp(S/.4)^2$ for Inductive Load
 $\pi_L = \exp(S/.2)^2$ for Lamp Load

NOTE: When the switch is rated by inductive load, then use resistive π_L .

Contact Configuration Factor* - π_C

onliguration radio	
# of Contacts, NC	$\pi_{\mathbb{C}}$
1 2 2 3 4 4 6 8	1.0 1.3 1.3 1.4 1.6 1.6 1.8 2.0 2.3
	# of Contacts, NC 1 2 2 3 4 4 6 8

$$\pi_C = (NC)^{.33}$$

Applies to toggle and pushbutton switches only, all others use $\pi_C = 1$.

14.1 SWITCHES

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	1
Lower	2

Environment Factor - π_E

	E
Environment	π _E
GB	1.0
G _F	3.0
G _M	18
Ng	8.0
N _U	29
	10
A _{IC} A _{IF}	18
Auc	13
A _{UF}	22
A _{RW}	46
S _F	.50
M _F	25
ML	67
CL	1200
<u> </u>	

SWITCHES, CIRCUIT BREAKERS 14.2

SPECIFICATION

MIL-C-13516 MIL-C-55629 MIL-C-83383 MIL-C-39019 W-C-375

DESCRIPTION

Circuit Breakers, Manual and Automatic Circuit Breakers, Magnetic, Unsealed, Trip-Free Circuit Breakers, Remote Control, Thermal, Trip-Free

Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service

Circuit Breakers, Molded Case, Branch Circuit and Service

$\lambda_p = \lambda_b \pi_C \pi_U \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Description	λь
Magnetic	.34
Thermal	.34
Thermal-Magnetic	.34

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	1.0
Lower	8.4

Configuration Factor - π_C

Configuration	π _C
SPST	1.0
DPST	2.0
3PST	3.0
4PST	4.0
[

Environment Factor - $\pi_{=}$

	E
Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	15
N _S	8.0
N _U	27
A _{IC}	7.0
A _{IF}	9.0
A _{IC} A _{IF} A _{UC}	11
AUF	12
A _{RW}	46
S _F	.50
M _F	25
ML	66
CL	N/A

Use Factor - π_{IJ}

Use	πυ
Not Used as a Power On/Off Switch	1.0
Also Used as a Power On/Off Switch	2.5

$$\lambda_p = \lambda_b^{\pi} T^{\pi} K^{\pi} Q^{\pi} E$$
 Failures/10⁶ Hours

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign half of the overall mated pair connector (i.e., single connector) failure rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is for input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide λ_p by two.

Base Failure Rate - λb

Specification λb MIL-C-Description .0010 5015 26482 Circular/Cylindrical 26500 27599 29600 28840 38999 83723 81511 .040 21097 Card Edge (PCB)* 55302 .15 24055 Hexagonal 24056 .021 24308 Rack and Panel 28731 28748 83515 .046 21617 Rectangular 24308 28748 28804 81659 83513 83527 83733 85028 .00041 15370 3607 **RF** Coaxial 25516 3643 3650 26637 3655 39012 55235 83517 .0075 55074 Telephone

Temperature Factor - π_T

T _o (°C)	π_{T}		
	.91		
20	1.1		
30	1.3		
40	1.5		
50	1.8		
60	2.0		
70	2.3		
80	2.7		
90	3.0		
100	3.4		
110	3.7		
120	4.1		
130	4.6		
140	1		
150	5.0		
160	5.5		
170	6.0		
180	6.5		
190	7.0		
200	7.5		
210	8.1		
220	8.6		
230	9.2		
240	9.8		
250	10.		
$\pi_{\text{T}} = \exp\left[\frac{14}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T}_{\text{O}} + 273} - \frac{1}{298}\right)\right]$			
T_0 = Connector Ambient + ΔT			
ΔT = Connector Insert Temperature Rise (See Table)			

Power

Triaxial

22992

49142

.0070

.0036

Printed Circuit Board Connector

15.1 CONNECTORS, GENERAL

Default Insert Temperature Rise (ΔT °C) Determination

	(A) O) Determination				
Amperes	Contact Gauge				
Per Contact	30	22	20	16	12
2	10	4	2	1	0
3	22	8	5	2	1
4	37	13	8	4	1
5	56	19	13	5	2 3
6	79	27	18	8	
7		36	23	10	4 5
8		46	30	13	5
9	Ì	57	37	16	6
10	İ	70	45	19	7
15	l		96	41	15
20	ŀ	1		70	26
25				106	39
30	1				54
35		1	•		72
40					92

ΔΤ ΔΤ ΔΤ ΔΤ ΔΤ ΔΤ	= = = =	3.256 (i) 1.85 2.856 (i) 1.85 2.286 (i) 1.85 1.345 (i) 1.85 0.989 (i) 1.85 0.640 (i) 1.85 0.429 (i) 1.85 0.274 (i) 1.85	32 Gauge Contacts 30 Gauge Contacts 28 Gauge Contacts 24 Gauge Contacts 22 Gauge Contacts 20 Gauge Contacts 18 Gauge Contacts 16 Gauge Contacts
ΔΤ	=	0.100 (i) ^{1.85}	12 Gauge Contacts
ΔT	=	Insert Temperature Amperes per Con	

= Amperes per Contact

RF Coaxial Connectors $\Delta T = 5^{\circ}C$

RF Coaxial Connectors

(High Power Applications) $\Delta T = 50^{\circ}C$

Mating/Unmating Factor - π_K

Mating/Unmating Cycles* (per 1000 hours)	πK
0 to .05	1.0
> .05 to .5	1.5
> .5 to 5	2.0
> 5 to 50	3.0
> 50	4.0

*One cycle includes both connect and disconnect.

Quality Factor - π_Q

Quality	π _Q
MIL-SPEC	1
Lower	2

Environment Factor - π_E

	E
Environment	π _E
GB	1.0
G _F	1.0
G _M	8.0
N _S	5.0
N _U	13
A _{IC}	3.0
A _{IF}	5.0
A _{UC}	8.0
A _{UF}	12
A _{RW}	19
S _F	.50
M _F	10
ML	27
CL	490

$\lambda_p = \lambda_b \pi_p \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Description	Spec. MIL-S	λ _b
Dual-In-Line Package	83734	.00064
Single-In-Line Package	83734	.00064
Chip Carrier	38533	.00064
Pin Grid Array	N/A	.00064
Relay	12883	.037
Transistor	12883	.0051
Electron Tube, CRT	12883	.011

Quality Factor - π_Q

Quality	πQ
MIL-SPEC.	.3
Lower	1.0

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	3.0
G _B G _F G _M N _S N _U	14
N _S	6.0
N _U	18
A _{IC} A _{IF} A _{UC} A _{UF}	8.0
A _{IF}	12
A _{UC}	11
A _{UF}	13
A _{RW}	25
S _F	.50
M _F	14
ML	36
C _L	650

Active Pins Factor - π_P

Number of Active Contacts	$\pi_{\mathbf{p}}$	Number of Active Contacts	π _P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 35 40 45	1.0 1.5 1.7 1.9 2.1 2.3 2.4 2.5 2.7 2.8 2.9 3.1 3.3 3.4 3.6 4.5 5.5 5.9	55 60 65 70 75 80 85 90 95 100 115 120 125 130 145 150 165 170	6.9 7.4 7.9 8.4 8.9 9.4 9.9 10 11 12 13 13 14 15 16 16 17 18 19 20 20
50	6.4	180	22

$$\pi_P = \exp\left(\frac{N-1}{10}\right)^Q$$

q = .39

N = Number of Active Pins

An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.

16.1 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

$$\lambda_p = \lambda_b [N_1 \pi_C + N_2 (\pi_C + 13)] \pi_Q \pi_E$$
 Failures/10⁶ Hours

APPLICATION NOTE: This model applies to board configurations with leaded devices mounted into the plated through holes and assumes failures are predominately defect related. For boards using surface mount technology, use Section 16.2. For a mix of leaded devices mounted into plated through holes and surface mount devices, use this model for the leaded devices and use Section 16.2 for the surface mount contribution.

A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through-hole (PTH) problems (e.g., barrel cracking).

