# MILITARY HANDBOOK 

## RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT



## DEPARTMENT OF DEFENSE

 WASHINGTON DC 20301
## RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Rome Laboratory, AFSC, ATTN: ERSS, Griffiss Air Force Base, New York 13441-5700, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.
SECTION 1: SCOPE
1.1 Purpose ..... 1-1
1.2 Application ..... 1-1
1.3 Computerized Reliability Prediction ..... 1-1
SECTION 2: REFERENCE DOCUUMENTS ..... 2-1
SECTION 3: INTRODUCTION
3.1 Reliability Engineering ..... 3-1
3.2 The Role of Reliability Prediction. ..... 3-1
3.3 Liminations of Reiiability Predictions ..... 3-2
3.4 Part Stress Analysis Prediction ..... 3-2
SECTION 4: RELIABILITY ANALYSIS EVALUATION ..... 4-1
SECTION 5: MICROCIRCUITS, mTRODUCTION ..... E-1
5.1 Gaten_ogic Arrays and Microprocessors ..... 5-3
5.2 Memories ..... 5-4
5.3 VHSICNHSIC Like ..... 5-7
5.4 GaAs MAMIC and Digital Devicos ..... 5-8
5.5 Hybrids ..... 5-9
5.6 SAW Devices ..... 5-10
5.7 Magnetic Bubble Memories ..... 5-11
$5.8 \quad \pi_{T}$ Table ior All ..... 5-13
$5.9 \quad \mathrm{C}_{2}$ Tabie for All ..... 5-14
$5.10 \quad \pi_{E}, \pi_{L}$ and $\pi_{Q}$ Tabies for Alil ..... 5-15
$5.11 T_{J}$ Determination, (All Except Hybrids) ..... 5-17
$5.12 T_{J}$ Determination, (For Hybrids) ..... 5-18
5.13 Examples ..... 5-20
SECTION 6: DISCRETE SEMICONDUCTORS
6.0 Discrete Semiconductors, Introduction ..... 6-1
6.1 Diodes, Low Frequency ..... 6-2
6.2 Diodes, hight Frequency (Mictowave, RF) ..... 6-4
6.3 Trans!stors, Low Frecurency, Bipolar ..... 6-6
6.4 Transistors, Low Frequency, Si FET ..... 6-8
6.5 Transistors, Unijunction. ..... 6-9
6.6 Transistors, Low Noise, High Frequency, Bipolar ..... 6-10
6.7 Transistors, High Power, High Frequency, Blpolar ..... 6-12
6.8 Transistors, High Frequency, GaAs FET ..... 6-14
6.9 Transistors, High Frequency, Si FET ..... 6-16
6.10 Tinyistore and SCRs ..... 6-17
6.11 Optoelectronics, Detectors, Isolators, Emiters ..... 6-19
6.12 Optoelectronics, Alphanumeric Displays ..... 6-20
6.13 Optoelectronics, Laser Diode ..... 6-21
$6.14 T_{J}$ Determination ..... 6-23
6.15 Example ..... 6-25

## CONTENTS

SECTION 7: TUBES
7.1 All Types Except TWT and Magnetron ..... 7-1
7.2 Traveling Wave ..... 7-3
7.3 Magnetron ..... 7-4
SECTION 8: LASERS
8.0 Introduction ..... 8-1
8.1 Helium and Argon ..... 8-2
8.2 Carbon Dioxide, Sealed ..... 8-3
8.3 Carbon Dioxide, Flowing ..... 8-4
8.4 Solid State, ND:YAG and Ruby Rod ..... 8-5
SECTION 9: RESISTORS
9.0 introduction ..... 9-1
9.1 Fixed, Composition (RCR, RC) ..... 9-2
9.2 Fixed, Film (RLR, RL, RN (R,C. or N), RN) ..... 9-3
9.3 Fbred, Fitm, Power (RD) ..... 9-5
9.4 Network, Fixed, Film (RZ) ..... 9-6
9.5 Fixed, Wirewound (RBR, RB) ..... 9-7
9.6 Fixed, Wirewound, Power (RWR, RW) ..... 9-8
9.7 Fixed, Wirewound, Power, Chassis Mounted (RER, RE) ..... 9-10
9.8 Thermistor (RTH) ..... 9-12
9.9 Variable, Wirewound (RTR, RT) ..... 9-13
9.10 Variable, Wirewound, Precision (RR) ..... $9-15$
9.11 Variable, Wirewound, Semiprecision (RA, RK) ..... 9-17
9.12 Variable, Wirewound, Power (RP) ..... 9-19
9.13 Variable, Nonwirewound (RJ, RJR) ..... 9-21
9.14 Variable, Composition (RV) ..... 9-23
9.15 Variable, Nonwirowound, Fitm and Precision (RQ, RVC) ..... 9-25
9.16 Calculation of Stress Ratio for Potentiometers ..... 9-27
9.17 Example ..... 9-29
SECTION 10: CAPACITORS
10.1 Fixed, Paper, By-Pass (CP, CA) ..... 10-1
10.2 Fixed, Feed-Through (CZR, CZ) ..... 10-3
10.3 Fixed, Paper and Plastic Film (CPV, CQR and CQ) ..... 10-5
10.4 Fixed, Metallized Paper, Paper-Plastic and Plastic (CH, CHR) ..... 10-7
10.5 Fixed, Plastic and Metallized Plastic. ..... 10-9
10.6 Fixed, Super-Metallized Plastic (CRH) ..... 10-11
10.7 Fbxed, MICA (CM, CMR) ..... 10-12
10.8 Fixed, MICA, Button (CB) ..... 10-14
10.9 Fixed, Glass (CY, CYR) ..... 10-16
10.10 Fixed, Ceramic, General Purpose (CK, CKR) ..... $10 \cdot 18$
10.11 Fixed, Ceramic, Temperature Compensating and Chip (CCR and CC, CDR) ..... 10-20
10.12 Fixed, Electrolytic, Tantalum, Solid (CSR) ..... 10-21
10.13 Fixed, Electroytic, Tamalum, Non-Solid (CL, CLR) ..... 10-22
10.14 Fixed, Electrotytic, Aluminum (CUR and CU) ..... 10-24
10.15 Fixed, Electrolytic (Dry), Aluminum (CE). ..... 10-26
10.16 Variable, Ceramic (CV) ..... 10-27
10.17 Variable, Piston Type (PC) ..... 10-28
10.18 Variable, Air Trimmer (CT) ..... 10-29
10.19 Variable and Fixed, Gas or Vacuum (CG) ..... 10-30
10.20 Example ..... 10-32

## CONTENTS

SECTION 11: INDUCTIVE DEVICES
11.1 Transformers ..... 11-1
11.2 Colls ..... $11-3$
11.3 Determination of Hot Spot Temperature ..... 11-5
SECTION 12: ROTATING DEVICES
12.1 Motors ..... 12-1
12.2 Synchros and Resolvers ..... 12-3
12.3 Elapsed Time Mieiers ..... 12-4
12.4 Example. ..... 12-5
SECTION 13: RELAYS
13.1 Mechanical ..... 13-1
13.2 Solid State and Tinc Dolay ..... 13-3
SECTION 14: SWITCHES
14.1 Toggle or Pushbutton ..... 14-1
14.2 Basic Sensitive ..... 14-2
14.3 Rotary ..... 14-3
14.4 Thumbwheel ..... 14-4
14.5 Circuit Breakers ..... $14-5$
SECTION 15: CONNECTORS
15.1 General (Except Printed Circuit Boand) ..... 15-1
15.2 Printed Circuit Board ..... $15 \cdot 4$
15.3 integrated Circuit Sockets ..... 15-6
SECTION 16: INTERCONNECTION ASSEMBLIES
16.1 interconnection Assernblies with Plated Through Holes ..... 16-1
SECTION 17: CONNECTIONS
17.1 Connections ..... 17-1
SECTION 18: METERS
i6.1 Meters, Pañel ..... 18-1
SECTION 19: QUARTZ CRYSTALS
19.1 Cuartz Crystals ..... 19-1
SECTION 20: LAMPS
20.1 Lamps ..... 20-1
SECTION 21: ELECTRONIC FILTERS
21.1 Electmonic Fiters, Non-Tunable. ..... $21=1$
SECTION 22: FUSES
22.1 Fuses ..... 22-1
SECTION 23: MISCELLANEOUS PARTS
23.1 Miscellaneous Parts ..... 23-1
APPENDIX A: PARTS COUNT RELAABILITY PREDICTION ..... A- 1
APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL) ..... B-1
APPENDIX C: BIBLIOGFAPHY ..... C-1

## CONTENTS

## LIST OF TABLES

Table 3-1: Parts with Multi-Level Quality Specifications ..... 3-3
Table 3-2: $\quad$ Environmental Symbol and Description ..... 3-4
Table 4-1: Reliability Analysis Checklist ..... 4-1Table 6-2:
Table 6-1Approximate Thermal Resistance for Semiconductor Devicesin Various Package Sizes6-24
LIST OF FIGURES
Figure 5-1: Cross Sectional View of a Hybrid whth a Single Multi-Layered Substrate ..... 5-18
Figure 8-1: Examples of Active Optical Surtaces ..... 8-1
Figure 9-1: MIL-R-39008 Derating Curve ..... 9-1

## MIL-HDBK-217F

## FOREWORD

This revision to MIL-HDBK-217 provides the foliowing changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

1. New failure rate prediction models are provided for the following nine major classes of microcircuits:

- Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
- Monolithic MOS Digital and Linear Gate/Logic Array Devices
- Monolithic Bipolar and MOS Digital Microprocessor Devices (Inctuding Controllers)
- Monolithic Blpolar and MOS Memory Devices
- Monolithic GaAs Digital Devices
- Monolithic GaAs MMIC Devices
- Hybrid Microcircuits
- Magnetic Bubble Memories
- Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The $C_{1}$ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice ( $\pi_{\mathrm{T}}$ ) have been changed for MOS devices and for memories. The $\mathrm{C}_{2}$ factor remains unchanged from the previous Handbook version, but inchudes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New vahues have been included for the quality factor ( $\pi_{\mathrm{Q}}$ ), the learning factor ( $\pi_{\mathrm{L}}$ ), and the environmental factor $\left(\pi_{E}\right)$. The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.
2. A new model for Very High Speed Integrated Circuits (VHSICNHSIC Like) and Very Large Scale integration (VLSI) devices (gate counts above 60,000).
3. The reformatting of the entire handbook to make it easier to use.
4. A reduction in the number of environmental factors $\left(\pi_{E}\right)$ from 27 to 14.
5. A revised failure rate model for Network Resistors.
6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.
1.1 Purpose - The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reliability of a mature design) of military electronic equipment and systems. It provides a common basts for rellability predictions during acquisilion programs for military electronic systems and equipment. It atso establishes a common basis for comparing and evaluating reliability predictions of related or compethive designs. The handbook is intended to be used as a tool to increase the reliability of the equipment being designed.
1.2 Application - This handbook contains two methods of reliability prediction - "Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual handware and circults are being designed. The Parts Count Method requires less intormation, generally part quartaies, quallity level, and the application environment. This method is applicable during the early design phase and during proposal formulation. In general, the Parts Count Method will usually result in a more conservative estimate (i.e., highor faikure rate) of system retiabitity than the Parts Stress Method.
1.3 Computerized Rellablity Prediction - Rome Laboratory - ORACLE is a computer program developed to aid in applying the part stress analysis procedure of MIL-HDBK-217. Based on emvironmental use characteristics, piece part count, thermal and electrical stresses, subsystem repair rates and system configuration, the program calculates piece part, assembly and subassembly failure rates. It also flags overstressed parts, allows the user to periorm tradeoff analyses and provides system mean-time-to-failure and availability. The ORACLE computer program software (available in both VAX and IBM compatible PC versions) is available at replacement tape/disc cost to all DoD organizations, and to contractors for application on specific DoD contracts as government fumished property (GFP). A statement of terms and conditions may be obtained upon written request to: Rome Laboratory/ERSR, Grifilss AFB, NY 13441-5700.

This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design．This information is necessary because some of these devices are used in so－called＂off－the－sherr equipment which the Department of Defense purchases．The documents cited in this section are for guidance and information．

| SPECIFICATION | SECTION： | time |
| :---: | :---: | :---: |
| Mn－C－5 | 10.7 | Capmitors，Fined，Nica－Dieloctric，General Spocification for |
| MIL－R－11 | 9.1 | Presintor，Fixed，Composition（Insutated）General Specirication for |
| MIL－R－19 | 9.11 | Resistor，Variable，Wirewound（Low Operating Temperature）General Spectification for |
| MHL－C－20 | 10.11 | Cenpecior．Foxed，Caramic Diolectric（Ternperature Compeneming） Established and Nonestablished Reliability，General Specification for |
| MIL－R－22 | 9.12 | Resistor，Wirowound，Power Type．General Specification for |
| MIL－C－25 | 10.1 | Capecitor，Fixed，Paper－Dielectric，Direct Current（Hermeticalty Sealed in Metal Cases），General Specification for |
| MIL－R－26 | 9.6 | Resistor，Fixed，Wirewound（Power Type），General Specification for |
| AIIL $=$ T－27 | 11.1 | Transformor and induator（Aludio，Power，High Power，High Power Pulse）．General Specification for |
| M14－C－62 | 10.15 | Capactor，Fixed Electrolyic（DC．Aluminum，Dry Electrolyte， Polarized），General Specification for |
| Will－C－8i | 10.16 | Capacitor，Variable，Coramic Dielectric（Trimmer）．General Specitication for |
| MIL－C－92 | 10.18 | Capactor，Variable，Air Dielectric（Trimmer）．General Specification for |
| MIL－R－93 | 9.5 | Resistor，Fixed，Wirewound（Accurate），General Specification for |
| MIL－R－94 | 9.14 | Resistor，Variable，Composition，General Specitication for |
| MIL－V－95 | 23.1 | Vibrator，Interrupter and Sell－Rectitying．General Specification for |
| $w-119$ | 20.1 | Lerpp，incendencert mirinure，Turgsten Fumatem |
| W－C－375 | 14.5 | Cinovit Breaker，Molded Case，Branch Circuit and Service |
| W－F－1726 | 22.1 | Fuse，Cartridge，Class H（This covers renewable and nonrenewable） |
| WF－i大ิ¢ | 22.1 | Fuse，Cartridge，High Internupting Capacity |
| MML－C－3098 | 19.1 | Crystal Unik．Quartz，General Specification for |
| MR－C－3607 | 15.1 | Connector，Coaxial Radio Frequency，Series Pulse，General Specifications for |
| MIL－C－3643 | 15.1 | Connector，Coaxial，Radio Frequency，Series NH，Associated Fittings， General Spectification for |
| MIL－C－3650 | 15.1 | Connector，Coaxial，Radio Frequency，Series LC |

SPECIFICATION
M1 - -3655

MK-C-3757

MIL-S.3786

Mil-C-3550
MIL-C-3965

MIL-C-5015

MIL-F-5372
MIL-R-5757

SECTION :
15.1

14.3
14.1
10.13

## 15.1

22.1

$$
13.1
$$

$$
13.1
$$

## 20.1

MILL-S-8805

MIL-S-8834 14.1
Mil-M-10304
MIL-R-10509 9.2

MIL-C-10950 10.
MIL-C-11015 $\quad 10.10$
MIL-C-11272 10.9


Nㅒㄴㄴㅁำ11804 g.3
MIL-C-12889

Miti-r-i2934
10.1
9.10

## TITE

Connector, Phy and Pocoptach, Eloctrical (Conaial Series Twin) and Associated Fittings, General Specification for

Conmactor, Plug and Pecoptacts (Power, Dladed Typo) Coneral Specification for

Swich, Rotary (Circuit Selector, Low-Current (Capacity)), General Spectication for

Swich, Toggie, Environmentaliy Seaied, Generai Specilicmion for
Capectior, Fixed, Electrolytic (Nonsolid Electrolyte). Tantalum, General Specification for

Connector, Electrical, Circular Threaded, AN Type, General Specilication for

Fuse, Current Limiter Type, Aircraft
Relay. Electrical (For Electronic and Communication Type Equipment), General Specification for
Relay, Electromagnetic (Including Established Reliability (ER) Types). General Specticention for

Lamp, Incandescent, Aviation Service, General Requirement for
Switches and Switch Assemblies, Sensitive and Push, (Snap Action) General Specification for

Switches, Toggle, Positive Break, General Specification for
Nieter, Electrical indicating, Panei Type, Ruggedized, Generai Spectilication for
Resistor, Fixed Fum (High Stability), General Specitication ior
Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for

Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Spectication for

Capactior, Fixed, Glass Dielectric, General Spectication for
Capacitor, Feed Through. Radio imerierence Feduction AC and OC. (Hermeticalty Sealod In Motel Cases) Established and Monestablished Reliability, General Specification for

Resiation, Fixed, Fitm (Pcuer Type), Gansral Spactication for Capachor, By-Pass', Radio - Interference Reduction, Paper Dielectric. AC and DC, (Hermetically Sealed in Metallic Cases), General Spectication for
Resistor, Variabie, Wirewound, Precision, Generai Specitication ior

### 2.0 REFERENCE DOCUMENTS



## TIILE

Cenpectior, Pxed, Peper (Paper Plastic) or Plestic Dielectric, Direct Current (Hermetically Sealod in Metal Cases) Established Reliability, General Specficication for

Capactior, Variable (Piston Type, Tubular Trimmer), General Specticication for

Fuse, Instrument, Power and Telephone
Coll, Fbred and Variable, Radio Frequency, General Specification for
Filer, Radio Interierence, General Specification for
Cepectior, Fixed, Motallzed (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for

Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for

Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification for

Semiconductor Device, General Specification for
Rolay, Control. Naval Shipboard
Retay, Time, Detay, Thermal, General Specification for
Capactor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for

Transformer, Pulse, Low Power, General Specification for
Connector, Electrical, Printed Wiring Board, General Purpose, General Spectitication for

Resistor, Variable, Nonwirewound (Adjustment Typas), Ganeral Specification for

Reshstor, Fixed, Film, Insulated, Genoral Specification for
Swhch, Rotary (Printed Circuit), (Thumbwheel, In-line and Pushbution), General Specification for

Swhches, Pushbutton, llluminated, General Specification for
Connector, Cylindrical, Heavy Duty, General Specification for
Cepachor, Fuxed or, Variable, Vacuum Dielectric, General Specification for

Capscitor, Fixed, Glass Dielectric, Established Reliablity, General Spectification for

Resistor, Variable, Nonwirewound, General Specification for
2.0 REFERENCE DOCUMENTS

| SPECIFICATION | SECTION \# | time |
| :---: | :---: | :---: |
| MIL-F-23419 | 22.1 | Fuse, Instrument Type, General Specification for |
| MIL-T-23648 | 9.8 | Thermistor, (Thermally Sensitive Resistor), Insulated, General Specillication for |
| MIL-C-24308 | 15.1 | Connector, Electric, Rectangular, Miniature Polarized Shell, Rack and Panel, General Spectication for |
| MIL-C-25516 | 15.1 | Connector, Electrical, Miniature, Coaxial, Environment Pesistant Type. General Specification for |
| M $11 . C-26482$ | 15.1 | Connector, Electrical (Circular, Minieture, Cuick Disconnect. Environment Resisting) Receptacles and Phigs, General Specification for |
| MIL-R-27208 | 9.9 | Resistor, Variable, Wirewound, (Lead Screw Activated) General Specification for |
| MIL-C-28748 | 15.1 | Connector, Electrical, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for |
| MIL-R-28750 | 13.2 | Relay, Solid State, General Specification for |
| M1L-C-28804 | 15.1 | Connector, Electric Rectangular, High Density, Polarized Central Jackscrow, General Specification for, Inactive for Now Designs |
| MIL-C-28840 | 15.1 | Connector, Electrical, Circular Threaded, High Density, High Shock Shipboard, Class D, General Specification for |
| MIL-M-38510 | 5.0 | Microcircuits, General Specification for |
| MIL-H-38534 | 5.0 | Hybrid Microcircuits, General Specification for |
| MIL-I-38535 | 5.0 | Integrated Circuits (Microcircuits) Manufacturing, General Spectfication for |
| MIL-C-38999 | 15.1 | Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect. (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for |
| MIL-C-39001 | 10.7 | Capachor, Fbred, Mica Dielectric, Established Reliablity, General Specification for |
| MIL-R-39002 | 9.11 | Reststor, Variable, Wirewound, Semi-Precision, General Specification for |
| MRL-C-39003 | 10.12 | Capacitor, Fixed, Electrolytic. (Solid Electrolyte), Tantalum, Eatablistied Reliability. General Specification for |
| MIL-R-39005 | 9.5 | Resistor, Fuxed, Wirewound, (Accurate) Established Rellability, General Specitication for |
| MIL-C-39006 | 10.13 | Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for |
| MIL-R-39007 | 9.6 | Resistor, Fixed, Wirewound (Power Type) Establishod Reliability. General Specification for |


| SPECIFICATION | SECTION* | TILE |
| :---: | :---: | :---: |
| MIL-R-39008 | 9.1 | Pesistor, Fixed, Composition, (Insulated) Established Reliability, General Specification tor |
| MLI-R390009 | 9.7 | Restitor, Fued, Wrewound (Power Type, Chassis Moumed) Established Reliabbility, General Specification for |
| MIL-C-39010 | 11.2 | Coll, Fixed, Radio Frequency, Molded, Established Reliability, General Specification for |
| M ${ }^{\text {L }}$-C-39012 | 15.1 | Connector, Coaxial, Radio Frequency, General Specification for |
| M1-C-39014 | 10.10 | Cepacitor, Fbeed, Ceramic Dielectric (General Purpose) Established Reliability, General Specification for |
| MR-C-39015 | 9.9 | Resietor, Variable, Wirewound (Lead Screw Actuated) Established Reliability, General Specification for |
| MIL-R-39016 | 13.1 | Relay, Electromagnetic, Established Reliability, General Specification for |
| MIL-R-39017 | 9.2 | Resistor, Fixed, Film (Insulated), Established Reliabiliky, Goneral Specilication for |
| MIL-C-39018 | 10.14 | Capacitor, Fixed, Electrolytic (Aluminum Oxide) Established Reliability and Nonestablished Reliability, General Specification for |
| M $\mathrm{LL}-\mathrm{C}-39019$ | 14.5 | Cricult Breakers, Magnetic, Low Power, Seated, Trip-Free, General Specilication for |
| MIL-C-39022 | 10.4 | Capecitor, Fixed, Metallized Paper, Paper-Plastic Film, or Plastic Film Dieloctric, Direct and Ahernating Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for |
| MIL-R-39023 | 9.15 | Resistor, Variable, Nonwirewound, Precision, General Specification for |
| MIL-R-39035 | 9.13 | Resistor, Variable, Nonwirewound, (Adjustment Type) Established Roliability, Goneral Spectfication for |
| MIL-C-49142 | 15.1 | Connector, Triaxial, RF, General Specification for |
| MRI-P-55110 | 15.2 | Printed Wiring Boards |
| MUL-R-55182 | 9.2 | Resistor, Fixed, Fibre Established Reliability, General Specitication for |
| MIL-C-55235 | 15.1 | Connector, Coaxial, RF. General Specification for |
| MIL-C-55302 | 15.2 | Connector, Printed Circuit, Subassembly and Accessories |
| M12-C-55339 | 15.1 | Adapter, Cosorial, RF, General Specification for |
| M1L-C-55514 | 10.5 | Cepactor, Fixed, Plastic (or Motallized Plastic) Dielectric, Direct Current, in Non-Métal Cases, General Specification for |
| MIL-C-55629 | 14.5 | Circuit Breaker, Magnetic, Unsealed, Trip-Free, General Specification for |
| MR-T-55631 | 11.1 | Transformer, Intermediete Frequency, Radio Frequency, and Discriminator, General Specification for |


| SPECAFICATION | SECTION: | TITLE |
| :---: | :---: | :---: |
| MHL-C-55681 | 10.11 | Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability, General Specification for |
| MRL-C-81511 | 15.1 | Connector, Electrical, Circular, High Density, Ouick Dieconnect, Environment Resisting, and Accessories, General Spectication for |
| MIL-C-83383 | 14.5 | Circuit Breaker, Remote Control, Thermal, Trip-Free. General Specilication for |
| MKL-R-83401 | 9.4 | Resistor Networks, Fbxed, Film. General Spectication for |
| MIL-C-83421 | 10.6 | Capecitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermeticaliy Sealed in Metal Cases, Estabitished Reliability. General Specilicmion for |
| MIL-C-83513 | 15.1 | Connector, Electrical, Rectangular, Microminiature, Polarized Shell. General Spectication for |
| M LL-C-83723 | 15.1 | Connector, Electrical (Circular Environment Resisting). Receptades and Plugs, General Specification for |
| MLL-R-83725 | 13.1 | Relay, Vacuum, General Specitication for |
| MIL-R-83726 | $\begin{array}{r} 13.1 .13 .2 \\ 13.3 \end{array}$ | Relay, Time Delay, Electric and Electronic, General Spectication for |
| MIL-S-83731 | 14.1 | Switch. Toggle, Unsealed and Sealed Toggle, General Specification for |
| Mn_C-83733 | 15.1 | Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200 Degrees C Total Continuous Operating Temperature, General Specification for |
| MIL-S-83734 | 15.3 | Socket, Plug-in Electronic Components, General Specification for |
| STANDARD |  | TITLE |
| MILSTD-756 | Reli | ty Modeling and Prediction |
| MIL-STD-883 | Test | thods and Procedures for Microelectronics |
| MLL-STD-975 | NAS | Standand Electrical. Electronic and Electromechanical Parts Liet |
| MM.-8TD-1547 |  | Materials and Processes for Space Launch Vehicies, Technical ments for |
| MIL-STD-1772 | Cert | ation Requtroments for Myorid Microcirculi Factilies and Lines |

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtalned from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

```
Standardization Document Order Desk
700 Robins Ave.
Building 4, Section D
Philadelphia, PA 19111-5094
(215) 697-2667
```

3.1 Rellablity EngIneering - Reliability is currently recognized as an essential need in military electronic systems. It is looked upon as a means for reducing costs from the tactory, where rework of defective components adds a non-productive overhead expense, to the field, where repair costs inctude not only parts and labor but also transportation and storage. More importantly, reliability directly impacts force effectiveness, measured in terms of availability or sortie rates, and determines the stze of the "logistics tail" inhibiting force utilization.

The achievement of rellability ts the function of reliability engineering. Every aspect of an electronic system, from the purty of materials used in is component devices to the operators interface, has an impact on reliability. Reliability engineering must, therefore, be applied throughout the system's development in a diligent and timely fashion, and integrated whith other engineering disciplines.

A variety of reliability engineering tools have been developed. This handbook provides the modets supporting a basic tool, reliability prediction.
3.2 The Role of Rellablity Prediction - Reliabillty prediction provides the quantitative baseline needed to assess progress in reliability engineering. A prediction made of a proposed design may be used in several ways.

A characteristic of Computer Aided Design is the ability to rapidly generate alternative solutions to a particular problem. Reliability predictions for each design ahernative provide one measure of relative worth which, combined with other considerations, will aid in selecting the best of the available options.

Once a design is seiecied, tune reliability prediction may be used as a guide io improvement by sinowing the highest contributors to failure. If the part stress analysis method is used, it may also reveal other frultul areas tor change (e.g., over stressed parts).

The impact of proposed design changes on reliability can be determined only by comparing the reliability predictions of the existing and proposed designs.

The ability of the design to maintain an acceptable reliability level under environmental extremes may be assessed through reliability predictions. The predictions may be used to evaluate the need for environmental control systems.

The effects of complexity on the probability of mission success can be evaluated through reliability predictions. The need for redundant or back-up systems may be determined with the aid of reliability predictions. A tradeoff of redundancy against other reliability enhancing techniques (e.g.: more cooling, higher part quality, etc.) must be based on reliability predictions coupled with other pertinent considerations such as cost, spece lifritations, etc.

The prediction will also help evahuate the sionlicance of reported fallures. For example, h several fallures of one type or component occur in a system, the predicted fallure rate can be used to determine whether the number of fallures is commensurate with the number of components used in the system, or, that it indicates a problom area.

Finally, rellability predictions are usetul to various other engineering analyses. As examples, the location of built-in-test circuitry should be influenced by the predicted failure rates of the circuliry monitored, and maintenance strategy planners can make use of the relative probability of a fallure's location, based on predictions, to minimize downtime. Reliability predictions are also used to evaluate the probabilities of failure events descrieed in a failure modes, effects and criticality analysis (FMECAs).
3.3 Limitations of Rellability Predictions - This handbook provides a common basis for reliability predictions, based on analysis of the best available data at the time of lssue. It is intended to make reliability prediction as good a tool as possible. However, 隹e any tool, reliability prediction must be used intelligently, with due consideration of its limitations.

The first limitation is that the failure rate models are point estimates which are based on available data. Hence, they are valid for the condmions under which the data was obtained, and for the devices covered. Some extrapolation during model development is possible, but the inherently empirical nature of the modieis can be severely restricive. For exampie, none oi the modieis in this handibook predict nuciear survivability or the effects of ionizing radiation.

Even when used in similar environments, the differences between system applications can be significant. Predicted and achleved rellability have aways been ctoser for ground electronic systems than for avionic systems, because the environmental stresses vary less from system to system on the ground and hence the field conditions are in general closer to the environment under which the data was collected for the prediction model. However, failure rates are also impacted by operational scenarios, operator characteristics, maintenance practices, measurement tectintques and differences in deftintion of talture. Hence, a rellabllity prediction shoutd nover be assumed to represent the expected field rellablity as measured by the user (i.e., Mean-Time-Between-Maintenance, Mean-Time-Between-Removals, etc.). This does not negate its value as a reliability engineering tool; note that none of the applications discussed above requires the predicted reliability to match the field measurement.

Electronic technology is noted for its dynamic nature. New types of devices and new processes are continually introduced, compounding the difficulties of predicting reliability. Evolutionary changes may be handled by extrapolation from the existing models; revolutionary changes may dety analysis.

Another limitation of rellabilty predictions is the mechanics of the process. The part stress analysis method requires a signilicant amount of design detail. This naturally imposes a time and cost penalty. More significantly, mary of the detalis are not availabie in the earty design stages. For this reason this handbook contains both the part stress analysts mothed (Sections 5 through 23) and a simplor parts count method (Appendix A) which can be used in earty design and bid formulation stages.

Finally, a basic limitation of reliability prediction is its dependence on correct application by the user. Those who correctly apphy the modets and use the information in a conscientious reliability program will find the prediction a usetul tool. Those who view the prediction only as a number which must exceed a specified value can usually find a way to achieve their goal without any impact on the system.

### 3.4 Part Stress Analysis Prediction

3.4.1 Appicability - This method is appicabie wien most of the design is completed and a detailed parts list including part stresses is avallable. It can also be used during later design phases for rellability trade-offs vs. part selection and stresses. Sections 5 through 23 contain failure rate modets for a broad variety of parts used in electronic equipment. The parts are grouped by major categorles and, where appropriate, are subgrouped whin categories. For mechanical and electromechanical parts not covered by this Handboos, reffer to Dibliographyy Hems 20 and 36 (Appendix C).

The failure rates presented apply to equipment under nomal operating conditions, i.e., with power on and performing its intended functions in is intended environment. Extrapolation of amy of the base fallure rate models beyond the tabulated values such as high or sub-zero temperature, electrical stress values above 1.0, or extrapolation of any associated model modifiers is completely invalid. Base fallure rates can be interpolated between electrical stress values from 0 to 1 using the undertying equations.

The general procedure for determining a board level (or system level) failure rate is to sum individually calculated fallure rates for each component. This summation is then added to a failure rate for the circuit board (which inchudes the effects of soldering parts to ti) using Section 16, Interconnection Assemblies.

For parts or wires soldered together (e.g., a jumper wire between two parts), the connections model appearing in Section 17 is used. Finally, the effects of connecting circuit boards together is accounted for by adding in a failure rate for each connector (Section 15, Connectors). The wire between connectors is assumed to have a zero failure rate. For various service use profiles, duty cycles and redundancies the procedures described in MIL-STD-756, Reliability Modeling and Prediction, should be used to determine an effective system level faikre rate.
3.4.2 Part Quality - The qualty of a part has a direct effect on the part fallure rate and appears in the part models as a factor, $\pi_{Q}$. Many pars are covered by specifications that have several quality levels, hence, the part models have values of $\pi_{Q}$ that are keyed to these quality levels. Such parts with their quality designators are shown in Table 3-1. The detalled requirements for these levels are clearty defined in the applicable specification, except for microcircuits. Microcircuits have quality levels which are dependent on the number of MiL-STD-883 screens (or equivalent) to which they are subjected.

Table 3-1: Parts With Multi-Level Qually Specifications

| Part | Quality Designators |
| :--- | :--- |
| Microcircuits | S, B, B-1, Other: Quality Judged by |
| Screening Level |  |
| Discrete Semiconductors | JANTXV, JANTX, JAN |
| Capacitors, Established <br> Reliability (ER) | D, C, S, R, B, P, M, L |
| Resistors, Established <br> Rellability (ER) | S, R, P, M |
| Coils, Molded, R.F., <br> Reliability (ER) | S, R, P, M |
| Relays, EStablished <br> Reliability (ER) | R, P, M, L |

Some parts are covered by older specifications, usually referred to as Nonestablished Reliability (Non-ER), that do not have multi-levels of quality. These part models generally have two quality levels designated as "MIL-SPEC.", and "Lower". If the part is procured in complete accordance with the applicable specification, the $\pi_{Q}$ value for MIL-SPEC should be used. If any requirements are waived, or if a commercial part is procured, the $\pi_{\mathrm{Q}}$ value for Lower should be used.

The foregoing discussion involves the "as procured" part quality. Poor equipment design, production, and testing facilities can degrade part quality. The use of the higher quality parts requires a total equipment design and quality control process commensurate with the high part quality. It would make little sense to procure high quality parts only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DoD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-ant and has a high reliability requirement necessitating high quality parts, the iotal equipment program should be given careful scrutiny and not just
the parts quality. Otherwise, the low faikre rates as predicted by the models for high quality parts will not be realized.
3.4.3 Use Environment - All part reliability models include the effects of environmental stresses through the environmentai iactor, $\pi_{E}$, excepi for tine eifecis of ionizing radiation. The descriptions of these environments are shown in Table 3-2. The $\pi_{E}$ factor is quantified within each part failure rate model.
These environments encompass the major areas of equipment use. Some equipment will experience more than one environment during its normal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch $\left(M_{L}\right)$ conditions during boost into and return from orbit, and space filight $\left(S_{F}\right)$ while in orbit.

Table 3-2: Environmental Symbol and Description

| Environment | ${ }^{\text {E E S S }}$ Smbol | Equivatom MIL-HDBK-217E. Notice 1 $\pi_{E}$ Symioui | Description |
| :---: | :---: | :---: | :---: |
| Ground, Benign | $G_{B}$ | $G_{B}$ $G_{M S}$ | Nonmobile, temperature and humidity controlled environments readily accessible to maintenance; inciudes iacoratory insiruments and tost equipment, medical electronic equipment, business and scientific computer complexes, and missiies and suppori equipment in ground silos. |
| Ground, Fixad | $G_{F}$ | $G_{F}$ | Noderately controllod environmente such as installation in permanent racks with adequate cooling air and possible installation in unheated buildings; includes permanent installation of air traffic control radar and communications facilities. |
| Ground, Mobile | $G_{M}$ | $\begin{aligned} & G_{M} \\ & M_{P} \end{aligned}$ | Equipment instalied on wheeled or tracked vohicles and equipment manually transported; includes tactical missile ground support equipment, mobile communication equipment, tactical fire direction sysiems, handineid communications equipment, laser designations and range finders. |
| Naval, Sheltered | $\mathbf{N}_{S}$ | $\mathrm{N}_{\mathbf{S}}$ <br> $N_{\text {SB }}$ | Includes sheltered or below deck conditions on surface ships and equipment instalied in submarines. |
| Naval, Unstentered | N | ${ }^{\mathrm{N}}$ <br> $\mathrm{N}_{\mathrm{N}}$ <br> $\mathrm{N}_{\mathrm{H}}$ | Unprotected surface shipborme equipment exposed to weather conditions and equipment immersed in salt water. Inctudes sonar equipment and equipment installod on hydrofoil vessels. |

Table 3-2: Environmental Symbol and Description (cont'd)

| Environment | $\pi_{E}$ Syimbol | Equivalent MIL-HDBK-217E. Notice 1 $\pi_{E}$ Symbol | Description |
| :---: | :---: | :---: | :---: |
| Aitbome, Inhabited. Cargo | $A_{i C}$ | $\begin{aligned} & A_{I C} \\ & A_{I T} \\ & A_{I B} \end{aligned}$ | Typical conditions in cargo compartments which can be occupied by an alicrew. <br> Environment exiremes of pressure, temperature, shock and vibration are minimad. Examples inctude long mission atrorafl such as the C130, C5, B52, and C141. This category alo applise to inhahined areae in iow performance smaller aircraft such as the T38. |
| Airborne, Inhabited, Fighter | $\mathrm{A}_{\text {IF }}$ | $\begin{aligned} & A_{I F} \\ & A_{i A} \end{aligned}$ | Same as $A_{I C}$ but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111, F/A 18 and A A10 aircrati. |
| Airborne, Uninhabited, Cargo | Auc | Auc <br> AUT <br> $\dot{A}_{\text {UB }}$ | Environmentally uncontroliod areas which cannot be inhebuited by an aircrew during flight. Environmental extremes of pressure. temperature and shock may be severe. Examples includs uninhatited areas of long mission aircraft such as the C130. C5, B52 and C141. This category also applies to uninhabited area of lower periormance smatler aircraft such as the T38. |
| Airborne. Uninhabited, Fighter | $A_{\text {V }}=$ | $A \cdot$ <br> A UA | Same as Auc but installed on high pertormance aircraft such as fighters and interceptors. Examples include the F15, F16, F111 and A10 aircraít. |
| Airborne, Rotary Winged | $A_{\text {AW }}$ | ${ }^{\text {A PWW }}$ | Equipment instalied on helicopters. Applies to both internally and externally mounted equipment such as laser designators, fire control systems, and communications equipment. |
| Space, Flight | $S_{F}$ | $S_{F}$ | Eäth ortùal. Approactes benign ground conditions. Vehicle nelther under powered flight nor in atmospheric reentry; includes sateilites and shutties. |

Table 3-2: Environmental Symbol and Description (cont'd)

| Environment | $\pi_{E}$ Symbol | Equivalent MIL HDBK-217E, Notice 1 $\pi_{E}$ Symbol | Description |
| :---: | :---: | :---: | :---: |
| Missile, Flight | $M_{F}$ | $\begin{aligned} & M_{F F} \\ & M_{F A} \end{aligned}$ | Conditions related to powered flight of air breathing missilos, cruise missilos, and missiles in unpowered free flight. |
| Missile, Launch | $M_{L}$ | $\begin{aligned} & M_{L} \\ & U_{S L} \end{aligned}$ | Severe conditions related to missile launch (air, ground and sea), space vehicle boost into orbit, and vehicle re-entry and landing by parachute. Also applies to solid rockat motor propulsion powered fight. and torpedo and missile launch from submarines. |
| Cannon, Launch | $C_{L}$ | $C_{L}$ | Extremely severe conditions related to cannon launching of 155 mm . and 5 inch guided projectiles. Conditions apply to the projectile trom launch to target impact. |

3.4.4 Part Fallure Rate Models - Part failure rate models for microelectronic parts are significantly different from those for other parts and are presented entirely in Section 5.0. A typical example of the type of model used for most other part types is the following one for discrete semiconductors:

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{B}} \pi_{\mathrm{T}} \pi_{\mathrm{A}} \pi_{\mathrm{R}} \pi_{\mathrm{S}} \pi_{\mathrm{C}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}
$$

where:
$\lambda_{p}$ is the part failure rate,
$\lambda_{\mathrm{b}}$ is the base failure rate usually expressed by a model relating the influence of electrical and temperature stresses on the part,
$\pi_{E}$ and the other $\pi$ factors modify the base failure rate for the category of environmental application and other parameters that affect the part reliability.

The $\pi_{E}$ and $\pi_{Q}$ factors are used in most all models and other $\pi$ factors apply only to specific models. The applicability of $\pi$ factors is identified in each section.

The base failure rate $\left(\lambda_{b}\right)$ models are presented in each part section along with identification of the applicable model factors. Tables of calculated $\lambda_{\mathrm{t}}$ values are also provided for use in manual calculations. The model equations can, of course, be incorporated into computer programs for machine processing. The tabulated values of $\lambda_{b}$ are cut off at the part ratings with regard to temperature and stress, hence, use of parts beyond these cut off points will overstress the part. The use of the $\lambda_{b}$ models in a computer
program should take the part rating limits into account. The $\lambda_{\mathrm{b}}$ equations are mathematically continuous beyond the part ratings but such failure rate values are invalid in the overstressed regions.

Al the part modets inctude failure data from both catastrophic and permanent drift failures (e.g., a resistor permanently falling out of rated tolerance bounds) and are based upon a constant failure rate, except for motors which show an increasing failure rate over time. Fallures associated with connection of parts into circuit assemblies are not included within the part failure rate models. Information on connection reliability is provided in Sections 16 and 17.
3.4.5 Thermal Aspects - The use of this prediction method requires the determination of the temperatures to which the parts are subjected. Since parts reliability is sensitive to temperature, the thermal anahysis of any design should fairty accurately provide the ambient temperatures needed in using the part models. Of course, lower temperatures produce better reliability but also can produce increased penatties in terms of added loads on the environmental control system, unless achieved through improved thermal design of the equipment. The thermai analysis shouid be part of the design process and included in all the trade-off studies covering equipment pertormance, reliability, weight, volume, environmental control systems, etc. References 17 and 34 listed in Appendix C may be used as guides in determining component temperatures.
 For complateness, the chacklist includes catogories for roliability modeling and allocation, which are sometimes delivered as part of a prediction report. It should be noted that the scope of any reliability analysis depends on the specific requirements called out in a statement-of-work (SOW) or system specification. The inclusion of this checklist is not intended to change the scope of these requirements.

Table 4-1: Rellabillty Analysis Checklist

| Major Concerns | Comments |
| :---: | :---: |
| MODELS <br> Are all functional elements included in the reliability block diagram /model? <br> Are all modes of operation considered in the math modet? <br> Do the math model results show that the design achioves the reliability requiremeni? | System design drawings/diagrams must be reviowed to be sure that the reliability modeVdiagrem agrees with the hardware. <br> Duty cycles, ahernate paths, degraded conditions and redundant units must be defined and modeted. <br> Unit failure rates and redundancy equations are used from tine detaiied pari predictions in the system math model (Soe MIL-STD-756, Reliability Prediction and Modeling). |
| ALLOCATION <br> Are system reliability requirements allocated (subdivided) to useful levels? <br> Does the allocation process consider complexity, design tiexioility, and safeity margins? | Useful levels are defined as: equipment for subcontractors, assemblies for sub-subcontractors, circuil boards for designers. <br> Conservative values are needed to prevent reallocation at every desigñ change. |
| PREDICTION <br> Does the sum of the parts equal the value of the module or unit? <br> Are environmental conditions and part quality representative of the requirements? <br> Are the circuit and part temperatures defined and do they represent the design? <br> Are equipment, assembly, subassembly and part reliability drivers identified? <br> Are alternate (Non MIL-HDBK-217) failure rates higniigited aiong with the rationaie for their use? <br> Is the level of detail for the part failure rate models sufficient to reconstruct the result? <br> Are critical components such as VHSIC, Monolithic Microwave Integrated Circults (MMIC), Application Specific Integrated Circuits (ASIC) or Hybrids highlighted? | Many predictions neglect to include all the parts producing optimistic results (check for solder connections, connectors, circuit boards). <br> Optimistic quality lovels and favorable onvironmental conditions are often assumed causing optimistic results. <br> Temperature is the biggest driver of part failure rates; low temperature assumptions will cause optimistic res̃ults. <br> Identification is needed so that corrective actions for reliability improvement can be considered. <br> Use of altemate failure rates, if deemed necessary, require submission of backup data to provide credence in the values. <br> Each component type should be sampled and failure rates completely reconstructed for accuracy. <br> Prediction methods for advanced technology parts should be carefully evaluated for impact on the module and system. |

This section presents fallure rate prediction models for the following ten major classes of microelectronic devices:

| $\frac{\text { Seciion }}{5.1}$ | Monolithic Bipolar Digital and Linear Gate/Logic Array Devices |
| :--- | :--- |
| 5.1 | Monolithic MOS Digital and Linear Gate/Logic Array Devices |
| 5.1 | Monolithic Bipolar and MOS Digital Microprocessor Devices |
| 5.2 | Monolithic Bipolar and MOS Memory Devices |
| 5.3 | Very High Speed integraied Circuit (ViSiC/VHSiC-Like and VLSi) CMOS Devices is <br> Gates) |
| 5.4 | Monotithic GaAs Digital Devices |
| 5.4 | Monolithic GaAs MMiC |
| 5.5 | Hybrid Microcircuits |
| 5.6 | Surice Acoustic Wave Devices |
| 5.7 | Magnetic Bubble Memories |

in the titie description of eacit monolithic device type, Bipolar represents at TTL, ASTTL, DTL, ECL, CNAL, ALSTTL, HTTL, FTTL, F, LTTL, STTL, BICMOS, LSTTL, IIL, $\mathrm{i}^{3} \mathrm{~L}$ and ISL devices. MOS represent all metal-oxide microcircuits, which includes NMOS, PMOS, CMOS and MNOS tabricated on various substrates such as sapphire, polycrystalline or single crystal silicon. The hybrid model is structured to accommodate all of the monolithic chip device types and various complexity levels.

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where $1 \mathrm{~K}=1024$ bitis. For exampie, a 16 K memory has 16,384 bits, a 64 K memory has 65,536 bits and a 1 in memory has $1,048,576$ bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

For devices having both linear and digital functions not covered by MIL-M-38510 or MIL-I-38535, use the linear modiei. Line drivers and line receivers are considered linear devices. For linear devices not covered by MIL-MI-38510 or MIIL=-38535, use the transistor count from the schematic diagram of the device to determine circuit complexity.

For dightal devices not covered by MIL-M-38510 or MIL-I-38535, use the gate count as determined from the logic diagram. A $J-K$ or R-S fip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions; AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

| Technology | Gate Approximation |
| :--- | :--- |
| Bipolar | No. Gates $=$ No. Transistors/3.0 |
| CMOS | No. Gates $=$ No. Transistors/4.0 |
| All other MOS except CMOS | No. Gates $=$ No. Transistors/3.0 |

## MIL-HDBK-217F

### 5.0 MICROCIRCUITS, INTRODUCTION

A datailed form of the Section 5.3 VHSICNHSIC-Like model is inctuded as Appendix B to allow more detalled trade-ofis to be performed. Reference 30 should be consulted for more information about this model.

Roference 32 should be consulted for more Information about the modols appearing in Sections 5.1, 5.2, 5.4,5.5, and 5.6. Reference 13 should be consulted for additional information on Section 5.7.

## DESCRIPTION

1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
2. MOS Devices, Digtal and Linear Gate/Logic Arrays
3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
4. Microprocessors

$$
\lambda_{p}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \text {. Faikures/10 }{ }^{6} \text { Hours }
$$

Bipolar Digital and Linear Gate/Logic Array Die Complexily Failure Rate - $\mathrm{C}_{1}$

| Digital |  | Linear |  | PLAPAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. Gates | $C_{1}$ | No. Transistors | $\mathrm{C}_{1}$ | No. Gates | $C_{1}$ |
| 1 to 100 | . 0025 | 1 to 100 | . 010 | Up to 200 | . 010 |
| 101 to 1,000 | . 0050 | 101 to 300 | . 020 | 201 to 1,000 | . 021 |
| 1,001 to 3,000 | . 010 | 301 to 1,000 | . 040 | 1,001 to 5,000 | . 042 |
| 3,001 to 10,000 | . 020 | 1,001 to 10,000 | . 060 |  |  |
| 10,001 to 30,000 | . 040 |  |  |  |  |
| 30,001 to 60,000 | . 080 |  |  |  |  |

MOS Digital and Linear Gate/Logic Array Die Complexily Fallure Rate - $\mathrm{C}_{1}{ }^{*}$

*NOTE: For CMOS gate counts above 60,000 use the VHSICNHSIC-Like model in Section 5.3

Microprocessor
Die Complexity Failure Rate - C

| No. Bits | Bipolar | MOS |
| :--- | :---: | :---: |
|  | $\mathrm{C}_{1}$ | $\mathrm{C}_{1}$ |
| Up to 16 | .060 | .14 |
| Up to 32 | .12 | .28 |

All Other Model Parameters

| Parameter | Refer to |
| :---: | :---: |
| $\pi_{T}$ | Section 5.8 |
| $C_{2}$ | Section 5.9 |
| $\pi_{E}, \pi_{Q}, \pi_{L}$ | Section 5.10 |

5.2 MICROCIRCUITS, MEMORIES

## DESCRIPTION

1. Read Only Mermories (ROM)
2. Programmable Read Only Memories (PROM)
3. Ukraviolet Eraseable PROMs (UVEPROM)
4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
5. Static Random Access Memories (SRAM)
6. Dynamic Random Access Memories (DRAM)
$\lambda_{\mathrm{P}}=\left(C_{1} \pi_{\mathrm{T}}+C_{2} \pi_{\mathrm{E}}+\lambda_{\text {cyc }}\right) \pi_{\mathrm{Q}} \pi_{\mathrm{L}}$. Faikres $/ 10^{6}$ Hours

Die Complexity Failure Rate - $\mathrm{C}_{1}$

| Memory Size, B (Bits) | MOS |  |  |  | Bipolar |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROM | PROM, UVEPROM, EEPROM, EAPROM | DRAM | SRAM (MOS \& BiMOS) | ROM, PROM | SRAM |
| Up to 16K | . 00065 | . 00085 | . 0013 | . 0078 | . 0094 | . 0052 |
| $16 \mathrm{~K}<\mathrm{B} \leq 64 \mathrm{~K}$ | . 0013 | . 0017 | . 0025 | . 016 | . 019 | . 011 |
| 64K < B $\leq 256 \mathrm{~K}$ | . 0026 | . 0034 | . 0050 | . 031 | . 038 | . 021 |
| $256 \mathrm{~K}<\mathrm{B} \leq 1 \mathrm{M}$ | . 0052 | . 0068 | . 010 | . 062 | . 075 | . 042 |


| $A_{1}$ Factor for $\lambda_{\text {cyc }}$ Calculation |  |  |
| :---: | :---: | :---: |
| Total No. of Programming Cycles Over EEPROM Life, $C$ | Flotox ${ }^{1}$ | Textured- Poly $^{2}$ |
| Up to 100 | . 00070 | . 0097 |
| $100<C \leq 200$ | . 0014 | . 014 |
| $200<C \leq 500$ | . 0034 | . 023 |
| $500<C \leq 1 K$ | . 0068 | . 033 |
| $1 \mathrm{~K}<\mathrm{C} \leq 3 \mathrm{~K}$ | . 020 | . 061 |
| $3 \mathrm{~K}<\mathrm{C} \leq 7 \mathrm{~K}$ | . 049 | . 14 |
| 7K < C $\leq 15 \mathrm{~K}$ | . 10 | . 30 |
| $15 \mathrm{~K}<\mathrm{C} \leq 20 \mathrm{~K}$ | . 14 | . 30 |
| 20 K < C $\leq 30 \mathrm{~K}$ | . 20 | . 30 |
| $30 \mathrm{~K}<\mathrm{C} \leq 100 \mathrm{~K}$ | . 68 | . 30 |
| 100 K < C 5200 K | 1.3 | . 30 |
| 200 K < C $\leq 400 \mathrm{~K}$ | 2.7 | . 30 |
| 400 K < C $\leq 500 \mathrm{~K}$ | 3.4 | . 30 |

1. $A_{1}=6.817 \times 10^{-6}$ (C)
2. No underlying equation for TexturedPoly.
$\mathrm{A}_{2}$ Factor for $\lambda_{\text {cyc }}$ Calculation

| Total No. of Programming <br> Cycles Over EEPROM <br> Lhe, C | Textured-Poly $A_{2}$ |
| :--- | :---: |
| Up to 300 K | 0 |
| $300 \mathrm{~K}<\mathrm{C} \leq 400 \mathrm{~K}$ | 1.1 |
| $400 \mathrm{~K}<\mathrm{C} \leq 500 \mathrm{~K}$ | 2.3 |

All Other Model Parameters

| Parameter | Refer to |
| :--- | :--- |
| $\pi_{T}$ | Section 5.8 |
| $C_{2}$ | Section 5.9 |
| $\pi_{\mathrm{E}}, \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$ | Section 5.10 |
| $\lambda_{\text {cyc }}$ (EEPROMS <br> only) | Page 5-5 |
| $\lambda_{\text {cyc }}=0 \quad$ For all other devices |  |

EEPROM Readiwine Cycing iñoiced Faiture Rate - $\lambda_{\text {cyc }}$


NOTES: 1. See Reference 24 for modeling off-chip error detection and correction scinemes at tine memory sysiem ievei.
2. If EEPROM type is unknown, assume Flotox.
3. Error Correction Code Options: Some EEPROM manuiaciurers have incorporaied on-chip error correction circuitry into their EEPPOM devices. This is represented by the on-chip hamming code entry. Other manulacturers have taken a redundant cell approach which incorporates an extra storage transistor in every memory cell. This is represented by the two-needs-one redundiant celi entry.
4. The $A_{1}$ and $A_{2}$ factors shown in Section 5.2 were developed based on an assumed system life of 10,000 operating hours. For EEPROMs used in systems wh signiticantly longer or shorter expected lifetimes the $A_{1}$ and $A_{2}$ factors should be multiplied by:

10,000
System Lifetime Operating Hours

## MIL-HDBK-217F

### 5.2 MICROCIRCUITS, MEMORIES

$\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ Factors for $\lambda_{\text {cyc }}$ Calculation


## DESCRIPTION

CMOS greater than 00,000 gates

Die Base Falture Rate - $\lambda_{\mathrm{gD}}$

| Part Type | $\lambda_{\mathrm{BD}}$ |
| :--- | :--- |
| Logic and Custom | 0.16 |
| Gote Array | 0.24 |

Marminaturing Process Corraction Faoter - $\bar{\pi}_{\text {MFG }}$

| Mannfáacturing Process | $\pi_{\text {MFG }}$ |
| :--- | :---: |
| QunL or QPL | .55 |
| Nō̃̃ QMiL ơ Nōn QPL | 2.0 |

All Other Model Parameters

| Parameter | Refer to |
| :--- | :--- |
| $\pi_{T}$ | Section 5.8 |
| $\pi_{E}, \pi_{Q}$ | Section 5.10 |

Package Type Correction Factor - IpT

|  | $\pi$ KT |  |
| :--- | :---: | :---: |
| Package Trpe | Hermetic | Nontrormetic |
| DIP | 1.0 | 1.3 |
| Pin Grid Array | 2.2 | 2.9 |
| Chip Carrier | 4.7 | 6.1 |
| (Surface Mount |  |  |
| Technology) |  |  |

Die Complexity Correction Factor - $\pi \mathrm{CD}$

| Feature Size <br> (Microns) | $A \leq .4$ | $.4<A \leq .7$ | $.7<A \leq 1.0$ | $1.0<A \leq 2.0$ | $2.0<A \leq 3.0$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .80 | 8.0 | 14 | 19 | 38 | 58 |
| 1.00 | 5.2 | 8.9 | 13 | 25 | 37 |
| 1.25 | 3.5 | 5.8 | 8.2 | 16 | 24 |

${ }^{x_{C D}}=\left(\left(\frac{A}{.21}\right)\left(\frac{2}{X_{s}}\right)^{2}(.64)\right)+.36 \quad A=$ Total Scribed Chip Die Area in $\mathrm{cm}^{2} \quad X_{3}=$ Feature Size (microns)
Die Area Conversion: $\mathrm{cm}^{2}=\mathrm{MIL}^{2}+155,000$


## DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circults using MESFET Transistors and Gold Based Metallization

$$
\lambda_{p}=\left[C_{i} \pi_{T} \pi_{A}+C_{2} \pi_{E}\right] \pi_{L} \pi_{Q} \text { Fallures } / 10^{6} \text { Hours }
$$

## MMIC: Die Complexily Failure Rates - $\mathrm{C}_{1}$

| Complexity <br> (No. of Elements) | $C_{1}$ |
| :---: | :---: |
| 1 to 100 | 4.5 |
| 101 to 1000 | 7.2 |

1. $\mathrm{C}_{1}$ accounts for the following active elements: transistors, diodes.

Dioital: Die Complexity Fallure Rates - $\mathrm{C}_{1}$

| Complexity <br> (No. of Elements) | $\mathrm{C}_{1}$ |
| :---: | :---: |
| 1 to 1000 | 25 |
| 1,001 to 10,000 | 51 |

1. $C_{1}$ accounts for the following active elements: transistors, diodes.

# DESCRIPTION <br> Hytorid Microcircuils <br> $\lambda_{P}=\left[\Sigma N_{C} \lambda_{C}\right]\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{O} \pi_{L}$ Failures $/ 10^{6}$ Hours 

$N_{c}=$ Number of Each Patticular Component
$\lambda_{c}=$ Faikre Rate of Each Particular Component
The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modffied to
 failure rate is a function of the active component failure modified by the environmental factor (i.e., ( $1+.2$ $\pi_{\mathrm{E}}$ ) ). Only the component types listed in the following table are considered to contribute significantly to
the overall failure rate of most hybrids. All other component types (e.g., resistars, inductors, etc.) are constdered to contribute insignificantly to the overal hybrid fallure rate, and are assumed to have a lallure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be caiculated for these devices. it facioring in other component types, assume $\pi_{Q}=1, \pi_{E}=1$ and $T_{A}=$ Hybrid Case Temperature for these calculations.

## DESCRIPTION Surface Acoustic Wave Devices

$$
\lambda_{P}=2.1 \pi_{Q} \pi_{E} \text { Failures } / 10^{6} H_{\text {Hours }}
$$


Environmental Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{B}}$ | .5 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 4.0 |
| $\mathrm{~N}_{\mathrm{S}}$ | 4.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 6.0 |
| $\mathrm{~A}_{\mathrm{I}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 5.0 |
| $\mathrm{~A}_{\mathrm{UC}}$ | 5.0 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 8.0 |
| $\mathrm{~A}_{\mathrm{RW}}$ | 8.0 |
| $\mathrm{~S}_{\mathrm{F}}$ | .50 |
| $\mathrm{M}_{\mathrm{F}}$ | 5.0 |
| $\mathrm{M}_{\mathrm{L}}$ | 12 |
| $\mathrm{C}_{\mathrm{L}}$ | 220 |

### 5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required comtrol and detection elements (e.g., generators, various gates and detectors).
2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include extemal support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the fallure rate model is:

$$
\lambda_{p}=\lambda_{1}+\lambda_{2} \text { Failures/ } 10^{6} \text { Hours }
$$

where:
$\lambda_{1}=$ Failure Rate of the Control and Detection Structure
$\lambda_{1}=\pi_{Q}\left[N_{C} C_{11} \pi_{T 1} \pi_{W}+\left(N_{C} C_{21}+C_{2}\right) \pi_{E}\right] \pi_{D} \pi_{L}$
$\lambda_{2}=$ Failure Rate of the Memory Storage Area
$\lambda_{2}=\pi_{Q} N_{C}\left(C_{12} \pi_{T 2}+C_{22} \pi_{E}\right) \pi_{L}$

Chips Per Package - $\mathrm{N}_{\mathrm{C}}$


Device Complexity Failure Rates for Control and Detection Structure - $\mathrm{C}_{11}$ and $\mathrm{C}_{21}$

$$
\begin{aligned}
& C_{11}=.00095\left(N_{1}\right) .40 \\
& C_{21}=.0001\left(N_{1}\right) .226
\end{aligned}
$$

$N_{1}=$ Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), $\mathrm{N}_{1} \leq 1000$

Use:
$\mathrm{E}_{\mathrm{a}}=.8$ to Calculate $\pi_{\mathrm{T} 1}$
$E_{a}=.55$ to Calculate $\pi_{T 2}$
$T_{J}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$.
$25 \leq T_{J} \leq 175$
$T_{J}=T_{C A S E}+10^{\circ} \mathrm{C}$

### 5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES



Device Complexity Failure Rates for Memory Storage Stnucture - $\mathrm{C}_{12}$ and $\mathrm{C}_{22}$
$C_{12}=.00007\left(N_{2}\right)^{3}$
$C_{22}=.00001\left(N_{2}\right)^{3}$
$N_{2}=$ Number of Bits, $N_{2} \leq 9 \times 10^{6}$

All Other Model Parameters

| Paramoter | Section |
| :--- | :--- |
| $C_{2}$ | 5.9 |
| $\pi_{E}, \pi_{Q}, \pi_{L}$ | 5.10 |



### 5.9 MICROCIRCUITS, $C_{2}$ TABLE FOR ALL

Package Failure Rate for all Microcircuits - $\mathrm{C}_{2}$

| Package Type |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of Functional Pins, $N_{p}$ | Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ${ }^{1}$, SMT (Leaded and Nonleaded) | DIPs whth Glass Seal ${ }^{2}$ | Flatpacks with Axial Leads on 50 Mil Centers ${ }^{3}$ | Cans ${ }^{4}$ | Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ${ }^{5}$ |
| 3 | . 00092 | . 00047 | . 00022 | . 00027 | . 0012 |
| 4 | . 0013 | . 00073 | . 00037 | . 00049 | . 0016 |
| 6 | . 0019 | . 0013 | . 00078 | . 0011 | . 0025 |
| 8 | . 0026 | . 0021 | . 0013 | . 0020 | . 0034 |
| 10 | . 0034 | . 0029 | . 0020 | . 0031 | . 0043 |
| 12 | . 0041 | . 0038 | . 0028 | . 0044 | . 0053 |
| 14 | . 0048 | . 0048 | . 0037 | . 0060 | . 0062 |
| 16 | . 0056 | . 0059 | . 0047 | . 0079 | . 0072 |
| 18 | . 0064 | . 0071 | . 0058 |  | . 0082 |
| 22 | . 0079 | . 0096 | . 0083 |  | . 010 |
| 24 | . 0087 | . 011 | . 0098 |  | 011 |
| 28 | . 010 | . 014 |  |  | . 013 |
| 36 | . 013 | . 020 |  |  | . 017 |
| 40 | . 015 | . 024 |  |  | . 019 |
| 64 | . 025 | . 048 |  |  | . 032 |
| 80 | . 032 |  |  |  | . 041 |
| 128 | . 053 |  |  |  | . 068 |
| 180 224 | . 076 |  |  |  | . 098 |

1. $C_{2}=2.8 \times 10^{-4}\left(\mathrm{~N}_{\mathrm{p}}\right)^{1.08}$
2. $C_{2}=3.0 \times 10^{-5}\left(N_{p}\right)^{1.82}$
3. $\quad C_{2}=3.6 \times 10^{-4}\left(\mathrm{~N}_{\mathrm{p}}\right)^{1.08}$
4. $\quad C_{2}=9.0 \times 10^{-5}\left(\mathrm{~N}_{\mathrm{p}}\right)^{1.51}$
5. $\mathrm{C}_{2}=3.0 \times 10^{-5}\left(\mathrm{~N}_{\mathrm{p}}\right)^{2.01}$

## NOTES:

1. SMT: Surface Mount Technology
2. DIP: Dual In-Line Package
3. If DIP Seal type is unknown, assume glass
4. The package failure rate $\left(\mathrm{C}_{2}\right)$ accounts for failures associated only with the package itsell.