Base Failure Rate - λ_h

——————————————————————————————————————	
Technology	λ _b
Printed Wiring Assembly/Printed Circuit Boards with PTHs	.000017
Discrete Wiring with Electroless Deposited PTH (≤ 2 Levels of Circuitry)	.00011

Number of PTHs Factor - N_1 and N_2

Factor	Quantity
N ₁	Automated Techniques: Quantity of Wave Infrared (IR) or Vapor Phase Soldered Functional PTHs
N ₂	Quantity of Hand Soldered PTHs

Complexity Factor - π_C

Complexity Factor	- ''C
Number of Circuit Planes, P	π _C
≤ 2	1.0
3	1.3 1.6
4 5	1.8
6	2.0
7	2.2
8	2.4 2.6
9	2.8
11	2.9
12	3.1
13	3.3
14	3.4
15 16	3.7
17	3.9
18	4.0
Discrete Wiring w/PTH	1
$\pi_{\rm C} = .65 {\rm P}^{ 63}$	2 ≤ P ≤ 18

Quality Factor - πQ

Quality	πQ
MIL-SPEC or Comparable Institute for Interconnecting, and Packaging Electronic Circuits (IPC) Standards (IPC Level 3)	1
Lower	2

Environment Factor - π_{F}

πΕ
1.0
2.0
7.0
5.0
13
5.0
8.0
16
28
19
.50
10
27
500

16.2 INTERCONNECTION ASSEMBLIES, SURFACE MOUNT TECHNOLOGY

APPLICATION NOTE: The SMT Model was developed to assess the life integrity of leadless and leaded devices. It provides a relative measure of circuit card wearout due to thermal cycling fatigue failure of the "weakest link" SMT device. An analysis should be performed on all circuit board SMT components. The component with the largest failure rate value (weakest link) is assessed as the overall board failure rate due to SMT. The model assumes the board is completely renewed upon failure of the weakest link and the results do not consider solder or lead manufacturing defects. This model is based on the techniques developed in Reference 37.

ASMT = Average failure rate over the expected equipment life cycle due to surface mount device wearout. This failure rate contribution to the system is for the Surface Mount Device on each board exhibiting the highest absolute value of the strain range:

ECF = Effective cumulative number of failures over the Weibull characteristic life.

Effective Cumulative Failures - ECF

LC ECF	Effective Cumulative Pallules - Lot		
		ECF	
01 .13 .15 .15 .2130 .23 .3140 .31 .4150 .41 .5160 .51 .6170 .61 .7180 .68 .8190 .76 .9 .9 .1.0	.1120 .2130 .3140 .4150 .5160 .6170 .7180 .8190	.15 .23 .31 .41 .51 .61 .68 .76	

LC = Design life cycle of the equipment in which the circuit board is operating.

 α_{SMT} = The Weibull characteristic life. α_{SMT} is a function of device and substrate material, the manufacturing methods, and the application environment used.

$$\alpha_{SMT} = \frac{N_f}{CF}$$

where:

CR = Temperature cycling rate in cycles per calendar hour. Base on a thermal analysis of the circuit board. Use table default values if other estimates do not exist.

N_f = Average number of thermal cycles to failure

$$N_{f} = 3.5 \left(\frac{d}{.65h} \left| (\alpha_{S} \Delta T - \alpha_{CC} (\Delta T + T_{RISE})) \right| \times 10^{-6} \right)^{-2.26} (\pi_{LC})$$

where:

 Distance from center of device to the furthest solder joint in mils (thousandths of an inch)

h = Solder joint height in mils for leadless devices. Default to h = 8 for all leaded configurations.

αs = Circuit board substrate thermal coefficient of expansion (TCE)

ΔT = Use environment temperature extreme difference

αCC = Package material thermal coefficient of expansion (TCE)

TRISE = Temperature rise due to power dissipation (Pd)

 $Pd = \theta_{JC}P$

θ_{JC} = Thermal resistance °/Watt

P = Power Dissipation (Watts)

 π_{LC} = Lead configuration factor

INTERCONNECTION ASSEMBLIES, SURFACE MOUNT TECHNOLOGY 16.2

CR - Cycling Rate Default Values

CR - Cycling Rate Default Equipment Type Automotive Consumer (television, radio,	Number of Cycles/Hour 1.0 .08
Automotive	· · · ·
recorder) Computer Telecommunications Commercial Aircraft Industrial Military Ground Applications Military Aircraft (Cargo) Military Aircraft (Fighter)	.17 .0042 .25 .021 .03 .12

 π_{LC} - Lead Configuration Factor

M C - Fores comes	
Lead Configuration	πLC
	1
Leadless J or S Lead	150
Gull Wing	5,000
Guii Wing	

αCC - TCE Package Values

Substrate Material α_{CC} Average Value	
Substrate Material	OCC Average value
Plastic	/
Ceramic	6

ΔT - Use Environment Default Temperature Difference

Temperature Di	Herence
Environment	ΔΤ
G _B	7
G _F	21
G _M	26
N _S	26
NU	61
AIC	31
AIF	31
AUC	57
	57
A _{UF}	31
A _{RW}	7
S _F	N/A
MF	N/A
M _L C _L	N/A
CL	19/7

 α_S - Default TCE Substrate Values

as - Default TCE Substrate	raidee
Substrate Material	α _S
FR-4 Laminate	18
FR-4 Multilayer Board	20
FR-4 Multilayer Board w/Copper	11
Clad Invar Ceramic Multilayer Board	7
Copper Clad Invar	5
Copper Clad Molybdenum	5
Carbon-Fiber/Epoxy Composite	1 1
Kevlar Fiber	3
Quartz Fiber	1
Glass Fiber	5
Epoxy/Glass Laminate	15
Polyamide/Glass Laminate	13
Polyamide/Kevlar Laminate	6
Polyamide/Quartz Laminate	8
Epoxy/Keviar Laminate	7 7
Alumina (Ceramic)	7
Epoxy Aramid Fiber	6
Polyamide Aramid Fiber	9
Epoxy-Quartz	20
Fiberglass Teflon Laminates	
Porcelainized Copper Clad Inva	7
Fiberglass Ceramic Fiber	
	1 _ 1 _ 4

EXAMPLE: A large plastic encapsulated leadless chip carrier is mounted on a epoxyglass printed wiring assembly. The design considerations are: a square package is 1480 mils on a side, solder height is 5 mils, power dissipation is .5 watts, thermal resistance is 20°C/watt, the design life is 20 years and environment is military ground application. The failure rate developed is the impact of SMT for a single circuit board and accounts for all SMT devices on this board. This failure rate is added to the sum of all of the component failure rates on the circuit board.

$$\lambda_{SMT} = \frac{ECF}{\alpha_{SMT}}$$

$$\alpha_{SMT} = \frac{N_f}{CR}$$

16.2 INTERCONNECTION ASSEMBLIES, SURFACE MOUNT TECHNOLOGY

Nf = 3.5
$$\left(\frac{d}{(.65)(h)}\left|(\alpha S \Delta T - \alpha CC (\Delta T + TRISE))\right| \times 10^{-6}\right)^{-2.26} \left(\pi_{LC}\right)$$

For d: $d = \frac{1}{2} (1480) = 740 \text{ mils}$

For h: h = 5 mils

For α_S : $\alpha_S = 15$ (Table - Epoxy Glass)

For ΔT : $\Delta T = 21$ (Table - G_F)

For α_{CC} : $\alpha_{CC} = 7$ (Table - Plastic)

For TRISE: $T_{RISE} = \theta_{JC} P = 20(.5) = 10^{\circ}C$

For π_{LC} : $\pi_{LC} = 1$ (Table - Leadless)

For CR: CR = .03 cycles/hour (Table - Military Ground)

 $N_f = 3.5 \left(\frac{740}{(.65)(5)} \right) (15(21) - 7(21+10)) \times 10^{-6} \right)^{-2.26} (1)$

N_f = 18,893 thermal cycles to failure

 $\alpha_{SMT} = \frac{18,893 \text{ cycles}}{.03 \text{ cyles/hour}} = 629,767 \text{ hours}$

$$\frac{LC}{\alpha_{SMT}} = \frac{(20 \text{ yrs.}) \left(8760 \frac{hr}{yr}\right)}{629,767 \text{ hrs.}} = .28$$

ECF = .23 failures (Table - Effective Cumulative Failures)

$$\lambda_{SMT} = \frac{ECF}{\alpha_{SMT}} = \frac{.23 \text{ failures}}{629,767 \text{ hours}} = .0000004 \text{ failures/hour}$$

 $\lambda_{SMT} = .4 \text{ failures/} 10^6 \text{ hours}$

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes or surface mount technology. Use the Interconnection Assembly Model in Section 16 to account for connections to a circuit board using either plated through hole technology or surface mount technology. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post, whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$$\lambda_p = \lambda_b \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Base Failure Nate	70
Connection Type	λ _b (F/10 ⁶ hrs)
Hand Solder, w/o Wrapping	.0013
Hand Solder, w/Wrapping	.000070
Crimp	.00026
Weld	.000015
Solderless Wrap	.0000068
Clip Termination	.00012
Reflow Solder	.000069
Spring Contact	.17
Terminal Block	.062

Environment Factor - π_E

πE
1.0
2.0
7.0
4.0
11
4.0
6.0
6.0
8.0
16
.50
9.0
24
420

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_{g} \pi_{Q})_i$$
 Equation 1

for a given equipment environment where:

 λ_{EQUIP} = Total equipment failure rate (Failures/10⁶ Hours)

 λ_{q} = Generic failure rate for the ith generic part (Failures/10⁶ Hours)

 π_Q = Quality factor for the i th generic part

N_i = Quantity of i th generic part

n = Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited (A_{\parallel}) and uninhabited (A_{\parallel}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_L factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

APPEN	IDIX	A: PART	s coun	IT					
	ر 90	1.2 1.9 1.2 1.7 1.7	3.04	1.2	1.2 1.9 3.3 17 17	1.1 1.4 2.0 3.4	2.3 3.3 3.3	3.3 12.6 4.6	5.6
?	7 ₹ 12 €	.069 .=1 .65 .95	.096 .26 .41	076 12 22	. 12 . 21 . 69 1 0		13 12 1	24 4 1 8 8 1 1 4 1 8 8 1 1 1 1 1 1 1 1 1	8 0
> 2 Vr.))	MF 65	030 046 082 28 41	044 072 12 19	034 057	033 053 095 30 46 63	044 072 12 19	.052 .053 .053	20 42	54
κο Values 1 (Device in Production	SF 50	.0036 .0011 .033 .052	0095 017 033 050	0061	.0057 .010 .019 .049 .084	0095 017 033 05	.0046 .0056 .0061	.028 .052 11.	.093
atues Ice in Pr	ARW 75	.047 .074 .13 .44 .85	.076 .13 .22 .35	.054 .089 .16	.052 .083 .15 .72 .98	.078 .13 .22 .35	.070 .083 .084 .13	85.18	85
7 X 0 X Y	₽ 0	.049 .077 .14 .46 .88	12.4.4.6	190	.056 .092 .17 .51 .79	52, 4, 6,	.070 .084 .086 .13	38.50	1.1
See Page A-4 for Kg Values own Below), x ₁ = 1 (Device in	1	.032 .051 .091 .45	.12 .22 .41 .63	044	.039 .066 .12 .36 .56	12 22 41 63	044 053 055 083	17 32 65	45 45 80
culta. See Page A-4	A _{IF}	030 048 085 242 56	062 11 19 30	.037	.035 .057 .10 .32 .49	062 11 19 30	044 052 054 080	13	32
E	A _{IC}	0.039 0.039 0.046 0.039	057 10 19 29	.032 .054 .099	.029 .049 .088 .27 .42	. 10 . 10 . 19 . 29	035	52.4	9.00
Alcrocire Pina 1		.035 .055 .097 .33 .48	049 078 13	.040 .065 .12	.039 .062 .11 .36 .54	049 078 13	.052 .062 .093	133	8 5 5 8 6 9
ab) for B	S O	0024 0037 065 065	034 092 15	.027 .045 .082	.027 .043 .077 .24 .37	.034 .054 .082 .15	.042 .042 .063	91.08	22.24
(Failures/10 ⁶ Hours) for Microcircuits.	G M SS	.024 .038 .086 .33	039 065 11	.029 .048 .087	.027 .045 .080 .25 .39	039 11 18	0.42 0.43 0.43 0.64	36	27.2
##ures/1	GF 80	0.00 0.00 1.12 1.25 1.25 1.25 1.25 1.25 1.25 1.25	.024 .041 .074	016 028 052	015 026 14 14 31	024 041 074	021 022 033	23	34 - 24
Rate, λg (F	8 8 8	.0036 .0060 .011 .033	.0095 .017 .033	.0061	.0057 .010 .019 .049	.0095 .017 .033	00 56 00 56 00 95 00 95	.052 .052	933
Generic Fallure Rate	on Ea Shown, soid Environ. → T ₁ (°C) →	(18 Pin DIP) (24 Pin DIP) (40 Pin DIP) 128 Pin PGA) 180 Pin PGA)	(14 Pin DIP) (18 Pin DIP) (24 Pin DIP) (40 Pin DIP)	(16 Pin DIP) (24 Pin DIP) (40 Pin DIP)	(16 Pin DIP) (24 Pin DIP) (40 Pin DIP) (128 Pin PGA) (318 Pin PGA)	(14 Pin DIP) (18 Pin DIP) (24 Pin DIP) (40 Pin DIP)	(24 Pin DIP) (28 Pin DIP) (28 Pin DIP) (40 Pin DIP)	(40 Pin DIP) (64 Pin PGA) (128 Pin PGA)	(40 Pin DIP) (64 Pin PGA) (128 Pin PGA)
	(Defaults: RT Based Part Type	es	(65)	Programmable Logic Arrays (Ea = .4) Up to 200 Gates 201 to 1000 Gates 1001 to 5000 Gates	ttal (Ea = .35) 35 35 31es	30,000 to 60,000 Gates Linear Microcircuits (Ea = .65) 1 to 100 Transistors 101 to 300 Transistors 301 to 1,000 Transistors 1001 to 10,000 Transistors	Floating Gate Programmable Logic Array, MOS (Ea *.35) Up to 500 Gates 501 - 2000 Gates 2001 - 5000 Gates 5001 to 2000 Gates	2	
	section	• S-	5 1	5	1.5	2 1	5	5 1	

											_				_											A	\P	ΡĒ	N	DI	<u>X</u>	<u>A:</u>		PAI
09		æ 6	. C	3.3					 		4.	1.7	6 6			7	60	6	2.3		6		6.3				2.3			.57	7.		5.5 5.55	
ML 75		Ξ:	<u> </u>	202			=	13	<u>.</u>	3	080	1.	2 ;	5		800	5 -	6	30		13	8	23	85.	;	2 5	18	30		031	.068		9. S	
M _F 65		044	0.53	083			045	.054	.057	990	034	043	051	/90		044	590	095	15		0.58	081	= 9	6	2	690	084	7		013	028		13	
Տ _բ 50		.0047	0059	.011			.0048	.0062	.0072	215	0040	.0055	0074	.01		0700	200	023	.043		ç	.01	.028	SS	31.00	0173	0.18	.033		.0013	.0028		.0068	
AFW 75		170.	980	4			.072	.087	.092	4	055	070	084	=		073	S =	<u> </u>	.26		960	4.	91.	55.	,	- F	7	.24		.021	.045		20	
¥ åg		.074	0 0	.15			.075	.093	우.	9	059	079	₽.	.15		Ş	2 2	. 6	49		-	? ?	8	9	;	0 5	25	.38		.022	.047		51. 25.	
ک0 90 د		048	080	.11			049	.082	.073	-12	040	020	.078	12		600	200.		9		5	6	6.	58	į	120.	<u></u>	.35		0.15	.030		078	
AIF 75		.045	055	060			048	026	.061	.095	950	047	058	080		7 20	4.00 4.00 7.00	6 -	23		070	2.	16	53		0.58	. 1.	20		.013	.028		.067	
AIC 75		760.	5	0.75			037	9	150.	090	960	039	0.69	0/0		9	9.6	5 5	25		C	0.05	5	.27	;	050	10.	B		.011	.023		.05 4	
⊃ s 9		.053	690	098			053	8	.067	9	9	051	080	10.		9	0. 0. 0. 0.	S =	9		790	60	12	12		080	.080	18	CMOS	910	.034		870.	
χ 6		.035	2.5	986			8 0	0.	.045	989	60	9.0	040	.053		Š	60. 6	5 6	<u>-</u>		970	5 6	989	5		5 5	. S	Ţ,	3 VHSIC	010	.022		.052	
ე გ. გ.		.036	043	0.00 0.00 0.00			Acc	3	046	.071	760	038	043	.057		6	86.5	6			6	0.00	9	اءِ		643	0.00	.13	Section 5	010	.022		.052	2
ရှိ မ		0.18	022	038			810	0.22	.024	.038	7	5 5	.023	.032		•	022		0.03		6	0.43	.065	2		023	0.03		Refer to	0052	110		028	3
8 G		.0047	.0059	986.			0700	800	.0072	012	2	200	.0074	.011			900.	5.0	043			010	028	.053		.0075	810	.033		.0013	.0028		9900	2
Environ → T ₁ (°C) →		를	(28 Pin DIP)	(28 Pin Oil') (40 Pin Oil')			(OIC) MO PO	(28 Pin DIP)	(28 Pin DIP)	(40 Pin DIP)	10 01		(24 PM DIP)	(28 Pin DIP)			(18 Ph DiP)	(22 Pin DIP)	(28 Pin DIP)		i	(24 Pin DIP)	(28 Pin DIP)	(40 Pin DIP)		(24 Pin DIP)	(28 PH OFF)	(40 Pin DIP)		(8 Pin DIP)	(16 Pin DIP)		(38 Pin DIP)	102
Parl Type	MOS Technology	Merrories, ROM (Ea = .5)	16K to 64K	64K to 256K	Memories, PROM, UVEPROM,	EEPROM, EAPROM (Es = .6)	A STATE OF THE PARTY OF THE PAR	15K to 54K	64K to 256K	256K to 1 MB	Memories, DRAM (Ea = 6)	Up to 16K	64K to 256K	256K to 1 MB	Memories, SRAM, (MOS & BIMOS)	(Ea = 6)	Up to 16K	16K to 64K	64K to 256K 256K to 1 MB	Bipoler Technology	Memories, ROM, PROM (Ea ≈ .6)	Up to 16K	16K to 64K 64K to 256K	256K to 1 MB	Memorles, SRAM (Ea = .6)	Up to 16K	16K to 64K	256K to 1 MB	VHSIC Microcircuits, CMOS	GaAs MMIC (Es = 1.5)	101 to 1000 Active Elements		GaAs Digital (Ea = 1.4) 1 to 1000 Active Elements	1001 to 10,000 Active Elements
Section	5.2				5.2						5.5				5.2					5.2					5.2				5.3	5.4			ر. 4	