Failures associated with mounting the package to a circuit board are accoumted for in Section 16, Imterconnection Assemblies.

### 5.10 MICROCIRCUITS, $\pi_{E}, \lambda_{L}$ AND $\pi_{Q}$ TABLES FOR ALL

| Environment Factor - $\pi_{E}$ |  |
| :--- | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ .50 <br> $G_{F}$ 2.0 <br> $G_{M}$ 4.0 <br> $N_{S}$ 4.0 <br> $N_{U}$ 6.0 <br> $A_{l}$ 4.0 <br> $A_{F F}$ 5.0 <br> $A_{U C}$ 5.0 <br> $A_{U F}$ 8.0 <br> $A_{R W}$ 8.0 <br> $S_{F}$ .50 <br> $M_{F}$ 5.0 <br> $M_{L}$ 12 <br> $C_{L}$ 220 |  |

Learning Factor - $\pi_{L}$

| Years in Production, $Y$ | $\pi_{\mathrm{L}}$ |
| :--- | :---: |
| 5.1 | 2.0 |
| .5 | 1.8 |
| 1.0 | 1.5 |
| 1.5 | 1.2 |
| $\geq 2.0$ | 1.0 |

$\pi_{L}=.01 \exp (5.35-.35 Y)$
$Y=$ Years generic device type has been in production

| Quality Factors - $\mathbf{T}_{\mathbf{Q}}$ |  |
| :---: | :---: |
| Description | $\pi \mathrm{Q}$ |
| Class S Gatecories: <br> 1: Procured in full accordance with MIL-M-38510, Class S requirements. <br> 2. Procured in tull accordance with MiL-1-36535 and Appendix B therew (Class U). <br> 3. Hybrids: (Procured to Class S requirements (Cuality Level K) of Mll-H38534. | . 25 |
| Class B Categories: <br> 1. Procured in full accordance with MIL-M-38510, Class B requirements. <br> 2. Procured in full accordance with MIL-I-38535, (Class Q). <br> 3. Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534. | 1.0 |
| Class B-1 Catenon: <br> Fully compliant with all requirements of paragraph 1.2.1 of MIL-STD-883 and procured to a MiL drawing. DESC drawing or other govemment approved documentation. (Does not include hybrids). For hybrids use custom screening section below. | 2.0 |

### 5.10 MICROCIRCUITS, $\pi_{E}, \pi_{L}$ AND $\pi_{Q}$ TABLES FOR ALL

Cually Factors (cont'd): $\pi_{Q}$ Calculation for Custom Screening Programs


## MIL-HDBK-217F

### 5.11 MICROCIRCUITS, $T_{J}$ DETERMINATION, (ALL EXCEPT HYBRIDS)

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$
T_{J}=T_{C}+\theta_{J C} P
$$

$T_{J}=$ Worst Case Junction Temperature ${ }^{\circ} \mathrm{C}$ ).
$T_{C}=$ Case Temperature ( ${ }^{\circ} \mathrm{C}$ ). In not avallable, use the following defaull table.

Default Case Temperature ( $T_{C}$ ) for all Environments

| Environment | $G_{B}$ | $G_{F}$ | $G_{M}$ | $N_{S}$ | $N_{U}$ | $A_{1 C}$ | $A_{I F}$ | $A_{U C}$ | $A_{U F}$ | $A_{P W}$ | $S_{F}$ | $M_{F}$ | $M_{L}$ | $C_{L}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $T_{C}\left({ }^{\circ} C\right)$ | 35 | 45 | 50 | 45 | 50 | 60 | 60 | 75 | 75 | 60 | 35 | 50 | 60 | 45 |

$\theta_{\mathrm{JC}}=$ Junction-to-case thermal resistance $\left({ }^{\circ} \mathrm{C}\right.$ watt) for a device soldered into a printed circuit board. If $\theta_{J C}$ is not available, use a value contained in a specification for the closest equivalent device or use the following table.

| Package Type <br> (Ceramic Only) | Die Area $>14,400$ mil $^{2} \theta_{\mathrm{JC}}$ <br> $\left({ }^{\circ} \mathrm{CN}\right)$ | Die Area $\leq 14,400 \mathrm{mil}^{2}$ <br> $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{CM}\right)$ |
| :--- | :---: | :---: |
| Dual-In-Lime | 11 | 28 |
| Flat Package | 10 | 22 |
| Chip Carrier | 10 | 20 |
| Pin Grid Array | 10 | 20 |
| Can | - | 70 |

$P=$ The maximum power dissipation realized in a system application. If the applied power is not available, use the maximum power dissipation from the specification for the closest equivalent device.

## MIL-HDBK-217F

### 5.12 MICROCIRCUITS, T」 DETERMINATION, (FOR HYBRIDS)

This section describes a method for estimating junction temperature ( $T_{j}$ ) for integrated circuit dice mounted in a hybrid package. A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure $5-1$ is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. The table following Figure 5-1 provides a list of commonly used mybrid materials with typical thicknesses and corresponding thermal conductivities (K). If the hybrid imernal structure cannot be determined, use the following defaut vabues for the temperature rise from case to junction: microcircuits, $10^{\circ} \mathrm{C}$; transistors, $25^{\circ} \mathrm{C}$; diodes, $20^{\circ} \mathrm{C}$. Assume capacitors are at $\mathrm{T}^{\mathrm{C}}$.


Figure 5-1: Cross-sectional View of a Hybrid with a Single Mult-Layered Substrate

## MIL-HDBK-217F

### 5.12 MICROCIRCUITS, TJ DETERMINATION, (FOR HYBRIDS)

Typical Hyprid Characteristics

| Material | Typical Usage | Typical Thickness, 4 (in.) | Feature From Figure 5-1 | $\begin{gathered} \text { Thermal } \\ \text { Conductivity, } \\ K_{i} \\ \left(\frac{W / i n^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right) \end{gathered}$ | $\begin{gathered} \left(\frac{1}{K_{i}}\right)\left(L_{i}\right) \\ \left(i n^{2}{ }^{\circ} \mathrm{C} / \mathrm{w}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Silicon | Chip Device | 0.010 | A | 2.20 | . 0045 |
| GaAs | Chip Device | 0.0070 | A | . 76 | . 0092 |
| Au Eutectic | Chip Attach | 0.0001 | B | 6.9 | . 000014 |
| Solder | Chip/Substrate Attach | 0.0030 | B/E | 1.3 | . 0023 |
| Epoxy (Dieieciric) | Chip/Subsiraie Âtuach | 0.0035 | B/E | . 0060 | . 58 |
| Epoxy (Conductive) | Chip Attach | 0.0035 | B | . 15 | . 023 |
| Thick Film Dielectric | Glass Insulating Layer | 0.0030 | C | . 66 | . 0045 |
| Alumina | Substrate, MHP | 0.025 | D | . 64 | . 039 |
| Beryllium Oxide | Substrate, PHP | 0.025 | D | 6.6 | . 0038 |
| Kovar | Case, mitip | 0.020 | F | . 42 | . 048 |
| Aluminum | Case, MHP | 0.020 | F | 4.6 | . 0043 |
| Copper | Case, PHP | 0.020 | F | 9.9 | . 0020 |

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: $\mathbf{2} \mathbf{2 W}$, Typically)

$$
\theta_{J C}=\frac{\sum_{i=1}^{n}\left(\frac{1}{K_{i}}\right)\left(L_{i}\right)}{A}
$$

$n=$ Number of Material Layers
$K_{i}=$ Thermal Conductivity of $i^{i t h}$ Material $\left(\frac{W / i^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right)$ (User Provided or From Table)
$L_{i}=$ Thickness of $i^{\text {ith }}$ Material (in) (User Provided or From Table)
A = Die Area (in ${ }^{\mathbf{2}}$ ). if Die Ârea cannot be readily determined, estimate as follows:
$A=[.00278 \text { (No. of Die Active Wire Terminals) }+.0417]^{2}$
Estimate $T_{J}$ as Follows:

$$
T_{J}=T_{C}+.9\left(\theta_{J C}\right)\left(P_{D}\right)
$$

$T_{C}=$ Hybrid Case Temperature $\left({ }^{\circ} \mathrm{C}\right)$. If unknown, use the $T_{C}$ Default Table shown in Section 5.11.
$\theta_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance ( ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ) (As determined above)
$P_{D}=$ Die Power Dissipation (W)

## Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an airbome inhabited cargo application, case temperature $48^{\circ} \mathrm{C}, 75 \mathrm{~mW}$ power dissipation. The device is procured with normal manufacturers screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and extemal visual inspection, in the sequence given. The component manufacturer also pertorms a B-tevel bum-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$
\lambda_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.1
$$



$$
\lambda_{p}=[(.020)(.29)+(.011)(4)](3.1)(1)=.15 \text { Failure } / 10^{6} \text { Hours }
$$

## Example 2: EEPROM

Given: A 128 K Flotox EEPROM that is expected to have a $T_{J}$ of $80^{\circ} \mathrm{C}$ and experience 10,000 readwrite cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$
\pi_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{\text {cyc }}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.2
$$

| $C_{1}=.0034$ | Section 5.2 |
| :--- | :--- |
| $\pi_{T}=3.8$ | Section 5.8 |
| $C_{2}=.014$ | Section 5.9 |

$$
\begin{aligned}
& \pi_{\mathrm{E}}=5.0 \\
& \pi_{\mathrm{Q}}=2.0 \\
& \pi_{\mathrm{L}}=1.0 \\
& \lambda_{\text {cyc }}=.38
\end{aligned}
$$

Section 5.10
Section 5.10
Section 5.10
Section 5.2:
$\lambda_{c y c}=\left[A_{1} B_{1}+\frac{A_{2} B_{2}}{\pi_{Q}}\right] \pi_{E C C}$
$A_{2}=B_{2}=0$ for Flotox
Assume No ECC, $\pi$ ECC $=1$
$A_{1}=.1,7 \mathrm{~K} \leq \mathrm{C} \leq 15 \mathrm{~K}$ Entry
$\mathrm{B}_{1}=3.8 \quad$ (Use Equation 1 at bottom of $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ Table)
$\lambda_{\text {cyc }}=A_{1} B_{1}=(.1)(3.8)=.38$

$$
\lambda_{P}=[(.0034)(3.8)+(.014)(5.0)+.38](2.0)(1)=.93 \text { Failures } / 10^{6} \text { Hours }
$$

## Example 3: GaAs MMIC

Given: A MA4GM212 Single Pole Double Throw Switch, DC - 12 GHz, 4 transistors, 4 inductors, 8 resistors, maximum input $P_{D}=30 \mathrm{dbm}, 16$ pin hermetic flatpack, maximum $T_{C H}=145^{\circ} \mathrm{C}$ in a ground benign ervironment. The part has been manutactured for 1 year and is screened to Paragraph 1.2.1 of MIL-STD-883, Class B equivalent screen.

$$
\lambda_{P}=\left[C_{1} \pi_{T} \pi_{A}+C_{2} \pi_{E}\right] \pi_{L} \pi_{Q} \quad \text { Section } 5.4
$$

| $C_{1}$ | $=4.5$ |  | Section 5.4, MMIC Table, 4 Active Elements (See Footnote to |
| ---: | :--- | ---: | :--- |
| $\pi_{T}$ | $=.061$ |  | Table) |
| $\pi_{A}=3.0$ |  | Section 5.8, $T_{J}=T_{C H}=145^{\circ} \mathrm{C}$ |  |
| $C_{2}$ | $=.0047$ | Section 5.4, Unknown Application |  |
| $\pi_{E}=.50$ | Section 5.9 |  |  |
| $\pi_{\mathrm{L}}=1.5$ | Section 5.10 |  |  |
| $\pi_{\mathrm{Q}}=2.0$ | Section 5.10 |  |  |
|  |  |  |  |
|  |  |  |  |
| $\lambda_{\mathrm{P}}=[(4.5)(.061)(3.0)+(.0047)(.5)](1.5)(2.0)=2.5$ Failures $/ 10^{6}$ Hours |  |  |  |

NOTE: The passive elements are assumed to contribute negligibly to the overall device failure rate.

## Example 4: Hybrid

Given: A linear multichip hybrid driver in a hermetically sealed Kovar package. The substrate is alumina and there are two thick film dielectric layers. The die and substrate attach materials are conductive epoxy and solder, respectively. The application environment is naval unsheltered, $65^{\circ} \mathrm{C}$ case temperature and the device has been in production for over two years. The device is

## MIL-HDBK-217F

### 5.13 MICROCIRCUITS, EXAMPLES

screened to MIL-STD-883, Method 5008, in accordance with Table VIII, Class B requirements. The hybrid contains the following components:

Active Components: 1 - LM106 Bipolar Comparator/Buffer Die (13 Transistors)
1 - LM741A Bipolar Operational Amplifier Die (24 Transistors)
2 - Si NPN Transistor
2 - Si PNP Transistor
2 - Si General Pupose Diodes
Passive Components: 2 - Ceramic Chip Capacitors
17 - Thick Film Resistors

$$
\lambda_{P}=\left[\sum N_{C} \lambda_{C}\right]\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{Q} \pi_{L} \quad \text { Section } 5.5
$$

1. Estimate Active Device Junction Temperatures

If limited information is available on the specific hybrid materials and construction characteristics the default case-to-junction temperature rises shown in the introduction to Section 5.12 can be used. When detailed information becomes available the following Section 5.12 procedure should be used to determine the junction-to-case ( $\theta_{\mathrm{JC}}$ ) thermal resistance and $\mathrm{T}_{\mathrm{J}}$ values for each component.
$\theta_{J C}=\frac{\sum_{i=1}^{n}\left(\frac{1}{K_{i}}\right)\left(L_{i}\right)}{A}$
(Equation 1)

| Layer | Figure 5-1 Feature | $\left(\begin{array}{l}\left.\frac{1}{K_{i}}\right)\left(L_{i}\right) \\ \left(\mathrm{in}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}\right)\end{array}\right.$ <br> Silicon Chip <br> Conductive Epoxy <br> Two Dielectric Layers <br> Alumina Substrate <br> Solder Substrate Attachment <br> Kovar Case <br> $\quad \mathrm{B}$ |
| :--- | :---: | :---: |

$A=$ Die Area $=[.00278 \text { (No. Die Active Wire Terminals) }+.0417]^{2}$
(Equation 2)
$T_{J}=T_{C}+\theta_{J C} P_{D} \quad$ (Equation 3)

|  | LM106 | LM741A | SiNPN | Si PNP | Si Diode | Source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Pins | 8 | 14 | 3 | 3 | 2 | Vendor Spec. Sheet |
| Power Dissipation, $P_{D}(W)$ | . 33 | . 35 | . 6 | . 6 | . 42 | Circuit Analysis |
| Area of Chip (in. ${ }^{2}$ ) | . 0041 | . 0065 | . 0025 | . 0025 | . 0022 | Equ. 2 Above |
| $\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{CM}\right)$ | 30.8 | 19.4 | 50.3 | 50.3 | 56.3 | Equ. 1 Above |
| $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | 75 | 72 | 95 | 95 | 89 | Equ. 3 Above |

2. Calculate Failure Rates for Each Component:
A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$
\lambda_{P}=\left[C_{1} \pi_{T}+C_{2} \pi_{E}\right] \pi_{Q} \pi_{L}
$$

Section 5.1
Because $\mathrm{C}_{2}=0$;
$\lambda_{\mathrm{P}}=\mathrm{C}_{1} \pi_{\mathrm{T}} \pi_{\mathrm{Q}} \pi_{\mathrm{L}} \quad \pi_{\mathrm{T}}:$ Section $5.8 ; \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$ Default to 1.0
$=(.01)(3.8)(1)(1)=.038$ Failures $/ 10^{6}$ Hours
B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

$$
\lambda_{P}=C_{1} \pi_{T} \pi_{Q} \pi_{L}=(.01)(3.1)(1)(1)=.031 \text { Failures } / 10^{6} \text { Hours }
$$

C) Silicon NPN Transistor, Rated Power $=5 \mathrm{~W}$ (From Vendor Spec. Sheet), $\mathrm{V}_{\text {CE }} \mathcal{N}_{\text {CEO }}=.6$, Linear Application

$$
\begin{aligned}
\lambda_{P} & =\lambda_{D} \pi_{T} \pi_{A} \pi_{R} \pi_{S} \pi_{Q} \pi_{E} \quad \text { Section 6.3; } \pi_{Q}, \pi_{E} \text { Default to } 1.0 \\
& =(.00074)(3.9)(1.5)(1.8)(.29)(1)(1) \\
& =.0023 \text { Faihures } / 10^{6} \text { Hours }
\end{aligned}
$$

D) Silicon PNP Transistor, Same as C.

$$
\lambda_{p}=.0023 \text { Failures } / 10^{6} \text { Hours }
$$

E) Silicon General Purpose Diode (Analog), Voltage Stress $=\mathbf{6 0 \%}$, Metallurgically Bonded Construction.

$$
\begin{aligned}
\lambda_{P} & =\lambda_{D} \pi_{T} \pi_{S} \pi_{C} \pi_{Q} \pi_{E} \\
& =(.0038)(6.3)(.29)(1)(1)(1) \\
& =.0069 \text { Failures } / 10^{6} \text { Hours }
\end{aligned}
$$

## MIL-HDBK-217F

5.13 MICROCIRCUITS, EXAMPLES
F) Ceramic Chip Capacinor, Voltage Stress $=50 \%$,
$T_{A}=T_{\text {CASE }}$ for the Hybrid, $1340 \mathrm{pF}, 125^{\circ} \mathrm{C}$ Rated Temp.

$$
\begin{aligned}
\lambda_{P} & =\lambda_{D} \pi_{C V} \pi_{Q} \pi_{E} \\
& =(.0028)(1.4)(1)(1) \\
& =.0039 \text { Failures } / 10^{6} \text { Hours }
\end{aligned}
$$

G) Thick Film Resistors, per instuctions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall mybrid faiture rate and they may be ignored.

## Qverall Hytrid Part Faikure Rate Calculation:

$$
\begin{array}{ll}
\lambda_{P}=\left[\sum N_{C} \lambda_{C}\right]\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{Q} \pi_{L} & \\
\pi_{E}=6.0 & \text { Section } 5.10 \\
\pi_{F}=5.8 & \text { Section } 5.5 \\
\pi_{Q}=1 & \text { Section } 5.10 \\
\pi_{L}=1 & \text { Section } 5.10 \\
\lambda_{P}= & \\
& \\
& +(1)(.038)+(1)(.0069)+(2)(.0039)](1+.2(6.0))(5.8)(1)(1) \\
\lambda_{p}= & 1.3 \text { Failures } / 10^{6} \text { Hours }
\end{array}
$$

## MIL-HDBK-217F

### 6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

The semiconductor transistor, diode and opto-electronic device sections present the fallure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different fallure rate models that vary to some degree. The models apply to single devices unless otherwise noted. For mulliple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor ( $x_{T}$ ) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device function to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section.

### 6.1 DIODES, LOW FREQUENCY

```
SPECIFICATION
M!L-S-19500
DESCRIPTION
Low Frequency Diodes: General Purpose Anatog, Suitching, Fast Recovery, Power Rectifier, Transiem Suppressor, Currem Regulator, Votage Regulator, Voltage Reference
```

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{S} \pi_{C} \pi_{Q} \pi_{E} \text { Failures/ } 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{b}$

| Diode Type/Application | $\lambda_{\mathrm{b}}$ |
| :--- | :--- |
| General Purpose Analog | .0038 |
| Switching | .0010 |
| Power Rectitier, Fast Recovery | .069 |
| Power Rectifier/Schottky | .0030 |
| Power Diode |  |
| Power Rectitier with | $.0050 /$ |
| High Vottage Stacks | Junction |
| Transient Suppressor/Naristor | .0013 |
| Current Regulator | .0034 |
| Voltage Regulator and Voltage | .0020 |
| Reference (Avalanche |  |
| and Zener) |  |

Temperature Factor - $\pi_{T}$
(General Purpose Anaiog. Switching, Fast Recovery.
Power Rectifier, Transient Suppressor)

| Powor Rectiior, Transient Suporessor) |  |  |  |
| :---: | :---: | :---: | :---: |
| $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
|  |  |  | 105 |
| 25 | 1.0 | 105 | 9.0 |
| 30 | 1.2 | 110 | 10 |
| 35 | 1.4 | 115 | 11 |
| 40 | 1.6 | 120 | 12 |
| 45 | 1.9 | 125 | 14 |
| 50 | 2.2 | 130 | 15 |
| 55 | 2.6 | 135 | 16 |
| 60 | 3.0 | 140 | 18 |
| 65 | 3.4 | 145 | 20 |
| 70 | 3.9 | 150 | 21 |
| 75 | 4.4 | 155 | 23 |
| 80 | 5.0 | 160 | 25 |
| 85 | 5.7 | 165 | 28 |
| 90 | 6.4 | 170 | 30 |
| 95 | 7.2 | 175 | 32 |
| 100 | 8.0 |  |  |

Temperature Factor - $\pi T$
(Voltage Regulator, Voliage Reference,

| $T_{j}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $T_{j}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| :---: | :---: | :---: | :---: |
|  | and |  |  |
| 25 | 1.0 | 105 | 3.9 |
| 30 | 1.1 | 110 | 4.2 |
| 35 | 1.2 | 115 | 4.5 |
| 40 | 1.4 | 120 | 4.8 |
| 45 | 1.5 | 125 | 5.1 |
| 50 | 1.6 | 130 | 5.4 |
| 55 | 1.8 | 135 | 5.7 |
| 60 | 2.0 | 140 | 6.0 |
| 65 | 2.1 | 145 | 6.4 |
| 70 | 2.3 | 150 | 6.7 |
| 75 | 2.5 | 155 | 7.1 |
| 80 | 2.7 | 160 | 7.5 |
| 85 | 3.0 | 165 | 7.9 |
| 90 | 3.2 | 170 | 8.3 |
| 95 | 3.4 | 175 | 6.7 |
| 100 | 3.7 |  |  |


| Electrical Stress Factor - $\pi_{S}$ |  |
| :---: | :---: |
| Stress | $\pi_{S}$ |
| Transient Suppressor, Voltage Regulator, Voltage Reference, Current Regulator | 1.0 |
| All Others: $\begin{aligned} & V_{\mathrm{s}} \leq .30 \\ & .3<V_{\mathrm{s}} \leq .40 \\ & .4<V_{\mathrm{s}} \leq .50 \\ & .5<V_{\mathrm{s}} \leq .60 \\ & .6<V_{\mathrm{s}} \leq .70 \\ & .7<V_{\mathrm{s}} \leq .80 \\ & .8<V_{\mathrm{s}} \leq .90 \\ & .9<V_{\mathrm{s}} \leq 1.00 \end{aligned}$ | $\begin{aligned} & 0.054 \\ & 0.11 \\ & 0.19 \\ & 0.29 \\ & 0.42 \\ & 0.58 \\ & 0.77 \\ & 1.0 \end{aligned}$ |
| For All Except Transient Suppressor, Voltage <br> Regulator, Voftage Reference, or Current Regulator $\begin{array}{cl} \pi_{\mathrm{s}}=.054 & \left(\mathrm{~V}_{\mathrm{s}} \leq .3\right) \\ \pi_{\mathrm{s}}=\mathrm{V}_{\mathrm{s}} 2.43 & \left(.3<\mathrm{V}_{\mathrm{s}} \leq 1\right) \\ \mathrm{V}_{\mathrm{s}}=\text { Voltage Stress Ratio }=\frac{\text { Voltage Applied }}{\text { Voltage Rated }} \end{array}$ <br> Voltage is Diode Reverse Voltage |  |

Contact Construction Factor $-\pi_{\mathrm{C}}$

| Contact Construction | $\pi_{\mathrm{C}}$ |
| :--- | :---: |
| Metallurgically Bonded | 1.0 |
| Non-Metallurgically Bonded and <br> Spring Loaded Contacts | 2.0 |

### 6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

SPECIFICATION MIL-S-19500

## DESCRIPTION

Si IMPATT; Bum Effect, Gunn; Tunnel, Back; Mixer, Detector, PIN, Schottky: Varactor, Step Recovery

$$
\lambda_{p}=\lambda_{D} \pi_{T} \pi_{A} \pi_{R} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

| Diode Type | $\lambda_{b}$ |
| :---: | :---: |
| Si MPATT ( 335 GH (z) | . 22 |
| Gunn/Bulk Effiect | . 18 |
| Tunnel and Back (Including Mixers, Detectors) | . 0023 |
| PIN | . 0081 |
| Schottky Barrier (hacluding |  |
| Detectors) and Point Contact ( 200 imitiz s Frequency $\leq 35 \mathrm{GHz}$ ) | . 027 |


| Temperature Factor - $\pi_{T}$ (All Typos Excopt Impati) |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | ${ }_{\boldsymbol{T}}$ | $\left.\mathrm{T}^{(10}{ }^{\circ} \mathrm{C}\right)$ | ${ }^{\pi}$ T |
| 25 | 1.0 | 105 | 4.4 |
| 30 | 1.1 | 110 | 4.8 |
| 35 | 1.3 | 115 | 5.1 |
| 40 | 1.4 | 120 | 5.5 |
| 45 | 1.6 | 125 | 5.9 |
| 50 | 1.7 | 130 | 6.3 |
| 55 | 1.9 | 135 | 6.7 |
| 60 | 2.1 | 140 | 7.1 |
| 65 | 2.3 | 145 | 7.6 |
| 70 | 2.5 | 150 | 8.0 |
| 75 | 2.8 | 155 | 8.5 |
| 60 | 3.0 | 160 | 9.0 |
| 85 | 3.3 | 165 | 9.5 |
| 90 | 3.5 | 170 | 10 |
| 95 | 3.8 | 175 | 11 |
| 100 | 4.1 |  |  |
|  |  | 1 | )) |
|  | n | ure $\left(^{\circ} \mathrm{C}\right.$ |  |


| Temperature Factor- $\pi_{T}$ (MPPATI) |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $\left.\mathrm{T}_{3}{ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| 25 | 1.0 | 105 | 42 |
| 30 | 1.3 | 110 | 50 |
| 35 | 1.8 | 115 | 60 |
| 40 | 2.3 | 120 | 71 |
| 45 | 3.0 | 125 | 84 |
| 50 | 3.9 | 130 | 99 |
| 55 | 5.0 | 135 | 120 |
| 60 | 6.4 | 140 | 140 |
| 65 | 8.1 | 145 | 160 |
| 70 | 10 | 150 | 180 |
| 75 | 13 | 155 | 210 |
| 80 | 16 | 160 | 250 |
| 85 | 19 | 165 | 280 |
| 90 | 24 | 170 | 320 |
| 95 | 29 | 175 | 370 |
| 100 | 35 |  |  |
|  | (-5 | $\frac{1}{+273}$ | (1) ) |
|  | aio | ( ${ }^{\circ} \mathrm{C}$ ) |  |

Application Factor $-\pi_{\mathrm{A}}$

| Diodes Application | $\pi_{\mathrm{A}}$ |
| :--- | :---: |
| Varactor, Vohage Control | .50 |
| Varactor, Multiplier | 2.5 |
| All Other Diedes | 1.0 |

Power Rating Factor $-\pi_{R}$

| Rated Power, $\operatorname{Pr}$ (Watts) | $\pi_{R}$ |
| :--- | :---: |
| PIN Diodes |  |
| $P_{r} \leq 10$ | .50 |
| $10<\operatorname{Pr} \leq 100$ | 1.3 |
| $100<\operatorname{Pr} \leq 1000$ | 2.0 |
| $1000<P_{r} \leq 3000$ | 2.4 |
| All Other Diodes | 1.0 |
| PIN Diodes $\quad \pi_{R}=.326 \operatorname{lr}\left(P_{r}\right)-.25$ |  |
| All Other Diodes $\quad \pi_{R}=1.0$ |  |


| Quality Factor - $\pi_{Q}$ (Schottky) |  |
| :---: | :---: |
| Quality* | $\pi \mathrm{Q}$ |
| JANTXV | . 50 |
| JANTX | 1.0 |
| JAN | 1.8 |
| Lower | 2.5 |
| Plastic | - |
| For high fr MLL-S-195 requireme | sp <br> asse |

Quality Factor $-\pi_{Q}$
(All Types Except Schottky)

| Quality |  |
| :--- | :---: |
| JANTXV | $\pi_{\mathbf{Q}}$ |
| JANTX | .50 |
| JAN | 1.0 |
| Lower | 5.0 |
| Plastic | 25 |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 5.0 |
| $\mathrm{~N}_{\mathrm{S}}$ | 4.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 11 |
| $\mathrm{~A}_{\mathrm{C}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 5.0 |
| $A_{\mathrm{UC}}$ | 7.0 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 12 |
| $\mathrm{~A}_{\mathrm{RW}}$ | 16 |
| $\mathrm{~S}_{\mathrm{F}}$ | .50 |
| $\mathrm{M}_{\mathrm{F}}$ | 9.0 |
| $\mathrm{M}_{\mathrm{L}}$ | 24 |
| $\mathrm{C}_{\mathrm{L}}$ | 250 |

### 6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

## SPECIFICATION

DESCRIPTION MIL-S-19500

NPN (Frequency < 200 MHz )
PNP (Frequency < 200 MHz )

$$
\lambda_{P}=\lambda_{D} \pi_{T} \pi_{A} \pi_{R} \pi_{S} \pi_{Q} \pi_{E}
$$

Failures $/ 10^{6}$ Hours
Base Fallure Rate $-\lambda_{\mathrm{B}}$

| Type | $\lambda_{\mathrm{b}}$ |
| :--- | :---: |
| NPN and PNP | .00074 |

Application Factor $-\pi_{\mathrm{A}}$

| Application | $\pi_{\mathrm{A}}$ |
| :--- | :---: |
| Linear Amplification | 1.5 |
| Switching | .70 |


| $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $\left.\mathrm{T}_{\mathbf{j}}{ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| :---: | :---: | :---: | :---: |
| 25 | 1.0 | 105 | 4.5 |
| 30 | 1.1 | 110 | 4.8 |
| 35 | 1.3 | 115 | 5.2 |
| 40 | 1.4 | 120 | 5.6 |
| 45 | 1.6 | 125 | 5.9 |
| 50 | 1.7 | 130 | 6.3 |
| 55 | 1.9 | 135 | 6.8 |
| 60 | 2.1 | 140 | 7.2 |
| 65 | 2.3 | 145 | 7.7 |
| 70 | 2.5 | 150 | 8.1 |
| 75 | 2.8 | 155 | 8.6 |
| 80 | 3.0 | 160 | 9.1 |
| 85 | 3.3 | 165 | 9.7 |
| 90 | 3.6 | 170 | 10 |
| 95 | 3.9 | 175 | 11 |
| 100 | 4.2 |  |  |
| $\pi_{T}=\exp \left(-2114\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$ |  |  |  |
| $\mathrm{T}_{\mathrm{J}}=$ Junction Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |


| Rated Power (Pr, Watts) | $\pi_{\mathrm{R}}$ |
| :---: | :---: |
| Pr 5.1 | 43 |
| $\mathrm{P}_{\mathrm{r}}=.5$ | . 77 |
| $\mathrm{Pr}_{\mathrm{r}}=1.0$ | 1.0 |
| $\mathrm{Pr}_{\mathrm{r}}=5.0$ | 1.8 |
| $\mathrm{Pr}_{\mathrm{r}}=10.0$ | 2.3 |
| $\mathrm{P}_{\mathrm{r}}=50.0$ | 4.3 |
| $\mathrm{Pr}_{\mathrm{r}}=100.0$ | 5.5 |
| $\mathrm{Pr}=500.0$ | 10 |
| $\pi_{R}=.43 \quad \mathrm{Ra}$ | Rated Power 5.1W |
| $\pi_{R}=\left(P_{r}\right)^{37}$ | Rated Power > . 1 W |

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

Voltage Stress Factor - $\pi_{S}$

| Applied $V_{C E} /$ Rated $V_{C E O}$ | $\pi_{\mathrm{S}}$ |
| :--- | :---: |
| $0<\mathrm{V}_{\mathrm{S}} \leq .3$ | .11 |
| $.3<\mathrm{V}_{\mathrm{S}} \leq .4$ | .16 |
| $.4<\mathrm{V}_{\mathrm{S}} \leq .5$ | .21 |
| $.5<\mathrm{V}_{\mathrm{S}} \leq .6$ | .29 |
| $.6<\mathrm{V}_{\mathrm{S}} \leq .7$ | .39 |
| $.7<\mathrm{V}_{\mathrm{S}} \leq .8$ | .54 |
| $.8<\mathrm{V}_{\mathrm{S}} \leq .9$ | .73 |
| $.9<\mathrm{V}_{\mathrm{S}} \leq 1.0$ | 1.0 |

$\pi_{S} \quad=.045 \exp \left(3.1\left(V_{s}\right)\right) \quad\left(0<V_{S} \leq 1.0\right)$
$\mathrm{V}_{\mathrm{s}}=$ Applied $\mathrm{V}_{\mathrm{CE}} /$ Rated $\mathrm{V}_{\text {CEO }}$
$\mathrm{V}_{\mathrm{CE}}=$ Voltage, Collector to Emitter
$V_{\text {CEO }}=$ Vottage, Collector to Emitter, Base Open

Environment Factor - $\pi_{\mathrm{E}}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 6.0 |
| $G_{M}$ | 9.0 |
| $N_{S}$ | 9.0 |
| $N_{U}$ | 19 |
| $A_{I C}$ | 13 |
| $A_{I F}$ | 29 |
| $A_{U C}$ | 20 |
| $A_{U F}$ | 23 |
| $A_{R W}$ | .50 |
| $S_{F}$ | 14 |
| $M_{F}$ | 32 |
| $M_{L}$ | 320 |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| JANTXV | .70 |
| JANTX | 1.0 |
| JAN | 2.4 |
| Lower | 5.5 |
| Plastic | 8.0 |

### 6.4 TRANSISTORS, LOW FREQUENCY, SI FET

## SPECIFICATION

MIL-S-19500

## DESCRIPTION

N -Channel and P-Channel Si FET (Frequency $\leq 400 \mathrm{MHz}$ )

$$
\lambda_{D}=\lambda_{b} \pi_{T} \pi_{A} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :--- |
| Transistor Type | $\lambda_{\mathrm{b}}$ |
| MOSFET | .012 |
| JFET | .0045 |

Temperature Factor $-\pi_{T}$
$\pi_{T}=\exp \left(-1925\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$
$\boldsymbol{T}_{J}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| JANTXV | .70 |
| JANTX | 1.0 |
| JAN | 2.4 |
| Lower | 5.5 |
| Plastic | 8.0 |


| Application Factor $-\pi_{A}$ |  |
| :---: | :---: |
| Application <br> ( $P_{r}$, Rated Output Power) | $\pi_{A}$ |
| Linear Amplification <br> $\left(P_{r}<2 W\right)$ <br> SmaH Signal Switching | 1.5 |
| Power FETs <br> (Non-linear, $\left.P_{r} \geq 2 W\right)$ <br> $2 \leq P_{r}<5 W$ | .70 |
| $5 \leq P_{r}<50 W$ | 2.0 |
| $50 \leq P_{r}<250 W$ |  |
| $P_{r} \geq 250 W$ | 8.0 |

Environment Factor - $\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 6.0 |
| $G_{M}$ | 9.0 |
| $N_{S}$ | 9.0 |
| $N_{U}$ | 19 |
| $A_{I C}$ | 13 |
| $A_{I F}$ | 29 |
| $A_{U C}$ | 20 |
| $A_{U F}$ | 43 |
| $A_{R W}$ | 24 |
| $S_{F}$ | 14 |
| $M_{F}$ | 32 |
| $M_{L}$ | 320 |
| $C_{L}$ |  |

SPECIFICATION
MIL-S-19500

## DESCRIPTION

Unijunction Transistors

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E} \text { Failures/ } 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

| Type | $\lambda_{\mathrm{b}}$ |
| :---: | :---: |
| All Unijunction | .0083 |


| Temperature Factor $-\pi_{T}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~T}_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |  |
|  |  |  |  |  |
| 25 | 1.0 | 105 | 5.8 |  |
| 30 | 1.1 | 110 | 6.4 |  |
| 35 | 1.3 | 115 | 6.9 |  |
| 40 | 1.5 | 120 | 7.5 |  |
| 45 | 1.7 | 125 | 8.1 |  |
| 50 | 1.9 | 130 | 8.8 |  |
| 55 | 2.1 | 135 | 9.5 |  |
| 60 | 2.4 | 140 | 10 |  |
| 65 | 2.7 | 145 | 11 |  |
| 70 | 3.0 | 150 | 12 |  |
| 75 | 3.3 | 155 | 13 |  |
| 80 | 3.7 | 160 | 13 |  |
| 85 | 4.0 | 165 | 14 |  |
| 90 | 4.4 | 170 | 15 |  |
| 95 | 4.9 | 175 | 16 |  |
| 100 | 5.3 |  |  |  |
|  |  |  |  |  |

$\pi_{T}=\exp \left(-2483\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$
$\mathrm{T}_{J}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality $\pi_{\mathrm{Q}}$ <br> JANTXV .70 <br> JANTX 1.0 <br> JAN 2.4 <br> Lower 5.5 <br> Plastic 8.0 |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 6.0 |
| $G_{M}$ | 9.0 |
| $N_{S}$ | 9.0 |
| $N_{U}$ | 19 |
| $A_{I C}$ | 13 |
| $A_{I F}$ | 29 |
| $A_{U C}$ | 20 |
| $A_{U F}$ | 43 |
| $A_{R W}$ | 24 |
| $S_{F}$ | .50 |
| $M_{F}$ | 14 |
| $M_{L}$ | 32 |
| $C_{L}$ | 320 |

## MIL-HDBK-217F

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

## SPECIFICATION

M!L-S-19500

## DESCRIPTION

Bipolar, Microwave RF Transistor
(Frequency > 200 MHz , Power < 1 W )

$$
\lambda_{p}=\lambda_{D} \pi_{T} \pi_{R} \pi_{S} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Application Note: The model applies to a single die (for multiple die use the hybrid model). The model does apply to ganged transistors on a single die.

| Base Faihure Rate $-\lambda_{b}$ |  |
| :--- | :---: |
| Type | $\lambda_{b}$ |
| All Types | .18 |


| $\mathrm{T}_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $\mathrm{T}_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| :---: | :---: | :---: | :---: |
| 25 | 1.0 | 105 | 4.5 |
| 30 | 1.1 | 110 | 4.8 |
| 35 | 1.3 | 115 | 5.2 |
| 40 | 1.4 | 120 | 5.6 |
| 45 | 1.6 | 125 | 5.9 |
| 50 | 1.7 | 130 | 6.3 |
| 55 | 1.9 | 135 | 6.8 |
| 60 | 2.1 | 140 | 7.2 |
| 65 | 2.3 | 145 | 7.7 |
| 70 | 2.5 | 150 | 8.1 |
| 75 | 2.8 | 155 | 8.6 |
| 80 | 3.0 | 160 | 9.1 |
| 85 | 3.3 | 165 | 9.7 |
| 90 | 3.6 | 170 | 10 |
| 95 | 3.9 | 175 | 11 |
| 100 | 4.2 |  |  |
| $\pi_{T}=\exp \left(-2114\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$ |  |  |  |
| $T_{j}=$ Junction Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |


| Power Rating Factor - $\boldsymbol{\pi}_{\mathbf{R}}$ |  |
| :---: | :---: |
| Paned Power ( $\mathrm{P}_{\mathrm{r}}$, Watts) | ${ }^{\text {r }}$ |
| Pr $\leq .1$ | . 43 |
| .1 $<\operatorname{Pr} \leq .2$ | . 55 |
| . $2<\operatorname{Pr} \leq .3$ | . 64 |
| . $3<P_{r r} \leq .4$ | . 71 |
| . $4<\mathrm{Pr}_{\mathrm{r}} \leq .5$ | . 77 |
| . $5<\operatorname{Pr} \leqslant .6$ | . 83 |
| . $6<\operatorname{Pr} \leq .7$ | . 88 |
| . $7<\operatorname{Pr} \leq .8$ | . 92 |
| . $8<\operatorname{Pr} \leq .9$ | . 96 |
| $\pi_{R}=.43$ |  |
| $\pi_{R}=\left(P_{r}\right)^{37}$ |  |
| Voltage Stress Factor - $\boldsymbol{\pi}_{\mathbf{S}}$ |  |
| Applied VCE/Rated VCEO | $\pi_{\text {s }}$ |
| $0<V_{s} \leq .3$ | . 11 |
| . $3<\mathrm{V}_{\mathrm{s}} \leq .4$ | . 16 |
| . $4<\mathrm{V}_{\mathrm{s}} \leq .5$ | . 21 |
| . $5<\mathrm{V}_{\mathrm{s}} \leq .6$ | . 29 |
| . $6<\mathrm{V}_{\mathrm{s}} \leq .7$ | . 39 |
| . $7<\mathrm{V}_{5} \leq .8$ | . 54 |
| . $8<\mathrm{V}_{\mathrm{s}} \leq .9$ | . 73 |
| . $9<\mathrm{V}_{\text {s }} \leq 1.0$ | 1.0 |
| $\begin{aligned} & \pi_{\mathrm{s}}=.045 \exp \left(3.1\left(\mathrm{~V}_{\mathrm{s}}\right)\right) \quad\left(0<\mathrm{v}_{\mathrm{s}} \leq 1.0\right) \\ & v_{\mathrm{s}}=\text { Applied } \mathrm{V}_{\mathrm{CE}} / \text { Rated } \mathrm{V}_{\mathrm{CEO}} \\ & v_{\mathrm{CE}}=\text { Voltage, Collector to Emitter } \\ & v_{\text {CEO }}=\text { Voltage, Collector to Emitter, Base } \\ & \text { Open } \end{aligned}$ |  |
|  |  |
|  |  |
|  |  |


| Quality Factor $-\pi_{\mathrm{O}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{O}}$ |
| JANTXV | .50 |
| JANTX | 1.0 |
| JAN | 2.0 |
| Lower | 5.0 |

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.

| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 5.0 <br> $N_{S}$ 4.0 <br> $N_{U}$ 11 <br> $A_{I C}$ 4.0 <br> $A_{I F}$ 5.0 <br> $A_{U C}$ 7.0 <br> $A_{U F}$ 12 <br> $A_{R W}$ 16 <br> $S_{F}$ .50 <br> $M_{F}$ 9.0 <br> $M_{L}$ 24 <br> $C_{L}$ 250 |  |

### 6.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

## SPECIFICATION

MIL-S-19500

DESCRIPTION
Power, Microwave, RF Bipolar Transistors (Average Power $\geq 1 \mathrm{~W}$ )

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{A} \pi_{M} \pi_{Q} \pi_{E}
$$

Failures $/ 10^{6}$ Hours

Base Failure Rate - $\lambda_{b}$

| $\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$ | Output Power (Watts) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.0 | 5.0 | 10 | 50 | 100 | 200 | 300 | 400 | 500 | 600 |
| $\leq 0.5$ | . 038 | . 039 | . 040 | . 050 | . 067 | . 12 | . 20 | . 36 | . 62 | 1.1 |
| 1 | . 046 | . 047 | . 048 | . 060 | . 080 | . 14 | . 24 | . 42 | . 74 | 1.3 |
| 2 | . 065 | . 067 | . 069 | . 086 | . 11 | . 20 | . 35 |  |  |  |
| 3 | . 093 | . 095 | . 098 | . 12 | . 16 | . 28 |  |  |  |  |
| 4 | . 13 | . 14 | . 14 | . 17 | . 23 |  |  |  |  |  |
| 5 | . 19 | . 19 | . 20 | . 25 |  |  |  |  |  |  |
| $\lambda_{\mathrm{b}}=.032 \exp (.354(\mathrm{~F})+.00558(\mathrm{P})$ ) |  |  |  | $F=$ Frequency (GHz) |  |  | $P=$ Output Power (W) |  |  |  |

NOTE: Output power refers to the power level for the overall packaged device and not to individual transistors within the package (if more than one transistor is ganged together). The output power represents the power output from the active device and should not account for any duty cycle in pulsed applications. Duty cycle is accounted for when determining $\pi_{A}$.

| Temperature Factor $-\pi_{\boldsymbol{T}}$ (Gold Metallization) |  |  |  |  | Temperature Factor - $\pi_{T}$ <br> (Aluminum Metallization) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $V_{s}\left(V_{C E} /{ }^{\text {/ }}{ }^{\text {CES }}\right.$ ) |  |  |  | $\mathrm{V}_{\mathrm{s}}\left(\mathrm{V}_{\text {CE }} / \mathrm{BV}_{\text {CES }}\right)$ |  |  |  |  |
| $\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)$ | $\leq .40$ | 45 | . 50 | . 55 | $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | 5.40 | . 45 | . 50 | . 55 |
| $\leq 100$ | . 10 | . 20 | . 30 | . 40 | $\leq 100$ | . 38 | 75 | 1.1 | 1.5 |
| 110 | . 12 | . 25 | . 37 | . 49 | 110 | . 57 | 1.1 | 1.7 | 2.3 |
| 120 | . 15 | . 30 | . 45 | . 59 | 120 | . 84 | 1.7 | 2.5 | 3.3 |
| 130 | . 18 | . 36 | . 54 | . 71 | 130 | 1.2 | 2.4 | 3.6 | 4.8 |
| 140 | . 21 | . 43 | . 64 | . 85 | 140 | 1.7 | 3.4 | 5.1 | 6.8 |
| 150 | . 25 | . 50 | . 75 | 1.0 | 150 | 2.4 | 4.7 | 7.1 | 9.5 |
| 160 | . 29 | . 59 | . 88 | 1.2 | 160 | 3.3 | 6.5 | 9.7 | 13 |
| 170 | . 34 | . 68 | 1.0 | 1.4 | 170 | 4.4 | 8.8 | 13 | 18 |
| 180 | 40 | 79 | 1.2 | 1.6 | 180 | 5.9 | 12 | 18 | 23 |
| 190 | 45 | . 91 | 1.4 | 1.8 | 190 | 7.8 | 15 | 23 | 31 |
| 200 | . 52 | 1.0 | 1.6 | 2.1 | 200 | 10 | 20 | 30 | 40 |
| $\begin{gathered} \pi_{T}=.1 \\ \pi_{T}=2 N \end{gathered}$ $v_{s}$ <br> VCE <br> BVCE | $p(-29$ $s \leq .40)$ <br> .35) exp $1<V_{s} \leq$ | $\frac{1}{T_{J}+i}$ <br> 903 <br> BVC <br> ting V <br> or-E <br> e with <br> (Vol <br> Junctio | - $\frac{1}{373}$ <br> 273 <br> (Volts) <br> reakd <br> Shorte <br> peratu | )). <br> C) | $\left.\begin{array}{rl} \pi_{T} & =.38 \exp \left(-5794\left(\frac{1}{T_{J}+273} \cdot \frac{1}{373}\right)\right) \\ \left(V_{S} \leq .40\right) \end{array}\right)$ |  |  |  |  |

Application Factor $-\pi_{\mathrm{A}}$

| Application | Duty Factor | $\pi_{\mathrm{A}}$ |
| :--- | :---: | :---: |
| CW | N/A | 7.6 |
| Pulsed | $\leq 1 \%$ | .46 |
|  | $5 \%$ | .70 |
|  | $10 \%$ | 1.0 |
|  | $15 \%$ | 1.3 |
|  | $20 \%$ | 1.6 |
|  | $25 \%$ | 1.9 |
|  | $\geq 30 \%$ | 2.2 |
| $\pi_{\mathrm{A}}=7.6, \mathrm{CW}$ |  |  |
| $\pi_{\mathrm{A}}=.06$ (Duty Factor \%) +.40, Pulsed |  |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| JANTXV | .50 |
| JANTX | 1.0 |
| JAN | 2.0 |
| Lower | 5.0 |
| NOTE: For these devices, JANTXV quality class <br> must include IR Scan for die attach and screen for <br> barrier layer pinholes on gold metallized devices. |  |


| Matching Network Factor - $\pi_{M}$ |  | Environment Factor - $\boldsymbol{\pi}_{\mathrm{E}}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Environment | $\pi_{E}$ |
| Matching | $\pi_{M}$ | $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| Input and Output | 1.0 | $\begin{aligned} & G_{F} \\ & G_{M} \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$ |
| Input | 2.0 | $\mathrm{N}_{S}$ | 4.0 |
| None | 4.0 | $\mathrm{N}_{\mathrm{U}}$ | 11 |
|  |  | $A_{1 C}$ |  |
|  |  | $A_{\text {IF }}$ | 5.0 |
|  |  | ${ }^{\text {A }}$ UC | 7.0 |
|  |  | ${ }^{\text {A }}$ UF | 12 |
|  |  | $A_{\text {RW }}$ | 16 |
|  |  | $\mathrm{S}_{\mathrm{F}}$ | . 50 |
|  |  | $M_{F}$ | 9.0 |
|  |  | $M_{L}$ | 24 |
|  |  | $C_{L}$ | 250 |

### 6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

## SPECIFICATION

MIL-S-19500

DESCRIPTION
GaAs Low Noise, Driver and Power FETs ( $\geq$ 1GHz)
Failures/ $10^{6}$ Hours

| Operating Frequency (GHz) | < 1 | . 1 | Averag .5 | Power <br> 1 | 2 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 052 | - | - | - | -- | -- | -- |
| 4 | . 052 | . 054 | . 066 | . 084 | 14 | . 36 | . 96 |
| 5 | . 052 | . 083 | . 10 | . 13 | . 21 | . 56 | 1.5 |
| 6 | . 052 | . 13 | . 16 | . 20 | . 32 | . 85 | 2.3 |
| 7 | . 052 | . 20 | . 24 | . 30 | . 50 | 1.3 | 3.5 |
| 8 | . 052 | . 30 | . 37 | . 47 | . 76 | 2.0 |  |
| 9 | . 052 | . 46 | . 56 | . 72 | 1.2 |  |  |
| 10 | . 052 | . 71 | . 87 | 1.1 | 1.8 |  |  |
| $\lambda_{b}=.052$ |  |  | $1 \leq F \leq 10, \quad P<.1$ |  |  |  |  |
| $\lambda_{\mathrm{t}}=.0093 \exp (.429(F)+.486(P))$ |  |  | $4 \leq F \leq 10, \quad .1 \leq P \leq 6$ |  |  |  |  |
| $F=$ Frequency (GHz) |  |  | P - Average Output Power (Watts) |  |  |  |  |

The average output power represents the power output from the active device and should not account for any duty cycle in pulsed applications.

| Temperature Factor - $\pi_{T}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| ${ }^{T} \mathrm{C}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $\mathrm{T}_{\mathrm{C}}\left({ }^{(0}\right)$ | $\pi_{T}$ |
| 25 | 1.0 | 105 | 24 |
| 30 | 1.3 | 110 | 28 |
| 35 | 1.6 | 115 | 33 |
| 40 | 2.1 | 120 | 38 |
| 45 | 2.6 | 125 | 44 |
| 50 | 3.2 | 130 | 50 |
| 55 | 4.0 | 135 | 58 |
| 60 | 4.9 | 140 | 66 |
| 65 | 5.9 | 145 | 75 |
| 70 | 7.2 | 150 | 85 |
| 75 | 8.7 | 155 | 97 |
| 80 | 10 | 160 | 110 |
| 85 | 12 | 165 | 120 |
| 90 | 15 | 170 | 140 |
| 95 | 18 | 175 | 150 |
| 100 | 21 |  |  |
|  | (-4 | $\frac{1}{+273}$ | 8) |
| ${ }^{T} \mathbf{C}$ | annel | ure ( ${ }^{\circ} \mathrm{C}$ ) |  |


| Application Factor $-\pi_{\mathrm{A}}$ |
| :--- |
| Application (P $\leq 6 \mathrm{~W})$ $\pi_{\mathrm{A}}$ <br> All Low Power and Pulsed 1 <br> CW 4 |
| P = Average Output Power (Watts) |

## MIL-HDBK-217F

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET
Matching Network Factor $-\pi_{M}$

| Matching | $\pi_{M}$ |
| :--- | :---: |
| Input and Output | 1.0 |
| Input Only | 2.0 |
| None | 4.0 |


| Environment Factor - $\pi_{\mathrm{E}}$ |  |
| :---: | :---: |
| Environment | $\pi_{\text {E }}$ |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $G_{M}$ | 5.0 |
| $\mathrm{N}_{S}$ | 4.0 |
| $\mathrm{N}_{\mathrm{U}}$ | 11 |
| $A_{1 C}$ | 4.0 |
| $A_{\text {IF }}$ | 5.0 |
| ${ }^{\text {A }}$ UC | 7.0 |
| ${ }^{\text {A }}$ UF | 12 |
| $A_{\text {RW }}$ | 16 |
| $S_{F}$ | . 50 |
| $M_{F}$ | 7.5 |
| $M_{L}$ | 24 |
| $\mathrm{C}_{\mathrm{L}}$ | 250 |

### 6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

## SPECIFICATION

MIL-S-19500

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E}
$$

| Base Faiture Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :---: |
| Transistor Type $\lambda_{\mathrm{b}}$ <br> MOSFET .060 <br> JFET .023 |  |


| $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| :---: | :---: | :---: | :---: |
| 25 | 1.0 | 105 | 3.9 |
| 30 | 1.1 | 110 | 4.2 |
| 35 | 1.2 | 115 | 4.5 |
| 40 | 1.4 | 120 | 4.8 |
| 45 | 1.5 | 125 | 5.1 |
| 50 | 1.6 | 130 | 5.4 |
| 55 | 1.8 | 135 | 5.7 |
| 60 | 2.0 | 140 | 6.0 |
| 65 | 2.1 | 145 | 6.4 |
| 70 | 2.3 | 150 | 6.7 |
| 75 | 2.5 | 155 | 7.1 |
| 80 | 2.7 | 160 | 7.5 |
| 85 | 3.0 | 165 | 7.9 |
| 90 | 3.2 | 170 | 8.3 |
| 95 | 3.4 | 175 | 8.7 |
| 100 | 3.7 |  |  |
|  |  | $\frac{1}{+273}$ |  |
| $\mathrm{T}_{\mathrm{J}}=$ Junction Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |

Failures $/ 10^{6}$ Hours
DESCRIPTION
Si FETs (Avg. Power < 300 mW . Freq. > 400 MHz )
Quality Factor $-\pi_{\mathrm{Q}}$

| Quality | $\pi_{\mathrm{Q}}$ |
| :--- | :---: |
| JANTXV | .50 |
| JANTX | 1.0 |
| JAN | 2.0 |
| Lower | 5.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 5.0 |
| $N_{S}$ | 4.0 |
| $N_{U}$ | 11 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 5.0 |
| $A_{U C}$ | 7.0 |
| $A_{U F}$ | 12 |
| $A_{R W}$ | 16 |
| $S_{F}$ | .50 |
| $M_{F}$ | 9.0 |
| $M_{L}$ | 24 |
| $c_{L}$ | 250 |

SPECIFICATION
MIL-S-19500

DESCRIPTION
Thyristors
SCRs, Triacs

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{R} \pi_{S} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |
| :---: | :---: |
| Device Type | $\lambda_{\mathrm{b}}$ |
| All Types | .0022 |


| Temperature Factor $-\pi_{\mathbf{T}}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $\mathrm{~T}_{J}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{\mathrm{T}}$ |  |
|  |  |  |  |  |
| 25 | 1.0 | 105 | 8.9 |  |
| 30 | 1.2 | 110 | 9.9 |  |
| 35 | 1.4 | 115 | 11 |  |
| 40 | 1.6 | 120 | 12 |  |
| 45 | 1.9 | 125 | 13 |  |
| 50 | 2.2 | 130 | 15 |  |
| 55 | 2.6 | 135 | 16 |  |
| 60 | 3.0 | 140 | 18 |  |
| 65 | 3.4 | 145 | 19 |  |
| 70 | 3.9 | 150 | 21 |  |
| 75 | 4.4 | 155 | 23 |  |
| 80 | 5.0 | 160 | 25 |  |
| 85 | 5.7 | 165 | 27 |  |
| 90 | 6.4 | 170 | 30 |  |
| 95 | 7.2 | 175 | 32 |  |
| 100 | 8.0 |  |  |  |

$\pi_{T}=\exp \left(-3082\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

| Current Rating Factor $-\pi_{R}$ |  |
| :---: | :---: |
| Rated Forward Current <br> (Ifrms (Amps) | $\pi_{R}$ |
| .05 | .30 |
| .10 | .40 |
| .50 | .76 |
| 1.0 | 1.0 |
| 5.0 | 2.9 |
| 10 | 3.3 |
| 20 | 3.9 |
| 30 | 4.4 |
| 40 | 4.8 |
| 50 | 5.1 |
| 60 | 5.5 |
| 70 | 5.8 |
| 80 | 6.0 |
| 90 | 6.3 |
| 100 | 6.6 |
| 110 | 7.8 |
| 120 | 7.2 |
| 130 | 7.4 |
| 140 | 7.6 |
| 150 | 7.9 |
| 160 |  |
| 170 |  |
| 175 |  |


| $\mathrm{V}_{\mathrm{s}}$ (Blocking Voltage Applied/ Blocking Voltage Rated) | $\pi_{s}$ |
| :---: | :---: |
| $V_{s} \leq .30$ | 10 |
| . $3<\mathrm{V}_{\mathrm{s}} \leq .4$ | 18 |
| . $4<V_{\text {S }} \leq .5$ | . 27 |
| . $5<\mathrm{V}_{\mathrm{s}} \leq .6$ | . 38 |
| $.6<V_{S} \leq .7$ | . 51 |
| . $7<\mathrm{V}_{\mathrm{S}} \leq .8$ | . 65 |
| . $8<V_{\text {s }} \leq .9$ | . 82 |
| . $9<\mathrm{V}_{\mathrm{S}} \leq 1.0$ | 1.0 |
| $\pi_{S}=.10$ | ( $\mathrm{V}_{\mathrm{s}} \leq 0.3$ ) |
| $\pi_{S}=\left(V_{S}\right)^{1.9}$ | $\left(v_{s}>0.3\right)$ |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 6.0 <br> $G_{M}$ 9.0 <br> $N_{S}$ 9.0 <br> $N_{U}$ 19 <br> $A_{I C}$ 13 <br> $A_{I F}$ 29 <br> $A_{U C}$ 20 <br> $A_{U F}$ 43 <br> $A_{R W}$ 24 <br> $S_{F}$ .50 <br> $M_{F}$ 14 <br> $M_{L}$ 32 <br> $C_{L}$ 320 |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality $\pi_{\mathrm{Q}}$ <br> JANTXV 0.7 <br> JANTX 1.0 <br> JAN 2.4 <br> Lower 5.5 <br> Plastic 8.0 |  |

6.11 OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS

```
SPECIFICATION
MIL-S-19500
```


## DESCRIPTION <br> Photodetectors, Opto-isoiaiors, Emitiers

$$
\lambda_{P}=\lambda_{D} \pi_{T} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Faiture Rate $=\lambda_{\Delta}$

| Opioeiecironic Typ̄é | $\lambda_{\mathrm{B}}$ |
| :--- | ---: |
| Photodetectors |  |
| Photo-Transistor | .0055 |
| Photo-Diode | .0040 |
| Opto-lsolators | .0025 |
| Photodiode Output, Single Device | .013 |
| Phototransistor Output, Single Device | .013 |
| Photodarlington Output, Single Device | .0064 |
| Light Sensitive Resistor, Single Device | .0033 |
| Photodiode Output, Dual Device | .017 |
| Phototransistor Output, Dual Device | .017 |
| Photodarlington Output, Dua! Device | .0086 |
| Light Sensitive Resistor, Dua! Device |  |
| Emitters |  |
| inirared Light Emining Diode (iRLD) | .0013 |
| Light Emitting Diode (LED) | .00023 |


| Temperature Facior $-\pi_{T}$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ $\pi_{T}$ $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ $\pi_{T}$ <br>  1.0   <br> 25 1.2 85 3.8 <br> 30 1.4 80 4.3 <br> 35 1.6 95 4.8 <br> 40 1.8 95 5.3 <br> 45 2.1 100 5.9 <br> 50 2.4 105 6.6 <br> 55 2.7 110 7.3 <br> 60 3.0 115 8.0 <br> 65 3.4  8.8 <br> 70    |  |  |  |  |
| $\pi_{T}=$ |  |  |  |  |
| $T_{J}=$ |  |  |  |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :---: | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| JANTXV | .70 |
| JANTX | 1.0 |
| JAN | 2.4 |
| Lower | 5.5 |
| Plastic | 8.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 12 |
| $A_{i C}$ | 4.0 |
| $A_{I F}$ | 6.0 |
| $A_{U C}$ | 6.0 |
| $A_{U F}$ | 8.0 |
| $A_{\mathrm{HW}}$ | 17 |
| $S_{F}$ | .50 |
| $M_{F}$ | 9.0 |
| $M_{L}$ | 24 |
| $C_{L}$ | 450 |

## SPECIFICATION

MIL-S-19500

## DESCRIPTION <br> Alphanumeric Display

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E} \text { Failures/10 } 6 \text { Hours }
$$

| Base Failure Rate $-\lambda_{b}$ |  |  |
| :---: | :---: | :---: |
| Number <br> of <br> Characters | $\lambda_{b}$ <br> Segment <br> Display | $\lambda_{b}$ <br> Diode Array <br> Display |
| 1 | .00043 | .00026 |
| 1 whogic Chip | .00047 | .00030 |
| 2 | .00086 | .00043 |
| 2 whogic Chip | .00090 | .00047 |
| 3 | .0013 | .00060 |
| 3 whogic Chip | .0013 | .00064 |
| 4 | .0017 | .00077 |
| 4 w/ogic Chip | .0018 | .00081 |
| 5 | .0022 | .00094 |
| 6 | .0026 | .0011 |
| 7 | .0030 | .0013 |
| 8 | .0034 | .0015 |
| 9 | .0039 | .0016 |
| 10 | .0043 | .0018 |
| 11 | .0047 | .0020 |
| 12 | .0052 | .0021 |
| 13 | .0060 | .0023 |
| 14 | .0065 | .0025 |
| 15 |  | .0026 |

$\lambda_{b}=.00043(C)+\lambda_{1 C}$, for Segment Displays
$\lambda_{\mathrm{b}}=.00009+.00017(\mathrm{C})+\lambda_{1 C}$. Diode Array Displays
C $=$ Number of Characters
$\lambda_{X C}=.000043$ for Displays with a Logic Chip
= 0.0 for Displays without Logic Chip
NOTE: The number of characters in a display is the number of characters contained in a single sealed package. For example, a 4 character display comprising 4 separately packaged single characters mounted together would be 4-one character displays, not 1 -four character display.

| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality $\pi_{\mathrm{Q}}$ <br> JANTXV 0.7 <br> JANTX 1.0 <br> JAN 2.4 <br> Lower 5.5 <br> Plastic 8.0 |  |


| Temperature Factor $\pi_{T}$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ $\pi_{T}$ $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ $\pi_{T}$ <br> 25 1.0 75 3.8 <br> 30 1.2 80 4.3 <br> 35 1.4 85 4.8 <br> 40 1.6 90 5.3 <br> 45 1.8 95 5.9 <br> 50 2.1 100 6.6 <br> 55 2.4 105 7.3 <br> 60 2.7 110 8.0 <br> 65 3.0 115 8.8 <br> 70 3.4   |  |  |  |  |
| $\pi_{T}=\exp \left(-2790\left(\overline{T_{J}+273}-\frac{1}{298}\right)\right)$ |  |  |  |  |
| $T_{J}=$ |  |  |  |  |
| Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 12 |
| $A_{1}$ | 4.0 |
| $A_{I F}$ | 6.0 |
| $A_{U C}$ | 6.0 |
| $A_{U F}$ | 8.0 |
| $A_{R W}$ | 17 |
| $S_{F}$ | .50 |
| $M_{F}$ | 9.0 |
| $M_{L}$ | 24 |
| $C_{L}$ | 450 |

### 6.13 OPTOELECTRONICS, LASER DIODE

## SPECIFICATION <br> MIL-S-19500

## DESCRIPTION

Laser Diodes with Optical Fux Densities
< 3 MW/cm ${ }^{2}$ and Fonward Current < 25 amps

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{1} \pi_{A} \pi_{P} \pi_{E} \text { Failures/10 } 6 \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :---: |
| Laser Diode Type $\lambda_{\mathrm{b}}$ <br> GaAs/Al GaAs 3.23 <br> In GaAs/In GaAsP 5.65 |  |



| Quality Factor - $\pi^{2} \mathrm{Q}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| Hermetic Package | 1.0 |
| Nonhermetic with Facet Coating | 1.0 |
| Nonhermetic without Facet Coating | 3.3 |

Forward Current Factor, $\pi_{1}$

| Forward Peak Current (Amps) | $\pi$ |
| :---: | :---: |
| .050 | 0.13 |
| .075 | 0.17 |
| .1 | 0.21 |
| .5 | 0.62 |
| 1.0 | 1.0 |
| 2.0 | 1.6 |
| 3.0 | 2.1 |
| 4.0 | 2.6 |
| 5.0 | 4.8 |
| 10 | 6.3 |
| 15 | 7.7 |
| 20 | 8.9 |
| 25 |  |

$\pi_{1}=(1)^{68}$
1 = Forward Peak Current (Amps), $1 \leq 25$
NOTE: For Variable Current Sources, use the Initial Current Value.
Application Factor $\pi_{A}$

| Application | Duty Cycle | $\pi_{A}$ |
| :--- | :---: | :---: |
| CW | - | 4.4 |
| Pulsed | .1 | .32 |
|  | .2 | .45 |
|  | .3 | .65 |
|  | .4 | .71 |
|  | .5 | .77 |
|  | .6 | .84 |
|  | .7 | .89 |
|  | .8 | .95 |
|  | .9 | 1.00 |
|  | 1.0 |  |
|  |  |  |
|  |  |  |
| $\pi_{A}=4.4$, CW |  |  |
| $\pi_{A}=$ Duty Cycle | 0.5, Putsed |  |

NOTE: A duty cycle of one in pulsed application represents the maximum amount it can be driven in a pulsed mode. This is different from continuous wave application which will not withstand pulsed operating levels on a continuous basis.

## MIL-HDBK-217F

### 6.13 OPTOELECTRONICS, LASER DIODE



| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{\mathrm{E}}$ |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 8.0 |
| $\mathrm{~N}_{\mathrm{S}}$ | 5.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 12 |
| $\mathrm{~A}_{\mathrm{K}}$ | 4.0 |
| $A_{I F}$ | 6.0 |
| $A_{U C}$ | 6.0 |
| $A_{U F}$ | 8.0 |
| $A_{\text {RW }}$ | 17 |
| $S_{F}$ | .50 |
| $M_{F}$ | 9.0 |
| $M_{\mathrm{L}}$ | 24 |
| $C_{L}$ | 450 |

### 6.14 DISCRETE SEMICONDUCTORS, $T_{J}$ DETERMINATION

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipmeni. Device juncion iemperaiure is then caiculâted with time íolowing relationsitip:

$$
T_{J}=T_{C}+\theta_{d C} P
$$

where:
$\mathrm{T}_{\mathbf{J}}=$ Junction Temperature ( ${ }^{\circ} \mathrm{C}$ )
$T_{C}=$ Case Temperature ( ${ }^{\circ} \mathrm{C}$ ). If no thermal analysis exists, the defauth case temperatures shown in Table 6-1 should be assumed.
${ }^{{ }_{J C}}=$ Junction-to-Case Thermal Resistance ( ${ }^{\circ} \mathrm{C} M$ ). This parameter should be determined from vendor, milliary specilication sheets or Table 6-2, whichever is greater. It may also be estimated by taking the reciprocal of the recommended derating level. For example, a device derating recommendation of .16 W/PC would
 $70^{\circ} \mathrm{CM}$.

P = Device Worse Case Power Dissipation (W)
The models are not applicable to devices at overstress conditions. If the calculated junction temperature is greater than the maximum rated junction temperature on the MIL slash sheets or the vendor's specifications, whichever is smalier, then the device is overstressed and these modeis ARE NOT APPLICABLE.

## Table 6-1: Default Case Temperatures ( $T_{C}$ ) for All Environments

| Environment | $\left.\mathrm{T}_{\mathrm{C}}{ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{B}}$ | 35 |
| $\mathrm{G}_{\mathrm{F}}$ | 45 |
| $\mathrm{G}_{\mathbf{M}}$ | 50 |
| $\mathrm{~N}_{\mathrm{S}}$ | 45 |
| $\mathrm{~N}_{\mathrm{U}}$ | 50 |
| $A_{\mathrm{K}}$ | 60 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 60 |
| $A_{\mathrm{UC}}$ | 75 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 75 |
| $A_{R W}$ | 60 |
| $\mathrm{~S}_{\mathrm{F}}$ | 35 |
| $M_{F}$ | 50 |
| $M_{\mathrm{L}}$ | 60 |
| $C_{\mathrm{L}}$ | 45 |

6.14 DISCRETE SEMICONDUCTORS, $T_{J}$ DETERMINATION

Table 6-2: Approximate Junction-io-Case Thermai Resistance ( $\theta_{J C}$ ) ior Semiconductor Devices in Various Package Sizes*

| Package Type | Oje ( ${ }^{\circ} \mathrm{CN}$ ) | Package Type | OJc ( ${ }^{\circ} \mathrm{CNW}$ ) |
| :---: | :---: | :---: | :---: |
| TO-1 | 70 | TO-205AD | 70 |
| TO-3 | 10 | TO-205AF | 70 |
| TO-5 | 70 | TO-220 | 5 |
| TO-8 | 70 | DO-4 | 5 |
| TO-9 | 70 | DO-5 | 5 |
| TO-12 | 70 | DO-7 | 10 |
| TO-18 | 70 | DO-8 | 5 |
| TO-28 | 5 | DO-9 | 5 |
| TO-33 | 70 | DO-13 | 10 |
| T0-39 | 70 | DO-14 | 5 |
| TO-41 | 10 | 00-29 | 10 |
| TO-44 | 70 | DO-35 | 10 |
| TO-46 | 70 | DO-41 | 10 |
| TO-52 | 70 | 00-45 | 5 |
| TO-53 | 5 | DO-204MB | 70 |
| TO-57 | 5 | DO-205AB | 5 |
| TO-59 | 5 | PA-42A,B | 70 |
| TO-60 | 5 | PD-36C | 70 |
| TO-61 | 5 | PD-50 | 70 |
| TO-63 | 5 | PD-77 | 70 |
| TO-66 | 10 | PD-180 | 70 |
| TO-71 TO-72 | 70 | PD-319 | 70 70 |
| TO-83 | 5 | PD-975 | 70 |
| TO-89 | 22 | PD-280 | 70 |
| TO-92 | 70 | PD-216 | 70 |
| TO-94 | 5 | PT-2G | 70 |
| TO-99 | 70 | PT-6B | 70 |
| TO-126 | 5 | PH-13 | 70 |
| TO-127 | 5 | PH-16 | 70 |
| TO-204 | 10 | PH-56 | 70 |
| TO-204AA | 10 | PY-58 PY-373 | 70 70 |

*When available, estimates must be based on miltary specification sheet or vendor values, whichever $\theta_{\mathrm{J}} \mathrm{C}$ is higher.
6.15 DISCRETE SEMICONDUCTORS, EXAMPLE

## Example

Given: Silicon dual transistor (complementary), JAN grade, rated for 0.25 W at $25^{\circ} \mathrm{C}$, one side only, and 0.35 W at $25^{\circ} \mathrm{C}$, both sides, with $T_{\text {max }}=200^{\circ} \mathrm{C}$, operating in linear service at $55^{\circ} \mathrm{C}$ case temperature in a shettered naval environment. Side one, NPN, operating at 0.1 W and 50 percent of rated voltage and side two, PNP, operating at 0.05 W and 30 percent of rated voltage. The device operates at less than 200 MHz .

Since the device is a bipolar dual transistor operating at low frequency ( $<200 \mathrm{MHz}$ ), it falls into the Transistor, Low Frequency, Bipolar Group and the appropriate model is given in Section 6.3. Since the device is a dual device, it is necessary to compute the failure rate of each side separately and sum them together. Also, since $\theta_{\mathrm{JC}}$ is unknown, $\theta_{J C}=70^{\circ} \mathrm{CN}$ will be assumed.

Based on the given information, the following model factors are determined from the appropriate tables shown in Section 6.3.

| $\lambda_{b}=.00074$ |  |
| :--- | :--- |
| $\pi_{T 1}=2.2$ | Side $1, T_{J}=T_{C}+\theta_{J C} P=55+70(.1)=62^{\circ} \mathrm{C}$ |
| $\pi_{T 2}=2.1$ | Side $2, T_{J}=55+70(.05)=59^{\circ} \mathrm{C}$ |
| $\pi_{A}=1.5$ |  |
| $\pi_{R}=.68$ | Using equation shown with $\pi_{R}$ table, $P_{r}=.35 \mathrm{~W}$ |
| $\pi_{S 1}=.21$ | Side $1,50 \%$ Voltage Stress |
| $\pi_{S 2}=.11$ | Side $2,30 \%$ Voltage Stress |
| $\pi_{Q}=2.4$ |  |
| $\pi_{E}=9$ |  |

SIDE 1 SIDE 2
$\lambda_{\mathrm{P}}=\lambda_{\mathrm{B}} \pi_{\mathrm{T} 1} \pi_{\mathrm{A}} \pi_{\mathrm{R}} \pi_{\mathrm{S} 1} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}+\lambda_{\mathrm{B}} \pi_{\mathrm{T} 2} \pi_{\mathrm{A}} \pi_{\mathrm{R}} \pi_{\mathrm{S} 2} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}$
$\lambda_{\mathrm{p}}=(.00074)(2.2)(1.5)(.68)(.21)(2.4)(9)+(.00074)(2.1)(1.5)(.68)(.11)(2.4)(9)$
$=.011$ Failures $/ 10^{6}$ Hours
7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

## DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

$$
\lambda_{p}=\lambda_{b} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$
(Includes Boin Random and Wearout Fallures)

| Tube Type | $\lambda_{b}$ | Tube Type | $\lambda_{b}$ |
| :---: | :---: | :---: | :---: |
| Receiver Triode, Tetrode, Pentode Power Rectifier | $10.0$ | Klystron, Low Power, (e.g. Local Oscillator) | 30 |
| CRT | 9.6 | Klystron, Continuous Wave* |  |
| Thyratron | 50 |  |  |
| $\begin{aligned} & \text { Crossed Field Amplifier } \\ & \text { QK681 } \\ & \text { SFD261 } \end{aligned}$ | $\begin{aligned} & 260 \\ & 150 \end{aligned}$ | 3K210000LQ 150 <br> 3KM300LA 64 |  |
| Pulsed Gridded |  | 3KM3000LA 19 |  |
| 2041 | 140 | 3KM50000PA 110 <br> 3KM50000PA 10  |  |
| 6952 | 390 |  |  |
| 7835 | 140 | 3KM50000PA2 150 |  |
| Transmitting |  | 4 K 3 CC 610 <br> 4 K 3 SK 29 |  |
| Triode, Peak Pwr. $\leq 200$ KW, Avg. Pur $\leq 2 \mathrm{KW}$ Freq $\leq 200 \mathrm{MHz}$ | 75 | 4K50000LQ 30 |  |
| Terrose \& Pentog. Peak Pwr | 100 | 4KM50LB |  |
| $\leq 200 \mathrm{KW}$, Avg. Power $\leq 2 \mathrm{~kW}$, | 100 | 4 KM 50 LC 15 <br> 4 KM 50 SJ 38 |  |
| Freq. $\leq 200 \mathrm{~kW}$, |  |  |  |
| If any of the above limits exceeded | 250 | 4KM50SK 37 |  |
| Vidicon |  | 4KM3000LR 4KM50000LO |  |
| Antimony Trisulfide ( $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ ) |  | 4KM500000LR 57 |  |
| Photoconductive Material | 51 | 4KM170000LA 15 |  |
| Silicon Diode Array Photoconductive Material | 48 | 8824 \| 130 |  |
| VA144 | 850 | 8825 120 <br> 8826 280 |  |
| VA145E | 450 | VA853 220 <br> VA856B 65 |  |
| VA145H | 490 |  |  |
| VA913A | 230 | VA888E | 230 |
| Klystron, Pulsed* |  |  |  |
| 8568 | 230 | - It the CW Klystron of interest is not listed above. use the Alternate CW Klystron $\lambda_{b}$ Table on the following page. |  |
| L3035 | 66 |  |  |  |
| 13250 | 69 |  |  |  |


| SAC42A | 100 |
| :--- | ---: |
| VA842 | 18 |
| Z5010A | 150 |
| ZM3038A | 190 |

* If the pulsed Klystron of interest is not listed above, use the Alternate Pulsed Klystron $\lambda_{b}$ Table on the following page.

Alternate* Base Failure Rate for Pulsed Klystrons - $\lambda_{\mathrm{o}}$

| P(MW) | F(GHz) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 2 | . 4 | . 6 | . 8 | 1.0 | 2.0 | 4.0 | 6.0 |
| 01 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| . 30 | 16 | 16 | 17 | 17 | 17 | 18 | 20 | 21 |
| . 80 | 16 | 17 | 17 | 18 | 18 | 21 | 25 | 30 |
| 1.0 | 17 | 17 | 18 | 18 | 19 | 22 | 28 | 34 |
| 3.0 | 18 | 20 | 21 | 23 | 25 | 34 | 51 |  |
| 5.0 | 19 | 22 | 25 | 28 | 31 | 45 | 75 |  |
| 8.0 | 21 | 25 | 30 | 35 | 40 | 63 | 110 |  |
| 10 | 22 | 28 | 34 | 40 | 45 | 75 |  |  |
| 25 | 31 | 45 | 60 | 75 | 90 | 160 |  |  |
| $\lambda_{D}=2.94(F)(P)+16$ <br> $F=$ Operating Frequency in $\mathrm{GHz}, 0.2 \leq \mathrm{F} \leq 6$ <br> $P=P e a k$ Output Power in MW, $.01 \leq P \leq 25$ and $P \leq 490 F^{-2.95}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| -See previous page for other Klystron Base Fallure Rates. |  |  |  |  |  |  |  |  |

Alternate" Base Failure Rate for CW Klystrons - $\lambda_{\mathrm{B}}$

| P(KW) | F(MHz) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 300 | 500 | 8001000 | 2000 | 4000 | 6000 | 8000 |
| 0.1 | 30 | 31 | $33 \quad 34$ | 38 | 47 | 57 | 66 |
| 1.0 | 31 | 32 | $33 \quad 34$ | 39 | 48 | 57 | 66 |
| 3.0 | 32 | 33 | 3435 | 40 | 49 | 58 |  |
| 5.0 | 33 | 34 | $35 \quad 36$ | 41 | 50 |  |  |
| 8.0 | 34 | 35 | 3738 | 42 |  |  |  |
| 10 | 35 | 36 | $38 \quad 39$ | 43 |  |  |  |
| 30 | 45 | 46 | 4849 |  |  |  |  |
| 50 | 55 | 56 | 5859 |  |  |  |  |
| 80 | 70 | 71 | 73 |  |  |  |  |
| 100 | 80 | 81 |  |  |  |  |  |
| $\lambda_{\mathrm{b}}=0.5 \mathrm{P}+.00046 \mathrm{~F}+29$ |  |  |  |  |  |  |  |
| $\begin{aligned} & P=\text { Average Output Power in KW, } 0.1 \leq P \leq 100 \\ & \text { and } P \leq 8.0(10)^{6}(F)^{-1.7} \end{aligned}$ |  |  |  |  |  |  |  |
| $F=\begin{aligned} & \text { Oparating Frequency in } \mathrm{MHz}, \\ & 300 \leq F \leq 8000\end{aligned}$$300 \leq F \leq 8000$ |  |  |  |  |  |  |  |
| -See previous page for other Klystron Base Failure Rates. |  |  |  |  |  |  |  |


| T (years) | $\pi_{L}$ |
| :---: | :---: |
| $\leq 1$ | 10 |
| 2 | 2.3 |
| $\geq 3$ | 1.0 |
| $\begin{aligned} \pi_{L} & =10(T)^{-2.1}, 1 \leq T \leq 3 \\ & =10, T \leq 1 \\ & =1, T \geq 3 \end{aligned}$ |  |
| $\begin{aligned} & T=\begin{array}{l} \text { Number of Years since Introduction } \\ \text { to Fieid Use } \end{array} \end{aligned}$ |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | .50 |
| $G_{F}$ | 1.0 |
| $G_{M}$ | 14 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 24 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 6.0 |
| $A_{U F}$ | 12 |
| $A_{\bar{R} W}$ | 40 |
| $S_{F}$ | .20 |
| $M_{F}$ | 22 |
| $M_{I}$ | 57 |
| $C_{L}$ | 1000 |

## MIL-HDBK-217F

## DESCRIPTION

Traveling Wave Tubes

$$
\lambda_{p}=\lambda_{b} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{b}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power M | Frequency (GHz) |  |  |  |  |  |  |  |  |
| 100 | 11 | 12 | 13 | 16 | 20 | 24 | 29 | 42 | 61 |
| 500 | 11 | 12 | 13 | 16 | 20 | 24 | 29 | 42 | 62 |
| 1000 | 11 | 12 | 14 | 16 | 20 | 24 | 29 | 43 | 62 |
| 3000 | 12 | 13 | 14 | 17 | 21 | 25 | 30 | 44 | 65 |
| 5000 | 12 | 13 | 15 | 18 | 22 | 26 | 32 | 46 | 68 |
| 8000 | 13 | 14 | 16 | 19 | 23 | 28 | 33 | 49 | 72 |
| 10000 | 14 | 15 | 18 | 20 | 24 | 29 | 35 | 51 | 75 |
| 15000 | 15 | 16 | 18 | 22 | 26 | 32 | 39 | 56 | 83 |
| 20000 | 17 | 18 | 20 | 24 | 29 |  | 43 | 62 | 91 |
| 30000 | 20 | 22 | 24 | 29 | 36 | 43 | 52 | 76 | 110 |
| 40000 | 25 | 27 | 30 | 36 | 43 | 53 | 64 | 93 | 40 |
| $\lambda_{\mathrm{b}}=11(1.00002)^{\mathrm{P}}(1.1)^{F}$ <br> $P=$ Rated Power in Wants (Peak, if Pulsed), $.001 \leq P \leq 40,000$ <br> $\mathrm{F}=$ Operating Frequency in $\mathrm{GHz}, .3 \leq \mathrm{F} \leq 18$. <br> It the operating frequency is a band, or two different values, use the geometric mean of the end point frequencies when using table. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 14 |
| $N_{S}$ | 6.0 |
| $N_{U}$ | 21 |
| $A_{I C}$ | 10 |
| $A_{I F}$ | 14 |
| $A_{U C}$ | 11 |
| $A_{U F}$ | 18 |
| $A_{R W}$ | 40 |
| $S_{F}$ | .10 |
| $M_{F}$ | 22 |
| $M_{L}$ | 66 |
| $C_{L}$ | 1000 |

\[

\]

Base Failure Rate $-\lambda_{b}$

|  |  |  |  |  |  |  |  | ancy |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P(MW) | . 1 | . 5 | 1 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| . 01 | 1.4 | 4.6 | 7.6 | 24 | 41 | 67 | 91 | 110 | 130 | 150 | 170 | 190 | 200 | 220 |
| . 05 | 1.9 | 6.3 | 10 | 34 | 56 | 93 | 120 | 150 | 180 | 210 | 230 | 260 | 280 | 300 |
| . 1 | 2.2 | 7.2 | 12 | 39 | 64 | 110 | 140 | 180 | 210 | 240 | 270 | 290 | 320 | 350 |
| . 3 | 2.8 | 9.0 | 15 | 48 | 80 | 130 | 180 | 220 | 260 | 300 | 330 | 370 | 400 | 430 |
| . 5 | 3.1 | 10 | 17 | 54 | 89 | 150 | 200 | 240 | 290 | 330 | 370 | 410 | 440 | 480 |
| 1 | 3.5 | 11 | 19 | 62 | 100 | 170 | 230 | 280 | 330 | 380 | 420 | 470 | 510 | 550 |
| 3 | 4.4 | 14 | 24 | 77 | 130 | 210 | 280 | 350 | 410 | 470 | 530 | 580 | 630 | 680 |
| 5 | 4.9 | 16 | 26 | 85 | 140 | 230 | 310 | 390 | 460 | 520 | 580 | 640 | 700 | 760 |
| Pulsed | Magnetrons: |  |  |  |  |  |  | CW Magnetrons (Rated Power < 5 KW): |  |  |  |  |  |  |
| $\lambda_{0}$ | 19(F) ${ }^{73}$ (P). 20 |  |  |  |  |  |  | $\lambda_{\mathrm{b}}=18$ |  |  |  |  |  |  |
| F | Operating Frequency in GHz , |  |  |  | . $1 \leq \mathrm{F} \leq 100$ |  |  |  |  |  |  |  |  |  |
| P | Output Power in MW, |  |  |  | . $01 \leq \mathrm{P} \leq 5$ |  |  |  |  |  |  |  |  |  |


| Utillization Factor - $\pi_{U}$ |  | Environment Factor - $\pi_{E}$ |  |
| :---: | :---: | :---: | :---: |
| Utilization (Radiate Hours/ |  | Environment | $\pi_{E}$ |
|  | $\pi_{U}$ | $G_{B}$ | 1.0 |
| 0.0 0.1 | .44 .50 | $G_{F}$ | 2.0 |
| 0.2 | . 55 | $G_{M}$ | 4.0 |
| 0.3 0.4 | . 66 | $\mathrm{N}_{S}$ | 15 |
| 0.5 0.6 | .72 .78 | $\mathrm{N}_{\mathrm{U}}$ | 47 |
| 0.7 | . 83 | $A_{1 C}$ | 10 |
| 0.8 | . 89 | ${ }^{1}$ |  |
| 0.9 | . 94 | $A_{\text {IF }}$ | 16 |
| 1.0 | 1.0 | ${ }^{\text {A }}$ UC | 12 |
| $\pi_{U}=0.44+0.56 R$ |  | A UF | 23 |
|  |  | $A_{\text {RW }}$ | 80 |
| $R=$ Radate Hours/Fila |  | $S_{F}$ | . 50 |
| Construction F |  | $M_{F}$ | 43 |
| Construction | $\pi_{C}$ | $M_{L}$ | 133 |
|  |  | $C_{L}$ | 2000 |
| CW (Rated Power < 5 KW ) | 1.0 |  |  |
| Coaxial Pulsed | 1.0 |  |  |
| Conventional Pulsed | 5.4 |  |  |

The models and failure rates presented in this section apply to laser peculiar items only, i.e., those items wherein the lasing action is generated and controlled. In addition to laser peculiar hems, there are other assemblies used with lasers that contain electronic parts and mechanical devices (pumps, valves, hoses, etc.). The faikure rates for these parts should be determined with the same procedures as used for other electronic and mechanical devices in the equipment or system of whict the laser is a part.

The laser failure rate models have been developed at the "functional," rather than "piece part" level because the available data were not sufficient for "piece part" model development. Nevertheless, the iaser ínctionai models are inciuded in this hanatoók in the interest of completeness. These laser models will be revised to include piece part models and other laser types when the data become available.

Because each laser family can be designed using a variety of approaches, the failure rate models have been siructured on tirree basic iaser ínnctions winicti are common to mosi taser families, but may difîer in the hardware implementation of a given function. These functions are the lasing media, the laser pumping mechanism (or pump), and the coupling method.

Examples of media-related hardware and reliability inftuencing factors are the solid state rod, gas, gas pressure, vacuum integrity, gas mix, outgassing, and tube diameter. The electrical discharge, the flashlamp, and energy level are examples of pump-related hardware and reliability influencing factors. The coupling function reliability influencing factors are the " Q " switch, mirrors, windows, crystals, substrates, coatings, and level of dust protection provided.

Some of the laser models require the number of active optical surfaces as an input parameter. An active optical surface is one with which the laser energy (or beam) interacts. Internally reflecting surfaces are not counted. Figure 8-1 below illustrates examples of active optical surfaces and count.


Figure 8-1: Examples of Active Optical Surfaces

### 8.1 LASERS, HELIUM AND ARGON

DESCRIPTION
Helium Neon Lasers
Helium Cadmium Lasers
Argon Lasers

$$
\lambda_{P}=\lambda_{\text {MEDIA }} \pi_{E}+\lambda_{\text {COUPLING }} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Lasing Media Failure Rate $-\lambda_{\text {MEDIA }}$ |  |
| :--- | :---: |
| Type | $\lambda_{\text {MEDIA }}$ |
| $\mathrm{He} / \mathrm{Ne}$ | 84 |
| $\mathrm{He} / \mathrm{Cd}$ | 228 |
| Argon | 457 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $\mathrm{G}_{\mathrm{B}}$ | .30 |
| $\mathrm{G}_{\mathrm{F}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 4.0 |
| $\mathrm{~N}_{\mathrm{S}}$ | 3.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 4.0 |
| $\mathrm{~A}_{1 \mathrm{C}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 6.0 |
| $\mathrm{~A}_{\mathrm{UC}}$ | 7.0 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 9.0 |
| $\mathrm{~A}_{\mathrm{RW}}$ | 5.0 |
| $\mathrm{~S}_{\mathrm{F}}$ | .10 |
| $\mathrm{M}_{\mathrm{F}}$ | 3.0 |
| $\mathrm{M}_{\mathrm{L}}$ | 8.0 |
| $\mathrm{C}_{\mathrm{L}}$ | $\mathrm{N} / \mathrm{A}$ |

mechanism is related to the gas media (as reflected in $\lambda_{\text {MEDIA }}$; however, when the tube is refilled periodically (preventive maintenance) the mirrors (as part of $\lambda$ COUPLING) can be expected to deteriorate after approximately 104 hours of operation if in contact with the discharge region.
${ }^{2}$ COUPLING is negligible for helium lasers.

## DESCRIPTION

$\mathrm{CO}_{2}$ Sealed Continuous Wave Lasers

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{MEDIA}} \pi_{\mathrm{O}} \pi_{\mathrm{B}} \pi_{E}+10 \pi_{\mathrm{OS}} \pi_{E} \text { Failures/ } 10^{6} \text { Hours }
$$

Lasing Media Failure Rate - $\lambda_{\text {MEDIA }}$

| Tube Current (mA) | $\lambda_{\text {MEDIA }}$ |  |
| :---: | ---: | :---: |
| 10 | 240 |  |
| 20 | 930 |  |
| 30 | 1620 |  |
| 40 | 2310 |  |
| 50 | 3000 |  |
| 100 | 6450 |  |
| 150 | 9900 |  |
|  |  |  |
| MEDIA - 69(1) - 450 |  |  |
| I = Tube Current (mA), $10 \leq 1 \leq 150$ |  |  |

Gas Overfia Factor $=\pi_{0}$

| $\mathrm{CO}_{2}$ Overill Percent (\%) | $\pi_{\mathrm{O}}$ |
| :---: | :---: |
| 0 | 1.0 |
| 25 | .75 |
| 50 | .50 |

$\pi_{0}=1-.01$ (\% Overtill)
Overtill percent is based on the percent increase over the optimum $\mathrm{CO}_{2}$ partial pressure which is normally in the range of 1.5 to $3 \mathrm{~T}_{\text {or }}$ ( $1 \mathrm{~T}_{\text {orr }}=1$ mm Hg Pressure) for most sealed $\mathrm{CO}_{2}$ lasers.

| Ballast Factor $-\pi_{B}$ |  |
| :---: | :---: |
| Percent of Ballast <br> Volumetric Increase $\pi_{B}$  <br> 0 1.0  <br> 50 .58  <br> 100 .33  <br> 150 .19  <br> 200 .11  <br>    <br> $\pi_{B}=(1 / 3)(\%$ Vol. Inc./100)   |  |


| Optical Surface Factor $\pi_{\mathrm{OS}}$ |
| :--- |
| Active Optical Surfaces $\pi_{\mathrm{OS}}$ <br> 1 1 <br> 2 2 <br> OS $=$ Number of Active Optical Surfaces  <br> NOTE: Only active optical surfaces are  <br> counted. An active optical surface is one with  <br> which the laseer energy or beem interects.  <br> Internally reflecting surfaces are not counted.  <br> See Figure \&-1 tor examples on determining the  <br> number of optical surfaces.  |


| Environment Factor - $\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $\mathrm{G}_{\mathrm{B}}$ | . 30 |
| $\mathrm{G}_{\mathrm{F}}$ | 1.0 |
| $G_{M}$ | 4.0 |
| $\mathrm{N}_{S}$ | 3.0 |
| $\mathrm{N}_{\mathrm{U}}$ | 4.0 |
| $A_{1 C}$ | 4.0 |
| $A_{\text {IF }}$ | 6.0 |
| ${ }^{\text {A }}$ UC | 7.0 |
| ${ }^{\text {A }}$ UF | 9.0 |
| $A_{\text {RW }}$ | 5.0 |
| $S_{F}$ | . 10 |
| $M_{F}$ | 3.0 |
| $M_{L}$ | 8.0 |
| $C_{L}$ | N/A |

DESCRIPTION
$\mathrm{CO}_{2}$ Flowing Lasers

$$
\lambda_{p}=\lambda_{\text {COUPLING }} \pi_{O S} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$



| Optical Surface Factor $-\pi_{\mathrm{OS}}$ |
| :--- |
| Active Optical Surfaces $\pi_{\mathrm{OS}}$ <br> 1 1 <br> 2 2 |

$\pi_{\mathrm{OS}}=$ Number of Active Optical Surfaces
NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally refiecting surfaces are not counted. See Figure 8.1 for examples on determining the number of optical surfaces.

DESCRIPTION<br>Neodymium-Yttrum-Aluminum-Gamet (ND:YAG) Rod Lasers

## Ruby Rod Lasers

$$
\lambda_{P}=\left(\lambda_{\text {PUMP }}+\lambda_{\text {MEDIA }}+16.3 \pi_{C} \pi_{O S}\right) \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

## Pump Pulse Failure Rate - $\lambda_{\text {PUMP }}$ <br> (Xenon Flashiamps)

The empirical formula used to determine $\lambda_{\text {PUMP }}$
(Failures/106 Hours) for Xenon lamps is:
$\lambda_{\text {PUMP }}=(3800)(P P S)\left[2000\left(\frac{E_{j}}{d L \sqrt{t}}\right)^{8.58}\right]\left[\pi_{\mathrm{COOL}}\right]$
גPUMP is the failure rate contribution of the Xenon flashlamp or flashtube. The flashlamps evaluated herein are linear types used for military solid state laser systems. Typical default model parameters are given below.

PPS is the repetition pulse rate in pulses per second. Typical values range between 1 and 20 pulses per second.
$\mathrm{E}_{\mathrm{j}} \quad$ is the flashlamp or flashtube input energy per pulse, in joules. Its value is determined from the actual or design input energy. For values less than 30 joules, use $E_{j}=30$. Defaut value: $\mathrm{E}_{\mathrm{j}}=40$.
d is the flashlamp or flashtube inside diameter, in millimeters.
Defaut value: $d=4$.
$L \quad$ is the flashlamp or flashtube arc length in inches. Default value: $L=2$.
$t$ is the truncated pulse width in microseconds. Use $t=100$ microseconds for any truncated pulse width exceeding 100 microseconds. For shorter duration pulses, pulse width is to be measured at 10 percent of the maximum current amplitude. Defaut value: $\mathrm{t}=100$.
$\pi \mathrm{COOL}$ is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\mathrm{COOL}}=1.0$ for any air or inert gas cooling. $\pi_{\mathrm{COOL}}=.1$ for all liquid cooled designs. Default value: $\pi_{\mathrm{COOL}}=.1$, liquid cooled.

## Pump Pulse Failure Rate - $\lambda_{\text {PUMP }}{ }^{3}$

(Krypton Flashiamps)
The empirical formula used to determine $\lambda_{\text {pUMP }}$ for Krypton lamp is:
$\lambda_{\text {PUMP }}=[625]\left[10^{0.9} \stackrel{P}{L}\right]\left[x_{\text {coo }}\right]$ Failures $/ 10^{6}$ Hours
$\lambda_{\text {PUMP }}$ is the failure rate contribution of the krypton flashlamp or flashtube. The flashlamps evaluted herein are the continuous wave (CW) type and are most widely used for commercial solid state applications. They are approx-imately 7 mm in diameter and 5 to 6 inches long.
$P \quad$ is the average input power in kilowatts. Default value: $\mathrm{P}=4$.

L is the flashlamp or flashtube arc length in inches. Defaut value: $L=2$.
$\pi^{\mathrm{COOL}}$ is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi^{\mathrm{COOL}}=1$ for any air or inent gas cooling. $\pi_{\mathrm{COOL}}=.1$ for all liquid designs. Defautt value: $\pi_{\mathrm{COOL}}=.1$, liquid cooled.

Media Failure Rate - $\lambda$ MEDIA

| Laser Type | $\lambda_{\text {MEDIA }}$ |
| :--- | :---: |
| ND:YAG | 0 |
| Ruby | $(3600)$ (PPS) $\left[43.5 \mathrm{~F}^{2.52}\right]$ |

PPS is the number of pulses per second
F is the energy density in Joules per cm. $2 /$ pulse over the cross-sectional area of the laser beam, which is nominally equivalent to the cross-sectional area of the laser rod, and its value is determined from the actual design parameter of the laser rod utilized.

NOTE: $\lambda_{\text {MEDIA }}$ is negligible for ND:YAG lasers.

| Cleanliness Level | ${ }^{\pi} \mathrm{C}$ |
| :---: | :---: |
| Rigorous clearliness procedures and trained maintenance personnel. Bellows provided over optical train. <br> Minimal precautione during opening. maintenence, repair, and testing. Bellows provided over optical train. <br> Minimal precaustions during opening, maintenence, repair, and testing. No bellowe provided over optical train. | 30 <br> 60 |
| NOTE: Although sealed syetems tend to be rellable once compatible materials have been selected and proven, extreme care must still be taken to prevent the entrance of perticulates during manufacturing. field flashlamp replacement, or routine maintenance/ repair. Contamination is the major cause of solid state laser malfunction, and spectal provisions and vigilance must continually be provided to maintain the cleanliness level required. |  |


| Environment Factor $-\pi_{E}$ |
| :--- |
| Environment $\pi_{E}$ <br> $\mathrm{G}_{\mathrm{B}}$ .30 <br> $\mathrm{G}_{\mathrm{F}}$ 1.0 <br> $\mathrm{G}_{\mathrm{M}}$ 4.0 <br> $\mathrm{~N}_{\mathrm{S}}$ 3.0 <br> $\mathrm{~N}_{\mathrm{U}}$ 4.0 <br> $\mathrm{~A}_{\mathrm{IC}}$ 4.0 <br> $\mathrm{~A}_{\mathrm{IF}}$ 6.0 <br> $\mathrm{~A}_{\mathrm{UC}}$ 7.0 <br> $\mathrm{~A}_{\mathrm{UF}}$ 9.0 <br> $\mathrm{~A}_{\mathrm{RW}}$ 5.0 <br> $\mathrm{~S}_{\mathrm{F}}$ .10 <br> $\mathrm{M}_{\mathrm{F}}$ 3.0 <br> $\mathrm{M}_{\mathrm{L}}$ 8.0 <br> $\mathrm{C}_{\mathrm{L}}$ $\mathrm{N} / \mathrm{A}$ |

Optical Surface Factor $-\pi_{\text {OS }}$

| Active Optical Surfaces | $\pi_{\mathrm{OS}}$ |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| $\pi_{\mathrm{OS}}$ = Number of Active Optical Surfaces |  |


| NOTE: Only active optical surfacas are counted. |
| :--- |
| An active optical surface is one winh which the laser |
| energy or beam interacts. Internally reflecting |
| surfaces are not counted. See Figure 8-1 for |
| examples on determining the number of optical |
| surfaces. |

This section includes the active resistor specifications and, in addition, some older/inactive specifications are inctuded because of the large number of equipments still in field use which contain these parts.

The Established Reliability (ER) resistor family generalty has four qualification failure rate levels when tested per the requirements of the applicable specification. These qualification failure rate levels differ by a factor of ten (from one level to the next). However, field data has shown that these failure rate levels differ by a factor of about only three, hence the $\pi_{Q}$ values have been set accordingly.

The use of the resistor models requires the calculation of the electrical power stress ratio, Stress = operating power/rated power, or per Section 9.16 for variable resistors. The models have been structured such that derating curves do not have to be used to find the base faiture rate. The rated power for the stress ratio is equal to the full nominal rated power of the resistor. For example, a MIL-R-39008 resistor has the following derating curve:


Figure 9-1: MIL-R-39008 Derating Curve

This particular resistor has a rating of 1 watt at $70^{\circ} \mathrm{C}$ ambient, or beiow. If it were being used in an ambient temperature of $100^{\circ} \mathrm{C}$, the rated power for the stress calculation would still be 1 watt, not $45 \%$ of 1 watt (as read off the curve for $100^{\circ} \mathrm{C}$ ). Of course, while the derating curve is not needed to determine the base failure rate, it must still be observed as the maximum operating condition. To aid in determining if a resistor is being used within rated conditions, the base faikure rate tables show entries up to certain combinations of stress and temperature. If a given operating stress and temperature point falls in the blank pontion of the base faiture rate table, the resistor is overstressed. Such misapplication would require an analysls of the circuit and operating conditions to bring the resistor within rated conditions.
9.1 RESISTORS, FIXED, COMPOSITION
SPECIFICATION
MIL-R-39008
MIL-R-11

STYLE DESCRIPTION RCR RC

Resistors, Fixed, Composition (Insulated), Established Reliability Resistors, Fixed, Composition (Insulated)

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{R}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{D}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | Stress |  |  |
| 0 | .5 | .7 | .9 |  |  |
| 10 | .00007 | .00010 | .00015 | .00020 | .00028 |
| 20 | .00011 | .00015 | .00021 | .00030 | .00043 |
| 30 | .00022 | .00022 | .00031 | .00045 | .00064 |
| 40 | .00031 | .00045 | .00046 | .000066 | .00096 |
| 50 | .00044 | .00066 | .00098 | .0014 | .0014 |
| 60 | .00063 | .00095 | .0014 | .0021 | .0032 |
| 70 | .00090 | .0014 | .0021 | .0032 | .0048 |
| 80 | .0013 | .0020 | .0031 | .0047 |  |
| 90 | .0018 | .0029 | .0045 |  |  |
| 100 | .0026 | .0041 | .0065 |  |  |
| 110 | .0038 | .0060 |  |  |  |
| 120 | .0054 |  |  |  |  |


| Quality Factor $-\pi_{\mathrm{O}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| S | .03 |
| R | 0.1 |
| P | 0.3 |
| M | 1.0 |
| MIL-R-11 | 5.0 |
| Lower | 15 |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 13 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 5.0 |
| $A_{U C}$ | 7.0 |
| $A_{U F}$ | 11 |
| $A_{R W}$ | 19 |
| $s_{F}$ | .50 |
| $M_{F}$ | 11 |
| $M_{L}$ | 27 |
| $C_{L}$ | 490 |


|  |  |
| :--- | :--- |
| SPECIFICATION | STYLE |
| MIL-R-39017 | RLR |
| MIL-R-22684 | RL |
| MILR-55182 | RN $(R, C, o r N)$ |
| MIL-R-10509 | RN |
|  |  |
|  | $\lambda_{p}=\lambda_{b} \pi_{R} \pi_{Q} \pi_{E}$ |

## DESCRIPTION

Fixed, Film, Insulated, Established Reliability
Fixed, Film, Insulated
Fixed, Film, Established Reliability Fixed, Film, High Stability

Failures $/ 10^{6}$ Hours

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Base Failure Rate $-\lambda_{b}$ <br> (MIL-R-22684 and MIL-R-39017) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
|  | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 00059 | . 00073 | . 00089 | . 0011 | . 0013 |
| 10 | . 00063 | . 00078 | . 00096 | . 0012 | . 0014 |
| 20 | . 00067 | . 00084 | . 0010 | . 0013 | . 0016 |
| 30 | . 00072 | . 00090 | . 0011 | . 0014 | . 0018 |
| 40 | . 00078 | . 00098 | . 0012 | . 0016 | . 0019 |
| 50 | . 00084 | . 0011 | . 0014 | . 0017 | . 0022 |
| 60 | . 00092 | . 0012 | . 0015 | . 0019 | . 0024 |
| 70 | . 0010 | . 0013 | . 0017 | . 0021 | . 0027 |
| 80 | . 0011 | . 0014 | . 0018 | . 0024 |  |
| 90 | . 0012 | . 0016 | . 0021 | . 0027 |  |
| 100 | . 0013 | . 0018 | . 0023 |  |  |
| 110 | . 0015 | . 0020 | . 0026 |  |  |
| 120 | . 0017 | . 0023 |  |  |  |
| 130 | . 0019 |  |  |  |  |
| 140 | . 0022 |  |  |  |  |
| $\lambda_{\mathrm{t}}=3.25 \times 10^{-4} \exp \left(\frac{T+273}{343}\right)^{3} \exp \left(\mathrm{~S}\left(\frac{T+273}{273}\right)\right)$ |  |  |  |  |  |
| T $=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| $S=$ Ratio of Operating Power to Rated Power |  |  |  |  |  |

Base Failure Rate - $\lambda_{b}$
(MIL-R-10509 and MIL-R-55182)

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 00061 | . 00074 | . 00091 | . 0011 | . 0014 |
| 10 | . 00067 | . 00082 | . 0010 | . 0012 | . 0015 |
| 20 | . 00073 | . 00091 | . 0011 | . 0014 | . 0017 |
| 30 | . 00080 | . 0010 | . 0013 | . 0016 | . 0019 |
| 40 | . 00088 | . 0011 | . 0014 | . 0017 | . 0022 |
| 50 | . 00096 | . 0012 | . 0015 | . 0020 | . 0025 |
| 60 | . 0011 | . 0013 | . 0017 | . 0022 | . 0028 |
| 70 | . 0012 | . 0015 | . 0019 | . 0025 | . 0032 |
| 80 | . 0013 | . 0016 | . 0021 | . 0028 | . 0036 |
| 90 | . 0014 | . 0018 | . 0024 | . 0031 | . 0040 |
| 100 | . 0015 | . 0020 | . 0026 | . 0035 | . 0045 |
| 110 | . 0017 | . 0022 | . 0029 | . 0039 | . 0051 |
| 120 | . 0018 | . 0024 | . 0033 | . 0043 | . 0058 |
| 130 | . 0020 | . 0027 | . 0036 | . 0049 | . 0065 |
| 140 | . 0022 | . 0030 | . 0040 | . 0054 |  |
| 150 | . 0024 | . 0033 | . 0045 |  |  |
| 160 | . 0026 | . 0036 |  |  |  |
| 170 | . 0029 |  |  |  |  |
| $\begin{aligned} \lambda_{b}=5 & \times 10^{-5} \exp \left(3.5\left(\frac{T+273}{398}\right)\right) \exp \left(\mathrm{s}\left(\frac{T+273}{273}\right)\right) \\ T & \left.=\text { Ambient Temperature ( }{ }^{\circ} \mathrm{C}\right) \\ S & =\text { Ratio of Operating Power to Rated Power } \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

NOTE: Do not use MIL-R-10509 (Characteristic B) below the line. Points below are overstressed.
Resistance Factor $-\pi_{R}$

| Resistance Range (ohms) | $\pi_{R}$ |
| :--- | :--- |
| $<.1 \mathrm{M}$ | 1.0 |
| $\geq 0.1 \mathrm{M}$ to 1 M | 1.1 |
| $>1.0 \mathrm{M}$ to 10 M | 1.6 |
| $>10 \mathrm{M}$ | 2.5 |


| Quality Factor - $\pi_{Q}$ |  |
| :--- | :---: |
| Quality | $\pi_{Q}$ |
| S | .03 |
| R | 0.1 |
| P | 0.3 |
| M | 1.0 |
| MIL-R-10509 | 5.0 |
| MIL-R-22684 | 5.0 |
| Lower | 15 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 4.0 |
| $N_{U}$ | 14 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 10 |
| $A_{U F}$ | 18 |
| $A_{R W}$ | 19 |
| $S_{F}$ | .20 |
| $M_{F}$ | 10 |
| $M_{L}$ | 28 |
| $C_{L}$ | 510 |

### 9.3 RESISTORS, FIXED, FILM, POWER

## SPECIFICATION

STYLE

## DESCRIPTION

Fixed, Film, Power Type

$$
\lambda_{p}=\lambda_{b} \pi_{R} \pi_{Q} \pi_{E} \text { Failures/10 }{ }^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{0}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0089 | . 0098 | . 011 | . 013 | . 015 |
| 10 | . 0090 | . 010 | . 011 | . 013 | . 015 |
| 20 | . 0092 | . 010 | . 012 | . 014 | . 016 |
| 30 | . 0094 | . 010 | . 012 | . 014 | . 017 |
| 40 | . 0096 | . 011 | . 012 | . 015 | . 017 |
| 50 | . 0098 | . 011 | . 013 | . 015 |  |
| 60 | . 040 | . 011 | . 013 | . 016 |  |
| 70 | . 010 | . 012 | . 014 | . 016 |  |
| 80 | . 010 | . 012 | . 014 | . 017 |  |
| 90 | . 011 | . 012 | . 015 |  |  |
| 100 | . 011 | . 013 | . 015 |  |  |
| 110 | . 011 | . 013 | . 016 |  |  |
| 120 | . 012 | . 014 | . 016 |  |  |
| 130 | . 012 | . 014 | . 017 |  |  |
| 140 | . 012 | . 014 |  |  |  |
| 150 | . 013 | . 015 |  |  |  |
| 160 | . 013 | . 016 |  |  |  |
| 170 | . 014 | . 016 |  |  |  |
| 180 | . 014 |  |  |  |  |
| 190 | . 015 |  |  |  |  |
| 200 | . 015 |  |  |  |  |
| 210 | . 016 |  |  |  |  |
|  | $7.33$ $\exp$ | $\begin{aligned} & 0^{-3} \exp \\ & \left.\frac{S}{.45}\right) \end{aligned}$ | $\begin{array}{r} 2(T \\ +273 \\ 273 \end{array}$ | $\begin{aligned} & \left.\frac{73}{8}\right)^{2} \\ & 9)^{1.3} \end{aligned}$ | $x$ |
|  | Ambie | Temper | $r\left(^{\circ} \mathrm{C}\right.$ |  |  |
|  | Ratio | Operatin | Power | Rated | wer |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :---: | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 1.0 |
| Lower | 3.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 10 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 17 |
| $A_{I C}$ | 6.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 14 |
| $A_{U F}$ | 18 |
| $A_{R W}$ | 25 |
| $S_{F}$ | .50 |
| $M_{F}$ | 14 |
| $M_{L}$ | 36 |
| $C_{L}$ | 660 |


| Resistance Factor $-\pi_{R}$ |  |
| :--- | :---: |
| Resistance Range (ohms) $\pi_{R}$ <br> 1010100 1.0 <br> $>100$ t0 100 K 1.2 <br> $>100 \mathrm{~K} 101 \mathrm{M}$ 1.3 <br> $>1 \mathrm{M}$ 3.5 |  |

### 9.4 RESISTORS, NETWORK, FIXED, FILM

```
SPECIFICATION
MIL-R-83401
```


## STYLE RZ

## DESCRIPTION

Resistor Networks, Fixed, Film
$\lambda_{\mathrm{P}}=.00006 \pi_{\mathrm{T}} \pi_{\mathrm{NA}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}$ Failures $/ 10^{6}$ Hours

| ${ }^{T} \mathrm{C}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{\mathrm{T}}$ | $\mathrm{T}_{\mathrm{C}}\left({ }^{(0} \mathrm{C}\right)$ | $\pi_{T}$ |
| :---: | :---: | :---: | :---: |
| 25 | 1.0 | 80 | 8.3 |
| 30 | 1.3 | 85 | 9.8 |
| 35 | 1.6 | 90 | 11 |
| 40 | 1.9 | 95 | 13 |
| 45 | 2.4 | 100 | 15 |
| 50 | 2.9 | 105 | 18 |
| 55 | 3.5 | 110 | 21 |
| 60 | 4.2 | 115 | 24 |
| 65 | 5.0 | 120 | 27 |
| 70 | 6.0 | 125 | 31 |
| 75 | 7.1 |  |  |
| $\pi_{T}=\exp \left(-4056\left(\frac{1}{T_{C}+273}-\frac{1}{298}\right)\right.$ |  |  |  |
| $T^{T} \mathrm{C}=$ Case Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |

NOTE: ${ }^{H} T_{C}$ is unknown, it can be estimated as follows:
$T_{C}=T_{A}+55(S)$
$T_{A}=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
$S=\frac{\text { Operating Power }}{\text { Package Rated Power }}$
Any device operating at $T_{C}>125^{\circ} \mathrm{C}$ is overstressed.

| Quality Factor $-\pi_{\mathrm{Q}}$ |
| :--- |
| Quality |
| MIL-SPEC |
| Lower |$\pi_{\mathrm{Q}}$


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 8.0 <br> $N_{S}$ 4.0 <br> $N_{U}$ 14 <br> $A_{I C}$ 4.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 9.0 <br> $A_{U F}$ 18 <br> $A_{R W}$ 19 <br> $S_{F}$ .50 <br> $M_{F}$ 14 <br> $M_{L}$ 28 <br> $C_{L}$ 510 |  |

Number of Resistors Factor - $\pi_{\text {NR }}$
$\pi_{\text {NR }}=$ Number of Film Resistors in Use

NOTE: Do not include resistors that are not used.