RO-2+ E Point Valuations

APPENDIX A: PARTS COUNT

		Cuality hactors (control): A Carculation for Cusiom Screening Programs	Programs
Quality Factors - 16	Graup	MilSTD-883 Screen/Test (Note 3)	Point Valuation
Description	Ş	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant	
		Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final	
Clases S. Caleonties	<u>-</u>	Electricals @ Temp Extremes) and TM 1014 (Seal Tiest, Cond A, B, or C)	20
	_	The 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant	
Procured in full accordance with MilM-38510, Class S requirements.		Axxeleration, Cond B Minimum)	
	.s	This 5004 (or 5008 for Hybrids) (Final Electricals @ Timp Extremes) and	37
2. Procured in full accordance with MilL38535 and Appendix B thereto (Class U).	9,	TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	
3 Hybrids: (Procured to Class Shequirements (Quality Level K) of MIL+H-18534.		Pre-Burn in Electricats TAT 1015 (Burn-th B-Lave/S-Level) and TM 5004 (or 5008 for Hybrids) Hose Burn in Charlette A Terms Extenses	30 (B Level)
			30 13 FBABIL
Class B Categories:	-	T1A 2020 Pind (Particle Impact Noise Detection)	11
1 Procured In full accordance with MIL-M-38610, Class B requirements.	•6	TM 5004 (or 5006 for Hybrids) (Final Electricals @ Temperature	11 (Note 1)
Change of the state of the second sec	9:0 —	Elf@nes)	
	_	TM 2010/17 (Infernal Visual)	7
 Hydrids: Procured to Class B requirements (Clustify Level H) of MitH-58534. 	<u>`</u>	TM 1014 (Seal Test, Cord A, B, or C)	7 (Nate 2)
Class B.1. Campory:	•••	TM 2012 (Radiography)	^
Fully compliant with all requirements of paragraph 1.2.1 of MilSTD-863 and procured to a	-	TM 2009 (External Visual)	7 (Note 2)
MIL drawing, DESC drawing or other government approved documentation. (Does not include hybrids). For hybrids use custom screening section below.	10	TM 5007/5013 (Ga.As) (Water Acceptance)	-
	=	TIA 2023 (Non-Destructive Bond Pult)	-

MOT APPROPRIATE FOR PLASTIC PARTS		NO 152. Point valuation only assigned if used independent of Groups 1, 2 or 3. 2. Point valuation only assigned if used independent of Groups 1 or 2.	Sequencing of tests within groups 1, 2 and 3 must be inlowed. Thinken to the MIL-STD-883 Test Method.	 Nontiermeit parts should be used driffy in controlled environments (i.e., cg) and other temperatura/hunidity controlled environments). 		EXAMPLES: 1. Mg, performs Group 1 test and Class B burn-hi: $R_Q = 2 + \frac{87}{50 + 30} = 3.1$	2. Mg performs internal visual test, seal test and final electrical test: $R_{Q} = 2 + \frac{87}{7 \times 7 + 11} = 5.5$	Other Commercial or Unknown Screening Levels	
	, r	2.0	89.	ř.	1.2	1.0			biographic in the second in th
Learning Factor - R	Years in Production, Y	1.2	z.	1.0	1.5	> 2.0	π. = .01 exp(5.3535Y)		Y = Years generic device type has been in production

			1	A A A A A A		2	Α.	٨	Ā	A.	A PA	ŭ.	LL Ž	_	
00100	Part Type	Env. → GB	ራ	≱	ς Σ	P 4	5 K	- 5	8	8	ĸ	20	65	75	8
*		T _J (°C) → 50	8	3 3	3	3	2							l	
	DIODES							;	ć	*	71	8100	920.	23	5.
	General Purpose Analog	.0036	.028	.048	.043	٤.	.0 9 2	L7:	S .	; ;	: 2	00047	050	090	04
		0000	.0075	.013	110.	.027	.024	.054	054	7	Š			4	ç
2.9	Switching		,	ç	80	8	.	4.	1.3	5.9	Ξ:	2	0¢.	<u>.</u>	2
6.1	Fast Recovery Pwr. Rectifier	.023	<u> </u>	36	3	5	673	16	16	38	13	.0014	.0 0 0	1 .	2.
6 1	Power Rectifier/ Schottky Pwr.	.0028	.022	.039	3	y .	, i	: :	17	36	7	5100	790	.18	1.2
6.1	Transient Suppressor/Varistor	.0029	.023	040	.035	48 0.	c /0.	- •	-	7.2	12	0016	090	16	1.3
6	Voltage Ref/Reg. (Avalanche	.0033	.024	.039	.035	<u>6</u>	9	<u>c</u>	?	į					
	and Zener)				;	;	:	Ķ	25	46	12:	.0028	.10	28	2.1
- 9	Current Regulator	9900	9.	990	090	<u>.</u>	=	; ;	, ,	8	3	5	16	<i>L</i> 9	350
6 3	Si Impatt (f < 35 GHz)	9 8.	2.8	8.9	5.6	ଷ	=	4	5	; ;		Ţ	3.7	12	g
1 1		- F	76	2.1	5.	4.6	5.0	2.5	4 .5	9.	.	2 9			,
2.9	GUNNBUIK EIIBG			700	910	058	.025	.032	.057	760	₽.	.002	940	<u>-</u>	<u>.</u>
62	Tunnel and Back	7 00.	9 600.	770	;		ğ	22	9	69	17.	410.	34	7	8.5
6.2	PIN	.028	99 0.	6	.	Ę į	2 6	1.	6 7	1.1	1.2	.023	99	1.8	14
6.2	Schottky Barrier and Point	.047	Ξ .	31	.23	3 .	o.	ģ	į						
	Contact (200 MHz s f s 35 GHz)					ţ	O S	OAG	5	.26	28	.0054	.13	14.	3.3
52	Varactor	.012	.026	.072	.052	<u>.</u>	8		4	131	5.	.0012	.053	16	1.1
6 10	Thyristor/SCR	.0025	.020	.034	030	.072	5	<u>*</u>	<u>.</u>	!					
	TRANSISTORS							6967	96	013	.0056	.000073	.0027	4200	.056
5.3	NPN/PNP (1 < 200 MHz)	.00015		7100.	.0017	8	0000	9		20	.22	.0029	Ę	.29	2.2
6.3	Power NPN/PNP (1 < 200 MHz)	7500.	.042	690	.063	Ē.	<u> </u>	રંદ	į E	1.1	.51	6900	.25	89	5.3
6 4	S: FET (1 5 400 MHz)	410.	8 6	.	.	,	, i	, F	; -	2.3	2.4	.049	1.2	3.6	30
6 9	Si FET (1 > 400 MHz)	660	7 5	ō.	4.	• ;	ē :		 4	9.5	7.2	.083	2.8	Ξ	23
6.8	GaAs FET (P < 100 mW)	71.	<u>2</u>	10	0.	₩ (0.	. u	<u> </u>	23	85	12.	6.9	27	8
6.8	GaAs FET (P ≥ 100 mW)	.42	6.	ස ල	2.5	n (n 4	2	2 4	9.	99	6200	.31	88	6 .
6.5	Unitunation	910.		8 8	<u>.</u> 4	4. t	ş, 8,	3. 2.	£.	2.3	2.4	.047	-	3.6	28
9 9	RF, Low Noise (f > 200 MHz, P < 1W)	5 6	23	3	?		,	;	ç	ď	7.3	.023	4.	1.1	=
7		.045	6	.23	2	S.	18	3	١						