SPECIFICATION
MIL-R-39005
MIL-R-93

STYLE
RBR
RB

DESCRIPTION
Fixed, Wirewound, Accurate, Established Reliability
Fixed, Wirewound, Accurate

$$
\lambda_{p}=\lambda_{D} \pi_{R} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{D}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
|  | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0033 | . 0037 | . 0045 | . 0057 | . 0075 |
| 10 | . 0033 | . 0038 | . 0047 | . 0059 | . 0079 |
| 20 | . 0034 | . 0039 | . 0048 | . 0062 | . 0084 |
| 30 | . 0034 | . 0040 | . 0050 | . 0066 | . 0090 |
| 40 | . 0035 | . 0042 | . 0052 | . 0070 | . 0097 |
| 50 | . 0037 | . 0043 | . 0055 | . 0075 | . 011 |
| 60 | . 0038 | . 0046 | . 0059 | . 0081 | . 012 |
| 70 | . 0041 | . 0049 | . 0064 | . 0089 | . 013 |
| 80 | . 0044 | . 0053 | . 0070 | . 0099 | . 015 |
| 90 | . 0048 | . 0059 | . 0079 | . 011 | . 017 |
| 100 | . 0055 | . 0068 | . 0092 | . 013 | . 020 |
| 110 | . 0065 | . 0080 | . 011 | . 016 | . 025 |
| 120 | . 0079 | . 0099 | . 014 | . 021 | . 033 |
| 130 | . 010 | . 013 | . 018 | . 028 |  |
| 140 | . 014 |  |  |  |  |
| $\lambda_{b}=.0031 \exp \left(\frac{T+273}{398}\right)^{10} \exp \left(s\left(\frac{T+273}{273}\right)\right)^{1.5}$ |  |  |  |  |  |
| $T$ - Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| $S=$ Ratio of Operating Power to Rated Power |  |  |  |  |  |

Resistance Factor $-\pi_{\mathrm{R}}$

| Resistance Range (ohms) | $\pi_{\mathrm{R}}$ |
| :--- | :--- |
| Up to 10 K | 1.0 |
| $>10 \mathrm{~K}$ to 100 K | 1.7 |
| $>100 \mathrm{~K} 101 \mathrm{M}$ | 3.0 |
| $>1 \mathrm{M}$ | 5.0 |


| Quality Factor $-\pi_{Q}$ |  |
| :---: | :---: |
| Quality | $\pi_{Q}$ |
| S | .030 |
| $R$ | .10 |
| $P$ | .30 |
| $M$ | 1.0 |
| MIL-R-93 | 5.0 |
| Lower | 15 |
| Environment $^{G_{B}}$ |  |
| $G_{F}$ | $\pi_{E}$ |
| $G_{M}$ | 1.0 |
| $N_{S}$ | 2.0 |
| $N_{U}$ | 11 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 18 |
| $A_{U C}$ | 15 |
| $A_{U F}$ | 18 |
| $A_{R W}$ | 28 |
| $S_{F}$ | 35 |
| $M_{F}$ | 27 |
| $M_{L}$ | 14 |
| $C_{L}$ | 38 |


| SPECIFICATION | STYLE | DESCRIPTION |
| :--- | :--- | :--- |
| MIL-R-39007 | RWR | Fixed, Wirewound, Power Type, Established Reliability |
| MIL-R-26 | RW | Fixed, Wirewound, Power Type |


| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.T_{\mathrm{A}}{ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |  |
| 0 | .0042 | .0062 | .0093 | .014 | .021 |  |
| 10 | .0045 | .0068 | .010 | .016 | .024 |  |
| 20 | .0048 | .0074 | .011 | .017 | .027 |  |
| 30 | .0052 | .0081 | .013 | .020 | .031 |  |
| 40 | .0056 | .0089 | .014 | .022 | .035 |  |
| 50 | .0061 | .0097 | .016 | .025 | .040 |  |
| 60 | .0066 | .011 | .017 | .028 |  |  |
| 70 | .0072 | .012 | .020 | .032 |  |  |
| 80 | .0078 | .013 | .022 | .037 |  |  |
| 90 | .0085 | .014 | .025 | .042 |  |  |
| 100 | .0093 | .016 | .028 | .048 |  |  |
| 110 | .010 | .018 | .031 | .055 |  |  |
| 120 | .011 | .020 | .036 | .063 |  |  |
| 130 | .012 | .022 | .040 |  |  |  |
| 140 | .014 | .025 | .046 |  |  |  |
| 150 | .015 | .028 | .052 |  |  |  |
| 160 | .017 | .032 | .060 |  |  |  |
| 170 | .019 | .036 | .068 |  |  |  |
| 180 | .021 | .040 | .078 |  |  |  |
| 190 | .023 | .046 |  |  |  |  |
| 200 | .026 | .052 |  |  |  |  |
| 210 | .029 | .059 |  |  |  |  |
| 220 | .033 | .066 |  |  |  |  |
| 230 | .037 | .077 |  |  |  |  |
| 240 | .042 | .088 |  |  |  |  |
| 250 | .047 | .10 |  |  |  |  |
| 260 | .054 |  |  |  |  |  |
| 270 | .061 |  |  |  |  |  |
| 280 | .06 |  |  |  |  |  |
| 290 | .079 |  |  |  |  |  |
| 310 | .091 |  |  |  |  |  |
|  |  |  |  |  |  |  |

$\left.\lambda_{0}=00148 \exp \left(\frac{T+273}{298}\right)^{2} \exp \left(\frac{S}{.5}\right)\left(\frac{T+273}{273}\right)\right)$
$T=A m b i e n t$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{S}=$ Ratio of Operating Power to Rated Power

NOTE: Do not use MIL-R-39007 Resistors below the line. Points below are overstressed.

| Resistance Factor $=\pi_{R}$ （MILL－R－26） |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Resistance Range（ohms） |  |  |  |  |  |
| AHIL－R－26 Syle | $\begin{gathered} u p \\ 0 \\ 100 \\ \hline \end{gathered}$ | $\begin{aligned} & >100 \\ & 10 \\ & 1 K \\ & \hline \end{aligned}$ | $\begin{gathered} 314 \\ 10 \\ \text { to } \\ \hline 1 \end{gathered}$ | $\begin{gathered} 210 \mathrm{~K} \\ 10 \\ 100 \mathrm{~K} \\ \hline \end{gathered}$ | $\begin{aligned} & =100 \mathrm{wn} \\ & 100 \\ & 150 \mathrm{~K} \end{aligned}$ | $\begin{aligned} & =150 \mathrm{~K} \\ & 10 \\ & 200 \mathrm{~K} \\ & \hline \end{aligned}$ |
| RWW 10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.2 | 1.6 |
| RW 11 | 1.0 | 1.0 | 1.0 | 1.2 | 1.6 | NA |
| PW12 | 1.0 | 1.0 | 1.2 | 1.6 | NA | NA |
| RW 13 | 1.0 | 1.0 | 1.0 | 2.0 | NA | NA |
| RW 14 | 1.0 | 1.0 | 1.0 | 2.0 | NA | NA |
| RWw 15 | 1.0 | 1.0 | 1.2 | 2.0 | NA | NAA |
| RW 16 | 1.0 | 1.2 | 1.4 | NA | NA | NA |
| RW 20 | 1.0 | 1.0 | 1.6 | NA | NA | NA |
| FW 21 | 1.0 | 1.0 | 1.2 | 2.0 | NA | NA |
| RW 22 | 1.0 | 1.0 | 1.2 | 1.6 | NA | NA |
| RW 23 | 1.0 | 1.0 | 1.0 | 1.4 | NA | NA |
| RW 24 | 1.0 | 1.0 | 1.0 | 1.2 | NA | NA |
| RW 29 | 1.0 | 1.0 | 1.4 | NA | NA | NA |
| RW 30 | 1.0 | 1.2 | 1.6 | NA | NA | NA |
| RW 31 | 1.0 | 1.0 | 1.4 | NA | NA | NA |
| FWW 32 | 1.0 | 1.0 | 1.2 | NA | NA | NA |
| AW 33 | 1.0 | 1.0 | 1.0 | 1.4 | NA | NA |
| RW 34 | 1.0 | 1.0 | 1.0 | 1.4 | NA | NA |
| Fiw 35 | 1.0 | 1.0 | 1.0 | 1.4 | NA | NiA |
| RWW 36 | 1.0 | 1.0 | 1.2 | 1.5 | NA | NA |
| RW 37 | 1.0 | 1.0 | 1.2 | 1.6 | NA | NA |
| RW 38 | 1.0 | 1.0 | 1.0 | 1.4 | 1.6 | NA |
| RNW 39 | 1.0 | 1.0 | 1.0 | 1.4 | 1.6 | 2.0 |
| RW 47 | 1.0 | 1.0 | 1.0 | 1.4 | 1.6 | 2.0 |
| RW 55 | 1.0 | 1.0 | 1.4 | 2.4 | NA | NA |
| RWW 56 | 1.0 | 1.0 | 1.2 | 2.6 | NA | NA |
| RW 67 | 1.0 | 1.0 | 1.0 | NA | NA | NA |
| RW 68 | 1.0 | 1.0 | 1.0 | NA | NA | NA |
| Five 0 | 1.0 | 1.0 | Nิै | NA | NîA | Ǹへ⿵冂 |
| RW 70 | 1.0 | 1.2 | 1.4 | NA | NA | NA |
| RW 74 | 1.0 | 1.0 | 1.2 | 1.6 | NA | NA |
| Fuw 78 | 1.0 | 1.0 | 1.0 | 1.6 | NA | NA |
| RW 79 | 1.0 | 1.0 | 1.4 | NA | NA | NA |
| RW 80 | 1.0 | 1.2 | 1.6 | NA | NA | NA |
| HWW 81 | 1.0 | 1.2 | NȦ | NA | NA | NȦ |


| Environment Factor－$\pi_{E}$ |
| :---: |
| Environment $\pi_{\mathrm{E}}$ <br> $\mathrm{G}_{\mathrm{B}}$ 1.0 <br> $\mathrm{G}_{\mathrm{F}}$ 2.0 <br> $\mathrm{G}_{\mathrm{M}}$ 10 <br> $\mathrm{~N}_{S}$ 5.0 <br> $N_{U}$ 16 <br> $\mathrm{~A}_{\mathrm{i}}$ 4.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 9.0 <br> $A_{U F}$ 18 <br> $A_{R W}$ 23 <br> $S_{F}$ .30 <br> $M_{F}$ 13 <br> $M_{\mathrm{L}}$ 34 <br> $C_{L}$ 610 |

9.7 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

| SPECiFICATION | STYLE | DESCRIPTION <br> MIL-R-39009 |
| :--- | :--- | :--- |
| MER | Fixed, Wirewound, Power Type, Chassis Mounted, <br> Established Reliability |  |
| Fixed, Wirewound, Power Type, Chassis Mounted |  |  |


| Base Failure Rate - $\lambda_{\text {b }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0021 | . 0032 | . 0049 | . 0076 | . 012 |
| 10 | . 0023 | . 0036 | . 0056 | . 0087 | . 014 |
| 20 | . 0025 | . 0040 | . 0064 | . 0100 | . 016 |
| 30 | . 0028 | . 0045 | . 0072 | . 012 | . 019 |
| 40 | . 0031 | . 0050 | . 0082 | . 013 | . 022 |
| 50 | . 0034 | . 0056 | . 0093 | . 016 | . 026 |
| 60 | . 0037 | . 0063 | . 011 | . 016 |  |
| 70 | . 0041 | . 0070 | . 012 | . 021 |  |
| 80 | . 0045 | . 0079 | . 014 | . 024 |  |
| 90 | 0050 | . 00088 | . 016 | 028 |  |
| 100 | 0055 | 0098 | . 018 | . 032 |  |
| 110 | . 0060 | . 011 | . 020 |  |  |
| 120 | . 0066 | . 012 | . 023 |  |  |
| 130 | . 0073 | . 014 | . 026 |  |  |
| 140 | . 0081 | . 015 | . 030 |  |  |
| 150 | . 0089 | . 017 | . 034 |  |  |
| 160 | . 0098 | . 019 |  |  |  |
| 170 | . 011 | . 022 |  |  |  |
| 180 | . 012 | . 024 |  |  |  |
| 130 | . 013 | . 027 |  |  |  |
| 200 | . 014 | . 030 |  |  |  |
| 210 | . 016 |  |  |  |  |
| 220 | . 017 |  |  |  |  |
| 230 | . 019 |  |  |  |  |
| 240 | . 021 |  |  |  |  |
| 250 | . 023 |  |  |  |  |
| $\lambda_{\mathrm{b}}=.00015 \exp \left(2.64\left(\frac{T+273}{298}\right)\right) \exp \left(\frac{\mathrm{S}}{.466}\left(\frac{T+273}{273}\right)\right)$ |  |  |  |  |  |
| $T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$ <br> $S=$ Ratio oi Operating Power to Rated Power |  |  |  |  |  |
|  |  |  |  |  |  |

Resistance Factor - $\pi_{R}$
(Characteristic G (inductive Winding) of MLL-R-18546 and

| Siyte | Rated Power (W) | Resistance Range (ohms) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} U_{p} \\ 10 \\ 500 \end{gathered}$ | $\begin{aligned} & >500 \\ & 10 \\ & 1 K \end{aligned}$ | $\begin{aligned} & 21 K \\ & 10 \\ & 5 K \end{aligned}$ | $\begin{gathered} 30 \mathrm{~K} \\ 10 \mathrm{~K} \\ \hline 10 \mathrm{~K} \end{gathered}$ | $\begin{aligned} & >10 \mathrm{~K} \\ & 10 \\ & 20 \mathrm{~K} \\ & \hline 2 \end{aligned}$ | 20 K |
| RE 60 RER60 | 5 | 1.0 | 1.2 | 1.2 | 1.6 | NA | NA |
| RE 65 RER65 | 10 | 1.0 | 1.0 | 1.2 | 1.6 | NA | NA |
| RE 70 RER70 | 20 | 1.0 | 1.0 | 1.2 | 1.2 | 1.6 | NA |
| RE 75 RER75 | 30 | 1.0 | 1.0 | 1.0 | 1.1 | 1.2 | 1.6 |
| RE 77 | 75 | 1.0 | 1.0 | 1.0 | 1.0 | 1.2 | 1.6 |
| RE 80 | 120 | 1.0 | 1.0 | 1.0 | 1.0 | 1.2 | 1.6 |

Resistance Factor - $\pi_{\mathrm{R}}$
(Characteristic N (Noninductive Winding) of MIL-R-18546 and Noninductively Wound Styles of MIL-R-39009)

| Sty | Rated Power (W) | Resistance Range (ohms) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Up } \\ \text { to } \\ 500 \end{gathered}$ | $\begin{aligned} & 2500 \\ & \text { to } \\ & \text { 1K } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { >10 } \\ & \text { to } \\ & \text { SK } \end{aligned}$ | $\begin{array}{r} 55 k \\ 10 \\ \hline 10 k \\ \hline \end{array}$ | $\begin{gathered} >10 \mathrm{~K} \\ 10 \\ 20 \mathrm{~K} \end{gathered}$ | 20K |
| RE 60 RER40 | 5 | 1.0 | 1.2 | 1.6 | NA | NA | NA |
| RE 65 RER45 | 10 | 1.0 | 1.2 | 1.6 | NA | NA | NA |
| $\begin{aligned} & \text { RE } 70 \\ & \text { RER50 } \end{aligned}$ | 20 | 1.0 | 1.0 | 1.2 | 1.6 | NA | NA |
| RE 75 RER55 | 30 | 1.0 | 1.0 | 1.1 | 1.2 | 1.4 | NA |
| RE 77 | 75 | 1.0 | 1.0 | 1.0 | 1.2 | 1.6 | NA |
| RE 80 | 120 | 1.0 | 1.0 | 1.0 | 1.1 | 1.4 | NA |



| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 10 <br> $N_{S}$ 5.0 <br> $N_{U}$ 16 <br> $A_{I C}$ 4.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 9.0 <br> $A_{U F}$ 18 <br> $A_{R W}$ 23 <br> $S_{F}$ .50 <br> $M_{F}$ 13 <br> $M_{L}$ 34 <br> $C_{L}$ 610 |  |

### 9.8 RESISTORS, THERMISTOR

SPECIFICATION
MIL-T-23648

Style RTH

DESCRIPTION Thermally Sensitive Resistor, Insulated, Bead, Disk and Rod Types

$$
\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{b}$ |  |
| :--- | :---: |
| Type $\lambda_{b}$ <br> Bead <br> (Styles 24, 26, 28, 30, 32, <br> 34, 36, 38, 40) .021 <br> Disk <br> (Styles 6, 8, 10)  <br> Rod <br> (Styles 12, 14, 16, 18, <br> 20, 22, 42) .065 |  |


| Quality Factor $-\pi_{\mathrm{O}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 1 |
| Lower | 15 |

### 9.9 RESISTORS, VARIABLE, WIREWOUND

| SPECIFICATION MIL-R-39015 | Style <br> RTR | DESCRIPTION <br> Variable, Wirewound, Lead Screw Actuated, Established Reliability |
| :---: | :---: | :---: |
| MIL-R-27208 | RT | Variable, Wirewound, Lead Screw Actuated |
|  | $\lambda_{p}=\lambda_{b}$ | $\pi_{E}$ Failures $/ 10^{6}$ Hours |


| Base Faiure Rate - $\lambda_{\text {b }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\mathrm{T}_{\mathrm{A}}{ }^{( }{ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
|  | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0089 | . 011 | . 013 | . 016 | . 020 |
| 10 | . 0094 | . 012 | . 014 | . 017 | . 021 |
| 20 | . 010 | . 012 | . 015 | . 019 | 024 |
| 30 | . 011 | . 013 | . 017 | . 021 | 026 |
| 40 | . 012 | . 015 | . 018 | . 023 | 029 |
| 50 | . 013 | . 016 | . 020 | . 026 | 033 |
| 60 | . 014 | . 018 | . 023 | . 029 | . 037 |
| 70 | . 016 | . 020 | . 026 | . 033 | . 043 |
| 80 | . 018 | . 023 | . 03 | . 039 | . 050 |
| 90 | . 021 | . 027 | . 035 | . 046 | . 060 |
| 100 | . 024 | . 032 | . 042 | . 055 |  |
| 110 | . 029 | . 038 | . 051 |  |  |
| 120 | . 035 | . 047 |  |  |  |
| 130 | . 044 | . 059 |  |  |  |
| 140 | . 056 |  |  |  |  |
| $\lambda_{b}=.0062 \exp \left(\frac{T+273}{358}\right)^{5} \exp \left(S\left(\frac{T+273}{273}\right)\right.$ |  |  |  |  |  |
|  | = Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |
|  | Ratio of Operating Power to Rated Power. See Section 9.16 for Calculation of S. |  |  |  |  |

Resistance Factor $-\pi_{\mathrm{R}}$

| Resistance Range (ohms) | $\pi_{\mathrm{R}}$ |
| :--- | :---: |
| 10 to 2 K | 1.0 |
| $>2 \mathrm{~K}$ to 5 K | 1.4 |
| $>5 \mathrm{~K}$ to 20 K | 2.0 |


| $\mathrm{N}_{\text {TAPS }}$ | ${ }^{*}$ TAPS | ${ }^{\text {T TAPS }}$ | ${ }^{\text {TAPS }}$ | $N_{\text {TAPS }}$ | ${ }^{\text {taps }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.0 | 13 | 2.7 | 23 | 5.2 |
| 4 | 1.1 | 14 | 2.9 | 24 | 5.5 |
| 5 | 1.2 | 15 | 3.1 | 25 | 5.8 |
| 6 | 1.4 | 16 | 3.4 | 26 | 6.1 |
| 7 | 1.5 | 17 | 3.6 | 27 | 6.4 |
| 8 | 1.7 | 18 | 3.8 | 28 | 6.7 |
| 9 | 1.9 | 19 | 4.1 | 29 | 7.0 |
| 10 | 2.1 | 20 | 4.4 | 30 | 7.4 |
| 11 | 2.3 | 21 | 4.6 | 31 | 7.7 |
| 12 | 2.5 | 22 | 4.9 | 32 | 8.0 |
| + |  | $\frac{\left.N_{\text {TAPS }}\right)}{25}$ | $0.79$ |  |  |
| ${ }^{N}$ TA | $=$ | mbar of <br> luding | otentiom <br> Wipei | er Taps <br> Termi | ions. |
| Voltage Factor - $\pi_{V}$ |  |  |  |  |  |
| Applied Voltage* |  |  |  | $\pi_{V}$ |  |
| $\begin{aligned} & 0 \text { to } 0.1 \\ & >0.1 \text { to } 0.2 \\ & >0.2 \text { to } 0.6 \\ & >0.6 \text { to } 0.7 \\ & >0.7 \text { to } 0.8 \\ & >0.8 \text { to } 0.9 \\ & >0.9 \text { to } 1.0 \end{aligned}$ |  |  |  | 1.10 |  |
|  |  |  |  | 1.05 |  |
|  |  |  |  | 1.00 |  |
|  |  |  |  | 1.10 |  |
|  |  |  |  | 1.22 |  |
|  |  |  |  | $\begin{aligned} & 1.40 \\ & 200 \end{aligned}$ |  |
|  |  |  | $>0.9$ to 1.0 |  |  |
| $V_{\text {Applied }}=\sqrt{\mathrm{RP}_{\text {Applied }}}$ |  |  |  |  |  |
|  |  | Nominal Total Potentiometer Resistance |  |  |  |
| $\mathrm{P}_{\text {Applied }}=$ Power Dissipation |  |  |  |  |  |
| $\mathrm{V}_{\text {Rated }}=40$ Volts for RT 26 and 27 |  |  |  |  |  |
| $V_{\text {Rated }}$ |  | 90 Volts for RTR 12, 22 and 24; RT 12 and 22 |  |  |  |

## MIL-HDBK-217F

9.9 RESISTORS, VARIABLE, WIREWOUND

| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| S | .020 |
| R | .060 |
| P | .20 |
| M | .60 |
| MIL-R-27208 | 3.0 |
| Lower | 10 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 6.0 |
| $N_{U}$ | 20 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 9.0 |
| $A_{U F}$ | 15 |
| $A_{R W}$ | 33 |
| $S_{F}$ | .50 |
| $M_{F}$ | 18 |
| $M_{L}$ | 48 |
| $C_{L}$ | 870 |

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION


| Voltage Factor - $\pi$ V |  |  |
| :---: | :---: | :---: |
| $\frac{\text { Applied Voltage }}{}$ Rated Voltage |  | $\pi V$ |
| 0 to 0.1 |  | 1.10 |
| $>0.1$ to 0.2 |  | 1.05 |
| $>0.2$ to 0.6 |  | 1.00 |
| $>0.6$ to 0.7 |  | 1.10 |
| $>0.7$ to 0.8 |  | 1.22 |
| $>0.8$ to 0.9 |  | 1.40 |
| $>0.9$ to 1.0 |  | 2.00 |
| ${ }^{*}$ Applied ${ }^{\text {a }}=\sqrt{R_{P} P_{\text {Applied }}}$ |  |  |
| $R_{P}$ | - Nominal Total Potentiometer <br> Resistance |  |
| $P_{\text {Appliod }}$ |  |  |
| $V_{\text {Rated }}$ | $=250$ Volts for RR0900, RR1100, |  |
|  | RR1300, RR2000, RR3000, RR3100, RR3200, RR3300, RR3400, RR3500 |  |
| $V_{\text {Rated }}$ | - 423 Volts for RR3600, RR3700 |  |
| $V_{\text {Rated }}$ | - 500 Votts for RR1000. RR1400, |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :---: | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 2.5 |
| Lower | 5.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 18 <br> $N_{S}$ 8.0 <br> $N_{U}$ 30 <br> $A_{I C}$ 8.0 <br> $A_{I F}$ 12 <br> $A_{U C}$ 13 <br> $A_{U F}$ 18 <br> $A_{R W}$ 53 <br> $S_{F}$ .50 <br> $M_{F}$ 29 <br> $M_{L}$ 76 <br> $C_{L}$ 1400 |  |

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

## SPECIFICATION

MIL-R-19
MIL-R-39002

STYLE
RA
RK

DESCRIPTION
Variable, Wirewound, Semiprecision (Low Operating Temperature)
Variable, Wirewound, Semiprecision

$$
\lambda_{p}=\lambda_{b} \pi_{\text {TAPS }} \pi_{R} \pi_{V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| $T_{A}\left({ }^{\circ} C\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .055 | .063 | .072 | .083 | .095 |
| 10 | .058 | .069 | .081 | .095 | .11 |
| 20 | .063 | .076 | .092 | .11 | .13 |
| 30 | .069 | .086 | .11 | .13 | .17 |
| 40 | .076 | .098 | .13 | .16 | .21 |
| 50 | .085 | .11 | .15 | .20 | .27 |
| 60 | .096 | .13 | .19 | .26 | .37 |
| 70 | .11 | .16 | .24 | .35 | .52 |
| 80 | .13 | .20 | .31 | .48 | .75 |
| 90 | .16 | .26 | .42 | .69 | 1.1 |
| 100 | .19 | .34 | .59 | 1.0 |  |
| 110 | .24 | .45 | .85 |  |  |
| 120 | .31 |  |  |  |  |
| 130 | .42 |  |  |  |  |

$$
\begin{aligned}
\lambda_{b}= & .0398 \exp \left(.514\left(\frac{T+273}{313}\right)^{5.28}\right) \times \\
& \exp \left(\frac{S}{1.44}\left(\frac{T+273}{273}\right)^{4.46}\right) \\
T= & \text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\
S= & \text { Ratio of Operating Power to Rated Power. } \\
& \text { See Section } 9.16 \text { for } S \text { Calculation. }
\end{aligned}
$$

NOTE: Do not use MIL-R-19 below the line. Points below are overstressed.

| $N_{\text {TAPS }}$ | ${ }^{\text {TAPS }}$ | $N_{\text {taps }}$ | ${ }^{\text {TAPS }}$ | ${ }^{\text {TAPS }}$ | ${ }^{\text {T TAPS }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.0 | 13 | 2.7 | 23 | 5.2 |
| 4 | 1.1 | 14 | 2.9 | 24 | 5.5 |
| 5 | 1.2 | 15 | 3.1 | 25 | 5.8 |
| 6 | 1.4 | 16 | 3.4 | 26 | 6.1 |
| 7 | 1.5 | 17 | 3.6 | 27 | 6.4 |
| 8 | 1.7 | 18 | 3.8 | 28 | 6.7 |
| 9 | 1.9 | 19 | 4.1 | 29 | 7.0 |
| 10 | 2.1 | 20 | 4.4 | 30 | 7.4 |
| 11 | 2.3 | 21 | 4.6 | 31 | 7.7 |
| 12 | 2.5 | 22 | 4.9 | 32 | 8.0 |
| $\frac{\left(N_{\text {TAPS }}\right)^{\frac{3}{2}}}{25}+0.792$ |  |  |  |  |  |
| $\mathrm{N}_{\text {TAP }}$ | Number of Potentiometer Taps, including the Wiper and Terminations. |  |  |  |  |



| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 16 |
| $N_{S}$ | 7.0 |
| $N_{U}$ | 28 |
| $A_{I C}$ | 8.0 |
| $A_{I F}$ | 12 |
| $A_{U C}$ | $N / A$ |
| $A_{U F}$ | $N / A$ |
| $A_{R W}$ | 38 |
| $S_{F}$ | .50 |
| $M_{F}$ | $N / A$ |
| $M_{L}$ | $N / A$ |
| $C_{L}$ | N/A |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 2.0 |
| Lower | 4.0 |


| SPECIFICATION | STYLE | DESCRIPTION |
| :--- | :--- | :--- |
| MIL-R-22 | RP | Variable, Wirewound, Power Type |
|  | $\lambda_{p}=\lambda_{b} \pi_{\text {TAPS }} \pi_{R} \pi^{2} \pi_{C} \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours |  |


| Base Failure Rate - $\lambda_{t}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 064 | . 074 | . 084 | . 097 | . 11 |
| 10 | . 067 | . 078 | . 091 | . 11 | . 12 |
| 20 | . 071 | . 084 | . 099 | . 12 | . 14 |
| 30 | . 076 | . 091 | . 11 | . 13 | . 16 |
| 40 | . 081 | . 099 | . 12 | . 15 |  |
| 50 | . 087 | . 11 | . 14 | . 17 |  |
| 60 | . 095 | . 12 | . 15 |  |  |
| 70 | . 10 | . 14 | . 18 |  |  |
| 80 | . 12 | . 15 |  |  |  |
| 90 | . 13 | . 18 |  |  |  |
| 100 | . 15 |  |  |  |  |
| 110 | . 17 |  |  |  |  |
| 120 | . 20 |  |  |  |  |
| $\begin{aligned} & \lambda_{\mathrm{b}}= .0481 \exp \left(.334\left(\frac{T+273}{298}\right)^{4.66}\right) \times \\ & \exp \left(\frac{\mathrm{S}}{1.47}\left(\frac{T+273}{273}\right)^{2.83}\right) \\ & T= \text { Ambient Temperature ( }{ }^{\circ} \mathrm{C} \text { ) } \\ & S= \text { Ratio of Operating Power to Rated Power. } \\ & S \text { See Section } 9.16 \text { for S Calculation. } \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |


| Resistance Factor $-\pi_{R}$ |  |
| :--- | :---: |
| Resistance Range (ohms) $\pi_{R}$ <br> 1 to 2 K 1.0 <br> $>2 \mathrm{~K}$ to 5 K 1.4 <br> $>5 \mathrm{~K}$ to 10 K 2.0 |  |




| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 3.0 <br> $G_{M}$ 16 <br> $N_{S}$ 7.0 <br> $N_{U}$ 28 <br> $A_{I C}$ 8.0 <br> $A_{I F}$ 12 <br> $A_{U C}$ $N / A$ <br> $A_{U F}$ $N / A$ <br> $A_{R W}$ 38 <br> $S_{F}$ .50 <br> $M_{F}$ $N / A$ <br> $M_{L}$ $N / A$ <br> $C_{L}$ $N / A$ |  |


| Construction <br> Class | Style | $\pi_{\mathrm{C}}$ |
| :--- | :--- | :---: |
| Enclosed | RP07, RP11, RP16 | 2.0 |
| Unenclosed | All Other Styles are <br> Unenclosed | 1.0 |

9.13 RESISTORS, VARIABLE, NONWIREWOUND

$\lambda_{b}=.019 \exp \left(.445\left(\frac{T+273}{358}\right)^{7.3}\right) x$ $\exp \left(\frac{S}{2.69}\left(\frac{T+273}{273}\right)^{2.46}\right)$
$T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
$S=$ Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Potentiometer Taps Factor $-\pi_{\text {TAPS }}$

| ${ }^{\text {NTAPS }}$ | ${ }^{\text {THAPS }}$ | ${ }^{\mathrm{N} \text { TAPS }}$ | ${ }^{*}$ TAPS | ${ }^{\text {N TAPS }}$ | ${ }^{\text {T TAPS }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.0 | 13 | 2.7 | 23 | 5.2 |
| 4 | 1.1 | 14 | 2.9 | 24 | 5.5 |
| 5 | 1.2 | 15 | 3.1 | 25 | 5.8 |
| 6 | 1.4 | 16 | 3.4 | 26 | 6.1 |
| 7 | 1.5 | 17 | 3.6 | 27 | 6.4 |
| 8 | 1.7 | 18 | 3.8 | 28 | 6.7 |
| 9 | 1.9 | 19 | 4.1 | 29 | 7.0 |
| 10 | 2.1 | 20 | 4.4 | 30 | 7.4 |
| 11 | 2.3 | 21 | 4.6 | 31 | 7.7 |
| 12 | 2.5 | 22 | 4.9 | 32 | 8.0 |
| $\pi_{\text {TAPS }}=\frac{\left(\mathrm{N}_{\text {TAPS }}\right)^{2}}{25}+0.792$ |  |  |  |  |  |
| $\begin{aligned} \mathrm{N}_{\text {TAPS }}= & \text { Number of Potentiometer Taps, } \\ & \text { including the Wiper and Terminations. } \end{aligned}$ |  |  |  |  |  |


Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 14 |
| $N_{S}$ | 6.0 |
| $N_{U}$ | 24 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 7.0 |
| $A_{U C}$ | 12 |
| $A_{U F}$ | 18 |
| $A_{R W}$ | 39 |
| $S_{F}$ | .50 |
| $M_{F}$ | 22 |
| $M_{L}$ | 57 |
| $C_{L}$ | 1000 |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| S | .020 |
| R | .060 |
| P | .20 |
| M | .60 |
| MIL-R-22097 | 3.0 |
| Lower | 10 |

### 9.14 RESISTORS, VARIABLE, COMPOSITION

## SPECIFICATION MIL-R-94

STYLE
RV

DESCRIPTION
Variable, Composition, Low Precision
$\lambda_{p}=\lambda_{b} \pi_{\text {TAPS }} \pi_{R} \pi_{V} \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours

| Base Faiture Rate $-\lambda_{\mathrm{D}}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | Stress | .5 | .7 |
| 0 | .027 | .030 | .032 | .035 | .038 |
| 10 | .028 | .031 | .034 | .038 | .042 |
| 20 | .029 | .033 | .037 | .042 | .048 |
| 30 | .031 | .036 | .041 | .048 | .056 |
| 40 | .033 | .039 | .047 | .056 | .067 |
| 50 | .036 | .044 | .054 | .067 | .082 |
| 60 | .039 | .050 | .065 | .083 | .11 |
| 70 | .045 | .060 | .08 | .11 | .14 |
| 80 | .053 | .074 | .10 | .15 |  |
| 90 | .065 | .096 | .14 |  |  |
| 100 | .084 | .13 |  |  |  |
| 110 | .11 |  |  |  |  |

$\lambda_{b}=.0246 \exp \left(.459\left(\frac{T+273}{343}\right)^{9.3}\right) \times$
$\exp \left(\frac{\mathrm{S}}{2.32}\left(\frac{\mathrm{~T}+273}{273}\right)^{5.3}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$s=$ Ratio of Operating Power to Rated Power. See Section 9.16 for $S$ Calculation.
Resistance Factor $-\pi_{\mathrm{R}}$

| Resistance Range (ohms) | $\pi_{\mathrm{R}}$ |
| :--- | :--- |
| 50 to 50 K | 1.0 |
| $>50 \mathrm{~K}$ to 100 K | 1.1 |
| $>100 \mathrm{~K}$ to 200 K | 1.2 |
| $>200 \mathrm{~K}$ to 500 K | 1.4 |
| $>500 \mathrm{~K}$ to 1 M | 1.8 |

Potentiometer Taps Factor - $\pi_{\text {TAPS }}$

| $N_{\text {TAPS }}$ | $x_{\text {TAPS }}$ | $N_{\text {TAPS }}$ | $x_{\text {TAPS }}$ | $N_{\text {TAPS }}$ | $\pi_{\text {TAPS }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.0 | 13 | 2.7 | 23 | 5.2 |
| 4 | 1.1 | 14 | 2.9 | 24 | 5.5 |
| 5 | 1.2 | 15 | 3.1 | 25 | 5.8 |
| 6 | 1.4 | 16 | 3.4 | 26 | 6.1 |
| 7 | 1.5 | 17 | 3.6 | 27 | 6.4 |
| 8 | 1.7 | 18 | 3.8 | 28 | 6.7 |
| 9 | 1.9 | 19 | 4.1 | 29 | 7.0 |
| 10 | 2.1 | 20 | 4.4 | 30 | 7.4 |
| 11 | 2.3 | 21 | 4.6 | 31 | 7.7 |
| 12 | 2.5 | 22 | 4.9 | 32 | 8.0 |

$\frac{\left(N_{\text {TAPS }}\right)^{\frac{3}{2}}}{25}+0.792$
$=$ Number of Potentiometer Taps,
including the Wiper and Terminations.


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{\mathrm{E}}$ <br> $\mathrm{G}_{\mathrm{B}}$ 1.0 <br> $\mathrm{G}_{\mathrm{F}}$ 2.0 <br> $\mathrm{G}_{\mathrm{M}}$ 19 <br> $\mathrm{~N}_{\mathrm{S}}$ 8.0 <br> $\mathrm{~N}_{\mathrm{U}}$ 29 <br> $\mathrm{~A}_{\mathrm{IC}}$ 40 <br> $A_{\mathrm{iF}}$ 65 <br> $A_{U C}$ 48 <br> $A_{U F}$ 78 <br> $A_{R W}$ 46 <br> $S_{F}$ .50 <br> $M_{F}$ 25 <br> $M_{\mathrm{L}}$ 66 <br> $C_{L}$ 1200 |  |

Quality Factor $-\pi_{\mathrm{Q}}$

| Quality | $\pi_{\mathrm{Q}}$ |
| :--- | :---: |
| MIL-SPEC | 2.5 |
| Lower | 5.0 |


|  |  |  |
| :--- | :--- | :--- |
| SPECIFICATION | STYLE | DESCRIPTION |
| MIL-R-39023 | RQ | Variable, Nonwirewound, Film, Precision |
| MIL-R-23285 | RVC | Variable, Norwirewound, Film |
|  |  |  |
|  | $\lambda_{p}=\lambda_{b} \pi_{\text {TAPS }} \pi_{R} \pi_{V} \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours |  |


| Base Failure Rate $-\lambda_{D}$ (RQ Style Only) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Stress |  |  |  |  |  |
| $\left.T_{A}{ }^{(0}{ }^{\circ}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 023 | . 024 | . 026 | . 028 | . 031 |
| 10 | . 024 | . 026 | . 029 | . 031 | . 034 |
| 20 | . 026 | . 029 | . 032 | . 035 | . 039 |
| 30 | . 028 | . 032 | . 036 | . 040 | . 045 |
| 40 | . 032 | . 036 | . 041 | . 047 | . 053 |
| 50 | . 037 | . 042 | . 049 | . 057 | . 065 |
| 60 | . 044 | . 051 | . 060 | . 070 | . 083 |
| 70 | . 053 | . 064 | . 076 | . 091 | . 11 |
| 80 | . 068 | . 083 | . 10 | . 12 |  |
| 90 | . 092 | . 11 | . 14 |  |  |
| 100 | . 13 | . 17 |  |  |  |
| 110 | . 20 |  |  |  |  |
| $\begin{aligned} \lambda_{\mathrm{b}} & =.018 \exp \left(\frac{T+273}{343}\right)^{7.4} \mathrm{x} \\ & \exp \left(\left(\frac{\mathrm{~S}}{2.55}\right)\left(\frac{\mathrm{T}+273}{273}\right)^{3.6}\right) \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| $T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
|  | - Ratio of Operating Power to Rated Power. See Section 9.16 for $S$ Calculation. |  |  |  |  |


| Resistance Factor - $\pi_{\mathrm{R}}$ |  |
| :--- | :---: |
| Resistance Range (Ohms) $\pi_{\mathrm{R}}$ <br> Up to 10 K 1.0 <br> $>10 \mathrm{~K}$ to 50 K 1.1 <br> $>50 \mathrm{~K}$ to 200 K 1.2 <br> $>200 \mathrm{~K} 101 \mathrm{M}$ 1.4 <br> $>1 \mathrm{M}$ 1.8 |  |


| Base Failure Rate $-\lambda_{b}$ (RVC Style Only) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $T_{\hat{A}}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | 5 | . 7 | 9 |
| 0 | . 028 | . 031 | . 033 | . 036 | . 039 |
| 10 | . 029 | . 032 | . 035 | . 038 | . 042 |
| 20 | . 030 | . 033 | . 037 | . 041 | . 046 |
| 30 | . 031 | . 035 | . 040 | . 045 | . 051 |
| 40 | . 032 | . 037 | . 043 | . 050 | . 058 |
| 50 | . 034 | . 040 | . 047 | . 056 | . 066 |
| 60 | . 036 | . 044 | . 053 | . 064 | . 078 |
| 70 | . 039 | . 049 | . 060 | . 075 | . 093 |
| 80 | . 043 | . 055 | . 070 | . 09 | . 11 |
| 90 | . 048 | . 063 | . 083 | . 11 | . 15 |
| 100 | . 055 | . 075 | . 10 | . 14 | . 19 |
| 110 | . 064 | . 091 | . 13 | . 18 | . 26 |
| 120 | . 077 | . 11 | . 17 | . 25 | . 37 |
| 130 | . 096 | . 15 | . 23 | . 36 | . 55 |
| 140 | . 12 | . 20 | . 33 | . 53 |  |
| 150 | . 17 | . 29 | . 50 |  |  |
| 160 | . 24 | . 44 |  |  |  |
| 170 | . 37 |  |  |  |  |
| $\lambda_{b}=.0257 \exp \left(\frac{T+273}{398}\right)^{7.9} \times$ |  |  |  |  |  |
| $\exp \left(\left(\frac{S}{2.45}\right)\left(\frac{T+273}{273}\right)^{4.3}\right)$ |  |  |  |  |  |
| T $=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| S | Ratio of Operating Power to Rated Power. See Section 9.16 for $S$ Calculation. |  |  |  |  |


| Potentiometer Taps Factor - $\pi_{\text {TAPS }}$ |
| :--- |
| $N_{\text {TAPS }}$ $x_{\text {TAPS }}$ $N_{\text {TAPS }}$ $x_{\text {TAPS }}$ $N_{\text {TAPS }}$ $\pi_{\text {TAPS }}$ <br> 3 1.0 13 2.7 23 5.2 <br> 4 1.1 14 2.9 24 5.5 <br> 5 1.2 15 3.1 25 5.8 <br> 6 1.4 16 3.4 26 6.1 <br> 7 1.5 17 3.6 27 6.4 <br> 8 1.7 18 3.8 28 6.7 <br> 9 1.9 19 4.1 29 7.0 <br> 10 2.1 20 4.4 30 7.4 <br> 11 2.3 21 4.6 31 7.7 <br> 12 2.5 22 4.9 32 8.0 |
| $\pi_{\text {TAPS }}$ |
| $N_{\text {TAPS }}$ |



| Quality Factor $-\pi_{Q}$ |  |
| :--- | :---: |
| Quality | $\pi_{Q}$ |
| MIL-SPEC | 2 |
| Lower | 4 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 14 |
| $N_{S}$ | 7.0 |
| $N_{U}$ | 24 |
| $A_{I C}$ | 6.0 |
| $A_{I F}$ | 12 |
| $A_{U C}$ | 20 |
| $A_{U F}$ | 30 |
| $A_{R W}$ | 39 |
| $S_{F}$ | .50 |
| $M_{F}$ | 22 |
| $M_{L}$ | 57 |
| $C_{L}$ | 1000 |

Stress Ratio (S) Calculation for Rheostats

${ }^{l^{\prime} P_{\max }=} \begin{aligned} & \text { Maximum current which wiil } \\ & \text { be passed through the ineostat }\end{aligned}$ in tite circuik.
$I_{\text {max rated }}=$ Current rating of the potentiometer. if current rating is not given, use:
$i_{\text {max }}^{\text {rated }}=\sqrt{P_{\text {rated }} P_{p} i_{p}}$
$P_{\text {rated }}$

- Power Rating of Potentiometer
$R_{p} \quad$ - Nominal Total Potentiometer Resistance

TGAAVGED

- Factor to correct for the reduction in effective rating of the potentiometer due to the ciose proximity of two or more potentiomoters when they are ganged together on a common shatt. See below.

Stress Ratio (S) Calculation for Potentiometers Connected Conventionally

$P_{\text {Applied }}=$ Equivalent power input to the potentiometer whion in is not loaded (i.e., wiper lead disconneciedi). Caicuiarie as follows:
$P_{\text {Applied }}=\frac{v_{\text {in }}{ }^{2}}{R_{p}}$
$\mathrm{V}_{\text {in }}=$ Input Voltage
$\mathrm{R}_{\mathrm{p}}=$ Nominal Totàl Potentiometer Resistance

PRATED $=$ Power Rating of Potentiometer
$\pi_{\text {GANGED }}=$ Factor to correct for the reduction in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged togather on a common shaft. Soe below.
$\pi_{\text {EfF }}$

- Correction factor for the electrical loading effect on the wiper comtact of the potentiometer. the value is a function of the type of potentiometer, its resistance. and the bad resistanco. Ses next page.

Ganged-Potentiometer Factor - $\pi_{\text {GANGED }}$

| Number of Sections | First Potemiometer Next to Mount | Second in Gang | Third in Gang | Fourth in Gang | Fith in Gang | Sixth in Gang |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single | 1.0 | - Moat Applicabla |  |  |  |  |
| Two | 0.75 | 0.60 | Not Applicable |  |  |  |
| Three | 0.75 | 0.50 | 0.60 | Not | Applicable |  |
| Four | 0.75 | 0.50 | 0.50 | 0.60 | Not Applicablo |  |
| Five | 0.75 | 0.50 | 0.40 | 0.50 | 0.60 | Avot Appolicatiol |
| Six | 0.75 | 0.50 | 0.40 | 0.40 | 0.50 | 0.60 |




## Example

Given: Type RV1SAYSA505A variable 500K ohm resistor procured per MIL-R-94, rated at 0.2 watts is being used in a fixed ground environment. The resistor ambient temperature is $40^{\circ} \mathrm{C}$ and is dissipating 0.06 watts. The resistance connected to the wiper contact varies between 1 megohm and 3 megohms. The potentiometer is connected conventionally without ganging.

The appropriate model for RV style variable resistors is given in Section 9.14. Based on the given information the following model factors are determined from the tables shown in Section 9.14 and by following the procedure for determining electrical stress for potentiometers as described in Section 9.16.

From Section 9.16
PAPPLIED $=.06 \mathrm{~W}$
$\pi_{\text {EFF }}=.62$
$\pi_{\text {GANGED }}=1.0$
$\pi_{\text {RATED }}=.2 \mathrm{~W}$
$\mathrm{K}_{\mathrm{H}}=.5$ for MIL-R-94 (Section 9.16 Table)
Not Ganged (Section 9.16 Table, Single Section, First Potentiometer)
$\pi_{\text {RATED }}=.2 \mathrm{~W}$
$\mathrm{S}=\frac{\text { P APPLIED }}{\pi_{\text {EFF }} \times \pi_{\text {GANGED }} \times \pi_{\text {RATED }}}=\frac{.06}{(.62)(1.0)(.2)}=.48$

From Section 9.14

| $\lambda_{b}$ | $=$ | .047 |
| :--- | :--- | :--- |
| $\pi_{R}$ | $=$ | 1.4 |
| $\pi_{\text {TAPS }}$ | $=1.0$ |  |
| $\pi_{V}$ | $=1.0$ |  |

$T_{A}=40^{\circ} \mathrm{C}, \mathrm{S}$ Rounded to .5
500 K ohms
3 Taps, Basic Single Potentiometer
$V_{\text {RATED }}=250$ Volts for RV1 prefix
$V_{\text {APPLIED }}=\sqrt{(500,000)(.06)}=173$ volts
$\mathrm{V}_{\text {APPLIED }} N_{\text {RATED }}=\frac{173}{250}=.69$

| $\pi_{Q}$ | $=2.5$ |
| :--- | :--- |
| $\pi_{E}$ | $=2.0$ |

$\lambda_{\mathrm{P}} \quad=\lambda_{\mathrm{b}} \pi_{\text {TAPS }} \pi_{\mathrm{R}} \pi_{\mathrm{V}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}$
$=(.047)(1.0)(1.4)(1.0)(2.5)(2.0)=.33$ Failures $/ 10^{6}$ Hours
10.1 CAPACITORS, FIXED, PAPER, BY-PASS

SPECIFICATION
MIL-C-25
MIL-C-12889

## STYLE

CP
CA

DESCRIPTION
Paper, By-pass, Filter, Blocking, DC
Paper, By-pass, Radio Interference Reduction AC and DC

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$
$\left(T=85^{\circ} \mathrm{C}\right.$ Max Rated)
(All MIL-C-12889; MIL-C-25 Styles CP25, 26, 27, 28, 29. $40,41,67,69,70,72,75,76,77,78,80,81,82$;

Characteristics E, F)

| Characteristics $E, F$ S |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| 0 | .00088 | .0011 | .0036 | .015 | .051 |
| 10 | .00089 | .0011 | .0036 | .016 | .052 |
| 20 | .00092 | .0011 | .0037 | .016 | .054 |
| 30 | .00097 | .0012 | .0039 | .017 | .057 |
| 40 | .0011 | .0013 | .0044 | .019 | .063 |
| 50 | .0013 | .0016 | .0052 | .022 | .075 |
| 60 | .0017 | .0021 | .0069 | .030 | .10 |
| 70 | .0027 | .0034 | .011 | .048 | .16 |
| 80 | .0060 | .0074 | .024 | .10 | .35 |

$\lambda_{b}=.00086\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate $-\lambda_{D}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-25 Styles CP 4, 5, 8, 9, 10, 11, 12 13;
Characteristic K)

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00086 | .0011 | .0035 | .015 | .051 |
| 10 | .00087 | .0011 | .0035 | .015 | .051 |
| 20 | .00087 | .0011 | .0035 | .015 | .051 |
| 30 | .00088 | .0011 | .0035 | .015 | .051 |
| 40 | .00089 | .0011 | .0036 | .015 | .052 |
| 50 | .00091 | .0011 | .0037 | .016 | .053 |
| 60 | .00095 | .0012 | .0039 | .017 | .056 |
| 70 | .0010 | .0013 | .0041 | .018 | .060 |
| 80 | .0011 | .0014 | .0046 | .020 | .067 |
| 90 | .0014 | .0017 | .0056 | .024 | .081 |
| 100 | .0019 | .0023 | .0076 | .033 | .11 |
| 110 | .0030 | .0037 | .012 | .052 | .18 |
| 120 | .0063 | .0078 | .026 | .11 | .37 |

$\lambda_{b}=.00086\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.
10.1 CAPACITORS, FIXED, PAPER, BY-PASS

| Capacitance Factor $-\pi_{C V}$ |
| :--- |
| Capacitance, $\mathrm{C}(\mu \mathrm{F})$ $\pi_{\mathrm{CV}}$ <br> MIL-C-25  <br> .0034 0.7 <br> .15 1.0 <br> 2.3 1.3 <br> 16. 1.6 <br> MIL-C-12889 1.0 <br> All  <br>   |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 3.0 |
| Lower | 7.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 9.0 <br> $N_{S}$ 5.0 <br> $N_{U}$ 15 <br> $A_{I C}$ 6.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 17 <br> $A_{U F}$ 32 <br> $A_{R W}$ 22 <br> $S_{F}$ .50 <br> $M_{F}$ 12 <br> $M_{L}$ 32 <br> $C_{L}$ 570 |  |

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH


Base Failure Rate - $\lambda_{b}$
( $T=125^{\circ} \mathrm{C}$ Max Rated)
(Characteristic K)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .0012 | .0014 | .0047 | .020 | .068 |
| 10 | .0012 | .0014 | .0047 | .020 | .068 |
| 20 | .0012 | .0014 | .0047 | .020 | .068 |
| 30 | .0012 | .0014 | .0047 | .020 | .069 |
| 40 | .0012 | .0015 | .0048 | .021 | .070 |
| 50 | .0012 | .0015 | .0049 | .021 | .072 |
| 60 | .0013 | .0016 | .0052 | .022 | .075 |
| 70 | .0014 | .0017 | .0055 | .024 | .08 |
| 80 | .0015 | .0019 | .0062 | .027 | .09 |
| 90 | .0019 | .0023 | .0075 | .032 | .11 |
| 100 | .0025 | .0031 | .010 | .044 | .15 |
| 110 | .0040 | .005 | .016 | .07 | .24 |
| 120 | .0084 | .010 | .034 | .15 | .49 |

$\lambda_{b}=.00115\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

DESCRIPTION
Paper, Metallized Paper, Metallized Plastic, RFI
Feed-Through Established Reliability and Non-Established Reliability

Failures $/ 10^{6}$ Hours
Base Failure Rate - $\lambda_{b}$ ( $\mathrm{T}=150^{\circ} \mathrm{C}$ Max Rated) (Characteristic P)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .0012 | .0014 | .0047 | .020 | .068 |
| 10 | .0012 | .0014 | .0047 | .020 | .068 |
| 20 | .0012 | .0014 | .0047 | .020 | .068 |
| 30 | .0012 | .0014 | .0047 | .020 | .068 |
| 40 | .0012 | .0014 | .0047 | .020 | .068 |
| 50 | .0012 | .0015 | .0048 | .020 | .069 |
| 60 | .0012 | .0015 | .0048 | .021 | .070 |
| 70 | .0012 | .0015 | .0049 | .021 | .071 |
| 80 | .0013 | .0016 | .0051 | .022 | .074 |
| 90 | .0013 | .0017 | .0055 | .023 | .079 |
| 100 | .0015 | .0018 | .0060 | .026 | .087 |
| 110 | .0017 | .0022 | .0071 | .03 | .10 |
| 120 | .0022 | .0028 | .0091 | .039 | .13 |
| 130 | .0033 | .0040 | .013 | .057 | .19 |
| 140 | .0058 | .0072 | .024 | .10 | .34 |
| 150 | .014 | .017 | .057 | .24 | .82 |

$$
\lambda_{b}=.00115\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{423}\right)^{18}\right)
$$

$T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
S = Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| M | 1.0 |
| Non-Established Reliability | 3.0 |
| Lower | 10 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 9.0 <br> $N_{S}$ 7.0 <br> $N_{U}$ 15 <br> $A_{I C}$ 6.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 17 <br> $A_{U F}$ 28 <br> $A_{R W}$ 22 <br> $S_{F}$ .50 <br> $M_{F}$ 12 <br> $M_{L}$ 32 <br> $c_{L}$ 570 |  |

### 10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

SPECIFICATION
MIL-C-14157
MIL-C-19978

STYLE
CPV
CQR and CO

DESCRIPTION
Paper and Plastic Film, Est. Rel.
Paper and Plastic Film, Est. Rel. and Non-Est. Rel.

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{C V^{\pi} Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{\mathrm{t}}$
( $T=65^{\circ} \mathrm{C}$ Max Rated )
(MIL-C-14157 Style CPV07;
MIL-C-19978 Characteristics P, L)

| $\left.T_{A}{ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00053 | .00065 | .0021 | .0092 | .031 |
| 10 | .00055 | .00069 | .0022 | .0096 | .032 |
| 20 | .00061 | .00075 | .0025 | .011 | .036 |
| 30 | .00071 | .00088 | .0029 | .012 | .042 |
| 40 | .00094 | .0012 | .0038 | .016 | .055 |
| 50 | .0015 | .0019 | .0061 | .026 | .088 |
| 60 | .0034 | .0042 | .014 | .059 | .20 |

$\lambda_{b}=.0005\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{338}\right)^{18}\right)$
$T=A m b i e n t$ Temperature ( ${ }^{\circ} \mathrm{C}$ )
$S$ - Ratio of Operating to Rated Vohage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-14157 Style CPV09 and MIL-C-19978
Characteristics K, Q, S)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00050 | .00062 | .0020 | .0087 | .029 |
| 10 | .00050 | .00062 | .0020 | .0088 | .029 |
| 20 | .00051 | .00062 | .0020 | .0088 | .030 |
| 30 | .00051 | .00063 | .0021 | .0089 | .030 |
| 40 | .00052 | .00064 | .0021 | .009 | .030 |
| 50 | .00053 | .00066 | .0021 | .0092 | .031 |
| 60 | .00055 | .00068 | .0022 | .0096 | .032 |
| 70 | .00059 | .00073 | .0024 | .010 | .035 |
| 80 | .00067 | .00083 | .0027 | .012 | .039 |
| 90 | .00081 | .0010 | .0033 | .014 | .047 |
| 100 | .0011 | .0013 | .0044 | .019 | .064 |
| 110 | .0018 | .0022 | .0071 | .030 | .10 |
| 120 | .0037 | .0045 | .015 | .064 | .21 |

$\lambda_{b}=.0005\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

## Base Faikure Rate - $\lambda_{b}$

( $T=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-14157 Style CPV17;
MLL-C-19978 Characteristics E, F, G, M)

| $T_{A}{ }^{+}{ }^{\text {c }}$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 3 | 5 | . 7 | . 9 |
| 0 | . 00051 | . 00063 | . 0021 | . 0089 | . 030 |
| 10 | . 00052 | . 00064 | . 0021 | . 0090 | . 030 |
| 20 | . 00054 | . 00066 | . 0022 | . 0093 | . 031 |
| 30 | . 00057 | . 00070 | . 0023 | . 0099 | . 033 |
| 40 | . 00063 | . 00077 | . 0025 | . 011 | . 037 |
| 50 | . 00074 | . 00092 | . 0030 | . 013 | . 043 |
| 60 | . 00099 | . 0012 | . 0040 | . 017 | . 058 |
| 70 | . 0016 | . 0020 | . 0064 | . 028 | . 093 |
| 80 | . 0035 | . 0043 | . 014 | . 061 | . 20 |
| $\lambda_{b}=.0005\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$ |  |  |  |  |  |

$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=170^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-19978 Characteristic T)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00050 | .00062 | .0020 | .0087 | .029 |
| 10 | .00050 | .00062 | .0020 | .0087 | .029 |
| 20 | .00050 | .00062 | .0020 | .0087 | .029 |
| 30 | .00050 | .00062 | .0020 | .0087 | .029 |
| 40 | .00050 | .00062 | .0020 | .0087 | .029 |
| 50 | .00050 | .00062 | .0020 | .0088 | .030 |
| 60 | .00051 | .00063 | .0021 | .0088 | .030 |
| 70 | .00051 | .00063 | .0021 | .0089 | .030 |
| 80 | .00052 | .00065 | .0021 | .0091 | .031 |
| 90 | .00054 | .00066 | .0022 | .0093 | .031 |
| 100 | .00056 | .00069 | .0023 | .0097 | .033 |
| 110 | .00060 | .00074 | .0024 | .010 | .035 |
| 120 | .00067 | .00083 | .0027 | .012 | .039 |
| 130 | .00079 | .00098 | .0032 | .014 | .046 |
| 140 | .0010 | .0013 | .0041 | .018 | .060 |
| 150 | .0015 | .0018 | .006 | .026 | .087 |
| 160 | .0026 | .0032 | .011 | .046 | .15 |
| 170 | .0061 | .0075 | .025 | .11 | .36 |

$\lambda_{b}=.0005\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{443}\right)^{18}\right)$
$T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
S - Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

| Capacitance, C ( $\mu \mathrm{F}$ ) | $\pi_{\mathrm{CV}}$ |
| :---: | :---: |
| $\begin{gathered} \text { MIL-C-14157:* } \\ .0017 \\ .027 \\ .20 \\ 1.0 \\ \text { MIL-C-19978: } \\ .00032 \\ .033 \\ 1.0 \\ 15.0 \end{gathered}$ | $\begin{gathered} .70 \\ 1.0 \\ 1.3 \\ 1.6 \\ \\ .70 \\ 1.0 \\ 1.3 \\ 1.6 \end{gathered}$ |
| $\begin{aligned} & \pi_{C V}=1.6 C^{0.13} \\ & * \pi_{C V}=1.3 C^{0.077} \end{aligned}$ |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 14 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 6.0 |
| $A_{U C}$ | 11.0 |
| $A_{U F}$ | 20 |
| $A_{R W}$ | 20 |
| $S_{F}$ | .50 |
| $M_{F}$ | 11 |
| $M_{L}$ | 29 |
| $C_{L}$ | 530 |

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

## SPECIFICATION

MIL-C-18312
MIL-C-39022

Style
CH
CHR

DESCRIPTION
Metallized Paper, Paper-Plastic, Plastic
Metallized Paper, Paper-Plastic, Plastic, Established Reliability

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Faikre Rate - $\lambda_{b}$
( $\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39022 Charactoristic 9 and 12 ( 50 Vohs rated). Characteristic 49; and MIL-C-18312 Characteristic R)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00070 | .00087 | .0028 | .012 | .041 |
| 10 | .00072 | .00089 | .0029 | .012 | .042 |
| 20 | .00074 | .00091 | .0030 | .013 | .043 |
| 30 | .00078 | .00097 | .0032 | .014 | .046 |
| 40 | .00086 | .0011 | .0035 | .015 | .051 |
| 50 | .0010 | .0013 | .0041 | .018 | .06 |
| 60 | .0014 | .0017 | .0055 | .024 | .08 |
| 70 | .0022 | .0027 | .0089 | .038 | .13 |
| 80 | .0048 | .0059 | .019 | .084 | .28 |

$\lambda_{b}=.00069\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$
$T=A m b i e n t$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
S - Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

## Base Failure Rate - $\lambda_{b}$

( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39022 Characteristic 9 and 12 (above 50 Volts rated), Characteristics 1,10,19,29,59; and MIL-C-18312 Characteristic N)

| $T_{A}\left({ }^{\circ} C\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00069 | .00086 | .0028 | .012 | .041 |
| 10 | .00069 | .00086 | .0028 | .012 | .041 |
| 20 | .00070 | .00086 | .0028 | .012 | .041 |
| 30 | .00070 | .00087 | .0028 | .012 | .041 |
| 40 | .00071 | .00088 | .0029 | .012 | .042 |
| 50 | .00073 | .00090 | .003 | .013 | .043 |
| 60 | .00076 | .00094 | .0031 | .013 | .045 |
| 70 | .00082 | .0010 | .0033 | .014 | .048 |
| 80 | .00092 | .0011 | .0037 | .016 | .054 |
| 90 | .0011 | .0014 | .0045 | .019 | .065 |
| 100 | .0015 | .0019 | .0061 | .026 | .088 |
| 110 | .0024 | .0030 | .0098 | .042 | .14 |
| 120 | .0051 | .0063 | .020 | .088 | .30 |

$\lambda_{b}=.00069\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
S = Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

## MIL-HDBK-217F

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC
Capacitance Factor - $\pi_{\mathrm{CV}}$

| Capacitance, $\mathrm{C}(\mu \mathrm{F})$ | $\pi_{\mathrm{CV}}$ |
| :--- | :---: |
| 0.0023 | .70 |
| 0.14 | 1.0 |
| 2.4 | 1.3 |
| $\pi_{\mathrm{CV}}=1.2 \mathrm{C}^{0.092}$ |  |

Quaiiiy Factor $-\pi_{Q}$

| Quality | $\pi_{Q}$ |
| :--- | :---: |
| S | 0.03 |
| R | .10 |
| P | .30 |
| M | 1.0 |
| L | 3.0 |
| MIL-C-18312. Non-Est. Rel. | 7.0 |
| Lower | 20 |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 14 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 6.0 |
| $A_{U C}$ | 11.0 |
| $A_{U F}$ | 20 |
| $A_{R W}$ | 20 |
| $S_{F}$ | .50 |
| $M_{F}$ | 11 |
| $M_{L}$ | 29 |
| $C_{L}$ | 530 |

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

|  | 10.5 | CAPACITORS, | FIXED, PLASTIC AND METALLIZED PLASTIC |
| :--- | :--- | :--- | :--- |
| SPECIFICATION | STYLE |  |  |
| MIL-C-55514 | CFR | DESCRIPTION |  |
|  | $\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E}$ | Failures $/ 10^{6}$ Hours |  |


| Base Failure Rate $-\lambda_{\mathrm{D}}$ ( $T=85^{\circ} \mathrm{C}$ Max Rated ) (Characteristics M, N) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0010 | . 0012 | . 0041 | . 018 | . 059 |
| 10 | . 0010 | . 0013 | . 0042 | . 018 | . 060 |
| 20 | . 0011 | . 0013 | . 0043 | . 018 | . 062 |
| 30 | . 0011 | . 0014 | . 0045 | . 020 | . 066 |
| 40 | . 0012 | . 0015 | . 0050 | . 022 | 073 |
| 50 | . 0015 | . 0018 | . 0059 | . 026 | . 086 |
| 60 | . 0020 | . 0024 | . 0079 | . 034 | . 11 |
| 70 | . 0032 | . 0039 | . 013 | . 055 | . 18 |
| 80 | . 0069 | . 0085 | . 028 | . 12 | . 40 |
| $\lambda_{b}=.00099\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$ |  |  |  |  |  |
| $\begin{aligned} & \mathrm{T}=\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ & \mathrm{S}=\text { Ratio of Operating to Rated Voltage } \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - $\lambda_{D}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(Characteristics Q, R, S)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00099 | .0012 | .0040 | .017 | .058 |
| 10 | .0010 | .0012 | .0040 | .017 | .058 |
| 20 | .0010 | .0012 | .0041 | .017 | .059 |
| 30 | .0010 | .0012 | .0041 | .018 | .059 |
| 40 | .0010 | .0013 | .0041 | .018 | .060 |
| 50 | .0011 | .0013 | .0043 | .018 | .062 |
| 60 | .0011 | .0014 | .0044 | .019 | .064 |
| 70 | .0012 | .0015 | .0048 | .020 | .069 |
| 80 | .0013 | .0016 | .0054 | .023 | .077 |
| 90 | .0016 | .0020 | .0065 | .028 | .094 |
| 100 | .0022 | .0027 | .0087 | .038 | .13 |
| 110 | .0035 | .0043 | .014 | .06 | .20 |
| 120 | .0073 | .0090 | .029 | .13 | .43 |

$\lambda_{b}=.00099\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
$S \quad=\quad$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.
Capacitance Factor $-\pi_{\mathrm{CV}}$

| Capacitanco, $\mathrm{C}(\mu \mathrm{F})$ | $\pi_{\mathrm{CV}}$ |
| :--- | :---: |
| 0.0049 | .70 |
| 0.33 | 1.0 |
| 7.1 | 1.3 |
| 38. | 1.5 |
| $\pi_{\mathrm{CV}}=1.1 \mathrm{C}^{0.085}$ |  |


| Quality Factor $-\pi_{Q}$ |  |
| :--- | :---: |
| Quality | $\pi_{Q}$ |
| S | .030 |
| $R$ | .10 |
| $P$ | .30 |
| M | 1.0 |
| Lower | 10 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 10 <br> $N_{S}$ 5.0 <br> $N_{U}$ 16 <br> $A_{I C}$ 6 <br> $A_{I F}$ 11 <br> $A_{U C}$ 18 <br> $A_{U F}$ 30 <br> $A_{R W}$ 23 <br> $S_{F}$ .50 <br> $M_{F}$ 13 <br> $M_{L}$ 34 <br> $C_{L}$ 610 |  |

## MIL-HDBK-217F

10.6 CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC

SPECIFICATION MIL-C-83421

STYLE CRH

## DESCRIPTION

Super-Metallized Plastic, Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Faikure Rate $-\lambda_{b}$ ( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 00055 | . 00068 | . 0022 | . 0096 | . 032 |
| 10 | . 00055 | . 00068 | . 0022 | . 0096 | . 032 |
| 20 | . 00056 | . 00069 | . 0023 | . 0097 | . 033 |
| 30 | . 00056 | . 00069 | . 0023 | . 0098 | . 033 |
| 40 | . 00057 | . 00070 | . 0023 | . 0099 | . 033 |
| 50 | . 00058 | . 00072 | . 0024 | . 010 | . 034 |
| 60 | . 00061 | . 00075 | . 0025 | . 011 | . 036 |
| 70 | . 00065 | . 00081 | . 0026 | . 011 | . 038 |
| 80 | . 00073 | . 00091 | . 0030 | . 013 | . 043 |
| 90 | . 00089 | . 0011 | . 0036 | . 015 | . 052 |
| 100 | . 0012 | . 0015 | . 0049 | . 021 | . 07 |
| 110 | . 0019 | . 0024 | . 0078 | . 033 | . 11 |
| 120 | . 0040 | . 0050 | . 016 | . 070 | . 24 |
| $\lambda_{b}=.00055\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$ |  |  |  |  |  |

## $T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$

$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| S | .020 |
| R | .10 |
| P | .30 |
| M | 1.0 |
| Lower | 10 |



| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 4.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 14 |
| $A_{l}$ | 4.0 |
| $A_{I F}$ | 6.0 |
| $A_{U C}$ | 13.0 |
| $A_{U F}$ | 20 |
| $A_{R W}$ | 20 |
| $S_{F}$ | .50 |
| $M_{F}$ | 11 |
| $M_{L}$ | 29 |
| $C_{L}$ | 530 |

10.7 CAPACITORS, FIXED, MICA

## SPECIFICATION <br> MIL-C-5 <br> MIL-C-39001 <br> style <br> CM <br> CMR

DESCRIPTION
MICA (Dipped or Molded)
MICA (Dipped), Established Reliability

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{b}$ ( $T=70^{\circ} \mathrm{C}$ Max Rated) (MIL-C-5, Tomp. Range M) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.T_{A}{ }^{\circ} \mathrm{C}\right)$ | Stross |  |  |  |  |
| 0 | . 00030 | . 00041 | . 00086 | . 0019 | . 0036 |
| 10 | . 00047 | . 00066 | . 0014 | . 0030 | . 0058 |
| 20 | . 00075 | . 0011 | . 0022 | . 0047 | . 0092 |
| 30 | . 0012 | . 0017 | . 0035 | . 0075 | . 015 |
| 40 | . 0019 | . 0027 | . 0056 | . 012 | . 023 |
| 50 | . 0031 | . 0043 | . 0089 | . 019 | . 037 |
| 60 | . 0049 | . 0068 | . 014 | . 030 | . 059 |
| 70 | . 0078 | . 011 | . 023 | . 049 | 095 |
| $\lambda_{\mathrm{b}}=8.6 \times 10^{-10}\left[\left(\frac{\mathrm{~S}}{4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{343}\right)\right)$ |  |  |  |  |  |
| $T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$ <br> $S=$ Ratio of Operating to Rated Voltage |  |  |  |  |  |
| Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |

Base Faikure Rate - $\lambda_{b}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-5, Temp. Range O; MIL-C-39001 Temp. Range O)

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 00005 | . 00007 | 00015 | 0003 | . 00062 |
| 10 | . 00008 | . 00011 | . 00022 | . 00048 | . 00093 |
| 20 | . 00011 | . 00016 | . 00033 | . 00071 | . 0014 |
| 30 | . 00017 | . 00024 | . 00050 | . 0011 | . 0021 |
| 40 | . 00025 | . 00036 | . 00074 | . 0016 | . 0031 |
| 50 | . 00038 | . 00053 | . 0011 | . 0024 | . 0046 |
| 60 | . 00057 | . 0008 | . 0017 | . 0036 | . 0069 |
| 70 | . 00085 | . 0012 | . 0025 | . 0053 | . 010 |
| 80 | . 0013 | . 0018 | . 0037 | . 008 | . 016 |
| 90 | . 0019 | . 0027 | . 0055 | . 012 | . 023 |
| 100 | . 0028 | . 0040 | . 0083 | . 018 | . 035 |
| 110 | . 0042 | . 0059 | . 012 | . 027 | . 052 |
| 120 | . 0063 | . 0089 | . 018 | . 040 | . 077 |
| $\lambda_{b}=8.6 \times 10^{-10}\left[\left(\frac{S}{.4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{398}\right)\right)$ |  |  |  |  |  |
| s | Ambie <br> Ratio | nt Temp Opera | ture $\left({ }^{\circ} \mathrm{C}\right.$ g to Rat | Voltag |  |
| Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |


| $\begin{gathered} \text { Base Failure Rate }-\lambda_{b} \\ \left(T=85^{\circ} \mathrm{C}\right. \text { Max Rated) } \\ \text { (MiL-C-5, Temp. Range N) } \end{gathered}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{(M i L-C-5, ~ T e m p . ~ R a n g e ~ N) ~}{\text { Stress }}$ |  |  |  |  |  |
| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 00017 | . 00024 | . 00051 | . 0011 | . 0021 |
| 10 | . 00027 | . 00038 | . 00079 | . 0017 | . 0033 |
| 20 | . 00042 | . 00059 | . 0012 | . 0027 | . 0052 |
| 30 | . 00066 | . 00003 | . 0018 | . 0042 | . 0081 |
| 40 | . 0010 | . 0015 | . 003 | . 0065 | . 013 |
| 50 | . 0016 | . 0023 | . 0047 | . 010 | . 020 |
| 60 | . 0025 | . 0036 | . 0074 | . 016 | . 031 |
| 70 | . 0040 | . 0056 | . 012 | . 025 | . 048 |
| 80 | . 0062 | . 0087 | . 018 | . 039 | . 076 |
| $\lambda_{b}=8.6 \times 10^{-10}\left[\left(\frac{S}{.4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{358}\right)\right)$ <br> $\mathrm{T}=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) <br> $S=$ Ratio of Operating to Rated Voltage <br> Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=150^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-5, Temp. Range P; MIL-C-39001, Temp. Range P)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00003 | .00004 | .00008 | .00017 | .00033 |
| 10 | .00004 | .00005 | .00011 | .00024 | .00047 |
| 20 | .00006 | .00008 | .00017 | .00036 | .00069 |
| 30 | .00008 | .00012 | .00024 | .00052 | .0010 |
| 40 | .00012 | .00017 | .00035 | .00076 | .0015 |
| 50 | .00018 | .00025 | .00051 | .0011 | .0022 |
| 60 | .00026 | .00036 | .00075 | .0016 | .0031 |
| 70 | .00038 | .00053 | .0011 | .0024 | .0046 |
| 80 | .00055 | .00077 | .0016 | .0034 | .0067 |
| 90 | .0008 | .0011 | .0023 | .0050 | .0098 |
| 100 | .0012 | .0016 | .0034 | .0073 | .014 |
| 110 | .0017 | .0024 | .0050 | .011 | .021 |
| 120 | .0025 | .0035 | .0073 | .016 | .030 |
| 130 | .0036 | .0051 | .011 | .023 | .044 |
| 140 | .0053 | .0074 | .015 | .033 | .065 |
| 150 | .0078 | .011 | .023 | .049 | .095 |

$\lambda_{b}=8.6 \times 10^{-10}\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{423}\right)\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

| Capacitance Factor $-\pi_{\mathrm{CV}}$ |  |
| :---: | :---: |
| Capacitance, C (pF) | $\pi_{\mathrm{CV}}$ |
| 2 | .50 |
| 38 | .75 |
| 300 | 1.0 |
| 2000 | 1.3 |
| 8600 | 1.6 |
| 29000 | 1.9 |
| 84000 | 2.2 |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| T | .010 |
| S | .030 |
| R | .10 |
| P | .30 |
| M | 1.0 |
| L | 1.5 |
| MilL-C-5, Non-Est. Rei. Dipped | 3.0 |
| MiL-C-5, Non-Est. Rel. Molded | 6.0 |
| Lower | 15 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 10 |
| $N_{S}$ | 6.0 |
| $N_{U}$ | 16 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 7.0 |
| $A_{U C}$ | 22 |
| $A_{U F}$ | 28 |
| $A_{R W}$ | 23 |
| $S_{F}$ | .50 |
| $M_{F}$ | 13 |
| $M_{L}$ | 34 |
| $C_{L}$ | 610 |

$10 . \overline{8}$ CĀPACITŌRS, FIXED, MICA, BUTTON

SPECIFICATION MIL-C-10950

## STYLE CB

## DESCRIPTION MICA, Button Style

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{b}$ ( $\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated) (Style CB50) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0067 | . 0094 | . 019 | . 042 | . 082 |
| 10 | . 0071 | . 0099 | . 021 | . 044 | . 086 |
| 20 | . 0076 | . 011 | . 022 | . 047 | . 092 |
| 30 | . 0082 | .011 | . 024 | . 051 | . 10 |
| 40 | . 009 | . 013 | . 026 | . 056 | . 11 |
| 50 | . 010 | . 014 | . 029 | . 063 | . 12 |
| 60 | . 012 | . 016 | . 033 | . 072 | . 14 |
| 70 | . 013 | . 019 | . 039 | . 084 | . 16 |
| 80 | . 016 | . 023 | . 047 | . 10 | . 20 |
| $\begin{aligned} \lambda_{b} & =.0053\left[\left(\frac{S}{.4}\right)^{3}+1\right] \exp \left(1.2\left(\frac{T+273}{358}\right)^{6.3}\right) \\ T & =\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ \mathrm{S} & =\text { Ratio of Operating to Rated Voltage } \end{aligned}$ <br> Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |


| $\begin{aligned} & \text { Base Faihure Rate }-\lambda_{b} \\ & \text { ( } T=150^{\circ} \mathrm{C} \text { Max Rated) } \\ & \text { (All Types Except CB50) } \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0058 | . 0081 | . 017 | . 036 | . 071 |
| 10 | . 0059 | . 0083 | . 017 | . 037 | . 072 |
| 20 | . 0061 | . 0085 | . 018 | . 038 | . 074 |
| 30 | . 0062 | . 0087 | . 018 | . 039 | . 076 |
| 40 | . 0064 | . 009 | . 019 | . 040 | . 079 |
| 50 | . 0067 | . 0094 | . 019 | . 042 | . 082 |
| 60 | . 0070 | . 0098 | . 020 | . 044 | . 086 |
| 70 | . 0074 | . 010 | . 022 | . 046 | . 090 |
| 80 | . 0079 | . 011 | . 023 | . 049 | . 096 |
| 30 | . 0085 | . 012 | . 025 | . 053 | 10 |
| 100 | . 0093 | . 013 | 027 | . 058 | .11 |
| 110 | . 010 | . 014 | . 03 | . 064 | . 12 |
| 120 | . 011 | . 016 | . 033 | . 072 | .14 |
| 130 | . 013 | . 018 | . 038 | . 082 | . 16 |
| 140 | . 015 | . 021 | . 044 | . 095 | . 18 |
| 150 | . 018 | . 025 | . 052 | . 11 | . 22 |
| $\lambda_{b}=.0053\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(1.2\left(\frac{T+273}{423}\right)^{6.3}\right)$ |  |  |  |  |  |
| $\begin{aligned} \mathrm{T} & =\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ S & =\text { Ratio oi Operating to Rated Voitage } \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.
10.8 CAPACITORS, FIXED, MICA, BUTTON
Quality Factor $-\pi_{\mathrm{Q}}$

| Quality | $\pi_{\mathrm{Q}}$ |
| :--- | :---: |
| MIL-C-10950 | 5.0 |
| Lower | 15 |

Capacitance Factor - $\pi_{\mathrm{CV}}$

| Capacitance, C (pF) | $\pi_{\mathrm{CV}}$ |
| :---: | :---: |
| 8 | .50 |
| 50 | .76 |
| 160 | 1.0 |
| 500 | 1.3 |
| 1200 | 1.6 |
| 2600 | 1.9 |
| 5000 | 2.2 |
|  |  |
| $\pi_{\mathrm{CV}}=.31 C^{0.23}$ |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 10 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 16 |
| $A_{1 C}$ | 5.0 |
| $A_{I F}$ | 7.0 |
| $A_{U C}$ | 22 |
| $A_{U F}$ | 28 |
| $A_{R W}$ | 23 |
| $S_{F}$ | .50 |
| $M_{F}$ | 13 |
| $M_{L}$ | 34 |
| $C_{L}$ | 610 |

$\pi_{\mathrm{CV}}=.31 \mathrm{C}^{0.23}$
10.9 CAPACITOFS, FIXED, GLASS

|  |  |  |
| :--- | :--- | :--- |
| SPECIFICATION | STYLE | DESCRIPTION |
| MIL-C-11272 | CY | Glass |
| MIL-C-23269 | CYR | Glass, Established Reliability |
|  |  | $\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E}$ |
|  | Failures $/ 10^{6}$ Hours |  |

Base Failure Rate $-\lambda_{b}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(All MIL-C-23296 and MIL-C-11272 Temp. Range C)

| $T_{A}\left({ }^{\prime} \mathrm{C}\right)$ | .1 | .3 | Stress |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00005 | .00005 | .00010 | .00023 | .00055 |
| 10 | .00007 | .00008 | .00014 | .00035 | .00083 |
| 20 | .00011 | .00012 | .00022 | .00052 | .0012 |
| 30 | .00016 | .00018 | .00032 | .00078 | .0018 |
| 40 | .00024 | .00027 | .00048 | .0012 | .0028 |
| 50 | .00036 | .00041 | .00072 | .0017 | .0041 |
| 60 | .00054 | .00061 | .0011 | .0026 | .0062 |
| 70 | .0008 | .00091 | .0016 | .0039 | .0092 |
| 80 | .0012 | .0014 | .0024 | .0058 | .014 |
| 90 | .0018 | .0020 | .0036 | .0087 | .021 |
| 100 | .0027 | .0030 | .0054 | .013 | .031 |
| 110 | .0040 | .0045 | .0080 | .019 | .046 |
| 120 | .0060 | .0068 | .012 | .029 | .063 |

$\lambda_{\mathrm{b}}=8.25 \times 10^{-10}\left[\left(\frac{\mathrm{~S}}{5}\right)^{4}+1\right] \exp \left(16\left(\frac{T+273}{398}\right)\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=200^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-11272 Temp. Range D)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | Stress |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00001 | .00001 | .00002 | .00004 | .00010 |
| 10 | .00001 | .00001 | .00002 | .00006 | .00014 |
| 20 | .00002 | .00002 | .00003 | .00008 | .00019 |
| 30 | .00002 | .00003 | .00005 | .00011 | .00027 |
| 40 | .00003 | .00004 | .00007 | .00016 | .00038 |
| 50 | .00005 | .00005 | .00009 | .00022 | .00053 |
| 60 | .00006 | .00007 | .00013 | .00031 | .00074 |
| 70 | .00009 | .00010 | .00018 | .00044 | .0010 |
| 80 | .00013 | .00014 | .00025 | .00061 | .0015 |
| 90 | .00018 | .00020 | .00035 | .00086 | .0020 |
| 100 | .00025 | .00028 | .00050 | .0012 | .0029 |
| 110 | .00035 | .00039 | .00070 | .0017 | .0040 |
| 120 | .00049 | .00055 | .00098 | .0024 | .0056 |
| 130 | .00069 | .00078 | .0014 | .0033 | .0079 |
| 140 | .00096 | .0011 | .0019 | .0047 | .011 |
| 150 | .0014 | .0015 | .0027 | .0065 | .016 |
| 160 | .0019 | .0021 | .0038 | .0092 | .022 |
| 170 | .0027 | .0030 | .0053 | .013 | .031 |
| 180 | .0037 | .0042 | .0075 | .018 | .043 |
| 190 | .0052 | .0059 | .010 | .025 | .060 |
| 200 | .0073 | .0083 | .015 | .035 | .084 |

$$
\lambda_{b}=8.25 \times 10^{-10}\left[\left(\frac{S}{.}\right)^{4}+1\right] \exp \left(16\left(\frac{T+273}{473}\right)\right)
$$

$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

| Capacitance Factor - $\pi_{\text {c }} \mathrm{V}$ |  | Environment Factor - $\pi_{E}$ |  |
| :---: | :---: | :---: | :---: |
| Capacitance, C (pF) | ${ }^{\pi} \mathrm{CV}$ | Environmem | $\pi_{\text {E }}$ |
| 1 | . 62 | $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
|  |  | $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| 4 | 75 | $G_{M}$ | 10 |
| 30 | 1.0 | $\mathrm{N}_{S}$ | 6.0 |
| 200 | 1.3 | $\mathrm{N}_{\mathrm{U}}$ | 16 |
| 900 | 1.6 | $A_{1}$ | 5.0 |
| 3000 | 1.9 | $A_{i F}$ | 7.0 |
|  |  | ${ }^{\text {A }}$ UC | 22 |
|  |  | ${ }^{\text {A }}$ UF | 28 |
|  |  | $A_{\text {RW }}$ | 23 |
| $\pi_{\mathrm{CV}}=0.62 \mathrm{C}$ |  | $S_{F}$ | . 50 |
|  |  | $M_{F}$ | 13 |
| Quality Factor - |  | $M_{L}$ | 34 |
| Quality | $\pi_{Q}$ | $C_{L}$ | 610 |
| S | . 030 |  |  |
| R | 10 |  |  |
| P | . 30 |  |  |
| M | 1.0 |  |  |
| L | 3.0 |  |  |
| MIL-C-11272, Non-Est. Rel. | 3.0 |  |  |
| Lower | 10 |  |  |

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

## SPECIFICATION

MIL-C-11015
MIL-C-39014

## STYLE <br> CK <br> CKR

DESCRIPTION
Ceramic, General Puppose
Ceramic, General Purpose, Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39014 Styles CKR13, 48, 64, 72;
MIL-C-11015 Type A Rated Tomperature)

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | . 3 | . 5 | . 7 | . 9 |
| $\begin{array}{r} 0 \\ 10 \end{array}$ | . 00067 | . 0013 | . 0036 | . 0088 | . 018 |
|  | . 00069 | . 0013 | . 0037 | . 0091 | . 019 |
| 20 | . 00071 | . 0014 | . 0038 | . 0093 | . 019 |
| 30 | 00073 | . 0014 | . 0039 | . 0096 | . 020 |
| 40 | . 00075 | . 0014 | . 004 | . 0099 | . 020 |
| 50 | . 00077 | . 0015 | . 0042 | . 010 | . 021 |
| 60 | . 00079 | . 0015 | . 0043 | . 010 | . 021 |
| 70 | . 00081 | . 0016 | . 0044 | . 011 | . 022 |
| 80 | . 00083 | 0016 | . 0045 | 011 | . 023 |
| $\lambda_{\mathrm{b}}=.0003$ |  | $\left(\frac{5}{3}\right)^{3}$ | $1] \exp$ | (273 |  |
|  | Ambie <br> Ratio | Tempe Operat | ure ( $^{\circ} \mathrm{C}$ ) to Rated | Voltage |  |
| Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39014 Styles CKR05-12, 14-19, 73, 74; MIL-C-11015 Type B Rated Temperature)

| MiL-C-11015 Type B Rated Temperature) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| 0 | .00062 | .0012 | .0033 | .0082 | .017 |
| 10 | .00063 | .0012 | .0034 | .0084 | .017 |
| 20 | .00065 | .0013 | .0035 | .0086 | .018 |
| 30 | .00067 | .0013 | .0036 | .0088 | .018 |
| 40 | .00068 | .0013 | .0037 | .0090 | .018 |
| 50 | .00070 | .0014 | .0038 | .0093 | .019 |
| 60 | .00072 | .0014 | .0039 | .0095 | .019 |
| 70 | .00074 | .0014 | .0040 | .0097 | .020 |
| 80 | .00076 | .0015 | .0041 | .010 | .020 |
| 90 | .00077 | .0015 | .0042 | .010 | .021 |
| 100 | .00079 | .0015 | .0043 | .010 | .021 |
| 110 | .00081 | .0016 | .0044 | .011 | .022 |
| 120 | .00084 | .0016 | .0045 | .011 | .023 |

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - $\lambda_{b}$
( $T=150^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-11015 Type C Rated Temperature)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00059 | .0011 | .0032 | .0078 | .016 |
| 10 | .00061 | .0012 | .0033 | .008 | .016 |
| 20 | .00062 | .0012 | .0034 | .0082 | .017 |
| 30 | .00064 | .0012 | .0035 | .0084 | .017 |
| 40 | .00065 | .0013 | .0035 | .0086 | .018 |
| 50 | .00067 | .0013 | .0036 | .0088 | .018 |
| 60 | .00068 | .0013 | .0037 | .009 | .018 |
| 70 | .00070 | .0013 | .0038 | .0092 | .019 |
| 80 | .00072 | .0014 | .0039 | .0095 | .019 |
| 90 | .00073 | .0014 | .0040 | .0097 | .020 |
| 100 | .00075 | .0014 | .0041 | .0099 | .020 |
| 110 | .00077 | .0015 | .0042 | .010 | .021 |
| 120 | .00079 | .0015 | .0043 | .010 | .021 |
| 130 | .00081 | .0016 | .0044 | .011 | .022 |
| 140 | .00083 | .0016 | .0045 | .011 | .022 |
| 150 | .00085 | .0016 | .0046 | .011 | .023 |
| 10 |  |  |  |  |  |

$\lambda_{b}=.0003\left[\left(\frac{S}{3}\right)^{3}+1\right] \exp \left(\frac{T+273}{423}\right)$
$T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

NOTE: The rated temperature designation (type $A$. $B$, or $C$ ) is shown in the part number, e.g.,
CKG1AW22M).
10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

| Capacitance Factor $-\pi \mathrm{CV}$ |  |
| :---: | :---: |
| Capacitance, $\mathrm{C}(\mathrm{pF})$ | $\pi_{\mathrm{CV}}$ |
| 6.0 | .50 |
| 240 | .75 |
| 3300 | 1.0 |
| 36,000 | 1.3 |
| 240,000 | 1.6 |
| $1,100,000$ | 1.9 |
| $4,300,000$ | 2.2 |
| $\pi_{\mathrm{CV}}=.41 \mathrm{C}$ |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| S | .030 |
| R | .10 |
| P | .30 |
| M | 1.0 |
| L | 3.0 |
| MIL-C-11015, Non-Est. Rel. | 3.0 |
| Lower | 10 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 9.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 15 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 4.0 |
| $A_{U C}$ | 8.0 |
| $A_{U F}$ | 12 |
| $A_{R W}$ | 20 |
| $S_{F}$ | 13 |
| $M_{F}$ | 34 |
| $M_{L}$ | 610 |

10.11 CAPACITORS, FIXED, CERAMIC, TEMPERATURE COMPENSATING AND CHIP

## SPECIFICATION MIL-C-20

MIL-C-55681

STYLE CCR and CC

CDR

DESCRIPTION
Ceramic. Temperature Compensating, Est. and Non Est. Ret.
Ceramic, Chip, Est. Rel.

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{b}} \pi_{C} v^{\pi} \pi_{\mathrm{E}} \pi_{E}
$$

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-20 Styles CC 20, 25, 30, 32, 35, 45, 85, 95-97)

| $\mathrm{T}_{A}\left({ }^{\circ} \mathrm{C}\right)$ | Strese |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 3 | 5 | 7 | 9 |
| 0 | . 00015 | . 00028 | 00080 | . 0019 | 00 |
| 10 | . 00022 | . 00042 | . 0012 | . 0029 | . 0059 |
| 20 | . 00033 | . 00063 | . 0018 | . 0043 | . 0088 |
| 30 | . 00049 | . 00094 | . 0026 | . 0064 | . 013 |
| 40 | . 00073 | . 0014 | . 0039 | . 0096 | . 020 |
| 50 | . 0011 | . 0021 | . 0059 | . 014 | . 029 |
| 60 | . 0016 | . 0031 | . 0088 | . 021 | . 044 |
| 70 | . 0024 | . 0046 | . 013 | . 032 | . 065 |
| 80 | . 0036 | . 0069 | . 019 | . 047 | . 097 |
| $\lambda_{b}=2.6 \times 10^{-9}\left[\left(\frac{S}{.3}\right)^{3}+1\right] \exp \left(14.3\left(\frac{T+273}{358}\right)\right.$ |  |  |  |  |  |
| $T$ - Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) <br> S = Ratio of Operating to Rated Voltage |  |  |  |  |  |
| Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-20 Styles CC 5-9,13-19, 21, 22, 26, 27, 31, 33,
36, 37, 47, 50-57, 75-79, 81-83, CCR 05-09,13-19, 54-
57, 75-79, 81-83, 90; MIL-C-55681 All CDR Styles)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .00005 | .00009 | .00027 | .00065 | .0013 |
| 10 | .0007 | .00014 | .00038 | .00093 | .0019 |
| 20 | .00010 | .00019 | .00055 | .0013 | .0027 |
| 30 | .00014 | .00028 | .00078 | .0019 | .0039 |
| 40 | .00021 | .00040 | .0011 | .0027 | .0056 |
| 50 | .00030 | .00057 | .0016 | .0039 | .008 |
| 60 | .00042 | .00082 | .0023 | .0056 | .011 |
| 70 | .00061 | .0012 | .0033 | .008 | .016 |
| 80 | .00087 | .0017 | .0047 | .011 | .023 |
| 90 | .0012 | .0024 | .0068 | .016 | .034 |
| 100 | .0018 | .0034 | .0097 | .024 | .048 |
| 110 | .0026 | .0049 | .014 | .034 | .069 |
| 120 | .0037 | .0071 | .020 | .048 | .099 |

$\lambda_{b}=2.6 \times 10^{-9}\left[\left(\frac{S}{3}\right)^{3}+1\right] \exp \left(14.3\left(\frac{T+273}{398}\right)\right.$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Failures $/ 10^{6}$ Hours

Capacitance Factor - $\pi_{C V}$

| Capacitance, $\mathrm{C}(\mathrm{pF})$ | $\pi_{\mathrm{CV}}$ |  |
| :---: | :---: | :---: |
| 1 | .59 |  |
| 7 | .75 |  |
| 81 | 1.0 |  |
| 720 | 1.3 |  |
| 4,100 | 1.6 |  |
| 17,000 | 1.9 |  |
| 58,000 | 2.2 |  |
|  |  |  |



Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 10 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 17 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 16 |
| $A_{U F}$ | 35 |
| $A_{R W}$ | 24 |
| $S_{F}$ | 13 |
| $M_{F}$ | 34 |
| $M_{L}$ | 610 |

## SPECIFICATION MIL-C-39003

## STYLE <br> CSR

DESCRIPTION
Tantalum Electrolytic (Solid), Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{S R} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{b}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
|  | 1 | . 3 | . 5 | 7 | 9 |
| 0 | . 0042 | . 0058 | . 012 | . 026 | . 051 |
| 10 | . 0043 | . 0060 | . 012 | . 027 | 052 |
| 20 | . 0045 | . 0063 | . 013 | . 028 | . 055 |
| 30 | . 0048 | . 0067 | . 014 | . 030 | . 058 |
| 40 | . 0051 | . 0072 | . 015 | . 032 | . 083 |
| 50 | . 0057 | . 0079 | . 016 | . 035 | . 069 |
| 60 | . 0064 | . 009 | . 019 | . 040 | . 078 |
| 70 | . 0075 | . 011 | . 022 | . 047 | . 092 |
| 80 | . 0092 | . 013 | . 027 | . 058 | . 11 |
| 90 | . 012 | . 017 | . 034 | . 074 | . 14 |
| 100 | . 016 | . 023 | . 047 | . 10 |  |
| 110 | . 024 | . 034 | . 07 | . 15 |  |
| 120 | . 039 | . 054 | . 11 | . 24 |  |
| $\lambda_{b}=.00375\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(2.6\left(\frac{T+273}{398}\right)^{9}\right)$ |  |  |  |  |  |
| $T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$ <br> $S=$ Ratio of Operating to Rated Voltage |  |  |  |  |  |
| Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |

Capacitance Factor $\cdot \pi_{\mathrm{CV}}$

| Capacitance, $\mathrm{C}(\mu \mathrm{F})$ | $\pi_{\mathrm{CV}}$ |
| :---: | :---: |
| .003 | 0.5 |
| .091 | .75 |
| 1.0 | 1.0 |
| 8.9 | 1.3 |
| 210 | 1.6 |
| 710 | 1.9 |
| 2.2 |  |
| $\pi_{\mathrm{CV}}=1.0 \mathrm{C}^{0.12}$ |  |

Quality Factor - $\pi_{0}$

| Quality | $\pi_{\mathrm{Q}}$ |
| :--- | :---: |
| D | 0.0010 |
| C | 0.010 |
| B | 0.030 |
| R | 0.030 |
| P | 0.10 |
| M | 0.30 |
| L | 1.0 |
| Lower | 1.5 |

Series Resistance Factor - $\pi_{\text {SR }}$

| Circuit Resistance, CR (ohms/volt) | $\pi_{\text {SR }}$ |
| :---: | :---: |
| >0.8 | . 066 |
| $>0.6$ to 0.8 | . 10 |
| $>0.4$ to 0.6 | . 13 |
| $>0.2$ to 0.4 | . 20 |
| $>0.1$ to 0.2 | . 27 |
| 0 to 0.1 | . 33 |
| $C R=\frac{\text { Eff. Res. Betweon Cap. and Pwr. Supply }}{\text { Voltage Applied to Capacitor }}$ |  |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 8.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 14 |
| $A_{1 C}$ | 4.0 |
| $A_{I F}$ | 5.0 |
| $A_{U C}$ | 12 |
| $A_{U F}$ | 20 |
| $A_{R W}$ | 24 |
| $S_{F}$ | .40 |
| $M_{F}$ | 11 |
| $M_{L}$ | 29 |
| $C_{L}$ | 530 |

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

## SPECIFICATION <br> MIL-C-3965 <br> MIL-C-39006

## STYLE <br> CL <br> CLR

DESCRIPTION
Tantahum, Electrolytic (Non-Solid)
Tantahm, Electrolytic (Non-Solid), Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{C} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{b}$
(T $=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-3965 Styles CL24-27, 34-37)

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0021 | . 0029 | . 0061 | . 013 | . 026 |
| 10 | . 0023 | . 0032 | . 0067 | . 014 | . 028 |
| 20 | . 0026 | . 0036 | . 0075 | . 016 | . 031 |
| 30 | . 0030 | . 0042 | . 0087 | . 019 | . 036 |
| 40 | . 0036 | . 0051 | . 011 | . 023 | . 044 |
| 50 | . 0047 | . 0066 | . 014 | . 029 | . 057 |
| 60 | . 0065 | . 0091 | . 019 | . 041 | . 079 |
| 70 | . 0098 | . 014 | . 029 | . 062 | 12 |
| 80 | . 017 | . 023 | . 048 | . 10 | . 20 |
| $\lambda_{b}=.00165\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(2.6\left(\frac{T+273}{358}\right)^{9.0}\right)$ |  |  |  |  |  |
| $\begin{aligned} & T \\ & S \end{aligned}$ | Amb <br> Ratio | Tempe | to Rat | oltag |  |

Operating voltege is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate $-\lambda_{b}$
( $T=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-3965 Styles CL20-23, 30-33, 40-43, 46-56, 6467. 70-73; and all MIL-C-39006 Styles)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 3 | 5 | 7 | 9 |
| 0 | . 0018 | . 0026 | . 0053 | . 011 | 022 |
| 10 | . 0019 | . 0026 | . 0055 | . 012 | . 023 |
| 20 | . 0020 | . 0028 | . 0057 | . 012 | . 024 |
| 30 | . 0021 | . 0029 | . 0061 | 013 | 026 |
| 40 | . 0023 | . 0032 | . 0066 | . 014 | . 028 |
| 50 | . 0025 | . 0035 | . 0072 | . 016 | . 030 |
| 60 | . 0028 | . 0040 | . 0082 | . 018 | . 034 |
| 70 | . 0033 | . 0046 | . 0096 | . 021 | . 040 |
| 80 | . 0041 | . 0057 | . 012 | . 025 | . 049 |
| 90 | . 0052 | . 0073 | . 015 | . 033 | . 084 |
| 100 | . 0071 | . 010 | . 021 | . 045 |  |
| 110 | . 011 | . 015 | . 031 | . 066 |  |
| 120 | . 017 | . 024 | . 050 | . 11 |  |
| $\lambda_{b}=.00165\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(2.6\left(\frac{T+273}{398}\right)^{9.0}\right)$ |  |  |  |  |  |

$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating vottage is the sum of applied D.C. vottage and peak A.C. voltage.

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=175^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-3965 Styles CL10, 13, 14, 16-18)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0017 | . 0024 | . 0050 | . 011 | . 021 |
| 10 | . 0017 | . 0024 | . 0051 | . 011 | . 021 |
| 20 | . 0018 | . 0025 | . 0052 | . 011 | . 022 |
| 30 | . 0018 | . 0025 | . 0053 | . 011 | . 022 |
| 40 | . 0019 | . 0026 | . 0054 | . 012 | . 023 |
| 50 | . 0019 | . 0027 | . 0056 | 012 | . 023 |
| 60 | . 002 | . 0028 | . 0058 | . 013 | . 024 |
| 70 | . 0021 | . 0030 | . 0062 | . 013 | .026 |
| 80 | . 0023 | . 0032 | . 0066 | . 014 | . 028 |
| 90 | . 0025 | . 0035 | . 0072 | . 016 | . 030 |
| 100 | . 0028 | . 0039 | . 0080 | . 017 | . 034 |
| 110 | . 0032 | . 0044 | . 0092 | . 020 | . 039 |
| 120 | . 0037 | . 0052 | . 011 | . 023 |  |
| 130 | . 0046 | . 0064 | . 013 | . 029 |  |
| 140 | . 0059 | . 0082 | . 017 | . 037 |  |
| 150 | . 0079 | . 011 | . 023 | . 049 |  |
| 160 | . 011 | . 016 | . 033 | . 071 |  |
| 170 | . 018 | . 025 | . 051 |  |  |
| $\lambda_{b}=.00165\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(2.6\left(\frac{T+273}{448}\right)^{9.0}\right)$ |  |  |  |  |  |
| $\begin{aligned} & \mathrm{T}=\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ & \mathrm{S}=\text { Ratio of Operating to Rated Vottage } \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage
10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID


$$
\pi_{\mathrm{CV}}=.82 \mathrm{C}^{0.066}
$$

| Construction Factor $-\pi_{\mathrm{C}}$ |
| :--- |
| Construction Type $\pi_{\mathrm{C}}$ <br> Slug, All Tantalum .30 <br> Foil, Hemetic * <br> Sug, Hermetic 1.0 <br> Foil, Non-Hermetic * 2.0 <br> Slug, Non-Hermetic * 2.5 |

*Type of Seal Identified as Follows:

1) MIL-C-3965 (CL) - Note Last Letter in Part Number: G - Hermetic E - Non-Hermetic

Example: CL10BC700TPG is Hermetic
2) MIL-C-39006 (CLR) - Consult Individual Part Specification Sheet (slash sheet) NOTE:

Foil Types - CL 20-25, 30-33, 40, 41, 51-54, 70-73
CLR 25, 27, 35, 37, 53, 71, 73
Slug Types - CL 10, 13, 14, 16, 17, 18, 55, 56,
64-66, 67
CLR 10, 14, 17, 65, 69, 89
All Tantalum - CL 26, 27, 34-37, 42, 43, 46-49 CLR 79

| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality $\pi_{\mathrm{Q}}$ <br> S .030 <br> R .10 <br> P .30 <br> M 1.0 <br> L 1.5 <br> MIL-C-3965, Non-Est. Rel. 3.0 <br> Lower 10 |  |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 10 |
| $\mathrm{~N}_{\mathrm{S}}$ | 6.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 16 |
| $\mathrm{~A}_{\mathrm{IC}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 8.0 |
| $\mathrm{~A}_{\mathrm{UC}}$ | 14 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 30 |
| $A_{R W}$ | 23 |
| $\mathrm{~S}_{\mathrm{F}}$ | .50 |
| $\mathrm{M}_{\mathrm{F}}$ | 13 |
| $M_{\mathrm{L}}$ | 34 |
| $\mathrm{C}_{\mathrm{L}}$ | 610 |

## MIL-HDBK-217F

10.14 CAPACITORS, FIXED, ELECTROLYTIC, ALUMINUM

## SPECIFICATION MIL-C-39018

Style CUR and CU

## DESCRIPTION

Electrolytic, Aluminum Oxide, Est. Rel. and Non-Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$
( $\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39018 Style 71)

|  | Stress |  |  |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| 0 | .0095 | .011 | .019 | .035 | .064 |
| 10 | .012 | .015 | .024 | .046 | .084 |
| 20 | .017 | .020 | .033 | .062 | .11 |
| 30 | .023 | .028 | .046 | .087 | .16 |
| 40 | .034 | .042 | .068 | .13 | .23 |
| 50 | .054 | .065 | .11 | .20 | .36 |
| 60 | .089 | .11 | .18 | .33 | .60 |
| 70 | .16 | .19 | .31 | .58 | 1.1 |
| 80 | .29 | .35 | .58 | 1.1 | 2.0 |

$\lambda_{b}=.00254\left[\left(\frac{S}{.5}\right)^{3}+1\right] \exp \left(5.09\left(\frac{T+273}{358}\right)^{5}\right)$
$\mathbf{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Faikure Rate $-\lambda_{b}$
( $\mathrm{T}=105^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39018 Styles 16 and 17)

| (MIL-C-39018 Styles 16 and 17) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| 0 | .0070 | .0084 | .014 | .026 | .047 |
| 10 | .0085 | .010 | .017 | .031 | .057 |
| 20 | .011 | .013 | .021 | .040 | .072 |
| 30 | .014 | .017 | .027 | .051 | .094 |
| 40 | .019 | .022 | .037 | .069 | .13 |
| 50 | .026 | .031 | .052 | .097 | .18 |
| 60 | .038 | .046 | .076 | .14 | .26 |
| 70 | .059 | .071 | .12 | .22 | .40 |
| 80 | .095 | .11 | .19 | .35 | .64 |
| 90 | .16 | .20 | .32 | .61 | 1.1 |
| 100 | .30 | .36 | .59 | 1.1 | 2.0 |

$\lambda_{b}=.00254\left[\left(\frac{S}{5}\right)^{3}+1\right] \exp \left(5.09\left(\frac{T+273}{378}\right)^{5}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate $-\lambda_{b}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(All MIL-C-39018 Styles Except 71, 16 and 17)

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 3 | . 5 | . 7 | 9 |
| 0 | . 0055 | . 0067 | . 011 | . 021 | . 038 |
| 10 | . 0065 | . 0078 | . 013 | . 024 | . 044 |
| 20 | . 0077 | . 0093 | . 015 | . 029 | . 052 |
| 30 | . 0094 | . 011 | . 019 | . 035 | . 064 |
| 40 | . 012 | . 014 | . 023 | . 044 | . 080 |
| 50 | . 015 | 019 | . 030 | . 057 | . 10 |
| 60 | . 021 | . 025 | . 041 | . 077 | . 14 |
| 70 | . 029 | . 035 | . 057 | . 11 | . 20 |
| 80 | . 042 | . 050 | . 083 | . 16 | . 28 |
| 90 | . 064 | . 077 | . 13 | . 24 | . 43 |
| 100 | . 10 | . 12 | . 20 | . 38 |  |
| 110 | . 17 | . 21 | . 34 | . 63 |  |
| 120 | . 30 | . 37 | . 60 | 1.1 |  |
| $\lambda_{b}=.00254\left[\left(\frac{S}{.5}\right)^{3}+1\right] \exp \left(5.09\left(\frac{T+273}{398}\right)^{5}\right)$ |  |  |  |  |  |
| $T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| $S$ - Ratio of Operating to Rated Voltage |  |  |  |  |  |
| Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |

10.14 CAPACITORS, FIXED, ELECTROLYTIC, ALUMINUM

| Capacitance Factor $-\pi \mathrm{CV}$ |
| :---: | :---: |
| Capacitance, $\mathrm{C}(\mu \mathrm{F})$ $\pi \mathrm{CV}$ <br> 2.5 .40 <br> 55 .70 <br> 400 1.0 <br> 1700 1.3 <br> 5500 1.6 <br> 14,000 1.9 <br> 32,000 2.2 <br> 65,000 2.5 <br> 120,000 2.8 <br> $\pi$  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environmeni | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 6.0 |
| $N_{U}$ | 17 |
| $A_{I C}$ | 10 |
| $A_{I F}$ | 12 |
| $A_{U C}$ | 28 |
| $A_{U F}$ | 35 |
| $A_{R W}$ | 27 |
| $S_{F}$ | .50 |
| $M_{F}$ | 14 |
| $M_{L}$ | 38 |
| $C_{L}$ | 690 |


| Quality | $\pi_{\mathrm{Q}}$ |
| :--- | :---: |
| S | .030 |
| R | .10 |
| P | .30 |
| M | 1.0 |
| Non-Est. Fei. | 3.0 |
| Lower | 10 |

### 10.15 CAPACITORS, FIXED, ELECTROLYTIC (DRY), ALUMINUM

## SPECIFICATION

MII-C-62

StyLE
CE

DESCRIPTION
Aluminum, Dry Electrolyte, Polarized

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{s}$
( $\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Stress |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0064 | . 0074 | . 011 | .020 | . 034 |
| 10 | . 0078 | . 009 | . 014 | . 024 | . 042 |
| 20 | . 0099 | . 011 | . 017 | . 030 | . 053 |
| 30 | . 013 | . 015 | . $02 \overline{3}$ | . 040 | . 070 |
| 40 | . 018 | . 021 | . 031 | . 055 | . 098 |
| 50 | . 026 | . 030 | . 046 | . 08 | . 14 |
| 60 | . 041 | . 047 | . 071 | . 12 | . 22 |
| 70 | . 068 | . 078 | . 12 | . 21 | . 36 |
| 80 | . 120 | . 14 | . 21 | . 37 | . 65 |
| $\lambda_{6}=.0028\left[\left(\frac{S}{.55}\right)^{3}+1\right] \exp \left(4.09\left(\frac{T+273}{358}\right)^{5.9}\right)$ |  |  |  |  |  |

$T$ - Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
S - Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage añơ peak A.C. voltage.

| Capacitance Factor $-\pi_{\mathrm{CV}}$ |  |
| :---: | :---: |
| Capacitance, $\mathrm{C}(\mu \mathrm{F})$ | $\pi_{\mathrm{CV}}$ |
| 3.2 | .40 |
| 62 | .70 |
| 400 | 1.0 |
| 1600 | 1.3 |
| 4800 | 1.6 |
| 12.000 | 2.9 |
| 26,000 | 2.5 |
| 50,000 | 2.8 |
| 91.000 |  |
|  |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 3.0 |
| Lower | 10 |


| Environment Factor $=\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 12 <br> $N_{S}$ 6.0 <br> $N_{U}$ 17 <br> $A_{I C}$ 10 <br> $A_{I F}$ 12 <br> $A_{U C}$ 28 <br> $A_{U F}$ 35 <br> $A_{R W}$ 27 <br> $S_{F}$ .50 <br> $M_{F}$ 14 <br> $M_{L}$ 38 <br> $C_{L}$ 690 |  |

SPECIFICATION MIL-C. 81

STYLE CV

DESCRIPTION Variable, Ceramic

$$
\lambda_{P}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{0}$
( $T=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-81 Styles CV 11, 14, 21, 31, 32, 34, 40, 41)

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .0030 | .016 | .066 | .18 | .37 |
| 10 | .0031 | .017 | .069 | .18 | .39 |
| 20 | .0033 | .018 | .073 | .20 | .41 |
| 30 | .0036 | .020 | .080 | .21 | .45 |
| 40 | .0041 | .022 | .089 | .24 | .50 |
| 50 | .0047 | .026 | .10 | .28 | .59 |
| 60 | .0058 | .031 | .13 | .34 | .72 |
| 70 | .0076 | .041 | .17 | .45 | .94 |
| 80 | .011 | .058 | .24 | .63 | 1.3 |
| $=$ |  |  |  |  |  |
| $\lambda_{b}=.00224\left[\left(\frac{S}{.17}\right)^{3}+1\right]$ exp $\left(1.59\left(\frac{T+273}{358}\right)^{10.1}\right)$ |  |  |  |  |  |
| $T$ | $=$ Ambient Temperature ( $\left.{ }^{\circ} \mathrm{C}\right)$ |  |  |  |  |
| S | $=$ |  |  |  |  |
| Ratio of Operating to Rated Voltage |  |  |  |  |  |
| Operating voltage is the sum of applied D.C. voltage |  |  |  |  |  |
| and peak A.C. voltage. |  |  |  |  |  |

Base Fallure Rate $-\lambda_{b}$
( $\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-81 Styles CV 35, 36)

| (MIL-C-81 Styles CV 35, 36) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | .1 | .3 | .5 | .7 | .9 |
| 0 | .0028 | .015 | .061 | .16 | .35 |
| 10 | .0028 | .015 | .062 | .17 | .35 |
| 20 | .0029 | .016 | .064 | .17 | .36 |
| 30 | .0030 | .016 | .066 | .18 | .37 |
| 40 | .0031 | .017 | .068 | .18 | .39 |
| 50 | .0033 | .018 | .072 | .19 | .41 |
| 60 | .0035 | .019 | .077 | .21 | .44 |
| 70 | .0038 | .021 | .084 | .23 | .48 |
| 80 | .0043 | .023 | .095 | .25 | .54 |
| 90 | .0050 | .027 | .11 | .30 | .63 |
| 100 | .0062 | .033 | .14 | .36 | .76 |
| 110 | .0079 | .043 | .17 | .47 | .98 |
| 120 | .011 | .059 | .24 | .64 | 1.4 |

$\lambda_{b}=.00224\left[\left(\frac{S}{.17}\right)^{3}+1\right] \exp \left(1.59\left(\frac{T+273}{398}\right)^{10.1}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 13 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 24 |
| $A_{I C}$ | 6.0 |
| $A_{I F}$ | 10 |
| $A_{U C}$ | 37 |
| $A_{U F}$ | 70 |
| $A_{R W}$ | 36 |
| $S_{F}$ | .40 |
| $M_{F}$ | 20 |
| $M_{L}$ | 52 |
| $C_{L}$ | 950 |

STYLE
PC

DESCRIPTION
Variable, Piston Type, Tubular Trimmer
$\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours

| Base Failure Rate - $\lambda_{\text {b }}$ ( $T=125^{\circ} \mathrm{C}$ Max Rated) (MIL-C-14409 Styles G, $H_{1}$ J, L, T) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | ress .5 | . 7 | . 9 |
| 0 | . 0030 | . 0051 | . 013 | . 031 | . 063 |
| 10 | . 0041 | . 0070 | . 018 | . 042 | . 085 |
| 20 | . 0055 | . 0094 | . 024 | . 057 | . 11 |
| 30 | . 0075 | . 013 | . 033 | . 077 | . 16 |
| 40 | . 010 | . 017 | . 044 | . 10 | . 21 |
| 50 | . 014 | . 024 | . 060 | . 14 | . 29 |
| 60 | . 019 | . 032 | . 082 | . 19 | . 39 |
| 70 | . 025 | . 043 | . 11 | . 26 | . 53 |
| 80 | . 034 | . 059 | . 15 | . 35 | 71 |
| 90 | . 047 | . 079 | . 20 | 48 | . 96 |
| 100 | . 063 | . 11 | . 27 | . 65 | 1.3 |
| 110 | . 086 | . 15 | . 37 | . 88 | 1.8 |
| 120 | . 12 | . 20 | . 51 | 1.2 | 2.4 |
| $\lambda_{b}=7.3 \times 10^{-7}\left[\left(\frac{S}{.33}\right)^{3}+1\right] \exp \left(12.1\left(\frac{T+273}{398}\right)\right)$ <br> $\mathrm{T}=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) <br> $S$ - Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage. |  |  |  |  |  |
|  |  |  |  |  |  |

Base Failure Rate - $\lambda_{b}$
( $\mathrm{T}=150^{\circ} \mathrm{C}$ Max Rated)
(ivill-C-14409 Characteristic Q)

|  | Stress |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .1 | .3 | .5 | .7 | .9 |  |
| 0 | .0019 | .0032 | .0081 | .019 | .038 |  |
| 10 | .0025 | .0042 | .011 | .025 | .051 |  |
| 20 | .0033 | .0056 | .014 | .034 | .068 |  |
| 30 | .0044 | .0074 | .019 | .045 | .09 |  |
| 40 | .0058 | .0039 | .025 | .060 | .12 |  |
| 50 | .0077 | .013 | .034 | .079 | .16 |  |
| 60 | .010 | .018 | .045 | .11 | .21 |  |
| 70 | .014 | .023 | .060 | .14 | .28 |  |
| 80 | .018 | .031 | .079 | .19 | .38 |  |
| 90 | .024 | .041 | .11 | .25 | .50 |  |
| 100 | .034 | .055 | .14 | .33 | .67 |  |
| 110 | .043 | .073 | .19 | .44 | .89 |  |
| 120 | .057 | .097 | .25 | .59 | 1.2 |  |
| 130 | .076 | .13 | .33 | .78 | 1.6 |  |
| 140 | .10 | .17 | .44 | 1.0 | 2.1 |  |
| 150 | .13 | .23 | .59 | 1.4 | 2.8 |  |

$\lambda_{b}=7.3 \times 10^{-7}\left[\left(\frac{S}{.33}\right)^{3}+1\right] \exp \left(12.1\left(\frac{T+273}{423}\right)\right)$
$T=$ Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ )
$S=$ Ratio of Operating to Rated Vohage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

SPECIFICATION
MIL-C-92

StyLE
CT

DESCRIPTION
Variable, Air Trimmer

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{D}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Faikre Rate $-\lambda_{0}$ $\left(T=85^{\circ} \mathrm{C}\right.$ Max Rated) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stress |  |  |  |  |
| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | . 1 | . 3 | . 5 | . 7 | . 9 |
| 0 | . 0074 | . 013 | . 032 | . 076 | . 15 |
| 10 | . 010 | . 017 | . 044 | . 10 | . 21 |
| 20 | . 014 | . 023 | . 059 | . 14 | 28 |
| 30 | . 018 | . 031 | . 08 | . 15 | . 38 |
| 40 | . 025 | . 042 | . 11 | . 26 | . 52 |
| 50 | . 034 | . 057 | . 15 | . 35 | . 70 |
| 60 | . 046 | . 078 | . 20 | 47 | . 94 |
| 70 | . 062 | . 10 | . 27 | . 63 | 1.3 |
| 80 | . 083 | . 14 | . 36 | . 85 | 1.7 |
| $\lambda_{b}=1.92 \times 10^{-6}\left[\left(\frac{\mathrm{~S}}{.33}\right)^{3}+1\right] \exp \left(10.8\left(\frac{T+273}{358}\right)\right)$ |  |  |  |  |  |
| T = Ambient Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| $s=$ Ratio of Operating to Rated Voltage |  |  |  |  |  |

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 3.0 <br> $G_{M}$ 13 <br> $N_{S}$ 8.0 <br> $N_{U}$ 24 <br> $A_{i C}$ 6.0 <br> $A_{I F}$ 10 <br> $A_{U C}$ 37 <br> $A_{U F}$ 70 <br> $A_{P W}$ 36 <br> $S_{F}$ .50 <br> $M_{F}$ 20 <br> $M_{L}$ 52 <br> $C_{L}$ 950 |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| Mil-SPEC | 5 |
| Lower | 20 |

```
SPECIFICATION
M!L-C-23183
```

STYLE
CG

DESCRIPTION
Gas or Vacuum Dielectric, Fixed and Variable, Ceramic or Glass Envelope

```
\[
\lambda_{p}=\lambda_{b} \pi_{C F} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
\]
```

Base Failure Rate - $\boldsymbol{\lambda}_{b}$
( $\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(Styles CG 20, 21, 30, 31, 32, 40-44, 51, 60-64,

| $T^{\circ} \mathrm{C}$ | .1 | .3 | Siress |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | .015 | .081 | .33 | .89 | 1.9 |  |  |  |
| 10 | .016 | .084 | .34 | .92 | 1.9 |  |  |  |
| 20 | .017 | .090 | .37 | .98 | 2.1 |  |  |  |
| 30 | .018 | .098 | .40 | 1.1 | 2.2 |  |  |  |
| 40 | .020 | .11 | .45 | 1.2 | 2.5 |  |  |  |
| 50 | .024 | .13 | .52 | 1.4 | 2.9 |  |  |  |
| 60 | .029 | .16 | .64 | 1.7 | 3.6 |  |  |  |
| 70 | .038 | .20 | .83 | 2.2 | 4.7 |  |  |  |
| 80 | .054 | .29 | 1.2 | 3.2 | 6.6 |  |  |  |

Base Faiture Rate - $\lambda_{b}$
( $\mathrm{T}=100^{\circ} \mathrm{C}$ Max Rated)
(Styles CG 65, 66)

|  | Siress |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T^{\circ} \mathrm{C}$ | .1 | .3 | .5 | .7 | .9 |  |
| 0 | .014 | .079 | .30 | .85 | 1.8 |  |
| 10 | .015 | .080 | .33 | .87 | 1.8 |  |
| 20 | .015 | .084 | .34 | .91 | 1.9 |  |
| 30 | .016 | .088 | .36 | .96 | 2.0 |  |
| 40 | .018 | .095 | .39 | 1.0 | 2.2 |  |
| 50 | .020 | .11 | .43 | 1.2 | 2.4 |  |
| 60 | .022 | .12 | .49 | 1.3 | 2.8 |  |
| 70 | .027 | .14 | .59 | 1.6 | 3.3 |  |
| 80 | .034 | .18 | .74 | 2.0 | 4.2 |  |
| 90 | .045 | .24 | .99 | 2.7 | 5.6 |  |
| 100 | .066 | .36 | 1.5 | 3.9 | 8.2 |  |
|  |  |  |  |  |  |  |
| $\lambda_{b}=.0112\left[\left(\frac{\mathrm{~S}}{17}\right)^{3}+1\right] \exp \left(1.59\left(\frac{T+273}{373}\right) 10.1\right)$ |  |  |  |  |  |  |

$T=A m b i e n t$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Patio of Operating to Rated Vohage
Operating vothage is the sum of applied D.C. voltage and peah A.C. voliage.
10.19 CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM
Contiguration Factor $-\pi_{\text {CF }}$

| Configuration | $\pi_{\text {CF }}$ |
| :--- | :---: |
| Fixed | .10 |
| Variable | 1.0 |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 14 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 27 |
| $A_{l C}$ | 10 |
| $A_{I F}$ | 18 |
| $A_{U C}$ | 70 |
| $A_{U F}$ | 108 |
| $A_{R W}$ | 40 |
| $S_{F}$ | .50 |
| $M_{F}$ | $N / A$ |
| $M_{L}$ | $N / A$ |
| $C_{L}$ | N/A |

## Example

Given: A 400 VDC rated capacitor type CO09A1KE153K3 is being used in a fixed ground environment, $55^{\circ} \mathrm{C}$ component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz . The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a NonEstablished Reliability quality level. The $1 s t$ " $K$ " in the designation indicates characteristic $K$. The " $E$ " in the designation corresponds to a 400 volt DC rating. The " 153 " in the designation expresses the capacitance in picofarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picolarads. (NOTE: Pico $=10^{-12}, \mu=10^{-6}$ )

The appropriate model for CQ style capacitors is given in Section 10.3. Based on the given information the following model factors are determined from the tables shown in Section 10.3. Voltage stress ratio must account for both the applied DC volts and the peak AC voltage, hence,
$S=.68$
$\lambda_{b}=.0082$
$\pi_{C V}=.94$
$\pi_{Q}=10$
$\pi_{E}=2.0$

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{D}} \pi_{\mathrm{CV}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}=(.0082)(.94)(10)(2)=.15 \text { Failures } / 10^{6} \text { Hours }
$$

SPECIFICATION
MIL-T-27
MIL-T-21038
MIL-T-55631
STYLE
TF
TP
-

DESCRIPTION<br>Audio, Power and High Power Pulse<br>Low Power Pulse<br>IF, RF and Discriminator

$$
\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{b}$

|  | Maximum Rated Operating Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{HS}}\left({ }^{\circ} \mathrm{C}\right)$ | $85^{1}$ | $105^{2}$ | $130^{3}$ | 1554 | $170^{5}$ | $>170^{6}$ |
| 30 | . 0024 | . 0023 | . 0022 | . 0021 | . 0018 | . 0016 |
| 35 | . 0026 | . 0023 | . 0023 | . 0022 | . 0018 | . 0016 |
| 40 | . 0028 | . 0024 | . 0024 | . 0022 | . 0019 | . 0016 |
| 45 | . 0032 | . 0025 | . 0025 | . 0022 | . 0019 | . 0016 |
| 50 | . 0038 | . 0027 | . 0026 | . 0023 | . 0020 | . 0017 |
| 55 | . 0047 | . 0029 | . 0027 | . 0023 | . 0020 | . 0017 |
| 60 | . 0060 | . 0032 | . 0029 | . 0023 | . 0021 | . 0017 |
| 65 | . 0083 | . 0035 | . 0030 | . 0024 | . 0021 | . 0017 |
| 70 | . 012 | . 0040 | . 0033 | . 0025 | . 0022 | . 0017 |
| 75 | . 020 | . 0047 | . 0035 | . 0026 | . 0023 | . 0017 |
| 80 | . 036 | . 0057 | . 0039 | . 0027 | . 0024 | . 0017 |
| 85 | . 075 | . 0071 | . 0043 | . 0028 | . 0024 | . 0017 |
| 90 |  | . 0093 | . 0048 | . 0029 | . 0025 | . 0018 |
| 95 |  | . 013 | . 0054 | . 0031 | . 0026 | . 0018 |
| 100 |  | . 019 | . 0062 | . 0033 | . 0027 | . 0018 |
| 105 |  | . 030 | . 0072 | . 0035 | . 0028 | . 0018 |
| 110 |  |  | . 0085 | . 0038 | . 0030 | . 0019 |
| 115 |  |  | . 010 | . 0042 | . 0031 | . 0019 |
| 120 |  |  | . 013 | . 0046 | . 0032 | . 0019 |
| 125 |  |  | . 016 | . 0052 | . 0034 | . 0020 |
| 130 |  |  | . 020 | . 0059 | . 0036 | . 0020 |
| 135 |  |  |  | . 0068 | . 0038 | . 0021 |
| 140 |  |  |  | . 0079 | . 0040 | . 0021 |
| 145 |  |  |  | . 0095 | . 0042 | . 0022 |
| 150 |  |  |  | . 011 | . 0044 | . 0023 |
| 155 |  |  |  | . 014 | . 0047 | . 0024 |
| 160 |  |  |  |  | . 0050 | . 0025 |
| 165 |  |  |  |  | . 0053 | . 0026 |
| 170 |  |  |  |  | . 0056 | . 0027 |
| 175 |  |  |  |  |  | . 0029 |
| 180 185 |  |  |  |  |  | . 0030 |

NOTE: The models are valid only if $T_{H S}$ is not above the temperature rating for a given insulation class.
$1 \quad \lambda_{\mathrm{b}}=.0018$ exp $\left(\frac{\mathrm{T}_{\mathrm{HS}}+273}{329}\right)^{155} \quad$ MiL-T- 27 Insulation Class Q. MIL-T-21038 insulation Class Q. and MIL-T-55631 Insulation Class O.:
$2 \lambda_{b}=.002 \exp \left(\frac{T_{H S}+273}{352}\right)^{14} \quad$ MIL-T-27 Insulation Class R, MIL-T-21038 insulation Class R, and MIL-T-55631 Insulation Class A.
$3 \quad \lambda_{b}=.0018 \exp \left(\frac{T_{H S}+273}{364}\right)^{8.7}$
$4 \quad \lambda_{b}=.002 \exp \left(\frac{T_{H S}+273}{400}\right)^{10}$
$5 \quad \lambda_{b}=.00125 \exp \left(\frac{T_{H S}+273}{398}\right)^{38}$
MIL-T-27 Insulation Class S. MIL-T-21038 Insulation Class S, and MIL-T-55631 Insulation Class B.*

MIL-T-27 Insulation Class V, MIL-T-21038 Insulation Class T, and MIL-T-55631 Insulation Class C.-
$6 \quad \lambda_{b}=.00150 \exp \left(\frac{T_{H S}+273}{477}\right)^{8.4}$
MIL-T-27 Insulation Class T and MIL-T-21038 Insulation Class U.*

MIL-T-27 Insulation Class $U$ and MIL-T-21038 Insulation Class V.
$T_{H S}=$ Hot Spoi Temperature ( ${ }^{\circ} \mathrm{C}$ ). See Section 11.3.
*Refer to Transtormer Applicution Note for Determination of Insulation Class

| Quality Factor - $\pi_{\mathrm{Q}}$ |
| :--- |
| Family Type MIL-SPEC Lower <br> Pulse Transformers 1.5 5.0 <br> Audio Transformers 3.0 7.5 <br> Power Transformers and Filters 8.0 30 <br> RF Transformers 12 30 <br> - Refer to Transformer Appllcation Note for   <br> Determination of Family Type   |


| Environment Factor $-\pi_{E}$ |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 6.0 <br> $G_{M}$ 12 <br> $N_{S}$ 5.0 <br> $N_{U}$ 16 <br> $A_{I C}$ 6.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 7.0 <br> $A_{U F}$ 9.0 <br> $A_{R W}$ 24 <br> $S_{F}$ .50 <br> $M_{F}$ 13 <br> $M_{L}$ 34 <br> $C_{L}$ 610 |



Family Type Codes Are:
Power Transformer and Fiter: 01 thru 09, 37 thru 41
Audio Transformer: 10 thru 21, 50 thru 53
Pulse Transformer: 22 thru 36, 54
MIL-T-21038 Example Designation

MIL-T-55631. The Transformers are Designated with the following Types, Grades and Classes.

| Type 1 | Intermediate Frequency Transformer |
| :---: | :---: |
| Type II | Radio Frequency Transformer |
| Type III | Discriminator Transformer |
| Grade 1 | For Use When Immersion and Moisture Resistance Tests are Required |
| Grade 2 | For Use When Moisture Resistance Test is Required |
| Grade 3 | For Use in Sealed Assemblies |
| Class O | $85^{\circ} \mathrm{C}$ Maximum Operating Temperature |
| Class A | - $105^{\circ} \mathrm{C}$ Maximum Operating Temperature |
| Class 8 | - $125^{\circ} \mathrm{C}$ Maximum Operating Temperature |
| Class C | $>125^{\circ} \mathrm{C}$ Maximum Operating Temperature |

The class denotes the maximum operating temperature (temperature rise plus maximum ambient temperature).