APPENDIX A: PARTS COUNT

<u> </u>	<u> </u>												٦	
	۔۔۔	8		9	ţ.	2	28	3.6	3600	6200				
	ځ	75		ī		7. 7.	.021	.28	350	009				
	₩.	59		,	2	85.	0063	.082	87	150				
_	S _F	ያ			7500	013	00024	1600	9.	. v	}			
(cont.d	Ceneric Fallure Rate - Ag (Fallures/10 Hours) for Discrete Series	5			36	8	5.5	2 6	Ş .	9 6	3	gnetrons		
nductors	A	. 5	B		.23	26		8	£ .	110	88	Amoditers Klystrons, TWIs, Magnetrons		
Cemico	- A)	8		11	Ş	7	0074	960	88	<u>8</u>	Klystrons		
	Discrete	A _{IF}	2		13		6 .	0053	690.	98	150	Amofflers		
•	ire) for	ر √	2		400	Š	8	.0035	.046	28	5	1 20	2000	
•	10° Hot	₽	88		;	, 2	74.	4800	Ŧ,	52	500		S CHIE	
	Fallures/	NS	8			074	11.	0031	040	39	6		S Receive	
) by - 4	S.	E 18			5	31	ָּעָרְ עַרְ	200	2 6	135		7 (Include	8
	ure Rate	٤	, 8			.029	070	9 9	2100.	9. i	÷ &	- 1	See Section	See Section
	eric Fall	0	Env. 4 68	13 (2) (6)		110		770.	00047	.0062		9 9	8	8
	Č		Env										-	H
			Part Type		OPTO-FI ECTRONICS		Photodetector	Opto-Isolator	Emitter	Alphanumeric Display		نــ	JSVRS	LASERS
			Section	. **			6 11	6 11	6 11	6 12	5.13	6.13		τ α

Plastic	0.8		20	:	:			
Lower	u	o. O	25	2.5	5.0		ating Coating	
Discrete Semiconductor Quality Factors - AQ		5.4	5.0	8.1	2.0		1.0 Hermetic Package 1.0 Nonhermetic with Facet Coating 3.3 Nonhermetic without Facet Coating	
ductor Quality	JANIA	1.0	-	o 0	-	2	7.0 = 1.0 Hermetic Package 1.0 Nonhermetic with Fi 3.3 Nonhermetic without	
rete Semicon	JANTXV	70		0¢.	DG. 5	06.	Ď,	
Disc	Part Types	Section 30	Opto-Electronics	High Freq Diodes	Schottky Diodes	RF Transistors	·Laser Dicdes	
	Mum North	T	6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	6.2	6.2	6.6, 6.7, 6.8, 6.9	6.13	

			iel chenen	Failure	Rate.	λ. (Fallu	(Fallure/10 ⁶ H	Hours) For Resistors (Section 9.1)	r Resist	ors (Sec	tion 9.1						
	-			ہے	6	Z	ż	نو	Aff	23	*	V FIW	γ,	¥.	≨" :	۽ بي	
Part Type	Style	MILA.		† €	4 5	, 5	ر د ر	22.	22:	20	8	ĸ	ଚ	45	2 2	3	
	-		1 (C) → 30		196	720	13	1/0	160	11	.23	.25	100	.12	346	6.4	
Composition	<u></u>	33008	2200.	5.	5 6		÷ \$		160	11	23	.25	1100	12	9 6.	4.9	
Composition	5	=	.0022		.	\$	2 9	. 8	:	Ä	22	29	8100	.16	04.	0.7	
Film, Insulated	5	39017	7500	910.	.07	S.	2	8 , 8	<u> </u>	2 9	:	į (8100	91	9	7.0	
Film Insulated	ď	22684	7500.	910.	70.	8	6	8	=	e	7	RJ.	2 6		•		
ST CO CO CO	2	55182	7500.	910.	.07	8	8 †	8	Ξ.	91.	.22	.29	8130	<u>.</u>	·	· ·	
	3	55342	20037	910	.07	8	8	8 .	Ξ.	9	.22	.29	.00 <u>.</u> 18	.16	0	0. ;	
	. 6	900	2600	016	.07	8	8 1.	8	Ξ.	.16	25	.29	8100	.16	0	0.7	
Fim	E 6		90	2	16	.12	£ 4 .	8 2.	.2 4	.32	44.	. 6 5	.0051	.38	8	8	
Film, Power	2 8	5 6	2 8	786	980	.025	9.	.053	89 0.	.12	11.	19	.00082	.088	58	3.6	
Film, Network	<u> </u>		9037	9	3	150	Ξ.	480.	690	Ξ.	15	£.	.0012	.10	92,	4.5	
Wirewound, Accurate	<u> </u>	999		5 6		5	=	450	690	Ξ.	. 55	19	.0012	.10	.26	4.5	
Wirewound, Accurate	<u>8</u>	8	.0024	010	.	<u> </u>	; ;	2	25	38	52	8	.0043	.36	3 ,	16	
Wirewound, Power	HWH	39007	S800:	8	<u>9</u>	= :	, ;	? :		, e	22	8	0043	36	9 6	16	
Wirewound, Power	¥	98	.0085	88	5 .	=	Ę	<u>2</u>	G,	5 1	; ;		S	ď	e:	8	
Wirewound, Power,	£	39008	910.	070	.29	12:	F.	8	94	Ε.	86	ر. د	8	3 3			
Chassis Mounted	<u>u</u>	18546	016	070	.29	12.	r.	8,	46	17.	8 6.	1.3	0000	89	2 0.	3	
Chassis Mounted				836	600	017	8	959	033	540	.062	160.	2000	.054	.13	2.5	
Thermistor	Ē	23648	<u> </u>	8 6	7	193	12	8 6	690	=	51.	19	.0012	.10	97.	4.5	
Wirewound, Variable	E E	39015	4 200.	0	ţ ;	5	; \$	Ž	690	=	5	19	2100.	01.	.26	4.5	
Wirewound, Variable	둗	27208	1002	.010	5	3	<u>.</u>	3	080	. =	5	61	.0012	0.	.26	4.5	
Wirewound, Variable,	Æ	12934	.0024	010	9	E0:	71.	t S	Š	:) :	<u>:</u>	Ş		•	•	
Precision Wirewound Variable	*	19	.0026	.013	650.	.037	ž.	.083	Ę.	<u>6</u>	•		5100		,		A
Semiprecision		20000	800	013	690	.037	. 15	.083	= .	.19	•	•	.0013	•	•	•	PP
Wirewound, Vanable, Semiprecision	É	3			2	180	12	.054	690	Ę	15	19	.0012	.10	.26	4.5	EN
Wirewound, Variable, Power	æ	2	200	2 9	8	8	8	.083	Ξ	16	22	.29	8100	91	9	7.0	DI)
Nonwirewound,	5	33055) 	2			ğ	683	=	91	.22	.29	8100	91.	9	7.0	<u> </u>
Nonwirewound,	₹	22097	750037	910.	8 5	Š.	2 (}	:	Ą	22	58	9100	.16	9	7.0	<u>\:</u>
Composition, Variable	£	3,	.0037	910	.058	8	<u>.</u>	ş	. 9	2 2	7	45	0050	12.	.62	8.7	P
Nonwirewound,	8	39023	040	950	.	198	<u>5</u>	<u>e</u>	<u>0</u>	Š.	į.	?		č	ç	7 0	AF
Variable Precision Film, Variable	Ę.	23285	.040	.020	160.	190	24	£1.	91.	8.	.42	3 .	0200	2	70.	3.0	RTS
NOTES. 1) . Not N	dormally u	sed in this I	Not Normally used in this Environment Lodaus Component Anthent Temperature (*C)	ĵ.							ļ		1				CO
	Pwr. dissi	pation .5 wa	A * Desert Control of Section 15 watts assumed for all categories except RD, RWR, RW, REIT and RE styles. IND, RWR, RW: 8 watts. HEH and RE: 40 watts. Default Pwr. dissipation 15 watts assumed for all categories except RD, RWR, RW, REIT and RE styles. IND, RWR, RW: 8 watts. HEH and RE: 40 watts.	all categorie	s except Ri	J. FAWAR, FA	N, PREIN BIT	IRE styles.	150 PW 1	7, RW: 8 w	atts. HEH	MO ME: 40	Walls.				JN
		L				,	Established Reliability Styles	I Reliability	Shyles	2	MIL-SPE	Ų	Lower				<u>T</u>
				Š	Quality	v (5	2	- S		0_	3.0		£				
				_	<u></u>	3	:	!		1				_			

APPENDIX A: PARTS COUNT

			Generi	c Failure	Rate,	Generic Failure Rate, $\lambda_{\mathbf{g}}$ (Failures/10 ⁶		Hours) fc	or Capac	Hours) for Capacitors (Section 10.1)	ction 10	(1)				(
Part Type or Onelectric	Style	MIC	Env. → GB TA (°C) → 30	Qr €	% ₹	N S O 4	₹ Ş	کار چو	^IF 55	3 8	۾ ڳ	¥8.8	<u>ጉ</u> 8	₹. 2 .	₹ 88 1	7,8
Daner Bu. Pace	8	25	15000	1900	013	.0043	010	3600	.012	.025	030	.032	.00025	.013	.039	35
Paper By-Pass	. S	12889	15000	.0061	.013	.0043	010	5600.	.012	.025	.030	.032	.00025	.013	.039	35
Paper/Plastic, Feed-	CZ, CZB	11693	15000.	.0061	.013	.0043	010.	\$600	.012	.025	.030	.032	.00025	.013	66:0	38
Paper/Plastic Film	CO, COR	19978	0.000	.0084	910	.0059	10.	.013	.016	.034	140.	.043	.00035	.018	2 50.	84
Metallized Plastic/ Plastic	8	18312	15000	.0061	013	.0043	010	5600.	.012	.025	030	.032	.00025	.013	039	35
Metallized Paper/Plastic	S S	39022	00000	1900	018	6500	10.	013	.016	.03 4	.041	0.43	.00035	.018	.054	84
Metallized Paper/Plastic	€	55514	00000	1900	018	0059	10.	013	910.	.034	.041	.043	.00035	.018	.054	89
Metallized Plastic	₹	83421	00000	.0084	018	6500	\$10 .	.013	.016	.034	140	.043	.00035	910	.054	8
MICA (Dipped)	3	ď	.00057	8800	022	2900	910	910.	.024	690	.082	.084	.00029	.022	080	S.
MICA (Dipped or Molded)	SAS.	39001	75000.	8800	022	2900	910	610	.024	690	.082	186	.00029	.022	080	20
MICA (Button)	8	10950	.00057	8800	.022	7900	.016	910.	.024	690	.082	.084	.00029	.022	080	S
Glass	E S	23269	.0010	910	.039	.011	620	.034	.043	.12	. 5	Ξ.	.00051	.039	4	8
Glass	ઇ	11272	0100.	910	039	110	620	.034	.043	.12	.15	Ξ	.00051	.039	<u> </u>	8
Ceramic (Gen. Purpose)	8	11015	.0017	.026	19 6.	910	876	.057	170.	.20	.24	19	98000	790	.24	1.5
Ceramic (Gen. Purpose)	8	39014	7100.	.026	19 0.	810	048	750	170	.20	.24	.19	98000	.064	.24	1.5
Ceramic (Temo, Comp.)	88	8	7100.	.026	8 6.	910	840	750.	170	.20	24	.19	98000	964	24	1.5
Ceramic Chin	8	55681	.0035	.053	.13	.037	960	.12	Ξ.	14	49	.38	.0017	£1.	8 4.	3.0
Tantalum, Solid	85	39003	4100 .	710.	.037	.012	720	.026	.032	890	.082	780.	00000	.037	=	8
Tantalum, Chip	SA S	55365	41 ₀₀₀ .	9100.	9600	1100	1200	.0025	.0031	9900	6200	.0084	890000	9600	010	063
Tantatum, Non-Solid	5	39006	.0022	970	.057	.018	042	.040	.050	Ξ.	.13	£.	1100	.057	.17	5.
Tantalum, Non-Solid	ರ	3965	2:200:	970	.057	810	045	040	.050	Ξ.	.13	.13	.0011	.057	11.	. 5
Tantatum, Non-Solid	ŧ	83500	.0022	920	.057	.018	942	0 7 0.	.050	Ę.	.13	£.	1100	.057	7=.	5
Aluminum Oxide	CU, CUR	39018	.0013	910	.047	014	960	045	052	51.	.18	* .	.00063	.047	∠ ≢.	=
Atuminum Dry	쁑	8	.0013	610	.047	₹10.	960	.042	052	.15	.18	4.	.00063	.047	1 1.	Ξ.
Variable, Ceramic	ક	20	5900:	980	*	946	Ξ.	.10	13	.27	.32	34	.0027	*	2	3.8
Variable, Piston	5	14409	7100	.073	9	.051	£1.	.16	20	.57	.68	.53	.0024	8	99	4
Variable, Air Trimmer	ნ	8	7500000	780000	.00021	.000061	.00016	000019	00024	89000	.00081	.00063	.0000028	.00021	0000	
Variable, Vacuum	8	23183	.0042	98	11	.035	.062	710	760	.20	24	.28	.0021	=	35	2.9

1) * Not Normally used in this Environment 2) $T_{\rm A}$ = Default Component Ambient Temperature (°C) NOTES:

3) Voltage stress = .4, KSR = 1

4) Assumed capecitance (uF): CP, CA, CZ, CZP, CQ, CQPR, CH, CHR, CFR, CPH: 3.0; CM, CMR, CB: 0.000; CYR, CY, CK, CKR, CC, CCR, CDR: 20; CSR: 150; CWR: 50; CLR, CL, CRL: 1000; CU, CUR, CE: 8000; CV, FC, CT, CG: 0.00008 10 TOWER MIL-SPEC 3.0 2 0 Established Reflability Styles 8, 8 R P 030 .10 .30 0 5 **₽** Quality