## SPECIFICATION <br> MIL-C-15305

## STYLE <br> - <br> -

$$
\lambda_{p}=\lambda_{b} \pi_{C} \pi_{Q} \pi_{E} F
$$

| Base Failure Rate $-\lambda_{b}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $T_{H S}\left({ }^{\circ} \mathrm{C}\right)$ | Maximum Operating Tomperature $\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| 30 | .00044 | .00043 | $125^{2}$ | .00039 |
| 35 | .00048 | .00044 | .00037 |  |
| 40 | .00053 | .00046 | .0004 | .00037 |
| 45 | .0006 | .00048 | .00043 | .00037 |
| 50 | .00071 | .00051 | .00045 | .00038 |
| 55 | .00087 | .00055 | .00048 | .00038 |
| 60 | .0011 | .0006 | .00051 | .0004 |
| 65 | .0015 | .00067 | .00054 | .00041 |
| 70 | .0023 | .00076 | .00058 | .00042 |
| 75 | .0037 | .00089 | .00063 | .00043 |
| 80 | .0067 | .0011 | .00069 | .00044 |
| 85 | .014 | .0013 | .00076 | .00046 |
| 90 |  | .0018 | .00085 | .00047 |
| 95 |  | .0024 | .00096 | .0005 |
| 100 |  | .0036 | .0011 | .00052 |
| 105 |  | .0057 | .0013 | .00055 |
| 110 |  |  | .0015 | .00059 |
| 115 |  |  | .0018 | .00063 |
| 120 |  |  | .0022 | .00068 |
| 125 |  |  |  | .00075 |
| 130 |  |  |  | .00083 |
| 135 |  |  |  | .00093 |
| 140 |  |  |  | .0012 |
| 145 |  |  |  |  |
| 150 |  |  |  |  |

NOTE: The models are valid only if $T_{H S}$ is not above the temperature rating for a given insulation class.

$$
\begin{aligned}
& \text { 1. } \lambda_{b}=.000335 \exp \left(\frac{T_{H S}+273}{329}\right)^{15.6} \quad \begin{array}{l}
\text { MIL.C-15305 } \\
\text { Insulation Class O. }
\end{array} \\
& 2 \\
& \lambda_{b}=.000379 \exp \left(\frac{T_{H S}+273}{352}\right)^{14} \quad \begin{array}{l}
\text { MIL-C-15305 } \\
\text { Insulation Class A and } \\
\text { MIL-C-39010 } \\
\text { Insulation Class A. }
\end{array}
\end{aligned}
$$

3

$$
4 .
$$

$$
\begin{aligned}
& \lambda_{\mathrm{b}}=.000319 \exp \left(\frac{T_{\mathrm{HS}}+273}{364}\right)^{8.7} \quad \begin{array}{l}
\text { MIL-C-15305 } \\
\text { Insulation Class B and } \\
\text { MiL-C-39010 } \\
\text { Insulation Class B. }
\end{array} \\
& \lambda_{\mathrm{b}}=00035 \exp \left(\frac{T_{\mathrm{HS}}+273}{409}\right)^{10} \quad \begin{array}{l}
\text { MIL-C-15305 } \\
\text { Insulation Class C and } \\
\text { MIL-C-39010 } \\
\text { Insulation Class F: }
\end{array}
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{HS}}=\text { Hot Spot Temperature }\left({ }^{\circ} \mathrm{C}\right) \text {, See Section } 11.3 .
$$

- Refer to Coil Appilication Note for Determination of Insulation Class.


## DESCRIPTION

Fixed and Variable, RF
Molded, RF, Est. Rel.

Failures $/ 10^{6}$ Hours
Construction Factor $-\pi_{C}$

| Construction | $\pi_{C}$ |
| :--- | :---: |
| Fixed | 1 |
| Variable | 2 |


| Quality Factor - $\pi_{\mathrm{Q}}$ |  |
| :---: | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| S | .03 |
| R | .10 |
| P | .30 |
| M | 1.0 |
| MIL-C-15305 | 4.0 |
| Lower | 20 |

## MIL-HDBK-217F

Environment Factor - $\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 4.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 16 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 7.0 |
| $A_{U C}$ | 6.0 |
| $A_{U F}$ | 8.0 |
| $A_{R W}$ | 24 |
| $S_{F}$ | .50 |
| $M_{F}$ | 13 |
| $M_{L}$ | 34 |
| $C_{L}$ | 610 |

COIL APPLICATION NOTE: Insulation Class Datermination From Part Designation
MIL-C-15305. All parts in this specification are R.F. coils. An example type designation is:


The codes used for the Insulation Class are:
Class C: 1,2.3
Class B: $\quad 4,5,6$
Class O: $\quad 7,8,9$
Class A: $\quad 10,11.12$

MIL-C-39010. An example type designation per this specification is:


Hot Spot temperature can be estimated as follows:

$$
T_{H S}=T_{A}+1.1(\Delta T)
$$

where:
$\mathrm{T}_{\text {HS }}=$ Hot Spot Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{\mathrm{A}}=$ Inductive Device Ambient Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{T}=$ Average Temperature Rise Above Ambient $\left({ }^{\circ} \mathrm{C}\right)$
$\Delta T$ can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below.
$\Delta T$ Approximation

| Information Known | $\Delta T$ Approximation |
| :--- | :--- |
| 1.MIL-C-39010 Slash Sheet Number <br> MIL-C-39010/1C-3C, 5C, 7C, 9A, 10A, 13, 14 <br> MIL-C-39010/4C, 6C, 8A, 11, 12 | $\Delta T=15^{\circ} \mathrm{C}$ |
| 2.Power Loss <br> Case Radiating Surface Area | $\Delta T=35^{\circ} \mathrm{C}$ |
| 3.Power Loss <br> Transformer Weight <br> Input Power <br> Transiormer Weight <br> (Assumes 80\% Efficiency) | $\Delta T=125 \mathrm{~W} / \mathrm{A}$ |

$W_{L}=$ Power Loss (W)
A $=$ Radiating Surface Area of Case (in2). See below for MIL-T-27 Case Areas
Wt. = Transformer Weight (Ibs.)
$W_{1}=$ Input Power (W)
NOTE: Methods are listed in preferred order (i.e., most to least accurate). MIL-C-39010 are microminiature devices with surface areas less than 1 in2. Equations 2-4 are applicable to devices with surface areas from 3 in2 to $150 \mathrm{in}^{2}$. Do not include the mounting surface when determining radiating surface area.

MIL-T-27 Case Radiating Areas (Excludes Mounting Surface)

| MIL-T-27 Case Radiating Areas (Excludes Mounting Surface) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Case | Area $\left(\right.$ in $\left.^{2}\right)$ | Case | Area $\left(\right.$ in $\left.^{2}\right)$ | Case | Area $\left(\right.$ in $\left.^{2}\right)$ |
| AF | 4 | GB | 33 | LB | 82 |
| AG | 7 | GA | 43 | LA | 98 |
| AH | 11 | HB | 42 | MB | 98 |
| AJ | 18 | HA | 53 | MA | 115 |
| EB | 21 | JB | 58 | NB | 117 |
| EA | 23 | JA | 71 | NA | 139 |
| FB | 25 | KB | 72 | OA | 146 |
| FA | 31 | KA | 84 |  |  |

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as woll as various other motor applications. The model is based on Reference 4, which contains a more comprehensive treatment of motor life prediction methods. The reference should be reviowed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous fallure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period " 7 ". The motor operating time period ( $t$-hours) is selected by the analyst. Each motor must be replaced when it reaches the end of this period to make the calculated $\lambda_{p}$ valid. The average failure rate, $\lambda_{p}$, has been obtained by dividing the cumulative hazard rate by $i$. and can be treated as a constant failure rate and added to other part fallure rates from this Handbook.

$$
\lambda_{p}=\left[\frac{t^{2}}{\alpha_{B}^{3}}+\frac{1}{\alpha_{W}}\right] \times 10^{6} \text { Failures/10 } 0^{6} \text { Hours }
$$

Bearing \& Winding Characteristic Lite $-\alpha_{B}$ and $\alpha_{W}$


NOTE: See next page for method to calculate $\alpha_{B}$ and $\alpha_{W}$ when temperature is not constant.

The following equation can be used to cakulate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute $\alpha_{B}$ for all $\alpha$ 's in equation).

$$
\alpha=\frac{\left(h_{1}+h_{2}+h_{3}+\cdots \cdot \cdot h_{m}\right)}{\frac{h_{1}}{\alpha_{1}}+\frac{h_{2}}{\alpha_{2}}+\frac{h_{3}}{\alpha_{3}}+\cdots \cdots \cdot \frac{h_{m}}{\alpha_{m}}}
$$

where:
$\alpha=$ either $\alpha_{B}$ or $\alpha_{W}$
$h_{1}=$ Time at Temperature $T_{1}$
$n_{2}=$ Time to Cycle From Temperature $T_{1}$ to $T_{3}$
$h_{3}=$ Time at Temperature $T_{3}$
$h_{m}=$ Time at Temperature $T_{m}$
$\alpha_{1}=$ Bearing (or Winding) Life at $T_{1}$
$\alpha_{2}=$ Bearing (or Winding) Life at $T_{2}$
NOTE: $\quad T_{2}=\frac{T_{1}+T_{3}}{2}, \quad T_{4}=\frac{T_{3}+T_{1}}{2}$


Hours (h)

## Thermal Cycle

## DESCRIPTION

Rotating Synchros and Resolvers

$$
\lambda_{p}=\lambda_{b} \pi_{S} \pi_{N} \pi_{E} \text { Failures/ } 10^{6} \text { Hours }
$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

| Base Failure Rate - $\lambda_{b}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)$ | $\lambda_{b}$ | $\mathrm{T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)$ | $\lambda_{b}$ |
| 30 | . 0083 | 85 | . 032 |
| 35 | . 0088 | 90 | . 041 |
| 40 | 0095 | 95 | . 052 |
| 45 | . 010 | 100 | . 069 |
| 50 | . 011 | 105 | . 094 |
| 55 | . 013 | 110 | . 13 |
| 60 | . 014 | 115 | . 19 |
| 65 | . 016 | 120 | . 29 |
| 70 | . 019 | 125 | . 45 |
| 75 | . 022 | 130 | . 74 |
| 80 | . 027 | 135 | 1.3 |
| $\lambda_{b}=.00535 \exp \left(\frac{T+273}{334}\right)^{8.5}$ |  |  |  |
| $\mathrm{T}_{\mathrm{F}}=$ Frame Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |
| If Frame Temperature is Unknown Assume $T_{F}=40^{\circ} \mathrm{C}+$ Ambient Temperature |  |  |  |


| Size Factor $-\pi_{S}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| DEVICE TYPE | $\pi_{\text {S }}$ |  |  |
|  | Size 8 or Smaller | Size 10-16 | $\begin{gathered} \hline \text { Size } 18 \text { or } \\ \text { Larger } \\ \hline \end{gathered}$ |
| Synchro | 2 | 1.5 | 1 |
| Resolver | 3 | 2.25 | 1.5 |

DESCRIPTION
Elapsed Time Meters

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :--- |
| Type | $\lambda_{\mathrm{b}}$ |
| A.C. | 20 |
| Inverter Driven | 30 |
| Commutator D.C. | 80 |

Temperature Stress Factor $-\pi_{\mathrm{T}}$

| Operating $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) /$ Rated $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ |  |
| :---: | :---: |
| 0 to .5 | .5 |
| .6 | .6 |
| .8 | .8 |
| 1.0 | 1.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 7.0 |
| $N_{U}$ | 18 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 16 |
| $A_{U F}$ | 25 |
| $A_{R W}$ | 26 |
| $S_{F}$ | .50 |
| $M_{F}$ | 14 |
| $M_{L}$ | 38 |
| $C_{L}$ | $N / A$ |

## Example

Given: Fractional Horsepower Mctor operating at a thermal duty cycle of: 2 hours at $100^{\circ} \mathrm{C}, 8$ hours at $20^{\circ} \mathrm{C}, 0.5$ hours from $100^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$, and 0.5 hours from $20^{\circ} \mathrm{C}$ back $10100^{\circ} \mathrm{C}$. Find the average failure rate for 4000 hours operating time.

The basic procedure is to first determine operating temperature at each time interval (or averge temperature when traversing from one temperature to another, e.g. $T_{2}=(100+20) / 2=60^{\circ} \mathrm{C}$. Determine $\alpha_{B}$ and $\alpha_{W}$ at each temperature and then use these values to determine a weighted average $\alpha_{B}$ and $\alpha_{W}$ to use in the $\lambda_{p}$ equation.

$$
\begin{aligned}
& h_{1}=2 \mathrm{hr} . \quad T_{1}=100^{\circ} \mathrm{C} ; \alpha_{B}=6100 \text { hours; } \quad \alpha_{W}=31000 \text { hours } \\
& h_{2}=h_{4}=0.5 \mathrm{hr} . \quad T_{2}=60^{\circ} \mathrm{C} ; \quad \alpha_{B}=35000 \text { hours; } \quad \alpha_{W}=180000 \text { hours } \\
& h_{3}=8 \mathrm{hr} . \quad T_{3}=20^{\circ} \mathrm{C} ; \alpha_{B}=39000 \text { hours; } \alpha_{W}=1600000 \text { hours } \\
& \alpha_{B}=\frac{2+0.5+8+0.5}{\frac{2}{6100}+\frac{0.5}{35000}+\frac{8}{39000}+\frac{0.5}{35000}}=19600 \text { hours } \\
& \alpha_{W}=\frac{2+0.5+8+0.5}{\frac{2}{31000}+\frac{0.5}{180000}+\frac{8}{1600000}+\frac{0.5}{180000}}=146000 \text { hours } \\
& \lambda_{p}=\left(\frac{t^{2}}{\alpha_{B}{ }^{3}}+\frac{1}{\alpha_{w}}\right) \times 10^{6} \\
& \lambda_{p}=\left(\frac{(4000)^{2}}{(19600)^{3}}+\frac{1}{146000}\right) \times 10^{6} \\
& \lambda_{p}=9.0 \text { Failures } / 10^{6} \text { Hours }
\end{aligned}
$$

SPECIFICATION
MIL-R-5757
MIL-R-6106
MIL-R-19523
MIL-R-39016

DESCRIPTION
Mechanical Relay

MIL-R-19648
MIL-R-83725
MIL-R-83726 (Except Class C, Solid State Type)

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{L}} \pi_{\mathrm{C}} \pi_{\mathrm{CYC}} \pi_{\mathrm{F}} \pi_{\mathrm{O}} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{D}$

| $T_{A}\left({ }^{\circ} \mathrm{C}\right)$ | Rated Temperature |  |
| :---: | :---: | :---: |
|  | $85^{\circ} \mathrm{C}^{1}$ | $125^{\circ} \mathrm{C}^{2}$ |
| 25 | .0060 | .0059 |
| 30 | .0061 | .0060 |
| 35 | .0063 | .0061 |
| 40 | .0065 | .0082 |
| 45 | .0068 | .0064 |
| 50 | .0072 | .0066 |
| 55 | .0077 | .0068 |
| 60 | .0084 | .0071 |
| 65 | .0094 | .0074 |
| 70 | .011 | .0079 |
| 75 | .016 | .0083 |
| 80 | .020 | .0089 |
| 85 |  | .0097 |
| 90 |  | .011 |
| 95 |  | .012 |
| 100 |  | .013 |
| 105 |  | .018 |
| 110 |  | .021 |
| 115 |  | .025 |
| 120 |  | .031 |

1. $\lambda_{b}=.00555 \exp \left(\frac{T_{A}+273}{352}\right)^{15.7}$
2. $\lambda_{b}=.0054 \exp \left(\frac{T_{A}+273}{377}\right)^{10.4}$
$T_{A}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Load Stress Factor $-\pi_{L}$

| S | Load Type |  |  |
| :---: | :---: | :---: | :---: |
|  | Resistive ${ }^{1}$ | Inductive ${ }^{2}$ | Lamp ${ }^{3}$ |
| . 05 | 1.00 | 1.02 | 1.06 |
| . 10 | 1.02 | 1.06 | 1.28 |
| . 20 | 1.06 | 1.28 | 2.72 |
| . 30 | 1.15 | 1.78 | 9.49 |
| . 40 | 1.28 | 2.72 | 54.6 |
| . 50 | 1.48 | 4.77 |  |
| . 60 | 1.76 | 9.49 |  |
| . 70 | 2.15 | 21.4 |  |
| . 80 | 2.72 |  |  |
| . 90 | 3.55 |  |  |
| 1.00 | 4.77 |  |  |
|  | $\left(\frac{S}{8}\right)^{2}$ | 3. | $\left.\frac{5}{.2}\right)^{2}$ |
|  | $\left(\frac{S}{4}\right)^{2}$ | $\frac{\text { Operatin }}{\text { Aated Resis }}$ | Current |

For single devices which switch two different load types, evaluate $\pi_{L}$ for each possible stress load type combination and use the worse case (largest $\pi_{\mathrm{L}}$ ).

| Cycling Factor $-\pi_{\text {CYC }}$ |
| :---: |
| Cycle Rate  <br> (Cycles per Hour) $\pi_{\text {CYC }}$ <br> (MIL-SPEC)  <br> $\geq 1.0$ Cycles.perHour <br> $<1.0$ 10 |


| Cycle Rate <br> (Cycles per Hour) | $\pi$ CYC <br> (Lower Qualliy) |
| :---: | :---: |
| $>1000$ | $\left(\frac{\text { Cycles per Hour }}{100}\right)^{2}$ |
| $10-1000$ | $\frac{\text { Cycles per Hour }}{10}$ |
| $<10$ | 1.0 |

NOTE:Values of $\pi_{\text {CYC }}$ for cycling rates beyond the basic design limitations of the relay are not valid. Design specitications should be consulted prior to evaluation of $\pi_{\mathrm{CYC}}$.

| Quality Factor - $\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Qualiny | $\pi_{0}$ |
| R | .10 |
| P | .30 |
| X | .45 |
| U | .60 |
| M | 1.0 |
| Non-Eat. Rel. | 1.5 |


| Application and Construction Factor - IF |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Contact Reting | Application Type | Construction Type | ${ }^{x_{F}}$ |  |
|  |  |  | MIL- | $\begin{aligned} & \text { Lower } \\ & \text { Quality } \end{aligned}$ |
| Sipod Cirremt (Low mv and ma) | Dry Cirani | Avmature (Long) Dry Reed Morcury Wented Mapnetic Latching Balanoed Armature Solenoid | $\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 4 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$ | $\begin{array}{r} 8 \\ 18 \\ 3 \\ 8 \\ 14 \\ 14 \\ \hline \end{array}$ |
| 00.5 Amp | $\begin{array}{\|l} \hline \text { Genteral } \\ \text { Purpose } \end{array}$ | Armatiure (Long) Balanced Armature Solenoid | $\begin{aligned} & 3 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8 \\ & 10 \\ & 12 \\ & \hline \end{aligned}$ |
|  | $\begin{aligned} & \text { Sensitive } \\ & (0-100 \mathrm{mw}) \end{aligned}$ | Armatare (Long and Short) Mevory Wened Megnevie Latothing Meter Movement Balanced Armature | $\begin{array}{r} 5 \\ 2 \\ 6 \\ 100 \\ 10 \\ \hline \end{array}$ | $\begin{array}{r} 10 \\ 6 \\ 12 \\ 100 \\ 20 \\ \hline \end{array}$ |
|  | Potarized | $\begin{aligned} & \text { Armaire (Short) } \\ & \text { Meter Movement } \end{aligned}$ | $\begin{array}{r} 10 \\ 100 \\ \hline \end{array}$ | $\begin{array}{r} 20 \\ 100 \\ \hline \end{array}$ |
|  | Viorating Roed | Bry Reed Mercury Wetted | $\begin{aligned} & 6 \\ & 1 \end{aligned}$ | $\begin{array}{r} 12 \\ 3 \\ \hline \end{array}$ |
|  | High Speed | $\begin{aligned} & \text { Armature (Balanced } \\ & \text { and Short) } \\ & \text { Dry Rood } \\ & \hline \end{aligned}$ | $\begin{array}{r} 25 \\ 6 \end{array}$ | $\begin{aligned} & N M \\ & M M \end{aligned}$ |
|  | $\begin{aligned} & \text { Therma } \\ & \text { Tirm Doley } \end{aligned}$ | Bimetal | 10 | 20 |
|  | Electronic Tirme Detey, Nor Thermal |  | 9 | 12 |
|  | Latching. Magnetic | Dry Aeed <br> Morcury Wotted <br> Balanced Aramture | $\begin{array}{r} 10 \\ 5 \\ 5 \\ \hline \end{array}$ | $\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$ |
| $\begin{aligned} & 5-20 \\ & \text { Amp } \end{aligned}$ | $\begin{aligned} & \hline \text { Figh } \\ & \text { Volteoge } \end{aligned}$ | $\begin{aligned} & \text { Vrouum (Glass) } \\ & \text { Vecuum (Coramic) } \end{aligned}$ | $\begin{array}{r} 20 \\ 5 \\ \hline \end{array}$ | $\begin{aligned} & 40 \\ & 10 \end{aligned}$ |
|  | $\begin{aligned} & \text { Medium } \\ & \text { Power } \end{aligned}$ | Armiture (Long and Short) <br> Morcury Wetted Magnetic Lexching Mechenical Laching Balanced Armature Solencid | $\begin{aligned} & \frac{\pi}{3} \\ & 1 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 6 \\ & 3 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ |
| $25-600$ Anp | Contactors ( High Current) | Armature (Short) Mechanical Lumehing Batanced Armature Solenoid | $\begin{array}{r} 7 \\ 12 \\ 10 \\ 5 \\ \hline \end{array}$ | $\begin{aligned} & 14 \\ & 24 \\ & 20 \\ & 10 \\ & \hline \end{aligned}$ |

## SPECIFICATION

MIL-R-28750
MIL-R-83726

DESCRIPTION
Relay, Solid State
Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the models provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

$$
\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :---: |
| Relay Type | $\lambda_{\mathrm{b}}$ |
| Solid State | .40 |
| Solid State Time Delay | .50 |
| Hybrid | .50 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 6.0 |
| $N_{U}$ | 17 |
| $A_{I C}$ | 12 |
| $A_{I F}$ | 19 |
| $A_{U C}$ | 21 |
| $A_{U F}$ | 32 |
| $A_{R W}$ | 23 |
| $S_{F}$ | .40 |
| $M_{F}$ | 12 |
| $M_{L}$ | 33 |
| $C_{L}$ | 590 |

## SPECIFICATION

MIL-S-3350
MIL-S-8805
MIL-S-8834

MIL-S-22885
MIL-S-83731

## DESCRIPTION

Snap-action, Toggle or Pushbutton, Single Body

$$
\lambda_{p}=\lambda_{b} \pi_{C Y C} \pi_{L} \pi_{C} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |  |
| :--- | :---: | :---: |
| Description MIL-SPEC Lower Quality <br> Snap-action .00045 .034 <br> Non-snap Action .0027 .040 |  |  |


| Cycling Factor $-\pi$ CYC |  |
| :---: | :---: |
| Switching Cycles <br> per Hour | $\pi_{\mathrm{CYC}}$ |
| $\leq 1$ Cycle/Hour | 1.0 |
| $>1$ Cycle/Hour | Number of Cycles/Hour |


Contact Form and Quantity Factor $-\pi_{\mathrm{C}}$

| Contact Form | $\pi_{\mathrm{C}}$ |
| :--- | :---: |
| SPST | 1.0 |
| DPST | 1.5 |
| SPDT | 1.7 |
| 3PST | 2.0 |
| 4PST | 2.5 |
| DPDT | 3.0 |
| 3PDT | 4.2 |
| 6PDT | 5.5 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 18 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 29 |
| $A_{I C}$ | 10 |
| $A_{I F}$ | 18 |
| $A_{U C}$ | 13 |
| $A_{U F}$ | 22 |
| $A_{R W}$ | 46 |
| $S_{F}$ | .50 |
| $M_{F}$ | 25 |
| $M_{L}$ | 67 |
| $C_{L}$ | 1200 |

NOTE: When the switch is rated by inductive load,
then use resistive $\pi_{\mathrm{L}}$.

### 14.2 SWITCHES, BASIC SENSITIVE

## SPECIFICATION

MIL-S-8805

DESCRIPTION
Basic Sensitive

$$
\lambda_{p}=\lambda_{b} \pi_{C Y C} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| $\begin{array}{ll} \lambda_{\mathrm{b}}=\lambda_{\mathrm{bE}}+n \lambda_{\mathrm{bC}} & \begin{array}{l} \text { (if Actuation Differential is } \\ >0.002 \text { inches) } \end{array} \\ \lambda_{\mathrm{b}}=\lambda_{\mathrm{bE}}+n \lambda_{\mathrm{bO}} & \begin{array}{l} \text { (if Actuation Differential is } \\ \leq 0.002 \text { inches) } \end{array} \\ n=\text { Number of Active Contacts } \end{array}$ |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
| Description | MIL-SPEC | Lower Quality |
| $\lambda_{b E}$ | . 10 | . 10 |
| $\lambda_{\text {b }}$ | . 00045 | . 23 |
| $\lambda_{\text {bo }}$ | . 0009 | . 63 |


| Load Stress Factor - $\pi_{\text {L }}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline \text { Stress } \\ S \\ \hline \end{gathered}$ | Load Type |  |  |
|  | Resistive | Inductive | Lamp |
| 0.05 | 1.00 | 1.02 | 1.06 |
| 0.1 | 1.02 | 1.06 | 1.28 |
| 0.2 | 1.06 | 1.28 | 2.72 |
| 0.3 | 1.15 | 1.76 | 9.49 |
| 0.4 | 1.28 | 2.72 | 54.6 |
| 0.5 | 1.48 | 4.77 |  |
| 0.6 | 1.76 | 9.49 |  |
| 0.7 | 2.15 | 21.4 |  |
| 0.8 | 2.72 |  |  |
| 0.9 | 3.55 |  |  |
| 1.0 | 4.77 |  |  |
| $S=\frac{\text { Operating Load Current }}{\text { Rated Resistive Load Current }}$ |  |  |  |
|  |  |  |  |
|  | $\exp (\mathrm{S} / .8$ | for Res | e Load |
|  | $\exp (\mathrm{S} / .4)$ | for indu | Load |
|  | $\exp (S / .2)$ | for Lam |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 3.0 <br> $G_{M}$ 18 <br> $N_{S}$ 8.0 <br> $N_{U}$ 29 <br> $A_{I C}$ 10 <br> $A_{i F}$ 18 <br> $A_{U C}$ 13 <br> $A_{U F}$ 22 <br> $A_{R W}$ 46 <br> $S_{F}$ .50 <br> $M_{F}$ 25 <br> $M_{L}$ 67 <br> $C_{L}$ 1200 |  |

NOTE: When the Switch is Rated by Inductive Load, then use Resistive $\pi_{\mathrm{L}}$.

SPECIFICATION
MIL-S-3786

## DESCRIPTION

Rotary, Ceramic or Glass Water, Silver Alloy Contacts

$$
\lambda_{p}=\lambda_{b} \pi_{C Y C} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$



| Load Stress Factor $-\pi_{\mathrm{L}}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Stress | Load Type |  |  |
| S | Resistive | Inductive | Lamp |
| 0.05 | 1.00 | 1.02 | 1.06 |
| 0.1 | 1.02 | 1.06 | 1.28 |
| 0.2 | 1.06 | 1.28 | 2.72 |
| 0.3 | 1.15 | 1.76 | 9.49 |
| 0.4 | 1.28 | 2.72 | 54.6 |
| 0.5 | 1.48 | 4.77 |  |
| 0.6 | 1.76 | 9.49 |  |
| 0.7 | 2.15 | 21.4 |  |
| 0.8 | 2.72 |  |  |
| 0.9 | 3.55 |  |  |
| 1.0 | 4.77 |  |  |

$S=\frac{\text { Operating Load Current }}{\text { Rated Resistive Load Current }}$
$\pi_{\mathrm{L}}=\exp (S / .8)^{2} \quad$ for Resistive Load
$\pi_{\mathrm{L}}=\exp (\mathrm{S} / .4)^{2} \quad$ for Inductive Load
$\pi_{L}=\exp (S / .2)^{2} \quad$ for Lamp Load
NOTE: When the Switch is Rated by Inductive Load, then use Resistive $\pi_{\mathrm{L}}$.

| Switching Cycles <br> per Hour | $\pi_{\mathrm{CYC}}$ |
| :---: | :---: |
| $\leq 1$ Cycle/Hour | 1.0 |
| $>1$ Cycle/Hour | Number of Cycles/Hour |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 18 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 29 |
| $A_{I C}$ | 10 |
| $A_{I F}$ | 18 |
| $A_{U C}$ | 13 |
| $A_{U F}$ | 22 |
| $A_{R W}$ | 46 |
| $S_{F}$ | .50 |
| $M_{F}$ | 25 |
| $M_{L}$ | 67 |
| $C_{L}$ | 1200 |

14.4 SWITCHES, THUMBWHEEL

## SPECIFICATION

MIL-S-22710
Line

DESCRIPTION
Switches, Rotary (Printed Circuit) (Thumbwheel, Inand Pushbutton)

$$
\lambda_{p}=\left(\lambda_{\mathrm{b} 1}+\pi_{N} \lambda_{\mathrm{b} 2}\right) \pi_{\mathrm{CYC}} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

CAUTION: This model applies to the switching function only. The model does not consider the contribution of any discrete components (e.g., resistors, diodes, lamp) which may be mounted on the switch. If significant (relative to the switch failure rate), the failure rate of these devices must be calculated using the appropriate section of this Handbook and added to the failure rate of the switch.

This model applies to a single switch section. This type of switch is frequently ganged to provide the required function. The model must be applied to each section individually.


Number of Active Contacts Factor $-\pi_{N}$
$\pi_{N}=$ Number of Active Contacts

| Load Stress Factor $-\pi_{L}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Stress | Load Type |  |  |
| $S$ | Resistive | Inductive | Lamp |
| 0.05 | 1.00 | 1.02 | 1.06 |
| 0.1 | 1.02 | 1.06 | 1.28 |
| 0.2 | 1.06 | 1.28 | 2.72 |
| 0.3 | 1.15 | 1.76 | 9.49 |
| 0.4 | 1.28 | 2.72 | 54.6 |
| 0.5 | 1.48 | 4.77 |  |
| 0.6 | 1.76 | 9.49 |  |
| 0.7 | 2.15 | 21.4 |  |
| 0.8 | 2.72 |  |  |
| 0.9 | 3.55 |  |  |
| 1.0 | 4.77 |  |  |

$S=\frac{\text { Operating Load Current }}{\text { Rated Resistive Load Current }}$
$\pi_{L}=\exp (S / .8)^{2} \quad$ for Resistive Load
$\pi_{L}=\exp (S / .4)^{2} \quad$ for Inductive Load
$\pi_{L}=\exp (S / .2)^{2} \quad$ for Lamp Load

NOTE: When the Switch is Rated by Inductive
Load, then use Resistive $\pi_{\mathrm{L}}$.

Cycting Factor - $\pi_{\mathrm{CYC}}$

| Switching Cycles <br> per Hour | $\pi_{\mathrm{CYC}}$ |
| :---: | :---: |
| $\leq 1$ Cycle/Hour | 1.0 |
| $>1$ Cycle/Hour | Number of Cycles/Hour |

Environment Factor - $\pi_{E}$

| Environment | $\pi_{\mathrm{E}}$ |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 3.0 |
| $\mathrm{G}_{M}$ | 18 |
| $\mathrm{~N}_{\mathrm{S}}$ | 8.0 |
| $N_{U}$ | 29 |
| $A_{I C}$ | 10 |
| $A_{I F}$ | 18 |
| $A_{U C}$ | 13 |
| $A_{U F}$ | 22 |
| $A_{R W}$ | 46 |
| $S_{F}$ | 25 |
| $M_{F}$ | 67 |
| $M_{L}$ | 1200 |
| $C_{L}$ |  |

## SPECIFICATION

MIL-C-55629
MIL-C-83383
MIL-C-39019
W-C-375

## DESCRIPTION

Circuit Breakers, Magnetic, Unsealed, Trip-Free
Circuit Breakers, Remote Control., Thermal, Trip-Free
Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service
Circuit Breakers, Molded Case, Branch Circuit and Service

$$
\lambda_{p}=\lambda_{b} \pi_{C} \pi_{U} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

| Description | $\lambda_{\mathrm{b}}$ |
| :--- | :---: |
| Magnetic | .020 |
| Thermal | .038 |
| Thermal-Magnetic | .038 |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 1.0 |
| Lower | 8.4 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 15 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 27 |
| $A_{I C}$ | 7.0 |
| $A_{I F}$ | 9.0 |
| $A_{U C}$ | 11 |
| $A_{U F}$ | 12 |
| $A_{R W}$ | 46 |
| $S_{F}$ | .50 |
| $M_{F}$ | 25 |
| $M_{L}$ | 66 |
| $c_{L}$ | $N / A$ |

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

| SPECIFICATION* | DESCRIPTION | SPECIFICATION* | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| MIL-C-24308 | Rack and Panel | MIL-C-3607 | Coaxial, RF |
| MIL-C-28748 |  | MIL-C-3643 |  |
| MIL-C-28804 |  | MIL-C-3650 |  |
| MIL-C-83513 |  | MIL-C-3655 |  |
| Ml-C83733 |  | MIL-C-25516 |  |
| MIL-C-5015 | Circular | MIL-C-39012 |  |
| MIL-C-26482 |  | MIL-C-55235 |  |
| M 1 -C-28840 |  | MIL-C-55339 |  |
| MIL-C-38999 |  | MIL-C-3767 | Power |
| MIL-C-81511 |  | MIL-C-22992 |  |
| MIL-C83723 |  |  |  |
| * NOTE: See following | e for connector con | MIL-C-49142 | Triaxial, RF |

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign half of the overall mated pair connector (i.e., single connector) failure rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is for input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide $\lambda_{p}$ by two.

| $\mathrm{T}_{0}\left({ }^{\circ} \mathrm{C}\right)$ | $\frac{\text { Base Failure Rate }-\lambda_{D}}{\text { Insert Material* }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $A^{1}$ | $\mathrm{B}^{2}$ | $c^{3}$ | $D^{4}$ |
| 0 | . 00006 | . 00025 | . 0021 | . 0038 |
| 10 | . 00008 | . 00033 | . 0026 | . 0048 |
| 20 | . 00009 | . 00044 | . 0032 | . 0062 |
| 30 | . 00011 | . 00057 | . 0040 | . 0078 |
| 40 | . 00014 | . 00073 | . 0048 | . 0099 |
| 50 | . 00016 | . 00093 | . 0059 | . 013 |
| 60 | . 00020 | . 0012 | . 0071 | . 016 |
| 70 | . 00023 | . 0015 | . 0087 | . 020 |
| 80 | . 00027 | . 0019 | . 011 | . 026 |
| 90 | . 00032 | . 0023 | . 013 | . 033 |
| 100 | . 00037 | . 0029 | . 016 | . 043 |
| 110 | . 00043 | . 0036 | . 020 | . 056 |
| 120 | . 00050 | . 0045 | . 024 | . 074 |
| 130 | . 00059 | . 0056 |  |  |
| 140 | . 00069 | . 0070 |  |  |
| 150 | . 00080 | . 0087 |  |  |
| 160 | . 00094 | . 011 |  |  |
| 170 | . 0011 | . 014 |  |  |
| 180 | . 0013 | . 018 |  |  |
| 190 | . 0016 | . 022 |  |  |
| 200 | . 0019 | . 029 |  |  |
| 210 | . 0023 |  |  |  |
| 220 | . 0028 |  |  |  |
| 230 | . 0034 |  |  |  |
| 240 | . 0042 |  |  |  |
| 250 | . 0053 |  |  |  |

Base Failure Rate $-\lambda_{D}$ (cont'd)

1. $\lambda_{b}=.020 \exp \left(\left(\frac{-1592.0}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{473}\right)^{5.36}\right)$
2. $\lambda_{b}=.431 \exp \left(\left(\frac{-2073.6}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{423}\right)^{4.66}\right)$
3. $\lambda_{\mathrm{b}}=.190 \exp \left(\left(\frac{-1298.0}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{373}\right)^{4.25}\right)$
4. $\lambda_{\mathrm{b}}=.770 \exp \left(\left(\frac{-1528.8}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{358}\right)^{4.72}\right)$
$T_{0}=$ Internal Contact Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$T_{0}=$ Connector Ambient Temperature + Insent Temperature Rise

See following page for Insert Temperature Rise Determination.

[^0]15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)


Insert Temperature Rise ( $\Delta \mathrm{T}^{\circ} \mathrm{C}$ ) Determination

| Amperes Per Contact | Comiact Gauge |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 22 | 20 | 16 | 12 |
| 2 | 4 | 2 | 1 | 0 |
| 3 | 8 | 5 | 2 | 1 |
| 4 | 13 | 8 | 4 | 1 |
| 5 | 19 | 13 | 5 | 2 |
| 6 | 27 | 18 | 8 | 3 |
| 7 | 36 | 23 | 10 | 4 |
| 8 | 46 | 30 | 13 | 5 |
| 9 | 57 | 37 | 16 |  |
| 10 | 70 | 45 | 19 | 7 |
| 15 |  | 96 | 41 | 15 |
| 20 |  |  | 70 | 26 |
| 25 |  |  | 106 | 39 |
| 30 |  |  |  | 54 |
| 35 |  |  |  | 72 |
| 40 |  |  |  | 92 |
| $\Delta T=0$. | (i) ${ }^{1}$ |  | Gauge | tacts |
| $\Delta T=0$. | (i) ${ }^{1}$ |  | Gauge | tacts |
| $\Delta T=0.27$ | (i) ${ }^{1}$ |  | Gauge | tacts |
| $\Delta T=0$. | (i) ${ }^{1}$ |  | Gauge | tacts |

$\Delta T=$ Insent Temperature Rise
$1=$ Amperes per Contact

RF Coaxial Connectors $\quad \Delta T=5^{\circ} \mathrm{C}$
RF Coaxial Connectors (High Power Applications) $\quad \Delta T=50^{\circ} \mathrm{C}$

| Mating/Unmating Facior $-\pi_{K}$ |  |
| :--- | :---: |
| Mating/Unmating Cycles* <br> (per 1000 hours) | $\pi_{K}$ |
|  |  |
| 0 to 05 | 1.0 |
| $>.05$ to .5 | 1.5 |
| $>.5$ to 5 |  |
| $>5$ to 50 | 2.0 |
| $>50$ | 3.0 |

-One cycle includes both connect and disconnect.


### 15.2 CONNECTORS, PRINTED CIRCUIT BOARD

SPECIFICATION
MIL-C-21097
MIL-C-55302

DESCRIPTION
One-Piece Connector
Two-Piece Connector

$$
\lambda_{p}=\lambda_{b} \pi_{K} \pi_{P} \pi_{E} \text { Failures/ } 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{\mathrm{D}}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{0}\left({ }^{\circ} \mathrm{C}\right)$ | $\lambda_{b}$ | $\mathrm{T}_{0}\left({ }^{\circ} \mathrm{C}\right)$ | $\lambda_{b}$ |
| 0 | . 00012 | 110 | . 0018 |
| 10 | . 00017 | 120 | . 0022 |
| 20 | . 00022 | 130 | . 0028 |
| 30 | 00028 | 140 | . 0035 |
| 40 | 00037 | 150 | . 0044 |
| 50 | . 00047 | 160 | . 0055 |
| 60 | . 00059 | 170 | . 0069 |
| 70 | . 00075 | 180 | . 0088 |
| 80 | . 00093 | 190 | . 011 |
| 90 | . 0012 | 200 | . 015 |
| 100 | . 0015 |  |  |
| $\lambda_{0}=.216 \exp \left(\left(\frac{-2073.6}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{423}\right)^{4.66}\right)$ |  |  |  |
| $\mathrm{T}_{0}=$ Internal Contact Operating Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |

Connector Temperature Rise ( $\Delta T^{\circ} \mathrm{C}$ ) Determination

| Amperes | Contact Guage |  |  |
| :---: | ---: | ---: | ---: |
| Per Contact | 26 | 22 | 20 |
| 1 | 2 | 1 | 1 |
| 2 | 8 | 4 | 2 |
| 3 | 16 | 8 | 5 |
| 4 | 27 | 13 | 8 |
| 5 | 41 | 19 | 13 |
|  |  |  |  |
| $\Delta T=2.100$ (i) 1.85 | 26 Guage Contacts |  |  |
| $\Delta T=0.989$ (i) 1.85 | 22 Guage Contacts |  |  |
| $\Delta T=0.640$ (i) 1.85 | 20 Guage Contacts |  |  |
| $\Delta T=$ Contact Temperature Rise |  |  |  |
| $i \quad=$ Amperes per Contact |  |  |  |


| Mating/Unmating Factor $-\pi_{\mathrm{K}}$ |
| :--- |
| Mating/Unmating Cycles* $\pi_{\mathrm{K}}$ <br> (Per1000 Hours)  |
| 0 to .05 |
| $>.05$ to 05 |
| $>.5$ to |
| $>55$ to 50 |
| $>50$ |

15.2 CONNECTORS, PRINTED CIRCUIT BOARD

| Active Pins Factor - $\pi_{p}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Number of Active Contacts | $\pi_{P}$ | Number of Active Contacts | $\pi_{p}$ |
| 1 | 1.0 | 65 | 13 |
| 2 | 1.4 | 70 | 15 |
| 3 | 1.6 | 75 | 16 |
| 4 | 1.7 | 80 | 18 |
| 5 | 1.9 | 85 | 19 |
| 6 | 2.0 | 90 | 21 |
| 7 | 2.2 | 95 | 23 |
| 8 | 2.3 | 100 | 25 |
| 9 | 2.4 | 105 | 27 |
| 10 | 2.6 | 110 | 30 |
| 11 | 2.7 | 115 | 32 |
| 12 | 2.9 | 120 | 35 |
| 13 | 3.0 | 125 | 37 |
| 14 | 3.1 | 130 | 40 |
| 15 | 3.3 | 135 | 43 |
| 16 | 3.4 | 140 | 46 |
| 17 | 3.6 | 145 | 50 |
| 18 | 3.7 | 150 | 53 |
| 19 | 3.9 | 155 | 57 |
| 20 | 4.0 | 160 | 61 |
| 25 | 4.8 | 165 | 65 |
| 30 | 5.6 | 170 | 69 |
| 35 | 6.5 | 175 | 74 |
| 40 | 7.4 | 180 | 78 |
| 45 | 8.4 | 185 | 83 |
| 50 | 9.5 | 190 | 89 |
| 55 | 11 | 195 | 94 |
| 60 | 12 | 200 | 100 |
| $\pi_{P}=\exp \left(\frac{N-1}{10}\right)^{q}$ |  |  |  |
| $q=0.51064$ |  |  |  |
| $N=$ Number of Active Pins |  |  |  |
| An active contact is the conductive element which mates with another element for the purpose of transierring electrical energy. |  |  |  |


| Environment Factor $-\pi_{E}$ |  |  |
| :--- | :---: | :---: |
|  $\pi_{E}$  <br> Environment MIL-SPEC Lower Quality <br> $G_{B}$ 1.0 2.0 <br> $G_{F}$ 3.0 7.0 <br> $G_{M}$ 8.0 17 <br> $N_{S}$ 5.0 10 <br> $N_{U}$ 13 26 <br> $A_{I C}$ 6.0 14 <br> $A_{I F}$ 11 22 <br> $A_{U C}$ 6.0 14 <br> $A_{U F}$ 11 22 <br> $A_{R W}$ 19 37 <br> $S_{F}$ .50 .80 <br> $M_{F}$ 10 20 <br> $M_{L}$ 27 54 <br> $C_{L}$ 490 970 |  |  |

### 15.3 CONNECTORS, INTEGRATED CIRCUIT SOCKETS

 -
## SPECIFICATION

MIL-S-83734

## DESCRIPTION <br> IC Sockets, Plug-in

$$
\lambda_{p}=\lambda_{b} \pi_{P} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$



Circuit Boards, Printed (PCBs) and Discrete Wiring
$\lambda_{p}=\lambda_{b}\left[N_{1} \pi_{C}+N_{2}\left(\pi_{C}+13\right)\right] \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours

APPLICATION NOTE: For assemblies not using Plated Through Holes (PTH), use Section 17, Connections. A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through hole problems (e.g., barrel cracking).

| Base Faikure Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :---: |
| Technology | $\lambda_{\mathrm{b}}$ |
| Printed Wiring Assembly/Printed <br> Circuil Boards with PTHs | .000041 |
| Discrete Wiring with Electroless <br> Deposited PTH ( $\leq 2$ Levels of Circuitry) | .00026 |


| Quality Factor - $\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality $\pi_{\mathrm{Q}}$ <br> MIL-SPEC or Comparable Institute for <br> Interconnecting, and Packaging <br> Electronic Circuits (IPC) Standards <br> Lower 1 | 2 |

Number of PTHs Factor - $\mathrm{N}_{1}$ and $\mathrm{N}_{2}$

| Factor | Quantity |
| :---: | :--- |
| $N_{1}$ | Quantity of Wave Soldered Functional <br> PTHs |
| $N_{2}$ | Quantity of Hand Soldered PTHs |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 7.0 <br> $N_{S}$ 5.0 <br> $N_{U}$ 13 <br> $A_{I C}$ 5.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 16 <br> $A_{U F}$ 28 <br> $A_{R W}$ 19 <br> $s_{F}$ .50 <br> $M_{F}$ 10 <br> $M_{L}$ 27 <br> $c_{L}$ 500 |  |

Complexity Factor $-\pi_{\mathrm{C}}$

| Number of Circuit Planes, P | $\pi_{\mathrm{C}}$ |  |
| :---: | :---: | :---: |
| $\leq 2$ | 1.0 |  |
| 3 | 1.3 |  |
| 4 | 1.6 |  |
| 5 | 1.8 |  |
| 6 | 2.0 |  |
| 7 | 2.2 |  |
| 8 | 2.4 |  |
| 9 | 2.8 |  |
| 10 | 2.9 |  |
| 11 | 3.1 |  |
| 12 | 3.3 |  |
| 13 | 3.4 |  |
| 14 | 3.7 |  |
| 15 | 1 |  |
| 16 |  |  |
|  |  |  |
| Discrete Wiring w/PTH | $2 \leq \mathrm{P} \leq 16$ |  |
|  |  |  |

## DESCRIPTION <br> Connections Used on All Assemblies Except Those Using Plated Through Holes (PTH)

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes. Use the Interconnection Assembly Model in Section 16 to account for connections to a circuit board using plated through hole technology. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post, whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$$
\lambda_{P}=\lambda_{B} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{B}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Connection Type |  |  | $\lambda_{b}\left(\mathrm{~F} / 10^{6} \mathrm{hrs}\right)$ |
| Hand Solder, w/o Wrapping <br> Hand Solder, w/Wrapping <br> Crimp <br> Weld <br> Solderless Wrap <br> Clip Termination <br> Reflow Solder |  |  | .0026 <br> .00014 <br> .00026 <br> .00005 <br> .0000035 <br> .00012 <br> .000069 |
| Quality Factor - $\pi_{\mathrm{Q}}$ |  |  |  |
| Quality Grade | $\pi_{\mathrm{Q}}$ | Comments |  |
| Crimp Types |  |  |  |
| Automated | 1.0 | Daily pull tests recommended. |  |
| Manual |  |  |  |
| Upper | 1.0 | Only MIL equivale terminal beginnin shift, col terminat | PEC or tools and pull test at and end of each coded tools and s. |
| Standard | 2.0 | MIL-SP beginning | tools, pull test at of each shift. |
| Lower | 20.0 | Anything criteria. | ss than standard |
| All Types Except Crimp | 1.0 |  |  |

SPECIFICATION MIL-M-10304

## DESCRIPTION

Meter, Electrical Indicating, Panel Type, Ruggedized

$$
\lambda_{p}=\lambda_{b} \pi_{A} \pi_{F} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

| Type | $\lambda_{\mathrm{b}}$ |
| :--- | :---: |
| All | .090 |

Quality Factor $-\pi_{\mathrm{Q}}$

| Quality | $\pi_{\mathrm{Q}}$ |
| :--- | :---: |
| MIL-M-10304 | 1.0 |
| Lower | 3.4 |

Application Factor $-\pi_{\mathrm{A}}$

| Application | $\pi_{\mathrm{A}}$ |
| :--- | :---: |
| Direct Current | 1.0 |
| Alternating Current | 1.7 |


| Function Factor $-\pi_{F}$ |  |
| :--- | :---: |
| Function | $\pi_{F}$ |
| Ammeter | 1.0 |
| Voltmeter | 1.0 |
| Other | 2.8 |

- Meters whose basic meter movement construction is an ammeter with associated conversion elements.

| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 4.0 |
| $G_{M}$ | 25 |
| $N_{S}$ | 12 |
| $N_{U}$ | 35 |
| $A_{I C}$ | 28 |
| $A_{I F}$ | 42 |
| $A_{U C}$ | 58 |
| $A_{U F}$ | 73 |
| $A_{R W}$ | 60 |
| $S_{F}$ | 1.1 |
| $M_{F}$ | 60 |
| $M_{L}$ | $N / A$ |
| $C_{L}$ | $N / A$ |

## SPECIFICATION

MIL-C-3098

## DESCRIPTION

Crystal Units, Quartz

$$
\lambda_{P}=\lambda_{\mathrm{D}} \pi_{\mathrm{Q}} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |
| :---: | :---: |
| Frequency, $\mathrm{f}(\mathrm{MHz})$ | $\lambda_{\mathrm{b}}$ |
| 0.5 | .011 |
| 1.0 | .013 |
| 5.0 | .019 |
| 10 | .022 |
| 15 | .024 |
| 20 | .026 |
| 25 | .027 |
| 30 | .028 |
| 35 | .029 |
| 40 | .031 |
| 45 | .032 |
| 50 | .033 |
| 55 | .033 |
| 60 | .035 |
| 65 | .035 |
| 70 | .036 |
| 75 | .037 |
| 80 | .037 |
| 85 | .037 |
| 90 | .038 |
| 95 |  |
| 100 |  |
| 105 |  |


| Environment Factor $-\pi_{\mathrm{E}}$ |  |
| :---: | :---: |
| Environment | $\pi_{\mathrm{E}}$ |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 3.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 10 |
| $\mathrm{~N}_{\mathrm{S}}$ | 6.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 16 |
| $\mathrm{~A}_{\mathrm{IC}}$ | 12 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 17 |
| $\mathrm{~A}_{\mathrm{UC}}$ | 22 |
| $A_{U F}$ | 28 |
| $A_{R W}$ | 23 |
| $\mathrm{~S}_{\mathrm{F}}$ | .50 |
| $M_{F}$ | 13 |
| $M_{\mathrm{L}}$ | 32 |
| $C_{\mathrm{L}}$ | 500 |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Ouality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 1.0 |
| Lower | 2.1 |

## SPECIFICATION

MIL-L-6363
W-L-111

## DESCRIPTION

Lamps, Incandescent, Aviation Service
Lamps, Incandescent, Miniature, Tungsten-Filament

$$
\lambda_{p}=\lambda_{b} \pi_{U} \pi_{A} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

APPLICATION NOTE: The data used to develop this model included randomly occurring catastrophic failures and failures due to tungsten filament wearout.

| Rated Voltage, $\mathrm{V}_{\mathrm{r}}$ (Volts) | $\lambda_{b}$ |
| :---: | :---: |
| $\begin{aligned} & 5 \\ & 6 \\ & 12 \\ & 14 \\ & 24 \\ & 28 \\ & 37.5 \end{aligned}$ | $\begin{array}{r} .59 \\ .75 \\ 1.8 \\ 2.2 \\ 4.5 \\ 5.4 \\ 7.9 \end{array}$ |
| $\lambda_{b}=.074\left(V_{r}\right)^{1.29}$ |  |


| Utiilization Factor $-\pi_{U}$ |  |
| :--- | :--- |
| Utiization (Illuminate Hours/' <br> Equipment Operate Hours) $\pi_{U}$ <br> $<0.10$ 0.10 <br> 0.10 to 0.90 0.72 <br> $>0.90$ 1.0 |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 3.0 |
| $\mathrm{~N}_{\mathrm{S}}$ | 3.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{lC}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{UC}}$ | 5.0 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 6.0 |
| $\mathrm{~A}_{\mathrm{RW}}$ | 5.0 |
| $\mathrm{~S}_{\mathrm{F}}$ | .70 |
| $\mathrm{M}_{\mathrm{F}}$ | 4.0 |
| $\mathrm{M}_{\mathrm{L}}$ | 6.0 |
| $\mathrm{C}_{\mathrm{L}}$ | 27 |

Application Factor $-\pi_{\mathrm{A}}$

| Application | $\pi_{\mathrm{A}}$ |
| :--- | :---: |
| Alternating Current | 1.0 |
| Direct Current | 3.3 |

### 21.1 ELECTRONIC FILTERS, NON-TUNABLE

## SPECIFICATION

MIL-F-15733
MIL-F-18327

## DESCRIPTION

Filters, Radio Frequency Interference
Fitters, High Pass, Low Pass, Band Pass, Band Suppression, and Dual Functioning (Non-tunable)

The most accurate way to estimate the failure rate for electronic filters is to sum the failure rates tor the individual components which make up the filter (e.g., IC's, diodes, resistors, etc.) using the appropriate models provided in this Handbook. The Parts Stress models or the Parts Count method given in Appendix A can be used to determine individual component failure rates. If insufficient information is available then the following defaut model can be used.

$$
\lambda_{P}=\lambda_{D} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

| Type | $\lambda_{b}$ |
| :---: | :---: |
| MIL-F-15733, Ceramic-Ferrite Construction (Styles FL 10-16, 22, 24, 30-32, 34, 35, 38, 41-43, 45, 47-50, 61-65, 70, 81-93, 95, 96) | . 022 |
| MIL-F-15733, Discrete LC <br> Components, (Styles FL 37, 53, 74) | . 12 |
| MIL-F-18327, Discrete LC Components (Composition 1) | . 12 |
| MIL-F-18327, Discrete LC and Crystal Components (Composition 2) | . 27 |
| Quality Factor - $\pi_{\mathrm{Q}}$ |  |
| Quality | $\pi \mathrm{O}$ |
| MIL-SPEC | 1.0 |
| Lower | 2.9 |


| Environment Factor $-\pi_{E}$ |
| :--- |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 6.0 <br> $N_{S}$ 4.0 <br> $N_{U}$ 9.0 <br> $A_{I C}$ 7.0 <br> $A_{I F}$ 9.0 <br> $A_{U C}$ 11 <br> $A_{U F}$ 13 <br> $A_{R W}$ 11 <br> $S_{F}$ .80 <br> $M_{F}$ 7.0 <br> $M_{L}$ 15 <br> $C_{L}$ 120 |

## SPECIFICATION

W-F-1726
W-F-1814
MIL-F-5372
ML-F-23419
MiL-F-15160

## description

Fuse, Cartridge Class $H$
Fuse, Cartridge, High Interrupting Capacity
Fuse, Current Limiter Type, Aircraft
Fuse, Instrument Type
Fuse, Instrument, Power and Telephone
(Nonindicating), Style F01

$$
\lambda_{p}=\lambda_{\mathrm{b}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

APPLICATION NOTE: The reliability modeling ô ruses presents a unique problem. Unlike most other components, there is very little correlation between the number of fuse replacements and actual fuse failures. Generally when a fuse opens, or "blows," something else in the circuit has created an overload condition and the fuse is simply functioning as designed. This model is based on life test data and represents fuse open and shorting failure modes due primarily to mechanical fatigue and corrosion. A short taihure mode is most commonly caused by electrically conductive material shorting the fuse terminals together causing a tailure to open condition when rated current is exceeded.