Ş

			5	- [`						_			.			
Section	Part Type	MIL	Env. + GB	ታ	5	s Z	حٍ	ပ •	A F	3	4	¥.	ሉ	¥	₹′	ىي
-			TA ("C)→30	Ç	5	ş	Ž.	22	22	20	2	ĸ	8	45	88	\$
	INDUCTIVE DEVICES															
=	Transformer, Switching	T-21038	.00081	.0042	060 0	9038	210	.005	.0067	000	6 60	920	0003	000	82	.
=	Transformer, Flyback	T-27	800.	3	082	.033	-	3	8	990	8 8	1 9	.0023	095	.27	0.4
=	Transformer, Audio	1.27	.015	2	25	980	28	.12	.17	11	Ħ	S;	.0075	5	20	2
=	Transformer, Power	1-27	.053	8,	1.	ଞ୍ଚ	0	7	28	09	F.	1.7	.026	83	5.5	3,
=	Transformer, RF	1-55631	Z	8 ;	2.0	96	2.7	2.	1.5	1.6	2.1	9 .4	.070	2.2	6.5	97
112	Coil, Fixed Inductor or Choke	C.15306,	:000032	.0002	.00047	.00018	.00063	.00027	90000	76000	.00047	1100	.00002	.00051	0.0015	20.
112	Corl. Variable Inductor	C-15306	0000	00037	62000	10003	0010	0007	00059	1900	97000	8100	0000	28000	3005	240
	ROTATING DEVICES															
121	Motors, General		6.9	8.8	8.3	8.8	£.	5	13	8	8	5	6.9	•	•	•
121	Sensor Motor		27	27	g	27	8	25	25	1.20+02	1.20+02	S	27	g	28	23
12.1	Servo Motor		5.4	5.4	8.5	4.6	5	2	9	8	R	2	3	5.5	2	2
121	Stepper Motor		1.2	1.2	4 .	5.	4 .	2.3	2.3	5.3	5.3	2.3	12	-	23	1.2
122	Synchros .		.031	.071	14.	\$3	2.	6	.28		8.	1.2	910	3	1.7	54
122	Resolvers		.047	Ξ.	2.	.37	0.	78	C #:	1.7	2.6	8.	.023	18	2.8	•
	ELAPSED TIME METERS															
12.3	ETMAC		01	8	8	2	5	8	9	160	220	5	5.0	041	380	
123	ETM-Inverter Driver		15	8	<u>8</u>	105	279	75	120	240	375	380	7.5	210	220	
133	ETM-Commutation DC		\$	8	(80	280	2,50	80	8	640	0 00	<u>5</u>	50	260	1520	•
	RELAYS															
13.1	General Purpose (Bal. Arm.)		049	5.	1.0	S	6 .	9.	11.	1.3	4.	3.9	.025	1.7	5.7	•
13.1	Sensitive (Bal. Arm.)		680	52	2.	8	3.7	~ !	1.5	2.5	5.8	7.9	949	3.5	=	•
13.1	Dry Reed		.059	.15	7.	8	2.5	2	.9 3	1.5	1.7	4.7	030	2.1	8.8	•
131	Thermal Bi-metal		660	52	2.1	8	3.7	7.	1.5	2.5	2.8	7.9	049	3.5	Ξ	•
13.1	Magnetic Latching, (Bal.		049	-12	0.	%	6.	8	11:	1.3	7.	3.9	.025	1.7	5.7	•
13.1	Contactor, High Current		649	21.	0.	8	9.1	9	11.	1.3	4.7	3.9	.025	1.7	5.7	•
,	(Solenoid)		į	;	;	!	:	;	;	;	;	;	;	;	;	
132	Solid State, All		.029	280	8	4	٥	8	55	5	8	.8	015	8	8	=
:	SWITCHES	See 14.1	6	•	Ş	9	5	5	8	9	•	1	•	600	9	;
	Land		21000	5	3 5	2	97.5	<u> </u>	2200.	<u> </u>	83.8	6		500.	2000	
7 7	Microwave		5. t	2 -	ج :	5 =	1.20 1 02	? .	` F	8 8	2 2	20+02 78	y 8	70407	2 te 1 te	20402
4	Pushbutton		- 01	; 8	. c c	2 6	6	: 0	5 🚅	1 =	22	. 4	3 5	, s	2 2	20.00
14.	Reed		0100	0030	810	0800	620	010	0.0	013	22	8	00000	.025	290	1.2
- 4	Rocker		.023	690	4	2 2.	.67	23	¥	30	5.	Ξ	.012	21	1.5	8
14.1	Rotary		Ξ.	8	5.0	88	3.2	Ξ	2.0	7.	2.4	5.1	.055	2.8	7.4	1.30+02
14.1	Sensitive		64.	1.5	8.8	3.6	=	4.9	8.8	9.4	=	ឌ	52	12	ĸ	5.90+02
<u>-</u>	Thermat		.031	.093	%	23	8 .	<u>ب</u>	99:	9	S	₹.	510.	11.	~;	32
7 :	Thumbwheel		S	ফু ৪	S. 5	<u>.</u> 2	2 9 (2	E	3.2	2.3	0. (6 0 ·	6	4. (2 5	2.20+02
- 0	Const Breeker All		? *	3 .	<u>.</u>	9 7	A. •) 4	. a	5. F	7.7	÷ ;	<u> </u>		<u>}</u>	70 + OZ
	Control of career, Car		1		2		١		6	2	7.0	5	ş	-	2	
15.1	Circular		1100	.0013	110	0085	810	8700	0082	8 10	Š	160	00055	410	7	
15.1	PCB Card Edge	-		.052	5	8	5	8	33	92	86	5	022	92	6 0	8
151	Hexagonal			19	1.7	76	2.7	7.	1.2	2.5	3.7	4.7	.082	2.1	6.7	8
151	Rack and Panel			.027	₹.	Ξ.	8 9	₽.	.17	3 6	.52	%	10	œ.	693	13
15.1	Rectangular			980	2 5.	8	Į	ĸ	8	.75	=	7.	.025	.65	5.0	8
1.5	HF Contral		20048	00053	9.00. 84.00.	.0027	.0075	08. 88.	.003 203	2967	8 6	6	C005	90028	<u>6</u>	9 ;
15.2	C Society (OIP SIP DOM)			3 5	6 8	<u> </u>	<u>*</u>	\ <u>\</u>	79 O	2 5	e 8	5 8	3 6	- 8	3 5	• 6

APPENDIX	A:	PARTS	COUNT
	~.		COUNT

		Generic F	Generic Fallure Rate, $\lambda_{\mathbf{d}}$	E	(Fellures/10 ⁶	Hours)	for Induc	tive, Ele	ctromech	Hours) for Inductive, Electromechanical and Miscellaneous Parts	d Miscel		Parte			
Section	Part Type	¥	Env.→ GB	5	S _Z	ž	Z	Ş.	VIE VIE	2	AF) P	Sr	1	ž	
*			TA (*C) → 30	9	£	\$	\$	75	35	R	R	18	- 8	- 4 - 10	۶ ۲	۶ ۵
16.1	Plated Through Hole Circuit		0220	045	16	=	83	=	8	36	.62	42	011	22	2	
16.2	Surface Mount Tech. Circuit Boards		.0025	.37	1.8	.	42	5	6.1	æ	18		.0025	: =	3 =	= =
	SINGLE CONNECTIONS															
17.1	Hand Solder, w/o Wrapping		0013	9000	1000	(305.9	2	2363	2,50	,		į				
17.1	Hand Solder, w/Wrapping		7.00-05	41000	9000	0005	7,000	8000	8 8	8/8/	95.5	S 50.	.00065	012	.03	85
.7.1	Crimp	,	.00028	.00052	8100	000	800	0.00	9100	300	9000	3 8	3.50	.00063	5	& ©
171	New		1.54-08	3.00-05	9	60.0	0000	5	2 6	5 5	200.	S 5	.00013	0053	.8862	=
17.1	Solderless Wrap		8.80-08	1.46-05	4.80-05	270.0	7 60	20.00	3 4	20.00	200.	2000	7.50-08	.00013	9000	.0063
171	Clip Termination		.00012	00054	78000	87000	6.5	2004	2 6	2007	27 e 20 c	1 6 6	3.46-06	6.10-05	.00016	.00 28
17.1	Reflow Solder		6.96-06	.0001	84000	82000	BZ000	8000		7,000	9900	5 5	6.06-05	001	62 00	8
17.1	Spring Contact		.17	ह	1.2	8	9	9	<u></u>	ξ •		ğ ;	3.24-65	.00062	7	&
171	Termined Block		286	.12	64 .	ĸ,	8	£	3.	2 2	<u> </u>	<u>.</u> 8	60.60	<u>د</u> ر	- ·	F
	METERS, PANEL										3	8	3	80	1.5	æ
181	DC Ammeter or Voltmeter	M-10304	0.0	0.36	2.3	-	6	80	•	ç	•	;				
.8.1	AC Ammeter or Voltmeter	M-10304	0.15	0.61	3.8	•	9	6.4	9	y 0	8 :	ر د د	0.089	4 . 0	X	₹
19.1	Quartz Crystals	S-3098	260.	8	.32	2	15.	8	Z.	2	: 8	7.6	1.0	2.6	¥×	ĕ
20 1	Lamps, Incandescent, AC		3.8	7.8	12	2	4	=	g	Ç	3	٤ ا	0.00	42	0.	9
20.1	Lamps, Incandescent, DC		t1	8	8		: 5	2 2	2 2	<u>•</u> 3	3 5	₽ ;	2.7	91	ಜ	001
	ELECTRONIC FILTERS							,	,	5		8	0.6	51	4	 용
21.1	Ceramic-Fertie	F-15733	220	Š	13	980	8	Ā	5	?	8	;	;			
21.1	Discrete LC Comp.	F-15733	12	45.	.72	84,	:	7		, c		.	B (0.	12	33	- 5 e
21.1	Discrete LC & Crystal Comp.	F-18327	.27	Ž,	9.	: =	2.4	5 🚅	- 6		p. w		8 6.	3	6 0.	:
22.1	FUSES		010	020	080	8	=	٤	:			0.0	77	6	4.1	32
									•	2	اءِ	اع	8	<u>-</u>	12	2.3

· Not normally used in this environment. NOTES

 T_{A} = Default Component Ambient Temperature (°C), κ_{T} based on T_{A} shown.

Motor assumptions: 10 yr. (87800 hours) design life assumed; Synchros/Resolvent; Size 10-16, 3 brushee; ETMs; 🛪 🛪 .5. 8 48 8 7

Relay assumptions: Rated Temp. = 125°C, SPST, Realstive Load, S = .5, 10 cycleu/hour. Switch assumptions: SPST; Circuit breakens: DPST, not used as a switch.

Connector assumptions: π_K = 1; Sockets: 40 pins.

Plated firough hole circuit board assumptions: 1000 wave tolder joints, 3 planes, no hand soldering; SMT circuit board design assumptions are same as those shown in Section 15.2 example

using the default of values shown in Serson 16.2. Quartz crystal assumptions: 50 MHz. Lamp assumptions: utilization rate = .5, 28 volt rating.

	Non-MIL	3.0	V/N	2.9	1.9		2.0	8. 4.	2.0	1.0	2.0	N/A	۷/Ż	3.4	2.1	Y/X	2.9	N/A
	MIL-SPEC	1.0	N/A	2 .	1.0		1.0	1.0	1.0	w.	1.0	N/A	N/A	1.0	1.0	N/A	1.0	N/A
n 11-22 Devices	Established Reliability	.25*	N/A	09.	N/A		N/A	N/A	V/V	N/A	N/A	A/Z	A/N	A/N	A/N	N/A	N/A	N/A
π_{O} Factor for Use with Section 11-22 Devices	Part Type	Inductive Devices	Rotating Devices	Relays, Mechanical	Relays, Solid State and Time Delay (Hybrid &	Solid State)	Switches, Toggle, Pushbutton, Sensitive	Circuit Breakers	Connectors	Connectors, Sockets	Plated Through Hole Circuit Boards	Surface Mount Tech. Circuit Boards	Connections	Meters, Panel	Quartz Crystals	Lamps, Incandescent	Electronic Filters	Fuses
	# EGiSia	11.1, 11.2	12.1, 12.2, 12.3	13.1	13.2		14.1	14.2	15.1	15.2	16.1	162	17.1	18.1	191	20.1	21.1	22.1

· Category applies only to MIL-C-39010 Coils.

APP	ENI	DIX	A :	P	AF	TS	<u>S_C</u>	cou	NT								T	 									$\overline{\neg}$
Comments				Voltage Stress = ./, Metallurgically Bullued Contacts	Voltage Stress = .7, Metallurgically Bonded	Contacts	Voltage Suress F.7, Motandigical Contests Contests	Metallurgically Bonded Contacts Voltage Stress = .7, Metallurgically Bonded	Contacts Machine Rended Contacts		Metallurgically Bonded Contacts			Rated Power = 1000W		Multiplier Application	Voltage Stress = ./, Hated Forward Corrent = . A	Voltage Stress = .5, Switching Application, Rated	Voltage Stress = .8, Linear Application, Rated	MOSFET, Small Signal Switching	MOSFET	Output Matching	Pulsed Application, 5 GHz, 1W Average Curput Power, Input and Output Matching	Voltage Stress = .7, Rated Power = .5W	1 GH* 100W T .= 130°C for all Environments.	Voltage Stress = .45, Gold Metallization, Pulsed Application, 20% Duty Factor, Input and Output	Matching
яд и											,	9.0	0.	2.0		1.0	1.0	77.	5.5					77.			
ħ A												0.0	0.0	1.0		2.5		.70	 75.	70	: .	0.	1.0		,	<u>6</u>	
ပ္		λ _g Table		1.0	1.0		1.0	0.0	•	- 0.	1.0				1.0												
s _m		ded with		.42	42		.42	1.0 7.4	!	0.	1.0				1.0		15.	2.	5.					98			
My 15		All Defaults provided with $\lambda_{\mathbf{g}}$																				0.0	1.0			1.0	
	-	All Defa																								e. õ	
Verault A	•			.0038	5	<u>.</u>	.025	.003	<u>50</u>	.002	0034	.22	18	. 502.5 5. 8.5 1. 8.5	.027	3000	.0022	.00074	00074		.00 .060	.052	£.	.0083		86.	
Part Type		MICROCIRCUTS		DIODES		Switching	Fast Recovery Power Rectifier	Transient Suppressor/Varistor	Power Rectifier	Voltage Ref/Reg. (Avalanche &	Zener)	Current heginato	Gunn/Bulk Effect	Tunnel and Back	PIN Schottky Barrier and Point Contact	(200 MHz < frequency < 35 GHz)	Varactor Thyristor/SCR	TRANSISTORS	AMIN COC - W GRADING TO THE	(2) (2) > 1) LELEVIEW (2)	Si FET (\$ < 400 MHz)	GaAs FET (P < 100 mW)	GaAs FET (P ≥ 100 mW)	Unijunction	RF, Low Noise, Espoiar	RF, Power (P ≥ 1W)	
Coction	*	5.0		-	- 0	6.1	6.1	6.1	6.1	6.1		- c	2.9	6.2	6 6 7 7) i	6.2 6.10	Ċ	0.0	6.3	4.0	6. 60 	8.8	6.5	9.9	6.7	

Supersedes page A-12 of Notice 1

		Default	Parar	neters	for	screte	Default Parameters for Discrete Semiconductors	nduct	913
Section #	Part Type	م	Į.	ړٍ	FS.	္ခ	κ ^λ	ᄱᄱ	Comments
6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter Alphanumeric Display Laser Diode, GaAs/Al GaAs	.0055 .013 .00023 .0030 3.23			1.0 (πp)		11:		Phototransistor Phototransistor, Single Device LED 7 Character Segment Display For Environments with T _J > 75°C, assume T _J = 75°C, Forward Peak Current = .5 Amps (π _t = .62), Puised Application, Duty Cycle = .6,
6 13	Laser Diode, In/GaAs/In GaAsP	5.65			1.0 (πp)		11		For Environments with $T_J > 75^{\circ}C$, assume $T_J = 75^{\circ}C$, Environments with $T_J > 75^{\circ}C$, assume $T_J = 75^{\circ}C$, Forward Peak Current = .5 Amps ($\pi_i = .62$), Pulsed Application. Duty Cycle = .6, Pr/Ps = .5 (π_D
					<u> </u>				= 1)

- 26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
- 27. "Reliability Assessment of Surface Mount Technology," RADC-TR-88-72, AD A193759.
- 28. "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new failure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, Infrared LEDs, Diode Array Displays and Current Regulator Diodes.

- 29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
- 30. "VHSIC/VHSIC Like Reliability Prediction Modeling," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.

31. "Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's plated-through-hole (PTH) connections. The report gives a detailed account of the factors to be considered when performing an FEA and the procedure used to transfer the results to a reliability figure-of-merit.

32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microcircuit models (except VHSIC and Bubble Memories) appearing in MIL-HDBK-217F, Section 5.

- 33. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-81-1052.
- 34. "Reliability/Design Thermal Applications," MIL-HDBK-251.
- 35. "NASA Parts Application Handbook," MIL-HDBK-978-B (NASA).

 This handbook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, failure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
- 36. "Nonelectronic Parts Reliability Data 1991," NPRD-91.

 This report contains field failure rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies (1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.
- 37. "Reliability Assessment of Critical Electronic Components," RL-TR-92-197, AD-A256996.

 This study is the basis for new or revised failure rate models in MIL-HDBK-217F, Notice 2, for the following device categories: resistors, capacitors, transformers, coils, motors, relays, switches, circuit breakers, connectors, printed circuit boards and surface mount technology.

APPENDIX C: BIBLIOGRAPHY

38. "Handbook of Reliability Prediction Procedures for Mechanical Equipment," NSWC-94/L07. This Handbook includes a methodology for nineteen basic mechanical components for evaluating a design for R&M that considers the material properties, operating environment and critical failure modes. It is available from the Carderock Division, Naval Surface Warfare Center, Bethesda, MD 20084-5000, Phone (301) 227-1694.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity:
Air Force - 17

Project No. RELI-0074

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 15, 19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

					ROVEMENT	PROPOSA	-
 		e Instruction 2. DOCUME	7 - H	evers	e Siae)		
1.	MIL-HDBK-217F, Notice 2				ediction of Ele	ctronic Equipr	nent
3a.	NAME OF SUBMITTING ORGANIZATION		4.	TYPE (OF ORGANIZATION	Marx one)	
					VENDOR		
l			1				
1					USER		
b.	ADDRESS (Street, City, State, ZIP Code)		1				
			l		MANUFACTURER		
1			1				
ł			1		OTHER (S	pecify):	
<u></u>			<u> </u>				
5.	PROBLEM AREAS a. Paragraph Number and Wording:						1
Í	· · · · · · · · · · · · · · · · · · ·						
l							
1							
1							
İ							
I							
1							
Ī							
1							
I	b. Recommended Wording:						
1							
1							
l							
1							
1							
1	c. Reason/Rationale for Recommendation:						
1							
ĺ							
1							
1							
1							
1							
6.	REMARKS						
1							
1	•						
1							
1							
7a.	NAME OF SUBMITTER (Last, First, MI) - Optiona		b.		K TELEPHONE NUM		
			+	(Inclu	de Area Code) - Optio	onal	
c.	MAILING ADDRESS (Street, City, State, ZIP Cod	76) - Uptional	8.	DATE	OF SUBMISSION (Y	T/MWUU)	
1							

DD FORM 1426

1 170/44 | 1 | 1703/3/01 | 1 | 170/10/10 |

PREVIOUS EDITION IS OBSOLETE

INSTRUCTIONS In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clanfication of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)

(Fold along this line)

DEPARTMENT OF THE AIR FORCE RL/ERSS Griffiss AFB, NY 13441-5700

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 73236 WASHINGTON D.C.
POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE AIR FORCE

Rome Laboratory/ERSR ATTN: Seymour F. Morris 525 Brooks Rd. Griffiss AFB, NY 13441-4505