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 8.0 <br> $N_{S}$ 5.0 <br> $N_{U}$ 11 <br> $A_{i C}$ 9.0 <br> $A_{I F}$ 12 <br> $A_{U C}$ 15 <br> $A_{U F}$ 18 <br> $A_{R W}$ 16 <br> $S_{F}$ .90 <br> $M_{F}$ 10 <br> $M_{L}$ 21 <br> $C_{L}$ 230 |  |

$\lambda_{p}$ - Failure Rates for Miscellaneous Parts (Faikres/10 ${ }^{6}$ Hours)

| Pant Type | Failure Rate |
| :---: | :---: |
| Vibrators (AIL=V=95) 60-cycle 120-cycle 400-cycle | $\begin{aligned} & 15 \\ & 20 \\ & 40 \end{aligned}$ |
| Lamps Neon Lamps | 0.20 |
| Fiber Optic Cables (Single Fiber Types Only) | 0.1 (Per Fiber Km) |
| Single Fiber Optic Connectors* | 0.10 |
| Microwave Elements (Coaxial \& Waveguide) Attenuators (Fixed \& Variable) | See Resistors, Type RD |
| Fixed Elements (Directional Couplers, Fixed Stubs \& Cavities) | Negligible |
| Variable Elements (Tuned Stubs \& Cavities) | 0.10 |
| Microwave Ferrite Devices isolators \& Circulators ( $\leq 100 \mathrm{~W}$ ) | $0.10 \times \pi_{E}$ |
| Isolators \& Circulators ( $>100 \mathrm{~W}$ ) | $0.20 \times \pi_{E}$ |
| Phase Shifter (Latching) | $0.10 \times \pi_{E}$ |
| Dummy Loads < 100W | $0.010 \times \pi_{\text {E }}$ |
| 100 W to $\leq 1000 \mathrm{~W}$ | $0.030 \times \pi_{E}$ |
| > 1000 W | $0.10 \times \pi_{E}$ |
| Terminations (Thin or Thick Fitm Loads Used in Stripline and Thin Film Circults) | $0.030 \times \pi_{E}$ |

[^1]| Environment Factor - $\pi_{E}$ <br> (Microwave Ferrite Devices) |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 8.0 |
| ${ }^{\mathrm{N}} \mathrm{S}$ | 5.0 |
| $\mathrm{N}_{\mathrm{U}}$ | 12 |
| $A_{\text {I }}$ | 5.0 |
| $A_{\text {IF }}$ | 8.0 |
| ${ }^{\text {A }}$ UC | 7.0 |
| ${ }^{\text {A }}$ UF | 11 |
| $A_{\text {RW }}$ | 17 |
| $S_{F}$ | . 50 |
| $M_{F}$ | 9.0 |
| $M_{L}$ | 24 |
| $C_{L}$ | 450 |


| Environment Factor $-\pi_{E}$ |
| :---: |
| (Dummy Loads) |


| Environment | $\pi_{E}$ |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 10 |
| $\mathrm{~N}_{S}$ | 5.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 17 |
| $\mathrm{~A}_{1 \mathrm{C}}$ | 6.0 |
| $\mathrm{~A}_{!\mathrm{F}}$ | 8.0 |
| $\mathrm{~A}_{\mathrm{UC}}$ | 14 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 22 |
| $\mathrm{~A}_{\mathrm{RW}}$ | 25 |
| $\mathrm{~S}_{\mathrm{F}}$ | .50 |
| $\mathrm{M}_{\mathrm{F}}$ | 14 |
| $\mathrm{M}_{\mathrm{L}}$ | 36 |
| $\mathrm{C}_{\mathrm{L}}$ | 660 |

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliabllity Prediction - This prediction method is applicable during bid proposal and earty design phases when insufficient information is avaitable to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part qualiky levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiphying it by a qually factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment taikre rate with this method is:

$$
\lambda_{\text {EQUIP }}=\sum_{i=1}^{i=n} N_{i}\left(\lambda_{g} \pi^{2}\right)_{i} \quad \text { Equation } 1
$$

for a given equipment ervironment where:
$\lambda_{\text {EQUIP }}=$ Total equipment faikure rate (Failures/10 ${ }^{6}$ Hours)
$\lambda_{g}=$ Generic failure rate for the $i^{\text {th }}$ generic part (Failures $/ 10^{6}$ Hours)
$\pi_{Q}=$ Quality factor for the $i^{\text {th }}$ generic part
$N_{i} \quad=$ Quantity of $i^{\text {th }}$ generic part
$n$

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited $\left(A_{1}\right)$ and uninhabited ( $A_{U}$ ) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable $\lambda_{\mathrm{g}}$ tables and are not necessarity the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, $\pi_{L}$, which accounts for the maturty of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, $\lambda_{g}$ should be multiplied by the appropriate $\pi_{\mathrm{L}}$ factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairty unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarty named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. Hf hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The spectic default values used for the model parameters are shown with the $\lambda_{g}$ Tables for microcircuits. Defauk parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

## MIL-HDBK-217F

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sectic | Pranty | $\begin{aligned} & \text { Enviran. } \\ & \mathrm{r}_{\mathrm{J}}\left(x_{0}\right) \rightarrow \end{aligned}$ | $\begin{aligned} & G_{8} \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & G_{F} \\ & B 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 9_{M} \\ & 65 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{N}_{\mathrm{s}} \\ & \mathbf{B 0} \\ & \hline \end{aligned}$ | ${ }_{6}{ }_{6}^{10}$ | 418 75 | ${ }_{1}{ }_{\text {F }}$ 75 | 411 90 | $\begin{aligned} & A_{1 F} \\ & 80 \\ & \hline \end{aligned}$ | ${ }_{\text {A }}^{\text {PW }}$ | $\begin{aligned} & S_{F} \\ & 50 \\ & \hline \end{aligned}$ | 70\% | $\begin{aligned} & \overline{4} \\ & 75 \end{aligned}$ | 9 80 |
| 5.1 |  | (16 Pin DIP) (24 Pin (2IP) (40 Piri DPP) (128 Pin PGA) (180 Pin PGA) (224 Pin PGA) | .0036 <br> .0060 <br> .011 <br> .033 <br> .052 | .012 <br> .020 <br> .035 <br> .12 <br> .23 | $\begin{aligned} & .024 \\ & .038 \\ & .026 \\ & .22 \\ & .34 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0247 \\ & .037 \\ & .025 \\ & .32 \\ & .33 \\ & .43 \\ & \hline \end{aligned}$ | .035 .055 .097 .48 .63 | $\begin{aligned} & .025 \\ & .039 \\ & .070 \\ & .34 \\ & .48 \\ & \hline \end{aligned}$ | .030 <br> .048 <br> .085 <br> .42 <br> .58 | $\begin{aligned} & .032 \\ & .051 \\ & .091 \\ & .45 \\ & .61 \\ & \hline \end{aligned}$ | .019 .077 .14 .88 .80 .80 | $\begin{aligned} & .077 \\ & .074 \\ & .13 \\ & .85 \\ & .85 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0036 \\ & .0060 \\ & .011 \\ & .033 \\ & .052 \\ & \hline \end{aligned}$ | .030 .046 .082 .21 .53 | $\begin{aligned} & .060 \\ & .11 \\ & .10 \\ & .05 \\ & .15 \\ & \hline 1.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.6 \\ & 3.8 \\ & 3.2 \\ & 17 \\ & \hline 21 \\ & \hline \end{aligned}$ |
| 5.1 |  |  | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .050 \\ & \hline \end{aligned}$ | $\begin{gathered} 024 \\ .041 \\ .047 \\ .12 \\ \hline \end{gathered}$ | $\begin{aligned} & .039 \\ & .035 \\ & .11 \\ & \hline \end{aligned}$ | $\begin{aligned} & .034 \\ & .054 \\ & .0929 \\ & .09 \\ & \hline \end{aligned}$ | $\begin{aligned} & .049 \\ & .078 \\ & .13 \\ & \hline \end{aligned}$ | $\begin{aligned} & .057 \\ & .10 \\ & .19 \\ & \hline \end{aligned}$ | $\begin{aligned} & .062 \\ & 11 \\ & 19 \\ & \hline 30 \end{aligned}$ | $\begin{aligned} & .612 \\ & .22 \\ & .41 \\ & .41 \\ & .63 \end{aligned}$ | $\begin{aligned} & .13 \\ & .24 \\ & .44 \\ & .67 \end{aligned}$ | $\begin{aligned} & .076 \\ & .13 \\ & .22 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .050 \\ & \hline \end{aligned}$ | $\begin{aligned} & .044 \\ & .042 \\ & .12 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.2 \\ & .098 \\ & .15 \\ & .41 \\ & \hline \end{aligned}$ | - 1.1 |
| 5.1 | Programinabio Loge Aitay (En i- . 4) Yp 10200 Giala <br> 號 1000 Gates <br> 1001 bu 5000 Gate <br> TVS Trctinctoo | $(16 \mathrm{Pin} \mathrm{DIP})$ $(24 \mathrm{Pin} \mathrm{DP})$ (40 Pin Dip | .0081 <br> .0081 022 | $\begin{array}{r} .016 \\ .028 \\ .052 \\ \hline \end{array}$ | $\begin{array}{r} .029 \\ .048 \\ .047 \\ \hline \end{array}$ | $\begin{array}{r} .027 \\ .045 \\ .088 \\ \hline \end{array}$ | $\begin{aligned} & .040 \\ & .065 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & .032 \\ & .054 \\ & .059 \end{aligned}$ | $\begin{aligned} & .037 \\ & .063 \\ & 11 \end{aligned}$ | $\begin{aligned} & .044 \\ & .047 \end{aligned}$ | $\begin{aligned} & .041 \\ & .10 \\ & \hline 10 \\ & \hline \end{aligned}$ | $\begin{aligned} & .054 \\ & .039 \\ & .19 \end{aligned}$ | $\begin{aligned} & .0081 \\ & .011 \\ & .022 \\ & \hline \end{aligned}$ | $\begin{aligned} & .034 \\ & .057 \\ & \hline 105 \\ & \hline \end{aligned}$ | $\begin{aligned} & .078 \\ & .12 \\ & .22 \\ & \hline \end{aligned}$ | 1.2 <br> 1.9 <br> 3.3 |
| 5.1 |  | (16 Pin DIP) 124 Pin DPP) 40 Pin DPP) ( 128 Pirn PGA) $(160$ Pir PGA) (224 Pin PGA) (224Pin PGA) | $\begin{aligned} & .010 \\ & .019 \\ & .049 \\ & .044 \\ & .13 \\ & \hline \end{aligned}$ | $\begin{aligned} & .015 \\ & .028 \\ & .14 \\ & .22 \\ & .31 \\ & \hline \end{aligned}$ | $\begin{aligned} & .027 \\ & .025 \\ & .080 \\ & .35 \\ & .53 \\ & \hline \end{aligned}$ | $\begin{aligned} & .027 \\ & .027 \\ & .077 \\ & .37 \\ & .37 \\ & .51 \end{aligned}$ | $\begin{aligned} & .039 \\ & .032 \\ & .11 \\ & .34 \\ & .54 \end{aligned}$ | $\begin{aligned} & .029 \\ & .049 \\ & .088 \\ & .27 \\ & .59 \end{aligned}$ | $\begin{aligned} & .035 \\ & .057 \\ & .10 \\ & .32 \\ & .49 \\ & \hline \end{aligned}$ | $\begin{aligned} & .038 \\ & .068 \\ & .12 \\ & .56 \\ & .82 \\ & \hline \end{aligned}$ | $\begin{gathered} .058 \\ .058 \\ .17 \\ .51 \\ .79 \\ 1.1 \\ \hline \end{gathered}$ | $\begin{aligned} & .052 \\ & .013 \\ & .15 \\ & .48 \\ & .72 \\ & .98 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0057 \\ & .010 \\ & .010 \\ & .040 \\ & .084 \\ & .13 \\ & \hline \end{aligned}$ | $\begin{aligned} & .033 \\ & .033 \\ & .030 \\ & .46 \\ & .83 \\ & \hline \end{aligned}$ | $\begin{gathered} .074 \\ .12 \\ .21 \\ 1.00 \\ 1.4 \\ \hline \end{gathered}$ | $\begin{gathered} 1.2 \\ 1.9 \\ \text { 3.3 } \\ \hline 9.2 \\ 17 \\ 217 \\ \hline 2 . \\ \hline \end{gathered}$ |
| 5.1 | 101 wo 300 Trandietary <br> 301 io 1,000 Tranceision <br> 1001 1) 10,000 Trendidzora |  | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .05 \\ & \hline \end{aligned}$ | $\begin{gathered} 024 \\ .014 \\ .0124 \\ \hline \end{gathered}$ | $\begin{aligned} & .039 \\ & .039 \\ & .11 \\ & \hline \end{aligned}$ | $\begin{aligned} & .034 \\ & .034 \\ & .092 \\ & .095 \\ & \hline \end{aligned}$ | $\begin{aligned} & .047 \\ & .13 \\ & .13 \\ & \hline \end{aligned}$ | $\begin{aligned} & .057 \\ & .10 \\ & .19 \\ & \hline \end{aligned}$ | $\begin{aligned} & .062 \\ & .11 \\ & .19 \\ & .30 \end{aligned}$ | $\begin{aligned} & 12 \\ & .22 \\ & .41 \\ & .83 \end{aligned}$ | $\begin{aligned} & 19 \\ & 24 \\ & .24 \\ & 47 \end{aligned}$ | $\begin{aligned} & .076 \\ & .13 \\ & .22 \\ & \hline 35 \end{aligned}$ | $\begin{aligned} & .13 \\ & \hline .0095 \\ & .017 \\ & .053 \\ & \hline \end{aligned}$ | $\begin{aligned} & 83 \\ & .044 \\ & .072 \\ & .12 \\ & .19 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & .098 \\ & .15 \\ & .20 \\ & .41 \end{aligned}$ | 1.1 1.4 2.0 3.4 3.4 |
|  |  |  | $\begin{aligned} & .05 \\ & \hline \\ & .0048 \\ & .0058 \\ & .0081 \\ & \hline \end{aligned}$ | $\begin{array}{r} .018 \\ .021 \\ .022 \\ .033 \\ \hline \end{array}$ | $\begin{aligned} & .18 \\ & \\ & .035 \\ & .042 \\ & .043 \\ & .064 \\ & \hline \end{aligned}$ | $\begin{gathered} 15 \\ .035 \\ .042 \\ .042 \\ .063 \end{gathered}$ | .05:2 .062 .09 .4 | .035 <br> .042 <br> .043 <br> .065 | $\begin{aligned} & .044 \\ & .052 \\ & .054 \\ & .080 \\ & \hline \end{aligned}$ | $\begin{aligned} & .63 \\ & \hline \\ & .044 \\ & .053 \\ & .055 \\ & .083 \\ & \hline \end{aligned}$ | .070 <br> .084 <br> 086 <br> 13 | 35 <br> .070 <br> .0133 <br> .0183 <br> .0164 .14 | .05 <br> .0046 <br> .0058 <br> .0081 | $\begin{aligned} & 19 \\ & \hline \\ & .044 \\ & .052 \\ & .053 \\ & .079 \end{aligned}$ | .1 <br>  <br> .10 <br> .12 <br> .10 | 3.4 <br>  <br> 1.9 <br> 2.3 <br> 2.3 <br> 3.3 |
|  | Micoprocsesums, Bpoiar (EII - . 4) <br> Up io 8 bis <br> Up io 18 Bis <br> Up 032813 | (40 Pin DIP) <br> (128 PinPGA) <br> $(84 \mathrm{Pin} \mathrm{PG})$ $(128 \mathrm{P} \\| \mathrm{PGA})$ | $\begin{aligned} & .028 \\ & .052 \\ & .11 \end{aligned}$ | $\begin{array}{r} 061 \\ 11 \\ .23 \\ \hline \end{array}$ | $\begin{aligned} & .098 \\ & .18 \\ & .36 \\ & \hline \end{aligned}$ | $\begin{array}{r} .091 \\ .16 \\ .33 \\ \hline \end{array}$ | $\begin{array}{r} 13 \\ .23 \\ .47 \\ \hline \end{array}$ | $\begin{array}{r} 12 \\ .21 \\ .44 \\ \hline \end{array}$ | $\begin{array}{r} 13 \\ .24 \\ .49 \\ \hline \end{array}$ | $\begin{aligned} & .17 \\ & .32 \\ & .85 \\ & \hline \end{aligned}$ | $\begin{aligned} & .22 \\ & .38 \\ & .81 \\ & \hline \end{aligned}$ | $\begin{array}{r} .111 \\ \text { an } \\ .35 \\ \hline \end{array}$ | $\begin{aligned} & .028 \\ & .052 \end{aligned}$ $.11$ | $\begin{aligned} & .11 \\ & .20 \\ & \hline 12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 19 \\ & \hline 24 \\ & .41 \\ & .86 \end{aligned}$ |  |
|  | Mícoprocasavers, MOS (EE is.35) <br> Up 108 Bta <br> Up 1016 Bits <br> Up 1032 Blis | 40 Pin DIP $(84$ Pin $P G A)$ <br> (128 Pin PGA | $\begin{array}{r} .048 \\ .093 \\ .18 \\ \hline \end{array}$ | $\begin{aligned} & .089 \\ & .17 \\ & .34 \\ & \hline \end{aligned}$ | $\begin{array}{r} 13 \\ .24 \\ .49 \\ \hline \end{array}$ | $\begin{array}{r} 12 \\ .22 \\ -45 \\ \hline \end{array}$ | $\begin{array}{r} 16 \\ .29 \\ .60 \\ \hline \end{array}$ | $\begin{array}{r} 16 \\ .30 \\ .61 \\ \hline \end{array}$ | $\begin{array}{r} 17 \\ .32 \\ .86 \\ \hline \end{array}$ | $\begin{array}{r} .24 \\ .45 \\ .90 \end{array}$ | $\begin{array}{r} 28 \\ .52 \\ 1.1 \\ \hline \end{array}$ | $\begin{array}{r} 22 \\ .40 \\ .82 \\ \hline \end{array}$ | $\begin{aligned} & .048 \\ & .093 \\ & \hline \end{aligned}$ | $\begin{array}{r} .15 \\ .27 \\ .54 \\ \hline \end{array}$ | $\begin{array}{r} 28 \\ .50 \\ 1.0 \\ \hline \end{array}$ |  |

## APPENDIX A: PARTS COUNT



| Qubiry Fectors - $0_{0}$ |  |
| :---: | :---: |
| Description | ${ }_{0}$ |
| cimes Gangorme: <br>  <br>  <br>  | . 25 |
| ChmBCitesorte: <br> 1. Procured in IUlli sccondencer with MiL-M-38510, Clasa 8 requiremerta. <br> 2. Procured in full accordenos with Mil. +39536, (Clase Q ). <br>  | 1.0 |
| Chamelcarmoct <br>  ML trawng. DESC dranthg or ather covermmore approved documummaiton. (Doee not <br>  | 2.0 |



## APPENDIX A: PARTS COUNT


Generle Fallure Rate - $\lambda_{g}$ (Fallurea/ $10^{6}$ Hours) for Discrele Semiconductors (cont'd)

| $\begin{array}{\|c\|} \hline \text { Section } \\ \hline \end{array}$ | Pan Type | $\begin{aligned} & E n v, \rightarrow Q_{B} \\ & T_{j}(C) \rightarrow 50 \end{aligned}$ | $\begin{aligned} & a_{F} \\ & 60 \end{aligned}$ | $\begin{aligned} & 9_{M} \\ & 65 \end{aligned}$ | $\begin{aligned} & N_{\mathrm{S}} \\ & 60 \end{aligned}$ | $\begin{aligned} & \hline N_{U} \\ & 65 \end{aligned}$ | $\begin{aligned} & A_{K} \\ & 75 \end{aligned}$ | $\begin{aligned} & A_{\text {IF }} \\ & 75 \end{aligned}$ | $A_{u C}$ $90$ | $\begin{aligned} & \overline{A_{I F}} \\ & \infty \end{aligned}$ | $\begin{gathered} A_{\text {RW }} \\ 75 \end{gathered}$ | $\begin{aligned} & \delta_{\mathrm{F}} \\ & 50 \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 65 \end{aligned}$ | $\begin{aligned} & M_{L} \\ & 75 \end{aligned}$ | $\begin{aligned} & q_{L} \\ & 60 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OPTO-ELECTHONICS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6.11 | Photodetector | . 011 | . 028 | . 083 | . 059 | . 18 | . 084 | . 11 | . 21 | . 35 | 34 | . 0057 | . 15 | . 51 | 3.7 |
| 6.11 | Opro-sodutor | . 027 | . 070 | 20 | 14 | . 43 | . 20 | . 25 | . 48 | . 83 | . 80 | . 013 | . 35 | 1.2 | 8.7 |
| 6.11 | Eminer | . 00047 | . 0012 | . 0035 | . 0025 | . 0077 | . 0035 | . 0044 | . 0086 | . 015 | . 014 | . 00024 | . 0063 | . 021 | 15 |
| 6.12 | Aphanumeric Dipplay | . 0062 | . 016 | . 045 | . 032 | . 10 | . 046 | . 058 | . 11 | . 19 | . 18 | . 0031 | . 082 | . 28 | 2.0 |
| 6.13 | Laser Dotese. CraneN Cials | 5.1 | 15 | 49 | 32 | 110 | 58 | 72 | 100 | 170 | 230 | 2.6 | 87 | 350 | 2000 |
| 6.13 | Leser Diose, in Crata/n GaAsp | 8.9 | 23 | 85 | 55 | 190 | 100 | 130 | 180 | 300 | 400 | 4.5 | 150 | 600 | 3500 |
| 7 | tuees |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | Lasers | Soe Section 8 - |  |  |  |  |  |  |  |  |  |  |  |  |  |



| Section | Peritype | Style | MIL-R. | $\begin{aligned} & \text { Env. } \rightarrow G_{B} \\ & T_{A}(C) \rightarrow 30 \end{aligned}$ | $\begin{aligned} & G_{F} \\ & 40 \end{aligned}$ | $G_{M}$ | $\begin{aligned} & \mathrm{N}_{\mathrm{S}} \\ & 40 \end{aligned}$ | $\begin{aligned} & N_{U} \\ & 45 \end{aligned}$ | $\begin{aligned} & A_{1 C} \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{\text {IF }} \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{u C} \\ & 70 \end{aligned}$ | $\begin{aligned} & A_{Y} \\ & \hline \mathbf{F} \end{aligned}$ | ${ }_{55}^{A_{9}}$ | $\begin{aligned} & S_{F} \\ & 30 \end{aligned}$ | $\underset{45}{W_{F}^{\prime}}$ | $\begin{gathered} \hline W_{L} \\ 55 \end{gathered}$ | $C_{4}$ 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | Compositon | हCh | 38008 | . 00050 | . 0022 | . 0071 | . 0037 | . 012 | . 0052 | . 0065 | . 016 | . 025 | . 025 | . 00025 | . 0098 | . 035 | . 36 |
| 9.1 | Composition | PC | 11 | . 00050 | . 0022 | . 0071 | . 0037 | . 012 | . 0052 | . 0065 | . 016 | . 025 | . 025 | . 00025 | . 0098 | . 035 | . 36 |
| 9.2 | Film, insulated | RRR | 30017 | . 0012 | . 0027 | . 011 | . 0054 | . 020 | . 0063 | . 013 | . 018 | . 033 | . 030 | . 00025 | . 014 | . 044 | . 69 |
| 9.2 | Film, Insulated | RL | 22884 | . 0012 | . 0027 | . 011 | . 0054 | . 020 | . 0063 | . 013 | . 018 | . 033 | . 030 | . 00025 | 014 | . 044 | . 69 |
| 9.2 | Fim RN(RCorn) | ANR | 55182 | . 0014 | . 0031 | . 013 | . 0061 | . 023 | . 0072 | . 014 | . 021 | . 038 | . 034 | . 00028 | . 016 | . 050 | . 78 |
| 9.2 | Fun | FN | 10509 | . 0014 | . 0031 | . 013 | . 0061 | . 023 | . 0072 | . 014 | . 021 | . 038 | . 034 | . 00028 | . 018 | . 050 | . 78 |
| 9.3 | Fium, Power | RD | 11804 | . 012 | . 025 | . 13 | . 082 | . 21 | 078 | . 10 | . 19 | . 24 | . 32 | . 0060 | . 18 | . 47 | 8.2 |
| 9.4 | Flim, Norwork | FR | 83401 | . 0023 | . 0066 | . 031 | . 013 | . 055 | . 022 | . 043 | . 077 | . 15 | . 10 | . 0011 | . 055 | . 15 | 1.7 |
| 9.5 | Wirewound, Accurato | RER | 38005 | . 0085 | . 018 | . 10 | . 045 | . 16 | . 15 | . 17 | . 30 | . 38 | . 26 | . 0068 | . 13 | . 37 | 5.4 |
| 9.5 | Wirewound, Accurate | Pe | 93 | . 0085 | . 018 | . 10 | . 045 | . 16 | . 15 | . 17 | . 30 | . 38 | . 26 | . 0088 | . 13 | . 37 | 5.4 |
| 9.6 | Wrrowound Pawer | FWR | 38007 | . 014 | . 031 | . 16 | . 077 | . 26 | . 073 | . 15 | . 19 | . 39 | . 42 | . 0042 | . 21 | . 62 | 0.4 |
| 9.6 | Wrewound, Power | Fw | 26 | . 013 | . 028 | . 15 | . 070 | . 24 | . 066 | . 13 | . 18 | . 35 | . 38 | . 0038 | . 10 | . 56 | 8.6 |
| 9.7 | Wirewound, Power, Chassias Mounted | REA | 38009 | . 0080 | . 018 | . 096 | . 045 | . 15 | . 044 | . 088 | . 12 | . 24 | . 25 | . 0040 | . 13 | . 37 | 5.5 |
| 9.7 | Wirewound, Power. Chassis Mounted | PE | 18546 | . 0080 | . 018 | . 096 | . 045 | . 15 | . 044 | . 088 | . 12 | . 24 | . 25 | . 0040 | . 13 | . 37 | 5.5 |
| 9.8 | Thermistor | RTH | 23648 | . 065 | . 32 | 1.4 | . 71 | 1.6 | . 71 | 1.9 | 1.0 | 2.7 | 2.4 | . 032 | 1.3 | 3.4 | 82 |
| 9.8 | Wircwound, Variable | FIR | 38015 | . 025 | . 055 | . 35 | . 16 | . 58 | . 16 | . 26 | . 35 | . 59 | 1.1 | . 013 | . 52 | 1.6 | 24 |
| 9.9 | Wirewound, Variable | FI | 27208 | . 025 | . 055 | . 35 | . 16 | . 58 | . 16 | . 26 | . 35 | . 59 | 1.1 | . 013 | . 52 | 1.6 | 24 |
| 9.10 | Wirowound, Variable, Prodilion | f | 12934 | . 33 | . 73 | 7.0 | 2.9 | 12 | 3.5 | 5.3 | 7.1 | 9.8 | 23 | . 16 | 11 | 33 | 510 |
| 8.11 | Wirewound, Variable, Semiprecision | PA | 19 | . 15 | . 35 | 3.1 | 1.2 | 5.4 | 1.9 | 2.8 | - | - | 9.0 | . 075 | - | - | - |
| 9.11 | Wirowound, Veriable, Semiprecision | FK | 38002 | . 15 | . 35 | 3.1 | 1.2 | 5.4 | 1.9 | 2.8 | - | - | 9.0 | . 075 | - | - | - |
| 9.12 | Wircwound. Variable, | FP | 22 | . 15 | . 34 | 2.9 | 1.2 | 5.0 | 1.6 | 2.4 | - | - | 7.6 | . 076 | - | - | - |
| 9.13 | Norwircwound. Verinble | RUR | 38035 | . 033 | . 10 | 50 | . 21 | . 87 | . 19 | . 27 | . 52 | . 79 | 1.5 | . 017 | . 79 | 2.2 | 35 |
| 9.13 | Normirewound Variablo | RJ | 22097 | . 033 | . 10 | . 50 | . 21 | . 87 | . 18 | . 27 | . 52 | . 79 | 1.5 | . 017 | . 79 | 2.2 | 35 |
| 9.14 | Composillon, Variable | RV | 94 | . 050 | . 11 | 1.1 | . 45 | 1.7 | 2.8 | 4.6 | 4.6 | 7.5 | 3.3 | . 025 | 1.5 | 4.7 | 87 |
| 9.15 | Normirewound Veriable Precision | RO | 30023 | . 043 | . 15 | . 75 | . 35 | 1.3 | . 39 | . 78 | 1.8 | 2.8 | 25 | . 021 | 1.2 | 3.7 | 49 |
| 9.15 | Fion Variable | RMC | 23285 | . 048 | . 16 | . 76 | . 36 | 1.3 | . 36 | . 72 | 1.4 | 2.2 | 2.3 | . 024 | 1.2 | 3.4 | 52 |

[^2]

## APPENDIX A: PARTS COUNT

Genorlc Fallure Rato, $\lambda_{g}$ (Fallures $/ 10^{6}$ Hours) for Capectors

| Section | Part Type or Dielectric | Syle | MILC- | $\begin{aligned} & \text { Env. } \rightarrow G_{B} \\ & T_{A}\left({ }^{\circ} \mathrm{C}\right) \rightarrow 30 \end{aligned}$ | $\begin{aligned} & G_{F} \\ & 40 \end{aligned}$ | $G_{M}$ | $\begin{aligned} & N_{S} \\ & 40 \end{aligned}$ | $\begin{aligned} & N_{U} \\ & 45 \end{aligned}$ | $\begin{aligned} & A_{1} C \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{i F} \\ & 55 \end{aligned}$ | $\begin{aligned} & \lambda_{u} \\ & 70 \end{aligned}$ | ${ }_{T 0}^{A_{F}}$ | $\lambda_{50}$ | $\begin{aligned} & S_{F} \\ & 30 \end{aligned}$ | $\begin{aligned} & W_{F} /{ }_{4} \end{aligned}$ | $\begin{aligned} & \hline W L \\ & 55 \end{aligned}$ | $c$ 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.1 | Paper, ByPass | ${ }^{\text {CP }}$ | 25 | . 0036 | . 0072 | . 033 | . 018 | . 055 | . 023 | . 03 | . 070 | . 13 | . 083 | . 0018 | . 044 | . 12 | 2.1 |
| 10.1 | Paper, By-Pass | CA | 12889 | . 0039 | . 0087 | . 042 | . 022 | . 070 | . 035 | . 047 | . 19 | . 35 | . 13 | . 002 | . 056 | . 10 | 25 |
| 10.2 | Peperflastic. Feedthrough | CRP | 11893 | . 0047 | . 0086 | . 044 | . 034 | . 073 | . 030 | . 040 | . 094 | . 15 | . 11 | . 0024 | . 058 | . 18 | 27 |
| 10.3 | Paperficastc Firm | CPV | 14157 | . 0021 | . 0042 | . 017 | . 010 | . 030 | . 0088 | . 013 | . 026 | . 048 | . 044 | . 0010 | . 023 | . 083 | 1.1 |
| 10.3 | Paparfisatic Fllm | COR | 19978 | . 0021 | . 0042 | . 017 | . 010 | . 030 | . 0088 | . 013 | . 026 | . 048 | . 044 | . 0010 | . 023 | . 063 | 1.1 |
| 10.4 | Motuliced Paper/Plestic | OHR | 39022 | . 0028 | . 0058 | . 023 | . 014 | . 041 | . 012 | . 018 | . 037 | . 066 | . 060 | . 0014 | . 032 | . 088 | 1.5 |
| 10.4 | Metulized Plastiod Plastic | OH | 18312 | . 0029 | . 0058 | . 023 | . 014 | . 041 | . 012 | . 018 | . 037 | . 066 | . 060 | . 0014 | . 032 | . 088 | 1.5 |
| 10.5 | Motalized PaperiPlestic | Cf | 55514 | . 0041 | . 0083 | . 042 | . 021 | . 067 | . 026 | . 048 | . 086 | . 14 | . 10 | . 0020 | . 054 | . 15 | 2.5 |
| 10.6 | Motalized Plestic | CPH | 83421 | . 0023 | . 0092 | . 019 | . 012 | . 033 | . 0096 | . 014 | . 034 | . 053 | . 048 | . 0011 | . 026 | 07 | 1.2 |
| 10.7 | MICA (Dipped or Molded) | CWR | 38001 | . 0005 | . 0015 | . 0081 | . 0044 | . 014 | . 0068 | . 0095 | . 054 | . 069 | . 031 | . 00025 | . 012 | . 046 | . 45 |
| 10.7 | MICA (Dppoed) | OM | 5 | . 0005 | . 0015 | . 0081 | . 0044 | . 014 | . 0068 | . 0095 | . 054 | . 069 | . 031 | . 00025 | . 012 | . 046 | . 45 |
| 10.8 | MICA (Buthon) | C8 | 10850 | . 018 | . 037 | . 19 | . 094 | . 31 | . 10 | . 14 | . 47 | . 80 | . 48 | . 0091 | . 25 | . 68 | 11 |
| 10.9 | Gless | Cra | 23289 | . 00032 | . 00096 | . 0059 | . 0029 | . 0094 | . 0044 | . 0062 | . 035 | . 045 | . 020 | . 00016 | . 0076 | . 030 | 29 |
| 10.9 | Glass | Cr | 11272 | . 00032 | . 00096 | . 0059 | . 0029 | . 0094 | . 0044 | . 0062 | . 035 | . 045 | . 020 | . 00016 | . 0076 | . 030 | . 29 |
| 10.10 | Ceraric (Gent Puppose) | ${ }_{\sim}^{*}$ | 11015 | . 0036 | . 0074 | . 034 | . 019 | . 056 | . 015 | . 015 | . 032 | . 048 | . 077 | . 0014 | . 049 | . 13 | 2.3 |
| 10.10 | Ceranic (Gen. Purpose) | CNP | 30014 | . 0036 | . 0074 | . 034 | . 019 | 056 | . 015 | . 015 | . 032 | . 048 | . 077 | . 0014 | . 049 | . 13 | 2.3 |
| 10.11 | Ceranic (Tema Coma) | CCR | 20 | . 00078 | . 0022 | . 013 | . 0056 | 023 | . 0077 | . 015 | . 053 | . 12 | . 046 | . 00039 | . 017 | . 065 | . 68 |
| 10.11 | Ceranic Crip | COR | 55881 | . 00078 | . 0022 | . 013 | . 0056 | . 023 | . 0077 | . 015 | . 053 | . 12 | . 048 | . 00039 | . 017 | . 065 | . 68 |
| 10.12 | Tantalum, Solld | Csi | 39003 | . 0018 | . 0039 | . 016 | . 0097 | . 028 | . 0091 | . 011 | . 034 | . 057 | . 065 | . 00072 | . 022 | . 086 | 1.0 |
| 10.13 | Tantalum Non-Solid | CLR | 30006 | . 0061 | . 013 | . 069 | . 039 | . 11 | . 031 | . 061 | . 13 | . 29 | . 18 | . 0030 | . 089 | . 26 | 4.0 |
| 10.13 | Tertalum, Non-Solid | $a$ | 3985 | . 0061 | . 013 | . 069 | . 030 | . 11 | . 031 | . 061 | . 13 | . 29 | . 18 | . 0030 | . 080 | . 26 | 4.0 |
| 10.14 | Alurinum Oxide | ar | 39018 | . 024 | . 061 | . 42 | . 18 | . 50 | . 46 | . 55 | 2.1 | 2.8 | 1.2 | . 012 | . 40 | 1.7 | 21 |
| 10.15 | Alumirum Dry | $\boldsymbol{C E}$ | 62 | . 029 | . 081 | . 58 | . 24 | . 83 | . 73 | . 88 | 4.3 | 5.4 | 20 | . 015 | . 68 | 2.8 | 28 |
| 10.16 | Vartabo. Cerenic | CV | 81 | . 08 | . 27 | 1.2 | . 71 | 2.3 | . 69 | 1.1 | 6.2 | 12 | 4.1 | . 032 | 1.0 | 5.9 | 85 |
| 10.17 | Variablo. Pliston | PC | 14009 | . 033 | . 13 | . 62 | . 31 | . 93 | . 21 | . 28 | 2.2 | 3.3 | 2.2 | . 016 | . 93 | 3.2 | 37 |
| 10.18 | Variable, At Trimmer | CT | 92 | . 080 | . 33 | 1.6 | . 87 | 3.0 | 1.0 | 1.7 | 9.9 | 19 | 6.1 | . 032 | 25 | 8.8 | 100 |
| 10.19 | Varieblo, Vecuum | CG | 23183 | 0.4 | 1.3 | 6.7 | 3.6 | 13 | 5.7 | 10 | 56 | 80 | $2{ }^{\text {d }}$ | . 20 | - | - | . $\cdot$ |


| Section | Part lype | MLS | $\begin{aligned} & E_{n v} \rightarrow G_{B} \\ & T_{A}(\mathrm{C}) \rightarrow 30 \end{aligned}$ | $\begin{aligned} & G_{F} \\ & 40 \end{aligned}$ | $\mathrm{G}_{\mathrm{M}}$45 | $\begin{aligned} & \mathrm{N}_{\mathrm{S}} \\ & 40 \end{aligned}$ | $\begin{aligned} & \mathrm{N}_{\mathrm{U}} \\ & 45 \end{aligned}$ | $\begin{aligned} & A_{1 C} \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{1 F} \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{U C} \\ & 70 \end{aligned}$ | $\begin{aligned} & A_{\text {IF }} \\ & 0 \end{aligned}$ | $\begin{gathered} A_{\text {FW }} \\ 55 \end{gathered}$ | $\begin{aligned} & S_{F} \\ & 30 \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 45 \end{aligned}$ | $\begin{aligned} & M L \\ & 55 \end{aligned}$ | $\begin{aligned} & C_{L} \\ & 40 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11.1 | NDUCTIVE DEVICES LOw Power Pideo XFMR | T.21038 | .00815 | . 023 | . 049 | . 019 | . 065 | 027 | 037 | 041 | 052 | 11 |  |  |  |  |
| 11.1 | Audo XFMR | T-27 | . 0071 | . 046 | . 0197 | . 038 | . 13 | . $0: 15$ | . 073 | . 081 | .052 .10 | . 22 | . 0018 | . 053 | . 16 | 2.3 |
| 11.1 | Hioh Pwr. Pulse and Pww. | T-27 | . 023 | . 16 | . 34 | . 13 | . 45 | . 21 | . 27 | . 35 | . 45 |  |  | . 1 | . 12 | 4.7 |
|  | XFMP. Filbr |  |  |  |  |  |  |  |  |  | . 45 | . 82 | . 011 | . 37 | 1.2 | 16 |
| 11.1 | PF X P-M | T.55631 | .028 | . 18 | . 39 | . 15 | . 52 | . 22 | 29 | . 33 | . 42 | . 88 | . 014 | . 42 | 1.2 | 18 |
| 11.2 | RFF Coils, Fixad ar Molded | C-15305 C-38010 | . 0017 | . 0073 | . 023 | . 0091 | .031 | . 011 | . 015 | . 016 | . 022 | . 052 | . 00083 | . 215 | . 073 | 1.1 |
| 11.2 | RF Coila Variablo | C-15305 | . 0013 | . 015 | . 046 | . 018 | . 061 | . 0212 | 03 | . 033 | . 044 | . 10 | . 0017 | . 0.5 | . 15 | 2.2 |
| 12.1 | ROTATNG DEVR:ES Motors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12.2 | Synchros |  | . 07 | . 20 | 1.5 | 2.4 70 | 3.3 | 7.1 | 7.1 | 31 | 31 | 7.1 | 1.6 | - | $\cdots$ | - |
| 12.2 | Resolvers |  | . 11 |  |  | . 70 | 2.2 | . 78 | 1.2 | 7.9 | 12 | 5.1 | . 035 | 1.7 | 7.1 | 88 |
|  | ELAPSED TIME METERS |  |  | . 30 | 22 | 1.0 | 3.3 | 1.2 | 1.8 | 12 | 18 | 7.6 | . 053 | 2.13 | 11 | 100 |
| 12.3 | ETMAC |  | 10 | 20 | 120 | 70 | 180 | 50 | 80 | 160 | 250 | 260 | 5.0 | 140 | 330 | - |
| 12.3 | ETM-Iwerter Driver |  | 15 | 30 | 180 | 105 | $2 \pi$ | 75 | 120 | 240 | 375 | 300 | 7.5 | 210 | 570 | - |
| 13.3 | ETM Cormulabr DC |  | 40 | 80 | 410 | 280 | 720 | 210 | 320 | 640 | 1000 | 1040 | 20 | 560 | 1520 | - |
|  | RELAYS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13.1 | General Purposo |  | . 13 | . 28 | 2.1 | 1.1 | 3.8 | 1.1 | 1.4 | 1.9 | 21 | 7.0 | . 086 | 3.5 | 10 | - |
| 13.1 | Contactor, High Curment |  | . 43 | . 89 | 6.9 | 3.6 | 12 | 3.4 | 4.4 | 6.2 | 6.7 | 22 | . 21 | 11 | 32 |  |
| 13.1 | Latching |  | . 13 | . 28 | 21 | 1.1 | 3.8 | 1.1 | 1.4 | 1.9 | 21 | 7.0 | . 066 | 3.5 | 10 | - |
| 13.1 | Reed |  | . 11 | . 23 | 1.8 | . 92 | 3.3 | . 28 | 1.2 | 2.1 | 23 | 8.3 | . 054 | 3.1 | 0.0 | - |
| 13.1 | Therran, 8-nved |  | . 28 | . 60 | 4.6 | 2.4 | 0.2 | 23 | 2.9 | 4.1 | 4.5 | 15 | . 14 | 7.15 | 22 | - |
| 13.1 | Molve Moverrent |  | . 88 | 1.8 | 14 | 7.4 | 26 | 7.1 | 9.1 | 13 | 14 | 48 | . 44 | 24 | 67 | - |
| 13.2 | Solid State |  | . 40 | 1.2 | 4.8 | 2.4 | 6.8 | 4.8 | 7.6 | 8.4 | 13 | 9.2 | . 16 | 4.8 | 13 | 240 |
| 13.2 | Hybrid and Solid Siate Trme Deter |  | .50 | 1.5 | 6.0 | 3.0 | 8.5 | 8.0 | 9.5 | 11 | 16 | 12 | . 20 | 6.1 | 17 | 300 |
|  | SWICHES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14.1 | Togole or Puinhbution |  | . 0010 | . 0030 | . 018 | . 0080 | .026) | . 040 | . 018 | . 013 | . 022 | . 046 | . 0005 | . 025 | . 067 | 1.2 |
| 14.2 | Senaitive | 8-8805 | . 15 | . 44 | 27 | 1.2 | 4.3 | 1.5 | 2.7 | 1.9 | 3.3 | 8.8 | . 074 | 3.7 | 0.9 | 180 |
| 14.3 | Potary Waler | 83786 | . 33 | . 99 | 5.9 | 2.6 | 9.5 | 3.3 | 5.9 | 4.3 | 7.2 | 15 | . 18 | 8. 2 | 22 | 390 |
| 14.4 | Thurnwheol | \$-22710 | . 56 | 1.7 | 10 | 4.5 | 16 | 5.6 | 10 | 7.3 | 12 | 28 | . 28 | 14 | 38 | 370 |
| 14.5 | Chaut Breakur, Thermal | C-83383 | . 11 | . 23 | 1.7 | . 01 | 3.1 | . 80 | 1.0 | 1.3 | 1.4 | 5.2 | . 057 | 2.15 | 7.5 | HA |
| 14.5 | Circull Breaker. Mernetic | C-56629 | .0\$0 | . 12 | . 90 | . 48 | 1.6 | . 42 | . 54 | . 66 | . 72 | 2.8 | . 030 | 1.15 | 4.0 | NA |
|  | CONWECTOFS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15.1 | Circular/Packivarel |  | 0.011 | 0.14 | . 11 | . 068 | . 20 | . 0550 | . 098 | . 23 | 34 | . 37 | . 0054 | . 113 | d 2 | 8.8 |
| 15.1 | Coaxial |  | . 012 | . 015 | . 13 | . 075 | . 21 | .0:0 | . 10 | . 22 | . 32 | . 38 | . 0061 | . 13 | . 54 | 7.3 |
| 15.2 | Printed Circuit Board Connector |  | . 0054 | . 021 | . 055 | . 035 | . 10 | . 050 | . 11 | . 085 | . 16 | . 10 | . 0027 | . 078 | . 21 | 3.4 |
| 15.3 | IC Sockets |  | . 00119 | . 0056 | . 027 | . 012 | . 035 | . 015 | . 023 | . 021 | . 025 | . 048 | . 00097 | . 027 | . 070 | 1.3 |
| 16.1 | Interconnection Assemblies (PCBB) |  | . 013 | . 11 | 37 | . 69 | . 27 | . 27 | 43 | . 85 | 1.5 | 1.0 | . 027 | . 53 | 1.4 | 27 |


Goneric Fallure Ratt, $\lambda_{\mathrm{g}}$ (Fallures/10 ${ }^{6}$ Hours) for Miscollenioous Parts

| Section | $\begin{aligned} & \text { Paritype } \\ & \text { Dieloctric } \end{aligned}$ | mil. | $\begin{aligned} & E n v \rightarrow G_{B} \\ & T_{A}(C)+30 \end{aligned}$ | $\begin{aligned} & G_{F} \\ & 40 \end{aligned}$ | $\begin{aligned} & G_{M} \\ & 45 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{N}_{\mathrm{s}} \\ & 40 \end{aligned}$ | $\begin{aligned} & 14 \\ & 45 \end{aligned}$ | $\begin{aligned} & A_{16} \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{\text {IF }} \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{I C} \\ & 70 \end{aligned}$ | $\begin{aligned} & \bar{A}_{\mathbf{A F}} \\ & { }_{2} \end{aligned}$ | $\underset{55}{\lambda_{5 w 1}}$ | $\begin{aligned} & s_{F} \\ & 30 \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 45 \end{aligned}$ | M 5 5 | 9 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \\ & \hline \end{aligned}$ | SNGLE CONNECTIONS <br> Hand Solder, wo Wrapping <br> Hand Solder, wWrapping <br> Crimp <br> Wod <br> Solderless Wrap <br> Clip Tarmination <br> Rellow Soldor <br> METERS.PANEL |  |  |  | $\begin{gathered} .018 \\ .00088 \\ .0013 \\ .000350 \\ .000025 \\ .00084 \\ .000433 \end{gathered}$ | $\begin{gathered} .010 \\ .00056 \\ .0010 \\ .000200 \\ .000014 \\ .00048 \\ .000276 \\ \hline \end{gathered}$ | $\begin{gathered} .029 \\ .0015 \\ .0028 \\ .000550 \\ .000088 \\ .0013 \\ .000759 \\ \hline \end{gathered}$ | .010 <br> .00056 <br> .0010 <br> 000200 <br> 000014 <br> .00048 <br> .000276 | .016 <br> .00094 <br> .0016 <br> 000300 <br> 000021 <br> .00072 <br> 000414 | .016 <br> .00084 <br> . 0016 <br> 0001300 <br> .001021 <br> .00072 <br> .000414 | $\begin{aligned} & .021 \\ & .0011 \\ & .0021 \\ & .000400 \\ & .000028 \\ & .00096 \\ & .000552 \\ & \hline \end{aligned}$ | . 042 <br> .0022 <br> .0042 <br> .000800 <br> .000056 <br> .0010 <br> .001104 | .0013 <br> .00007 <br> .00013 <br> .000025 <br> . 0000018 <br> .00006 <br> .000035 | $\begin{gathered} .023 \\ .0013 \\ .0023 \\ .000450 \\ .000031 \\ .0011 \\ .000621 \\ \hline \end{gathered}$ |  |  |
| $\begin{array}{r} 18.1 \\ 18.1 \\ \hline \end{array}$ | DC Ammater or Voltroter AC Ammoter or Volitioner | $\left[\begin{array}{l} \begin{array}{l} 4 \\ \hline \end{array} \mathbf{1 0 3 0} \\ 4-10304 \end{array}\right.$ | $\begin{array}{r} 0.09 \\ -0.15 \\ \hline \end{array}$ | $\begin{array}{r} 0.36 \\ 0.81 \\ \hline \end{array}$ |  |  | $\begin{aligned} & 3.2 \\ & 5.4 \\ & \hline \end{aligned}$ |  |  | $\begin{array}{r} 5.2 \\ 8.9 \\ \hline \end{array}$ |  | $\begin{array}{r} 5.4 \\ 0.2 \\ \hline \end{array}$ | $\begin{aligned} & 0.098 \\ & 0.17 \\ & \hline \end{aligned}$ | $\begin{array}{r} 5.4 \\ 0.2 \\ \hline \end{array}$ | $\begin{aligned} & N / \\ & N A \end{aligned}$ | N/A |
| 19.1 | Quert Cratela | C-3600 | . 032 | 096 | 32 | 19 | 51 | . 38 | . 54 | . 70 | 20 | 74 | 018 | 42 | 1.0 | 16 |
| $\begin{aligned} & 20.1 \\ & 20.1 \end{aligned}$ |  |  | $13$ | $26$ | $\begin{array}{r} 12 \\ 38 \\ \hline \end{array}$ | $\begin{array}{r} 12 \\ 38 \\ \hline \end{array}$ | $\begin{array}{r} 16 \\ -51 \\ \hline \end{array}$ | $\begin{array}{r} 16 \\ -51 \\ \hline \end{array}$ | $\begin{array}{r} 16 \\ 51 \\ \hline \end{array}$ | $\begin{array}{r} 19 \\ 64 \\ \hline \end{array}$ | $\begin{array}{r} 23 \\ n \\ \hline \end{array}$ | $\begin{array}{r} 10 \\ 64 \\ \hline \end{array}$ | $\begin{array}{r} 2.7 \\ 9.0 \\ \hline \end{array}$ |  |  | $\begin{array}{r} 100 \\ 350 \\ \hline \end{array}$ |
| 21.1 <br> 21.9 <br> 21.1 <br> 2. <br> 1 | ELECTRONCC FLTERS <br> Cennicferrib <br> Dicectelc Comp. <br>  | $\begin{aligned} & \text { F. } 15733 \\ & \text { F. } 15733 \\ & \text { F. } 18327 \\ & \hline \end{aligned}$ | $\begin{array}{r} .022 \\ .12 \\ .27 \\ \hline \end{array}$ | .044 .24 .54 | $\begin{aligned} & .13 \\ & .72 \\ & 1.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & .088 \\ & .48 \\ & 1.1 \\ & \hline \end{aligned}$ | $\begin{array}{r} 20 \\ 1.1 \\ 2.4 \\ \hline \end{array}$ | $\begin{array}{r} .15 \\ .84 \\ .1 .9 \\ \hline \end{array}$ | $\begin{aligned} & .20 \\ & 1.1 \\ & 2.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 24 \\ & 1.3 \\ & 3.0 \\ & \hline \end{aligned}$ | $\begin{array}{r} 28 \\ 1.6 \\ 3.5 \end{array}$ | $\begin{array}{r} .24 \\ 1.3 \\ 3.0 \\ \hline \end{array}$ | $\begin{aligned} & .018 \\ & .096 \\ & .22 \\ & \hline \end{aligned}$ | .15 .84 1.9 | $\begin{aligned} & .33 \\ & 1.8 \\ & 4.1 \end{aligned}$ | 2.6 <br> 14 <br> 32 |
| 2.1 | fuSES |  | . 010 | . 020 | . 080 | . 050 | . 11 | . 090 | . 12 | . 15 | 18 | 16 | . 009 |  |  | 2.3 |

$\pi_{\mathrm{Q}}$ Factor for Use with Section 11-22 Devices

| Section \# | Part Type | Established Reliability | MIL-SFEC | Non-MIL. |
| :---: | :---: | :---: | :---: | :---: |
| 11.1, 11.2 | Inductive Devices | .25* | 1.0 | 10 |
| 12.1, 12.2, 12.3 | Rotating Devices | N/A | N/A | N/A |
| 13.1 | Relays, Mechanical | . 60 | 3.0 | 9.0 |
| 13.2 | Relays, Solid State and Time Delay (Hybrid \& Solid State) | N/A | 1.0 | 4 |
| 14.1, 14.2 | Switches, Toggie, Pushbution, Sensitive | N/A | 1.0 | 20 |
| 14.3 | Switches, Rotary Wafer | N/A | 1.0 | 50 |
| 14.4 | Switches, Thumbwheel | N/A | 1.0 | 10 |
| 14.5 | Circuit Breakers, Thermal | N/A | 1.0 | 8.4 |
| 15.1, 15.2, 15.3 | Connectors | N/A | 1.0 | 2.0 |
| 16.1 | Interconnection Assemblies | N/A | 1.0 | 2.0 |
| 17.1 | Connections | N/A | N/A | N/A |
| 18.1 | Meters, Panel | N/A | 1.0 | 3.4 |
| 19.1 | Quartz Crystals | N/A | 1.0 | 2.1 |
| 20.1 | Lamps, incandescent | N/A | N/A | N/A |
| 21.1 | Electronic Filters | N/A | 1.0 | 2.9 |
| 22.1 | Fuses | N/A | N/A | N/A |

"Category applies only to MIL-C-39010 Coils.
Default Parameters for Discrete Semiconductors

Default Parameters for Discrote Semiconductors


| Section * | Part fype or Dielectric | Style | MIIL-C.SPEC | ${ }^{12} \mathrm{CV}$ | Tomp. Rating | Conuments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.1 | Paper, By-Pass | CP | 25 | 1.0 | 125 | Voltaga Stress $=.5, .15 \mu$ F |
| 10.1 | Paper, By-Pass | CA | 12889 | 1.0 | 85 | Voltage Stress = .5, , $15 \mu \mathrm{~F}$ |
| 10.2 | Paper/Plastic, Feyd-through | CAR | 11693 | 1.0 | 125 | Voltage Stress $=.8, .061 \mu \mathrm{~F}$ |
| 10.3 | Paper/Plastic Fitm | CPV | 14157 | 1.0 | 125 | Voltage Stress $=.5, .027 \mu \mathrm{~F}$ |
| 10.3 | Paper/Plastic Film | COR | 19978 | 1.0 | 125 | Voltage Stiess $=.5, .033 \mu \mathrm{~F}$ |
| 10.4 | Merallzed Paper/Plastic | OR | 39022 | 1.0 | 125 | Voltage Stiess $=.5, .14 \mu \mathrm{~F}$ |
| 10.4 | Metalized Plasic/Plastic | CH | 18312 | 1.0 | 125 | Voltage Stress $=.5, .14 \mu \mathrm{~F}$ |
| 10.5 | Merallized Paper/Plastic | CFR | 55514 | 1.0 | 125 | Voltagi Stress $=.5, .33 \mu \mathrm{~F}$ |
| 10.6 | Metallized Plastic | CPH | 83421 | 1.0 | 125 | Voltagis Stiess $=.5, .14 \mu \mathrm{~F}$ |
| 10.7 10.7 | MICA (Dipped or Molded) MICA (Dtpped) | CNR | 39001 | 1.0 | 125 | Voltage Stess $=.5,300 \mathrm{pF}$ |
| 10.8 | MICA (Bution) | ${ }_{\text {c }} \mathrm{M}$ | 5 10950 | 1.0 | 125 150 | Voltag3 Streas $=.5,300 \mathrm{pF}$ |
| 10.9 | Glass | CYR | 23259 | 1.0 | 125 | Voltag Suress $=.5,160 \mathrm{pF}$ |
| 10.9 | Glass | Cr | 11272 | 1.0 | 125 | Voltaga Stress $=.5,30 \mathrm{pF}$ |
| 10.10 | Caramic (Cen. Purpose) | CK | 11015 | 1.0 | 125 | Voltage Suess $=.5,3300 \mathrm{pF}$ |
| 10.10 | Coramic (Gen. Puppose) | CKR | 39014 | 1.0 | 125 | Voltage Stress $=.5,3300 \mathrm{pF}$ |
| 10.11 10.11 | Coramic (Tomp. Comp.) | CCR | 20 | 1.0 | 125 | Voltage Stuess $=.5,81 \mathrm{pF}$ |
| 10.11 10.12 | Caramic Chip | COR | 55631 | 1.0 | 125 | Voltagis Stess = .5, 81 pF |
| 10.12 | Tantakum, Solid | CSR | 38003 | 1.0 | 125 | Voltage Stress $=.5,1.0 \mu \mathrm{~F}, .6 \mathrm{hms} /$ volt, series resistance, $\pi_{S R}=. .13$ |
| 10.13 | Tantalum, Norn-Solid | CLR | 39006 | 1.0 | 125 | Voltage Strest $=.5$ Foll, Hermetic, $20 \mu \mathrm{~F}, r_{c}=1$ |
| 10.13 | Tantakm, Norn-Solid | Cl | 3965 | 1.0 | 125 | Voltage Stress $=.5$ Foll, Hermetic, $20 \mu \mathrm{~F}, \pi_{c}=1$ |
| 10.14 | Aluminum Oxide | CQR | 39018 | 1.3 | 125 | Voltage Stress $=.5,1700 \mu \mathrm{~F}$ |
| 10.15 | Aluminum Dry | CE | 62 | 1.3 | 85 | Voltaga Strest $=.5,1600 \mu \mathrm{~F}$ |
| $\begin{aligned} & 10.16 \\ & 10.17 \end{aligned}$ | Variable, Ceramic Variablo, Piston | CV PC | $81$ $14409$ |  |  | Voltagy Stuess $=.5$ |
| 10.18 | Varrable, Alv Tifmmer | CT | 14808 |  | 125 85 | Voltagy Stuess $=.5$ |
| 10.18 | Varlable, Vecuum | CG | 23183 |  | 85 | Voltage Stuess $=.5$. Variabie Configuration |



APPENDIX B: VHSICNHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)
This appendix contains the detailed version of the VHSICNLSI CMOS model contained in Section 5.3. It is provided to allow more detailed device level design trade-offs to be accomplished for predominate failure modes and mechanisms exhibited in CMOS devices. Reference 30 should be consulted for a detailed derivation of this model.

VHSICNHSIC-LIKE FAILURE RATE MODEL
$\lambda_{P}(t)=\lambda_{O X}(t)+\lambda_{\text {MET }}(t)+\lambda_{\text {HC }}(t)+\lambda_{C O N}(t)+\lambda_{\text {PAC }}+\lambda_{\text {ESD }}+\lambda_{\text {MIS }}(t)$
$\lambda_{P}(t)=$ Predicted Failure Rate as a Function of Time
$\lambda_{O X}(t)=$ Oxide Failure Rate
$\lambda_{\text {MET }}(t)=$ Metallization Fallure Rate
$\lambda_{\text {HC }}(t)=$ Hot Carrier Failure Rate
$\lambda_{C O N}(t)=$ Contamination Failure Rate
$\lambda_{\text {PAC }}=$ Package Failure Rate
$\lambda_{\text {ESD }}=$ EOS/ESD Failure Rate
$\lambda_{\text {MIS }}(t)=$ Miscellaneous Failure Rate

The equations for each of the above failure mechanism failure rates are as follows:

## OXIDE FAILURE RATE EQUATION

$$
\begin{aligned}
\lambda_{o x}\left(\text { in } F / 10^{6}\right)= & \frac{A A_{\text {TYPEOX }}}{A_{R}}\left(\frac{D_{0_{0 x}}}{D_{R}}\right)\left[\left(.0788 e^{-7.7 t_{0}}\right)\left(A_{T_{0 X}}\right)\left(e^{-7.7 A_{O X}}\right)\right. \\
& \left.+\frac{.399}{(t+10) \sigma_{0 x}} \exp \left(\frac{-.5}{\sigma_{0 x}^{2}}\left(\ln \left(t+t_{0}\right)-\ln t_{50}\right)^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { A }=\text { Total Chip Area (in } \mathrm{cm}^{2} \text { ) } \\
& \text { A TYPE }_{0 \times}=.77 \text { for Custom and Logic Devices, } 1.23 \text { for Memories and Gate Arrays }
\end{aligned}
$$



## METAL FAIL URE BATE EQUATION

$$
\begin{aligned}
& \lambda_{\text {MET }}=\left[\frac{A^{A} A_{T Y P E}}{A_{R E T}} \frac{D_{0_{M E T}}}{D_{R}}\left(.00102 e^{-1.18 t_{0}}\right)\left(A_{T_{M E T}}\right)\left(e^{-1.18 A_{T_{M E T}} t}\right)\right] \\
&+\left[\frac{.399}{\left(t+t_{0}\right) \sigma_{M E T}} \exp \left(\frac{.5}{\sigma_{M E T}^{2}}\left(\ln \left(t+t_{0}\right)-\ln t_{50_{M E T}}\right)^{2}\right)\right]
\end{aligned}
$$

$A=$ Total Chip Area (in $\mathrm{cm}^{2}$ )
$A_{\text {TYPE }}^{\text {MET }}=.88$ for Custom and Logic Devices, 1.12 for Memory and Gate Arrays
$A_{R}=.21 \mathrm{~cm}^{2}$
$D_{0 \text { MET }}=$ Metal Defect Density (if unknown use $\left(\frac{x_{0}}{X_{S}}\right)^{2}$ where $X_{0}=2 \mu \mathrm{~m}$ and $X_{S}$ is the feature size of the device)
$D_{R}=1$ Defect/cm ${ }^{2}$
$A_{\text {TMET }}=$ Temperature Acceleration Factor
$=\exp \left[\frac{-.55}{8.617 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right]\left(T_{J}=T_{\text {CASE }}+\theta_{J C}{ }^{P} \quad\right.$ (in $\left.\left.{ }^{\circ} \mathrm{K}\right)\right)$
${ }^{t_{0}}=$ Effective Screening Time (in $10^{6}$ hrs.)
$=A_{T_{\text {MET }}}$ (at Screening Temp. (in $\left.{ }^{\circ} \mathrm{K}\right)$ ) * (Actual Screening Time (in $10^{6}$ hrs))
$\mathrm{t}_{50_{\text {MET }}}=(\mathrm{QML}) \frac{.388^{*} \text { (Metal Type) }}{J^{2} A_{T_{\text {MET }}}} \quad$ (in $10^{6} \mathrm{hrs}$.)
$(\mathrm{QML})=2$ if on QML, .5 if not.
Metal Type $=\mathbf{1}$ for Al, 37.5 for ALCu or for Al-Si-Cu
$\mathrm{J}=$ The mean absolute value of Metal Curremt Density (in $10^{6} \mathrm{Amps} / \mathrm{cm}^{2}$ )
$\sigma_{\text {MET }} \quad=$ sigma obtained from test data on electromigration failures from the same or a similar process. If this data is not available use $\sigma_{\text {MET }}=1$.
$t=\operatorname{time}$ (in $10^{6}$ hrs.)

## APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

## HOT CARRIER FAILURE RATE EQUATION

$$
\begin{aligned}
& \lambda_{H C}= \frac{.399}{\left(t+t_{0}\right) \sigma_{H C}} \exp \left[\frac{-.5}{\sigma_{H C}^{2}}\left(\ln \left(t+t_{0}\right)-\ln t_{50_{H C}}\right)^{2}\right] \\
& t_{50_{H C}}=\frac{(Q M L) 3.74 \times 10^{-5}}{{ }^{A_{T_{H C}}} I_{d}}\left(\frac{I_{\mathrm{sub}}}{I_{\mathrm{d}}}\right)^{-2.5} \\
&(\mathrm{OML})=2 \text { if on QML, } 5 \text { it not }
\end{aligned}
$$

$$
A_{T_{H C}}=\exp \left[\frac{.039}{8.617 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right]\left(\text { where } T_{J}=T_{C}+\theta_{J C} P\left(\text { in }{ }^{\circ} \mathrm{K}\right)\right)
$$

id $=$ Drain Current at Operating Temperature. If unknown use $I_{d}=3.5 \mathrm{e}^{-.00157} \mathrm{~T}_{\mathrm{J}}$ (in $\left.{ }^{\circ} \mathrm{K}\right)(\mathrm{mA})$
$I_{\text {sub }}=$ Substrate Current at Operating Temperature. If unknown use

$$
\mathrm{I}_{\mathrm{sub}}=.0058 \mathrm{e}^{-.00689 \mathrm{~T}_{J}\left(\mathrm{in}{ }^{\circ} \mathrm{K}\right)}(\mathrm{mA})
$$

$\sigma_{\mathrm{HC}} \quad=\quad$ sigma derived from test data, if not available use 1.
$\mathrm{t}_{0} \quad=\mathrm{A}_{\mathrm{T}_{H C}}$ (at Screening Temp.(in $\left.{ }^{\circ} \mathrm{K}\right)$ ) ${ }^{\left(\text {(Test Duration in } 10^{6} \text { hours) }\right.}$
1 = time (in $10^{6}$ hrs.)

CONTAMINATION FAILURE BATE EQUATION

$A_{T_{C O N}}=\exp \left[\frac{-1.0}{8.617 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right]$ (where $T_{J}=T_{C}+\theta_{J C} P\left(\right.$ in ${ }^{\circ}$ K) $)$
$\mathrm{t}_{0}=$ Effective Screening Time
$=A^{A}$ con (at screening junction temperature (in $\left.{ }^{\circ} \mathrm{K}\right)$ ) • (actual screening time in $10^{6}$ hrs.)
$t=$ time (in $10^{6} \mathrm{hrs}$.)

## APPENDIX B: VHSICNHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

## PACKAGE FAILURE BATE EQUATION

$\lambda_{P A C}=\left(.0024+1.85 \times 10^{-5}(\#\right.$ Pins $\left.)\right) \pi_{E} \pi_{Q} \pi_{P T}+\lambda_{P H}$
$\pi_{E} \quad=\quad$ See Section 5.10
$\pi_{\mathrm{Q}}=$ See Section 5.10

Package Type Factor ( $\Pi_{p T}$ )

| Package Type | $\Pi_{\text {PT }}$ |
| :--- | :---: |
| DIP | 1.0 |
| Pin Grid Array | 2.2 |
| Chip Carrier (Surface Mount Technology) | 4.7 |

$\lambda_{\mathrm{PH}}=$ Package Hermeticity Factor
$\lambda_{\mathrm{PH}}=0$ for Hermetic Packages
$\lambda_{\mathrm{PH}}=\frac{.399}{t_{\mathrm{PH}}} \exp \left[\frac{-.5}{\sigma_{\mathrm{PH}}{ }^{2}}\left(\ln (\mathrm{t})-\ln \left(\mathrm{t}_{50 \mathrm{PH}}\right)^{2}\right)^{2}\right]$ tor plastic packages
${ }^{t_{50}}{ }_{P H}=86 \times 10^{-6} \exp \left[\frac{2}{8.617 \times 10^{-5}}\left(\frac{1}{T_{A}}-\frac{1}{298}\right)\right] \exp \left[\frac{2.96}{R H_{E F F}}\right]$
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temp. (in ${ }^{\circ} \mathrm{K}$ )
$R H_{e f f}=(D C)(R H)\left[e^{5230}\left(\frac{1}{T_{J}}-\frac{1}{T_{A}}\right)\right]+(1-D C)(R H)$ where $T_{J}=T_{C}+\theta_{J C} P$ (in $\left.{ }^{\circ} K\right)$ (for example, for $50 \%$ Relative Humidity, use $\mathrm{RH}=.50$ )
$\sigma_{\mathrm{PH}}=.74$
$1=$ time (in $10^{6}$ hrs.)

## EOSAESD FAULURE PATE EOUATION

$\lambda_{\text {EOS }}=\frac{-\ln \left(1-.00057 e^{-.0002 V_{T H}}\right)}{.00876}$
$V_{T H}=$ ESD Threshold of the device using a $100 \mathrm{pF}, 1500$ ohm discharge model

## MISCELLANEOUS FAILURE RATE EQUATION

$$
\begin{aligned}
& \lambda_{\text {MIS }}=\left(.01 \mathrm{e}^{-2.2 \mathrm{t}_{0}}\right)\left(\text { A }_{\text {MMIS }}\right)\left(\mathrm{e}^{-2.2 \mathrm{~A} T_{\text {MIS }}}{ }^{\mathrm{t}}\right) \\
& { }^{\text {A }} \text { TMIS }=\text { Temperature Âcceieration Facior } \\
& =\exp \left[\frac{. .423}{8.6317 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right] \\
& \text { where } T_{J}=T_{C}+\theta_{J C}{ }^{P} \text { (in }{ }^{\circ} \mathrm{K} \text { ) } \\
& t_{0}=\text { Effective Screening Time } \\
& =A_{T_{\text {MIS }}} \text { (at Screening Temp. (in }{ }^{\circ} \mathrm{K} \text { ) }{ }^{*} \text { Actual Screening Time (in } 10^{6} \text { hours) } \\
& t=\text { time (in } 10^{6} \text { hrs.) }
\end{aligned}
$$

Publications listed with "AD" numbers may be obtained from:
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22151
(703) 487-4650
U.S. Defense Contractors may obtain copies from:

Defense Technical Information Center
Cameron Station - FDA, Bidg. 5
Alexandria, VA 22304-6145
(703) 274-7633

Documents with $A D$ number prefix with the letter " $B$ " or with the suffix " $L$ ": These documents are in a "Limfted Distribution" category. Contact the Defense Technical Information Center for ordering procedures.

Copies of MIL-STDS's, MIL-HDBK's, and specifications are available from:
Standardization Document Order Desk
700 Robins Ave.
Building 4, Section D
Philadelphia, PA 19111-5094
(215) 697-2667

The year of publication of the Rome Laboratory (RL) (formerty Rome Air Development Center (RADC)) documents is part of the RADC (or RL) number, e.g., RADC-TR-88-97 was published in 1988.

1. "Laser Reliability Prediction," RADC-TR-75-210, AD A016437.
2. "Reliability Model for Miniature Blower Motors Per MIL-B-23071B," RADC-TR-75-178, AD A013735.
3. "High Power Microwave Tube Reliability Study," FAA-RD-76-172, AD A0033612.
4. "Electric Motor Reliability Model," RADC-TR-77-408, AD A050179.
5. "Development of Nonelectronic Part Cyclic Failure Rates," RADC-TR-77-417, AD A050678.

This study developed new failure rate models for relays, switches, and connectors.
6. "Passive Device Failure Rate Models for MIL-HDBK-217B," RADC-TR-77-432, AD A050180.

This study developed new failure rate models for resistors, capacitors and inductive devices.
7. "Quantification of Prirted Circuit Board Connector Reliablitty," RADC-TR-77-433, AD A049980.
8. "Crimp Connection Reliability," RADC-TR-78-15, AD A050505.
9. "LSI/Microprocessor Reliability Prediction Model Development," RADC-TR-79-97, AD A068911.
10. "A Redundancy Notebook," RADC-TR-77-287, AD A050837.
11. "Revision of Environmental Factors for MIL-HDBK-217B," RADC-TR-80-299, AD A091837.

## APPENDIX C: BIBLIOGRAPHY

## 12. "Traveling Wave Tube Faikure Rates," RADC-TR-80-288, AD A096055. <br> 13. "Reliability Prediction Modeling of New Devices," RADC-TR-80-237, AD A090029. <br> This study developed faikure rate models for magnetic bubble memories and charge-coupled memories. <br> 14. "Failure Rates for Fiber Optic Assemblies," RADC-TR-80-322, AD A092315. <br> 15. "Printed Wiring Assembly and Interconnection Reliability," RADC-TR-81-318, AD A111214. <br> This study developed faikure rate models for printed wiring assemblies, solderless wrap assemblies, wrapped and soldered assemblies and discrete wiring assemblies with electroless deposited plated through holes. <br> 16. "Avionic Environmental Factors for MIL-HDBK-217." RADC-TR-81-374, AD B064430L. <br> 17. "RADC Thermal Guide for Reliability Engineers," RADC-TR-82-172, AD A118839. <br> 18. "Reliability Modeling of Critical Electronic Devices," RADC-TR-83-108, AD A135705. <br> This report developed faiture rate prediction procedures for magnetrons, vidicions, cathode ray tubes, semiconductor lasers, helium-cadmium lasers, helium-neon lasers, Nd: YAG lasers, electronic filters, solid state relays, time delay relays (electronic hybrid), circuit breakers, I.C. Sockets, thumbwheel switches, electromagnetic meters, fuses, crystals, incandescent lamps, neon glow lamps and surface acoustic wave devices.

19. "impact of Nonoperating Periods on Equipment Reliability." RADC-TR-85-91, AD A158843.

This study developed failure rate models for nonoperating periods.
20. "RADC Nonelectronic Reliability Notebook," RADC-TR-85-194, AD A163900.

This report contains faihure rate data on mechanical and electromechanical parts.
21. "Reliability Prediction for Spacecraft," RADC-TR-85-229, AD A149551.

This study investigated the reliability performance histories of $\mathbf{3 0 0}$ Satellite vehicles and is the basis for the halving of all model $\pi_{E}$ factors for MIL-HDBK-217E to MIL-HDKB-217E, Notice 1.
22. "Surface Mount Tectnnology: A Reliability Review," 1986, Available from Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, 800-526-4802.
23. "Thermal Resistances of Joint Army Navy (JAN) Certified Microcircuit Packages," RADC-TR-86-97. AD B108417.
24. "Large Scale Memory Error Detection and Correction," RADC-TR-87-92, AD B117765L.

This study developed models to calculate memory system reliability for memories incorporating error detecting and correcting codes. For a summary of the study see 1989 IEEE Reliability and Maintainability Symposium Proceedings, page 197, "Accounting for Soft Errors in Memory Reliability Prediction."
25. "Reliability Analysis of a Surface Mounted Package Using Finite Element Simulation," RADC-TR-87177. AD A189488.
26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
27. "Reliability Assessment of Surface Mount Tectrnology," RADC-TR-88-72, AD A193759.
28. "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new faikure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, inírared LEDs, Diode Array Displays and Current Reguiaior Diodes.
29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
30. "VHSICIVHSIC Like Reiliability Predicion Modeing," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.
31. "Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's plated-thru-hole (PTH) connections. The report gives a detailed account of the factors to be considered when periorming an FEA and the procedure used to transfer the results to a reliability figure-of-merit.
32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microctrcuit models (except VHSIC and Buthe Memories) appearing in MIL-HDBK-217F, Section 5.
33. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-811052.
34. "Reliability/Design Thermal Applications," MIL-HDBK-251.
35. "NASA Parts Application Handbook," IALL-HDBK-978-B (NASA).

This handtook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, taikure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
36. "Nonelectronic Parts Reliability Data 1991," NPRD-91.

This report contains field faiture rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies ( 1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.

Custodians:
Army - CR
Navy-EC
Air Force - 17

Preparing Activity:
Air Force - 17
Project No. RELI-0064

## APPENDIX C: BIBLIOGRAPHY

## Review Actinties:

Army - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 14, 15, 18,
19, 99
User Activities:
Army - AT, ME, GL
Navy-CG, MC, YD, TD
Air Force - 85

WSTRUCTIONS: In a continuing effort to make our stenderdization documents betier, the DoD provides this form for use in subrniting comments and suggestions tor improvementa. All users of millery stinderdication documents are invited to provide suggestions. This form may be depactied, folded along the Ines indicated, mped along the locee edoe (DO MOT STAPLE), and mailed. In block 5, be as apectic as posalible aboul pariciler problem rees auch as mording which requbed inteppretaicon, wea too rigid, restrictiv, locee, ambiouous, or was incompmible, and give propoead wording
 acinowledgement will be mailed to you whtin 30 days to bet you lonow thet your comments were recelved and are being conaidered.

NOTE: This form may not be veed to request copies of docurnents, nor to request waivers, deviations, or clarfication of epecitication requirements on currem contrects. Commente submited on thia form do not constitite or imply euthorization to wave any portion of the referenced document(s) or to arnend contracual requirementis.

DEPARTMENT OF THE AR FORCE
RLERSS
Griffiss AFB, NY 13441-5700

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $\$ 300$

Rome Laboratory
ATTN: RLERSS
Griffiss AFB, NY 13441-5700



## MILITARY HANDBOOK <br> RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages isied.

| New Page(s) <br> vil | Date | Superseded Page(s) vii | Date <br> 2 Deoember 1991 |
| :---: | :---: | :---: | :---: |
| 5-3 |  | 5-3 | 2 December 1991 |
| 5-4 |  | 5-4 | 2 December 1991 |
| 5-7 |  | 5-7 | 2 December 1991 |
| 5-8 | 2 December 1991 | 5-8 | Reprinted without change |
| 5-9 |  | 5-9 | 2 December 1991 |
| 5-10 | 2 December 1991 | 5-10 | Reprimed without change |
| 5-11 | 2 December 1991 | 5-11 | Reprinted without change |
| 5-12 |  | 5-12 | 2 December 1991 |
| 5-13 |  | 5-13 | 2 December 1991 |
| 5-14 | 2 December $19 \overline{9} 1$ | 5-14 | Reprinied without chañge |
| 5-19 |  | 5-19 | 2 December 1991 |
| 5-20 | 2 December 1991 | 5-20 | Reprinted without change |
| 6-15 |  | 6-15 | 2 December 1991 |
| 6-16 | 2 December 1991 | 6-16 | Feprinted without change |
| 7-1 | 2 December 1391 | $7=1$ | Peprinted without change |
| 7-2 |  | 7-2 | 2 December 1991 |
| 12-3 |  | 12-3 | 2 December 1991 |
| 12-4 | 2 December 1991 | 12-4 | Feprinted without change |
| A-1 | 2 December 1931 | A-1 | Reprinted without change |
| A-2 |  | A-2 | 2 December 1991 |
| A-3 |  | A-3 | 2 December 1991 |
| A-4 | 2 December 1991 | A-4 | Reprinted without change |
| A-5 |  | A-5 | 2 Decemter 1391 |
| A-6 |  | A-6 | 2 December 1991 |
| A-7 |  | A-7 | 2 December 1991 |
| A-8 |  | A-8 | 2 December 1991 |
| A-9 |  | À-9 | 2 Decomter 1991 |
| A-10 | 2 December 1991 | A-10 | Reprinted without change |
| A-11 | 2 December 1991 | A-11 | Reprinted without change |
| A-12 |  | A-12 | 2 Decermber 1991 |
| A-13 |  | A-13 | 2 December 1991 |
| A-14 |  | A-14 | 2 December 1991 |
| A-15 | 2 December 1991 | A-15 | Reprinted without change |
| A-16 |  | A-16 | 2 December 1991 |

AMSC N/A
DISTBIBUTIONSTAIEMENTA: Ápproved íor pubicic releāse; distribution uñlimineá.

## MIL-HDBK-217F NOTICE 1

2. Retain the pages of this notice and insert before the Table of Contents.
3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate priblication. Cach notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:
Army - CR
Navy - EC
Air Force-17

Proparing Activity:
Air Force - 17.
Project No. RELI-0068

## Review Activities:

Anmy - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 14, 15, 18,
19, 99
User Activities:
Army - AT, ME, GL
Navy - CG, MC, YD, TD
Air Force - 85

## MIL-HDBK-217F NOTICE 1

MIL-HDBK-217F, Notice 1 is issued to correct minor typographical errors in the basic F Revision. MIL-HDBK-217F (base document) provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

1. New failure rate prediction models are provided for the following nine major classes of microcircuits:

- Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
- Monolithic MOS Digital and Linear Gate/Logic Array Devices
- Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
- Monolithic Bipolar and MOS Memory Devices
- Monolithic GaAs Digital Devices
- Monolithic GaAs MMIC Devices
- Hybrid Microcircuits
- Magnetic Bubble Memories
- Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The $C_{\text {, }}$ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice ( $\pi_{T}$ ) have been changed for MOS devices and for memories. The $\mathrm{C}_{2}$ factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor ( $\pi_{Q}$ ), the learning factor ( $\pi_{L}$ ), and the environmental factor ( $\pi_{E}$ ). The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect fallure rate contributions, and to provide a method of calculating chip junction temperatures.
2. A new model for Very High Speed Integrated Circuits (VHSICNHSIC Like) and Very Large Scale integration (VLSI) devices (gate counts above 60,000).
3. The reformatting of the entire handbook to make it easier to use.
4. A reduction in the number of environmental factors $\left(\pi_{E}\right)$ from 27 to 14.
5. A revised fallure rate model for Network Resistors.
6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

## DESCRIPTION

1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
2. MOS Devices, Digital and Linear Gate/Logic Arrays
3. Field Programmable Logic Array (PLA) and

Programmable Array Logic (PAL)
4. Microprocessors

$$
\lambda_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \text { Failures } / 10^{6} \text { Hours }
$$

Bipolar Digital and Linear Gate/Logic Array Die Complexity Faikure Rate - $\mathrm{C}_{1}$

| Digital |  | Linear |  |  | PLAPAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. Gates | $\mathrm{C}_{1}$ | No. Tran | sistors | $C_{1}$ | No. Gates | $\mathrm{C}_{1}$ |
| 1 to 100 | . 0025 | 1 to | 100 | . 010 | Up to 200 | . 010 |
| 101 to 1,000 | . 0050 | 101 to | 300 | . 020 | 201 to 1,000 | . 021 |
| 1,001 to 3,000 | . 010 | 30110 | 1,000 | . 040 | 1,001 to 5,000 | . 042 |
| 3,001 to 10,000 | . 020 | 1,001 to | 10,000 | . 060 |  |  |
| 10,001 to 30,000 | . 040 |  |  |  |  |  |
| 30,001 to 60,000 | . 080 |  |  |  |  |  |

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1 ${ }_{1}$

| Digital |  |  |  | Linear |  |  |  | PLAPAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. Gates |  |  | $C_{1}$ | No. | Tran | sistors | $C_{1}$ | No. Gates | $C_{1}$ |
| 1 | 10 | 100 | . 010 | 1 | 10 | 100 | . 010 | Up to 500 | . 00085 |
| 101 | to | 1,000 | . 020 | 101 | to | 300 | . 020 | 501 to 2,000 | . 0017 |
| 1.001 | to | 3,000 | . 040 | 301 | to | 1,000 | . 040 | 2,001 to 5,000 | . 0034 |
| 3,001 | to | 10,000 | . 080 | 1,001 |  | 10,000 | . 060 | 5,001 to 20,000 | . 0068 |
| 10,001 | to | 30,000 | . 16 |  |  |  |  |  |  |
| 30,001 | to | 60,000 | . 29 |  |  |  |  |  |  |

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor
Die Complexky Fallure Rate - $\mathrm{C}_{1}$

| No. Bits | Bipolar | MOS |
| :--- | :--- | :--- |
|  | $C_{1}$ | $C_{1}$ |
| Up to 16 | .060 | .14 |
| Up to 32 | .12 | .28 |

All Other Model Parameters

| Parameter | Refer to |
| :--- | :--- |
| $\pi_{\mathrm{T}}$ | Section 5.8 |
| $\mathrm{C}_{2}$ | Section 5.9 |
| $\pi_{\mathrm{E}}, \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$ | Section 5.10 |

## MIL-HDBK-217F <br> NOTICE 1

5.2 MICROCIRCUITS, MEMORIES

## DESCRIPTION

1. Read Only Memories (ROM)
2. Programmable Read Only Memories (PROM)
3. Utraviolet Eraseable PROMs (UVEPROM)
4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
5. Static Random Access Memories (SRAM)
6. Dynamic Random Access Memories (DRAM)

$$
\lambda_{D}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{c y c}\right) \pi_{Q} \pi_{L} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Die Complexhy Fallure Rate $-\mathrm{C}_{1}$

| Memory Size, B (Bits) | MOS |  |  |  | Bipolar |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROM | PROM, UVEPROM, EEPROM, EAPROM | DRAM | $\begin{gathered} \text { SRAM } \\ \text { (MOS \& } \\ \text { BiCMOS) } \end{gathered}$ | ROM, PROM | SRAM |
| Up to 16K | . 00065 | . 00085 | . 0013 | . 0078 | . 0094 | . 0052 |
| 16K < B $\leq 64 \mathrm{~K}$ | . 0013 | . 0017 | . 0025 | . 016 | . 019 | . 011 |
| $64 \mathrm{~K}<\mathrm{B} \leq 256 \mathrm{~K}$ | . 0026 | . 0034 | . 0050 | . 031 | . 038 | . 021 |
| $256 \mathrm{~K}<\mathrm{B} \leq 1 \mathrm{M}$ | . 0052 | . 0068 | . 010 | . 062 | . 075 | . 042 |


| A $_{1}$ Factor for $\lambda_{\text {cyc }}$ Calculation |  |  |
| :--- | :--- | :--- |
| Total No. of <br> Programming <br> Cycles Over <br> EEPROM Life, C  Flotox | Textured- <br> Poly $^{2}$ |  |
|  |  |  |
| Up to 100 | .00070 | .0097 |
| $100<C \leq 200$ | .0014 | .014 |
| $200<C \leq 500$ | .0034 | .023 |
| $500<C \leq 1 K$ | .0068 | .033 |
| $1 K<C \leq 3 K$ | .020 | .061 |
| $3 K<C \leq 7 K$ | .049 | .14 |
| $7 K<C \leq 15 K$ | .10 | .30 |
| $15 K<C \leq 20 K$ | .14 | .30 |
| $20 K<C \leq 30 K$ | .20 | .30 |
| $30 K<C \leq 100 K$ | .68 | .30 |
| $100 K<C \leq 200 K$ | 1.3 | .30 |
| $200 K<C \leq 400 K$ | 2.7 | .30 |
| $400 K<C \leq 500 K$ | 3.4 | .30 |

1. $A_{1}=6.817 \times 10^{-6}(C)$
2. No undertying equation for TexturedPoly.

| Total No. of Programming <br> Cycles Over EEPROM <br> Life, $C$ | Textured-Poly $A_{2}$ |
| :---: | :---: |
| Up to 300 K | 0 |
| $300 \mathrm{~K}<C \leq 400 \mathrm{~K}$ | 1.1 |
| $400 \mathrm{~K}<C \leq 500 \mathrm{~K}$ | 2.3 |

All Other Model Parameters

| Parameter | Refer to |
| :---: | :---: |
| $\pi_{T}$ | Section 5.8 |
| $C_{2}$ | Section 5.9 |
| $\pi_{E}, \pi_{Q}, \pi_{L}$ | Section 5.10 |
| $\lambda_{\text {cyc }}$ (EEPROMS only) | Page 5-5 |
| $\lambda_{\text {cyc }}=0 \quad$ For all other devices |  |

## DESCRIPTION

CMOS greater than 60:000 gates

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{BD}} \pi_{M \mathrm{MFG}} \pi_{\mathrm{T}} \pi_{\mathrm{CD}}+\lambda_{\mathrm{BP}} \pi_{\mathrm{E}} \pi_{\mathrm{Q}} \pi_{\mathrm{PT}}+\lambda_{\mathrm{EOS}} \text { Failures/ } 10^{6} \text { Hours }
$$

Die Base Failure Rate $-\lambda_{\mathrm{BD}}$

| Pant Type | $\lambda_{\mathrm{BD}}$ |
| :--- | :--- |
| Logic and Custom | 0.16 |
| Gate Array and Memory | 0.24 |

Manufacturing Process Correction Factor - $\pi_{\text {MFG }}$

| Manufacturing Process | $\pi_{\text {MFG }}$ |
| :--- | :--- |
| QML or QPL | .55 |
| Non QML or Non QPL | 2.0 |

All Other Model Parameters

| Parameter | Refer to |
| :--- | :---: |
| $\pi_{\mathrm{T}}$ | Section 5.8 |
| $\pi_{\mathrm{E}}, \pi_{\mathrm{O}}$ | Section 5.10 |

Package Type Correction Factor $-\pi_{\text {PT }}$

|  | $\pi_{\text {PT }}$ |  |
| :--- | :---: | :---: |
| Package Type | Hermetic | Nonhermetic |
| DIP | 1.0 | 1.3 |
| Pin Grid Array | 2.2 | 2.9 |
| Chip Carrier | 4.7 | 6.1 |
| (Surface Mount |  |  |
| Technology) |  |  |

Die Complexity Correction Factor - $\pi_{C D}$

| Featurio Stzo (Microns) | A $\leq .4$ | . $4<A \leq .7$ | $\begin{gathered} \text { Die Area }\left(\mathrm{cm}^{2}\right) \\ .7<A \leq 1.0 \end{gathered}$ | $1.0<4 \leq 2.0$ | $2.0<A \leq 3.0$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . 80 | 8.0 | 14 | 19 | 38 | 58 |
| 1.00 | 5.2 | 8.9 | 13 | 25 | 37 |
| 1.25 | 3.5 | 5.8 | 8.2 | 16 | 24 |
| ${ }^{\pi_{C D}}=\left(\left(\frac{A}{.24}\right)\left(\frac{2}{X_{s}}\right)^{2}(.64)\right)+.36 \quad A=$ Total Scribed Chip Die Area in $\mathrm{cm}^{2} \quad X_{s}=$ Feature Size (microns) <br> Die Area Conversion: $\mathrm{cm}^{2}=\mathrm{MIL}^{2} \div 155,000$ |  |  |  |  |  |

Package Base Failure Rate - $\lambda_{\mathrm{BP}}$

| Number oi Pins | $\lambda_{\mathrm{BP}}$ |
| :---: | ---: |
| 24 | .0026 |
| 28 | .0027 |
| 40 | .0029 |
| 44 | .0030 |
| 48 | .0030 |
| 52 | .0031 |
| 64 | .0033 |
| 84 | .0036 |
| 120 | .043 |
| 124 | .0043 |
| 144 | .0047 |
| 220 |  |
|  |  |
| $\lambda_{\mathrm{BP}}=.0022+\left(\left(1.72 \times 10^{-5}\right)(\mathrm{NP})\right)$ |  |
| $\mathrm{NP}=$ | Number of Package Pins |

Electrical Overstress Failure Rate - $\lambda_{E O S}$

| $V_{\text {TH }}$ (ESD Susceptibility (Voits)) ${ }^{\text {a }}$ | $\lambda_{\text {EOS }}$ |
| :---: | :---: |
| 0-1000 | . 065 |
| > 1000-2000 | . 053 |
| > 2000-4000 | . 044 |
| > 4000-16000 | . 029 |
| $>16000$ | . 0027 |
| $\lambda_{\text {EOS }}=\left(-\ln \left(1-.00057\right.\right.$ expl $\left.-.0002 V_{\text {TH }}\right)$ ) 100876 |  |
| $V_{T H}=$ ESD Susceptibility (volts) |  |
| - Voltage ranges which will cause the part to fail. If unknown, use $0-1000$ volts. |  |

## MIL-HDBK-217F

### 5.4 MICROCIRCUITS, GaAs MMIC AND DIGITAL DEVICES

## DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

$$
\lambda_{P}=\left[C_{1} \pi_{T} \pi_{A}+C_{2} \pi_{E}\right] \pi_{L} \pi_{Q} \text { Failures/106 Hours }
$$

| MMIC: Die Complexity Faikure Rates - $\mathrm{C}_{1}$ |
| :--- |
| Complexity <br> (No. of Elements) $\mathrm{C}_{1}$ <br> 1 to 100 4.5 <br> 101 to 1000 7.2 |

1. $\mathrm{C}_{1}$ accounts for the following active elements: transistors, diodes.

Digital: Die Complexity Failure Rates - $\mathrm{C}_{1}$

| Complexity <br> (No. of Elements) | $\mathrm{C}_{1}$ |
| :---: | :---: |
| 1 to 1000 | 25 |
| 1,001 to 10,000 | 51 |

1. $\mathrm{C}_{1}$ accounts for the following active elements: transistors, diodes.
Device Application Factor - $\pi_{\mathrm{A}}$

| Application | $\pi_{\mathrm{A}}$ |
| :--- | :---: |
| MMIC Devices |  |
| Low Noise \& Low Power ( $\leq 100 \mathrm{~mW}$ ) | 1.0 |
| Driver \& High Power (> 100 mW ) | 3.0 |
| Unknown | 3.0 |
| Digital Devices |  |
| All Digital Applications | 1.0 |

All Other Model Parameters

| Parameter | Refer to |
| :--- | :---: |
| $\pi_{T}$ | Section 5.8 |
| $C_{2}$ | Section 5.9 |
| $\pi_{E}, \pi_{L}, \pi_{\mathrm{O}}$ | Section 5.10 |

## DESCRIPTION

Hybrid Microcircuits

$$
\lambda_{P}=\left(\Sigma N_{C} \lambda_{C}\right)\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{Q} \pi_{L} \text { Failures } / 10^{6} \text { Hours }
$$

$N_{c}=$ Number of Each Particular Component
$\lambda_{c}=$ Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function ( $\pi_{\mathrm{F}}$ ), screening level ( $\pi_{\mathrm{a}}$ ), and maturity ( $\pi_{\mathrm{L}}$ ). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., ( $1+.2$ $\pi_{E}$ ) ). Onty the componert types tisted in the following table are considered to contribute significantly to
the overall failure rate of most hybrids. All other component types (e.g.. resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_{Q}=1, \pi_{E}=1$ and $T_{A}=$ Hybrid Case Temperature for these calculations.

Determination of $\lambda_{c}$

| Determine $\lambda_{c}$ for These <br> Component Types | Handbook Section | Make These Assumptions When Determining <br> $\lambda_{C}$ |
| :--- | :---: | :--- |
| Microcircults | 5 | $C_{2}=0, \pi_{Q}=1, \pi_{L}=1, T_{J}$ as Determined from <br> Section $5.12, \lambda_{B P}=0$ (for VHSIC), <br> $\pi_{E}=1$ (for SAW). <br> Discrete Semiconductors <br> Capacitors$\quad 6$ |
| $\pi_{Q}=1, T_{J}$ as Determined from Section 6.14, <br> $\pi_{E}=1$. <br> $\pi_{Q}=1, T_{A}=$ Hybrid Case Temperature, <br> $\pi_{E}=1$. |  |  |

NOTE: If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

Circult Function Factor - $\pi_{F}$

| Circuit Type | $\pi_{\mathrm{F}}$ |
| :--- | :---: |
|  |  |
| Digital | 1.0 |
| Video, $10 \mathrm{MHz}<\mathrm{f}<1 \mathrm{GHz}$ | 1.2 |
| Microwave, $\mathrm{f}>1 \mathrm{GHz}$ | 2.6 |
| Linear, $\mathrm{f}<10 \mathrm{MHz}$ | 5.8 |
| Power | 21 |

All Other Hybrid Model Parameters

| $\pi_{L}, \pi_{Q}, \pi_{E}$ | Refer to Section 5.10 |
| :---: | :--- |

## DESCRIPTION

Surface Acoustic Wave Devices

$$
\lambda_{P}=2.1 \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Quality Factor $-\pi_{\mathrm{Q}}$ |
| :--- |
| Screening Levei $\pi_{\mathrm{Q}}$ <br> 10 Temperature Cycles $\left(-55^{\circ} \mathrm{C}\right.$ to <br> ＋125 <br> tests at temperature extremes． .10 <br> None beyond best commerical <br> practices． 1.0 |


| Environmental Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $\mathrm{G}_{\mathrm{B}}$ | .5 |
| $\mathrm{G}_{\mathrm{F}}$ | 2.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 4.0 |
| $\mathrm{~N}_{\mathrm{S}}$ | 4.0 |
| $\mathrm{~N}_{\mathrm{U}}$ | 6.0 |
| $\mathrm{~A}_{\mathrm{K}}$ | 4.0 |
| $\mathrm{~A}_{\mathrm{IF}}$ | 5.0 |
| $\mathrm{~A}_{\mathrm{UC}}$ | 5.0 |
| $\mathrm{~A}_{\mathrm{UF}}$ | 8.0 |
| $\mathrm{~A}_{\mathrm{RW}}$ | 8.0 |
| $\mathrm{~S}_{\mathrm{F}}$ | .50 |
| $\mathrm{M}_{\mathrm{F}}$ | 5.0 |
| $\mathrm{M}_{\mathrm{L}}$ | 12 |
| $\mathrm{C}_{\mathrm{L}}$ | 220 |

## MIL-HDBK-217F

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the fallure rate model is:

$$
\lambda_{p}=\lambda_{1}+\lambda_{2} \text { Failures } / 10^{6} \text { Hours }
$$

where:
$\lambda_{1}=$ Failure Rate of the Control and Detection Structure
$\lambda_{1}=\pi_{Q}\left[N_{C} C_{11} \pi_{T_{1}} \pi_{W}+\left(N_{C} C_{21}+C_{2}\right) \pi_{E}\right] \pi_{D} \pi_{L}$
$\lambda_{2}=$ Failure Rate of the Memory Storage Area
$\lambda_{2}=\pi_{Q} N_{C}\left(C_{12} \pi_{T 2}+C_{22} \pi_{E}\right) \pi_{L}$

Chips Per Package - $\mathrm{N}_{\mathrm{C}}$
$N_{C}=$ Number of Bubble Chips per Packaged Device

Temperature Factor $-\pi_{T}$
$\pi_{T}=(.1) \exp \left[\frac{-E a}{8.63 \times 10^{-5}}\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right]$
Use:
$E_{a}=.8$ to Calculate $\pi_{T 1}$
$\mathrm{E}_{\mathrm{a}}=.55$ to Calculate $\pi_{T 2}$
$T_{J}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$, $25 \leq T_{J} \leq 175$
$T_{J}=T_{\text {CASE }}+10^{\circ} \mathrm{C}$

Device Complexity Failure Rates for Control and Detection Structure - $\mathrm{C}_{11}$ and $\mathrm{C}_{21}$

$$
\begin{aligned}
C_{11}= & .00095\left(N_{1}\right) \cdot 40 \\
C_{21}= & .0004\left(N_{1}\right) \cdot 226 \\
N_{1}= & \begin{array}{l}
\text { Number of Dissipative Elements } \\
\text { on a Chip (gates, detectors, } \\
\text { generators, etc.), } N_{1} \leq 1000
\end{array}
\end{aligned}
$$

## MIL-HDBK-217F NOTICE 1

### 5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES



Device Complexity Failure Rates for Memory Storage Structure $-\mathrm{C}_{12}$ and $\mathrm{C}_{22}$
$C_{12}=.00007\left(N_{2}\right)^{3}$
$C_{22}=.00001\left(N_{2}\right)^{.3}$
$N_{2}=$ Number of Bits, $N_{2} \leq 9 \times 10^{6}$

All Other Model Parameters

| Parameter | Section |
| :--- | :--- |
| $C_{2}$ | 5.9 |
| $\pi_{E}, \pi_{Q}, \pi_{L}$ | 5.10 |

Temperature Factor For All Microcircuits - $\pi$ r

|  | $\pm$ | 웅ㅇㅇㅇㅇ <br>  |
| :---: | :---: | :---: |
| $\begin{aligned} & \frac{0}{2} \\ & \frac{1}{2} \\ & \frac{0}{2} \end{aligned}$ | $\stackrel{\sim}{\square}$ | 8 8 8\% <br>  |
|  |  |  <br>  |
|  | 0 |  <br>  |
|  | $\stackrel{0}{0}$ |  |
| $\begin{aligned} & \underline{\underline{\mathbf{n}}} \\ & \underline{\underline{玉}} \end{aligned}$ | $\bigcirc$ |  <br>  |
|  |  |  <br>  |
|  | - |  |
|  |  |  |



### 5.9 MICROCIRCUITS, $C_{2}$ TABLE FOR ALL

Package Failure Rate for all Microcircuits - $\mathrm{C}_{2}$

| Package Type |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of Functional Pins, $N_{p}$ | Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ${ }^{1}$, SMT (Leaded and Nonleaded) | DIPs whth Glass Seal ${ }^{2}$ | Flatpacks with Axial Leads on 50 Mil Centers ${ }^{3}$ | Cans ${ }^{4}$ | Nonhermetic: DIPs, PGA. SMT (Leaded and Nonleaded) ${ }^{5}$ |
| 3 | . 00092 | . 00047 | . 00022 | . 00027 | 0012 |
| 4 | . 0013 | . 00073 | . 00037 | . 00049 | . 0016 |
| 6 | . 0019 | . 0013 | . 00078 | . 0011 | . 0025 |
| 8 | . 0026 | . 0021 | . 0013 | . 0020 | . 0034 |
| 10 | . 0034 | . 0029 | . 0020 | . 0031 | . 0043 |
| 12 | . 0041 | . 0038 | . 0028 | . 0044 | . 0053 |
| 14 | . 0048 | . 0048 | . 0037 | . 0060 | . 0062 |
| 16 | . 0056 | . 0059 | . 0047 | . 0079 | . 0072 |
| 18 | . 0064 | . 0071 | . 0058 |  | . 0082 |
| 22 | . 0079 | . 0096 | . 0083 |  | . 010 |
| 24 | . 0087 | . 011 | . 0098 |  | . 011 |
| 28 | . 010 | . 014 |  |  | . 013 |
| 36 | . 013 | . 020 |  |  | . 017 |
| 40 | . 015 | . 024 |  |  | . 019 |
| 64 | . 025 | . 048 |  |  | . 032 |
| 80 | . 032 |  |  |  | . 041 |
| 128 | . 053 |  |  |  | . 068 |
| 180 | . 076 |  |  |  | . 098 |
| 224 | . 097 |  |  |  | . 12 |

1. $C_{2}=2.8 \times 10^{-4}\left(N_{p}\right)^{1.08}$
2. $C_{2}=3.0 \times 10^{-5}\left(N_{p}\right)^{1.82}$
3. $C_{2}=3.6 \times 10^{-4}\left(N_{p}\right)^{1.08}$

## NOTES:

1. SMT: Surface Mount Technology
2. DIP: Dual In-Line Package
3. H DIP Sead type is unknown, assume gtass
4. The package fallure rate $\left(C_{2}\right)$ accounts for faikures associated only with the package inself.

Fallures assoclated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.

### 5.12 MICROCIRCUITS, $T_{J}$ DETERMINATION, (FOR HYBRIDS)

Typical Hybrid Characteristics

| Material | Typical Usage | Typical Thickness, $L_{i}$ (m.) | Feature From Figure 5-1 | $\begin{gathered} \text { Thermal } \\ \text { Conductivity, } \\ \mathrm{K}_{\mathrm{i}} \\ \left(\frac{\mathrm{~W} / \mathrm{in}^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right) \end{gathered}$ | $\begin{gathered} \left(\frac{1}{K_{i}}\right)\left(L_{i}\right) \\ \left(i^{2}{ }^{\circ} \mathrm{C} / \mathrm{w}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Silicon | Chip Device | 0.010 | A | 2.20 | . 0045 |
| GaAs | Chip Device | 0.0070 | A | . 76 | . 0092 |
| Au Eutectic | Chip Attach | 0.0001 | B | 6.9 | . 000014 |
| Solder | Chip/Substrate Attach | 0.0030 | B/E | 1.3 | . 0023 |
| Epoxy (Dielectric) | Chip/Substrate Attach | 0.0035 | B/E | . 0060 | . 58 |
| Epoxy (Conductive) | Chip Attach | 0.0035 | B | . 15 | . 023 |
| Thick Fitm Dielectric | Glass Insulating Layer | 0.0030 | C | . 66 | . 0045 |
| Alumina | Substrate, MHP | 0.025 | D | . 64 | . 039 |
| Beryllium Oxide | Substrate, PHP | 0.025 | D | 6.6 | . 0038 |
| Kovar | Case, MHP | 0.020 | F | . 42 | . 048 |
| Aluminum | Case, MHP | 0.020 | F | 4.6 | . 0043 |
| Copper | Case, PHP | 0.020 | F | 9.9 | . 0020 |

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: $\geq 2 \mathrm{~W}$, Typically)

$$
\theta_{J C}=\frac{\sum_{i=1}^{n}\left(\frac{1}{K_{i}}\right)\left(L_{i}\right)}{A}
$$

$n=$ Number of Material Layers
$K_{i}=$ Thermal Conductivity of $i^{\text {th }}$ Material $\left(\frac{W / i^{2}}{{ }^{2} / / \mathrm{n}}\right)$ (User Provided or From Table)
$L_{1} \quad$ - Thickness of ith Material (in) (User Provided or From Table)
A = Die Area (in ${ }^{2}$ ). If Die Area cannot be readily determined, estimate as fotlows: $A=[.00278 \text { (No. of Die Active Wire Terminals) }+.0417]^{2}$

Estimate $T_{J}$ as Follows:

$$
T_{J}=T_{C}+\left(\theta_{J C}\right)\left(P_{D}\right)
$$

$T_{C}=$ Hybrid Case Temperature $\left({ }^{\circ} \mathrm{C}\right)$. H unknown, use the $T_{C}$ Default Table shown in Section 5.11.
$\theta_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance ( ${ }^{\circ} \mathrm{CM}$ ) (As determined above)
$P_{D}=$ Die Power Dissipation (W)

## Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an airbome inhabited cargo application, case temperature $48^{\circ} \mathrm{C}, 75 \mathrm{~mW}$ power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and extemal visual inspection, in the sequence given. The component manufacturer atso performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$
\lambda_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.1
$$



## Example 2: EEPROM

Given: A 128 K Fiotox EEPROM that is expected to have a $T_{J}$ of $80^{\circ} \mathrm{C}$ and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. His packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$
\pi_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{\text {cyc }}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.2
$$

| $C_{1}=.0034$ | Section 5.2 |
| :--- | :--- | :--- |
| $\pi_{T}=3.8$ | Section 5.8 |
| $C_{2}=.014$ | Section 5.9 |

## MIL-HDBK-217F NOTICE 1

### 6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor $-\pi_{M}$

| Matching | $\pi_{M}$ |
| :--- | :---: |
| Input and Output | 1.0 |
| Input Only | 2.0 |
| None | 4.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 5.0 |
| $N_{S}$ | 4.0 |
| $N_{U}$ | 11 |
| $A_{K_{C}}$ | 4.0 |
| $A_{I F}$ | 5.0 |
| $A_{U C}$ | 7.0 |
| $A_{U F}$ | 12 |
| $A_{R W}$ | 16 |
| $S_{F}$ | .50 |
| $M_{F}$ | 9.0 |
| $M_{L}$ | 24 |
| $C_{L}$ | 250 |

## MIL-HDBK-217F

6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

## SPECIFICATION

MIL-S-19500

## DESCRIPTION

Si FETs (Avg. Power < 300 mW . Freq. > 400 MHz )

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

| Base Faikure Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :---: |
| Transistor Type $\lambda_{\mathrm{b}}$ <br> MOSFET .060 <br> JFET .023 |  |


| $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | ${ }_{T}$ | $\left.\mathrm{T}_{3}{ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| :---: | :---: | :---: | :---: |
| 25 | 1.0 | 105 | 3.9 |
| 30 | 1.1 | 110 | 4.2 |
| 35 | 1.2 | 115 | 4.5 |
| 40 | 1.4 | 120 | 4.8 |
| 45 | 1.5 | 125 | 5.1 |
| 50 | 1.6 | 130 | 5.4 |
| 55 | 1.8 | 135 | 5.7 |
| 60 | 2.0 | 140 | 6.0 |
| 65 | 2.1 | 145 | 6.4 |
| 70 | 2.3 | 150 | 6.7 |
| 75 | 2.5 | 155 | 7.1 |
| 80 | 2.7 | 160 | 7.5 |
| 85 | 3.0 | 165 | 7.9 |
| 90 | 3.2 | 170 | 8.3 |
| 95 | 3.4 | 175 | 8.7 |
| 100 | 3.7 |  |  |
| $\pi_{T}=\exp \left(-1925\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$ |  |  |  |
| $T_{J}=$ Junction Tomperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |


| Quality Factor - $\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| JANTXV | .50 |
| JANTX | 1.0 |
| JAN | 2.0 |
| Lower | 5.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 5.0 |
| $N_{S}$ | 4.0 |
| $N_{U}$ | 11 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 5.0 |
| $A_{U C}$ | 7.0 |
| $A_{U F}$ | 12 |
| $A_{R W}$ | 16 |
| $s_{F}$ | .50 |
| $M_{F}$ | 24.0 |
| $M_{L}$ | 250 |

## DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

$$
\lambda_{p}=\lambda_{b} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - $\lambda_{b}$


### 7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

Alternate* Base Failure Rate for Putsed Klystrons - $\lambda_{6}$

| P(MW | .2 | .4 | .6 | .8 | 1.0 | 2.0 | 4.0 | 6.0 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| .01 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| .30 | 16 | 16 | 17 | 17 | 17 | 18 | 20 | 21 |
| .80 | 16 | 17 | 17 | 18 | 18 | 21 | 25 | 30 |
| 1.0 | 17 | 17 | 18 | 18 | 19 | 22 | 28 | 34 |
| 3.0 | 18 | 20 | 21 | 23 | 25 | 34 | 51 |  |
| 5.0 | 19 | 22 | 25 | 28 | 31 | 45 | 75 |  |
| 8.0 | 21 | 25 | 30 | 35 | 40 | 63 | 110 |  |
| 10 | 22 | 28 | 34 | 40 | 45 | 75 |  |  |
| 25 | 31 | 45 | 60 | 75 | 90 | 160 |  |  |

$\lambda_{B}=2.94(F)(P)+16$
$F=$ Operating Frequency in $\mathrm{GHz}, 0.2 \leq F \leq 6$
$P=P e a k$ Output Power in MW, . $01 \leq P \leq 25$ and $P \leq 490 F^{-2.95}$
-See previous page for other Klystron Base Failure Rates.

Alternate* Base Failure Rate for CW Klystrons - $\lambda_{b}$

| P(KW) | 300 | 500 | 800 | 1000 | $F(M H z)$ | 2000 | 4000 | 6000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 0.1 | 30 | 31 | 33 | 34 | 38 | 47 | 57 | 66 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.0 | 31 | 32 | 33 | 34 | 39 | 48 | 57 | 66 |
| 3.0 | 32 | 33 | 34 | 35 | 40 | 49 | 58 |  |
| 5.0 | 33 | 34 | 35 | 36 | 41 | 50 |  |  |
| 8.0 | 34 | 35 | 37 | 38 | 42 |  |  |  |
| 10 | 35 | 36 | 38 | 39 | 43 |  |  |  |
| 30 | 45 | 46 | 48 | 49 |  |  |  |  |
| 50 | 55 | 56 | 58 | 59 |  |  |  |  |
| 80 | 70 | 71 | 73 |  |  |  |  |  |
| 100 | 80 | 81 |  |  |  |  |  |  |

$\lambda_{b}=0.5 P+.0046 F+29$
$P=$ Average Output Power in KW, $0.1 \leq P \leq 100$ and $P \leq 8.0(10)^{6}(F)^{-1.7}$
$F=$ Operating Frequency in MHz . $300 \leq F \leq 8000$

## -See previous page for other Klystron Base Failure Rates.

| Leaming Factor $-\pi_{L}$ |  |
| :---: | :---: |
| $T$ (years) | $\pi_{L}$ |
| $\leq 1$ | 10 |
| 2 | 2.3 |
| $\geq 3$ | 1.0 |
| $\pi_{L}$ | $=10(T)^{-2.1}, 1 \leq T \leq 3$ |
|  | $=10, T \leq 1$ |
| $T$ | $=1 . T \geq 3$ |$\quad$| Number of Years since Introduction |
| :--- |
| to Field Use |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $\mathrm{G}_{8}$ | . 50 |
| $\mathrm{G}_{\mathrm{F}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{M}}$ | 14 |
| $\mathrm{N}_{\mathrm{S}}$ | 8.0 |
| $\mathrm{N}_{\mathrm{U}}$ | 24 |
| $A_{1 C}$ | 5.0 |
| $A_{\text {IF }}$ | 8.0 |
| ${ }^{\text {A }}$ UC | 6.0 |
| $A_{\text {UF }}$ | 12 |
| $A_{\text {RW }}$ | 40 |
| $S_{F}$ | . 20 |
| $M_{F}$ | 22 |
| $M_{L}$ | 57 |
| $C_{L}$ | 1000 |

## MIL-HDBK-217F NOTICE 1

### 12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

## DESCRIPTION

Rotating Synchros and Resolvers

$$
\lambda_{p}=\lambda_{b} \pi_{S} \pi_{N} \pi_{E} \text { Failures/10 Hours }
$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.


## MIL-HDBK-217F

### 12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION Elapsed Time Meters

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{b}$ |  |
| :--- | :---: |
| Type $\lambda_{\mathrm{b}}$ <br> A.C. 20 <br> Inverter Driven 30 <br> Commutator D.C. 80 |  |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 7.0 |
| $N_{U}$ | 18 |
| $A_{K}$ | 5.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 16 |
| $A_{U F}$ | 25 |
| $A_{R W}$ | 26 |
| $S_{F}$ | .50 |
| $M_{F}$ | 14 |
| $M_{L}$ | 38 |
| $C_{L}$ | $N / A$ |

## APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Rellabllity Prediction - This prediction method is applicable during bid proposal and earty design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic pant types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment taiture rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$
\lambda_{\text {EQUIP }}=\sum_{i=1}^{i=n} N_{i}\left(\lambda_{g} \pi_{0}\right)_{i} \quad \text { Equation } 1
$$

for a given equipment environment where:

| $\lambda_{\text {EQUIP }}$ | $=$ Total equipment fallure rate (Failures/ $10^{6}$ Hours) |
| :--- | :--- |
| $\lambda_{g}$ | $=$ Generic failure rate for the $i^{\text {th }}$ generic part (Failures $/ 10^{6}$ Hours) |
| $\pi_{Q}$ | $=$ Quality factor for the $i^{\text {th }}$ generic part |
| $N_{i}$ | $=$ Quantity of $i^{\text {th }}$ generic part |
| $n$ | $=$ Number of different generic part categories in the equipment |

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited $\left(A_{1}\right)$ and uninhabited ( $A_{U}$ ) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable $\lambda_{\mathrm{g}}$ tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, $\pi_{\mathrm{L}}$, which accounts for the maturity of the manufacturing process. For devices in production two years or more, no moditication is needed. For those in production less than two years, $\lambda_{g}$ should be multiplied by the appropriate in factor (See page A-4).

It should be noted that no generic falure rates are shown for hybrid microchrcults. Each hybrid is a faily unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Ldentically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The fallure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specitic defaul values used for the model parameters are shown with the $\lambda_{\mathrm{g}}$ Tables for microcircuits. Defaull parameters for all other pan classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

## MIL-HDBK-217F NOTICE 1

APPENDIX A: PARTS COUNT

| $\begin{gathered} \text { Section } \\ \\ \hline \end{gathered}$ | Paritype | $\begin{aligned} & \text { Enmion. } \rightarrow \\ & T_{J}(C) \rightarrow \\ & \hline \end{aligned}$ | $\begin{aligned} & G_{8} \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & G_{F} \\ & 60 \\ & \hline \end{aligned}$ | $\begin{aligned} & G_{M} \\ & 65 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{N}_{\mathrm{S}} \\ & 60 \\ & \hline \end{aligned}$ | $\begin{aligned} & N_{u} \\ & 65 \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{1 C} \\ & 75 \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{\text {IF }} \\ & 75 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{A}_{\text {UC }} \\ 90 \\ \hline \end{gathered}$ | $\begin{aligned} & A_{1 F} \\ & 90 \\ & \hline \end{aligned}$ | $\begin{gathered} A_{\text {RW }} \\ 75 \\ \hline \end{gathered}$ | $\begin{aligned} & S_{F} \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { TF } \\ & 85 \\ & \hline \end{aligned}$ | $\begin{aligned} & M_{L} \\ & 75 \\ & \hline \end{aligned}$ | $\begin{aligned} & C_{L} \\ & -60 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.1 |  |  | $\begin{aligned} & .0036 \\ & .0060 \\ & .011 \\ & .033 \\ & .052 \\ & .075 \end{aligned}$ | $\begin{aligned} & .012 \\ & .020 \\ & .035 \\ & .12 \\ & .17 \\ & .23 \\ & \hline \end{aligned}$ | $\begin{aligned} & .024 \\ & .038 \\ & .066 \\ & .22 \\ & .33 \\ & .44 \\ & \hline \end{aligned}$ | $\begin{aligned} & .024 \\ & .037 \\ & .085 \\ & .22 \\ & .33 \\ & .43 \\ & \hline \end{aligned}$ | $\begin{aligned} & .035 \\ & .055 \\ & .097 \\ & .33 \\ & .48 \\ & .83 \\ & \hline \end{aligned}$ | $\begin{aligned} & .025 \\ & .039 \\ & .070 \\ & .23 \\ & .34 \\ & .46 \\ & \hline \end{aligned}$ | $\begin{aligned} & .030 \\ & .48 \\ & .085 \\ & .28 \\ & .42 \\ & .58 \\ & \hline \end{aligned}$ | $\begin{aligned} & .032 \\ & .051 \\ & .091 \\ & .30 \\ & .45 \\ & .81 \\ & \hline \end{aligned}$ | .049 <br> .077 <br> .14 <br> .46 <br> .68 <br> .90 | $\begin{aligned} & .047 \\ & .074 \\ & .13 \\ & .44 \\ & .65 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0038 \\ & .0060 \\ & .011 \\ & .033 \\ & .052 \\ & .075 \\ & \hline \end{aligned}$ | .030 .048 .082 .28 .41 .53 | $\begin{gathered} .069 \\ .11 \\ .19 \\ .65 \\ .95 \\ 1.2 \\ \hline \end{gathered}$ | $\begin{array}{r} 1.2 \\ 1.9 \\ 3.3 \\ 12 \\ 17 \\ 21 \\ \hline \end{array}$ |
| 5.1 |  <br> 1-100 Trercivivir <br> 101 - 320 Tranadetors <br> 301 - 4000 Tremiliotions <br> 1001 - 10.000 Tranderars | ( 14 Pn DPP) (18 Pin DP') (24 Pin DP ( 40 Pin DP | $\begin{aligned} & .0095 \\ & .017 \\ & .003 \\ & .050 \\ & \hline \end{aligned}$ | $\begin{aligned} & .024 \\ & .041 \\ & .074 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & .039 \\ & .085 \\ & .11 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .051 \\ & .051 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{array}{r} .049 \\ .078 \\ .13 \\ .21 \\ \hline \end{array}$ | $\begin{array}{r} .057 \\ .10 \\ .19 \\ .29 \\ \hline \end{array}$ | $\begin{aligned} & .062 \\ & .11 \\ & .19 \\ & .30 \\ & \hline \end{aligned}$ | $\begin{array}{r} .12 \\ .22 \\ .41 \\ .63 \\ \hline \end{array}$ | $\begin{array}{r} .13 \\ .24 \\ .44 \\ .67 \\ \hline \end{array}$ | $\begin{aligned} & .076 \\ & .13 \\ & .32 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .050 \\ & \hline \end{aligned}$ | $\begin{aligned} & .044 \\ & .072 \\ & .12 \\ & .18 \\ & \hline \end{aligned}$ | .098 <br> .15 <br> .28 <br> .41 | $\begin{aligned} & 1.1 \\ & 1.4 \\ & 2.0 \\ & 3.4 \\ & \hline \end{aligned}$ |
| 5.1 |  |  | $\begin{aligned} & .0061 \\ & .011 \\ & .022 \\ & \hline \end{aligned}$ | $\begin{array}{r} .010 \\ .020 \\ .055 \end{array}$ | $\begin{aligned} & .029 \\ & .048 \\ & .087 \end{aligned}$ | $\begin{aligned} & .027 \\ & .0415 \\ & .002 \\ & \hline \end{aligned}$ | $\begin{aligned} & .040 \\ & .065 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{array}{r} .032 \\ .054 \\ .099 \\ \hline \end{array}$ | $\begin{array}{r} .037 \\ .063 \\ .11 \\ \hline \end{array}$ | $\begin{aligned} & .044 \\ & .077 \\ & .14 \\ & \hline \end{aligned}$ | $\begin{aligned} & .061 \\ & .10 \\ & .19 \\ & \hline \end{aligned}$ | $\begin{array}{r} .054 \\ .089 \\ .16 \\ \hline \end{array}$ | $\begin{array}{r} .0081 \\ .011 \\ .022 \\ \hline \end{array}$ | $\begin{array}{r} .034 \\ .057 \\ .10 \\ \hline \end{array}$ | $\begin{aligned} & .076 \\ & .12 \\ & .22 \\ & \hline \end{aligned}$ | 1.2 <br> 1.9 <br> 3.3 |
| 5.1 |  | (16 PM DPP) ( 24 Pm DP ${ }^{2}$ ) ( 40 Pm DPP) (12: Pin PaA) ( 180 Pm PGA) (224 Pin PGA) | .0057 .010 .019 .048 .084 .13 | $\begin{aligned} & .015 \\ & .028 \\ & .047 \\ & .14 \\ & .22 \\ & .31 \\ & \hline \end{aligned}$ | $\begin{aligned} & .027 \\ & .045 \\ & .080 \\ & .25 \\ & .38 \\ & .53 \\ & \hline \end{aligned}$ | $\begin{aligned} & .027 \\ & .043 \\ & .077 \\ & .24 \\ & .37 \\ & .51 \\ & \hline \end{aligned}$ | $\begin{aligned} & .039 \\ & .082 \\ & .11 \\ & .38 \\ & .54 \\ & .73 \\ & \hline \end{aligned}$ | $\begin{aligned} & .029 \\ & .049 \\ & .088 \\ & .27 \\ & .42 \\ & .59 \\ & \hline \end{aligned}$ | $\begin{aligned} & .035 \\ & .057 \\ & .10 \\ & .32 \\ & .49 \\ & .69 \\ & \hline \end{aligned}$ | $\begin{aligned} & .030 \\ & .018 \\ & .18 \\ & .38 \\ & .82 \\ & .82 \\ & \hline \end{aligned}$ | .056 <br> .092 <br> .17 <br> .71 <br> .79 | $\begin{aligned} & .052 \\ & .033 \\ & .15 \\ & .48 \\ & .72 \\ & .98 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0057 \\ & .010 \\ & .019 \\ & .049 \\ & .084 \\ & .13 \\ & \hline \end{aligned}$ | $\begin{aligned} & .033 \\ & .053 \\ & .095 \\ & .30 \\ & .46 \\ & .63 \\ & \hline \end{aligned}$ | $\begin{array}{r} .074 \\ .12 \\ .21 \\ .89 \\ 1.0 \\ 1.4 \\ \hline \end{array}$ | $\begin{array}{r} 1.2 \\ 1.9 \\ 3.3 \\ 12 \\ 17 \\ 21 \\ \hline \end{array}$ |
| 5.1 | $\qquad$ |  | .0095 <br> .017 <br> .033 | $\begin{array}{r} .024 \\ .041 \\ .074 \\ .12 \\ \hline \end{array}$ | $\begin{aligned} & .039 \\ & .065 \\ & .11 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .034 \\ & .054 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$ | .049 <br> .078 <br> .13 <br> .21 | $\begin{aligned} & .057 \\ & .10 \\ & .19 \\ & .29 \\ & \hline \end{aligned}$ | $\begin{aligned} & .062 \\ & .11 \\ & .19 \\ & .30 \\ & \hline \end{aligned}$ | $\begin{array}{r} .12 \\ .24 \\ .41 \\ .61 \\ \hline \end{array}$ | $\begin{array}{r} .13 \\ .24 \\ .44 \\ .67 \\ \hline \end{array}$ | $\begin{aligned} & .076 \\ & .13 \\ & .22 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & \hline \end{aligned}$ | $\begin{aligned} & .044 \\ & .072 \\ & .12 \\ & .10 \\ & \hline \end{aligned}$ | $\begin{aligned} & .088 \\ & .15 \\ & .28 \\ & .41 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.4 \\ & 2.0 \\ & 3.4 \\ & \hline \end{aligned}$ |
| 5.1 |  |  | .0048 .0058 .0081 .0095 | $\begin{array}{r} .018 \\ .021 \\ .022 \\ .033 \\ \hline \end{array}$ | $\begin{array}{r} .035 \\ .042 \\ .043 \\ .064 \\ \hline \end{array}$ | $\begin{array}{r} .005 \\ .042 \\ .042 \\ .003 \\ \hline \end{array}$ | $\begin{array}{r} .052 \\ .082 \\ .083 \\ .094 \\ \hline \end{array}$ | .035 .042 .043 .085 | $\begin{aligned} & .044 \\ & .052 \\ & .054 \\ & .080 \\ & \hline \end{aligned}$ | $\begin{array}{r} .014 \\ .053 \\ .055 \\ .013 \\ \hline \end{array}$ | .070 <br> .084 <br> .086 <br> .13 | $\begin{array}{r} .070 \\ .083 \\ .084 \\ .13 \\ \hline \end{array}$ | .0046 <br> .0056 <br> .0081 <br> .0095 | $\begin{array}{r} .044 \\ .052 \\ .053 \\ .079 \\ \hline \end{array}$ | $\begin{array}{r} .10 \\ .12 \\ .13 \\ \hline 19 \\ \hline \end{array}$ | $\begin{aligned} & 1.8 \\ & 2.3 \\ & 2.3 \\ & 3.3 \\ & \hline \end{aligned}$ |
| 5.1 |  | ( 40 Pn Diry <br> $(04 \mathrm{Pn}$ PGA) <br> ( 128 Min $P(A)$ | $\begin{aligned} & .028 \\ & .052 \\ & .11 \\ & \hline \end{aligned}$ | $\begin{array}{r} .061 \\ .11 \\ .23 \\ \hline \end{array}$ | $\begin{aligned} & .098 \\ & .18 \\ & .36 \\ & \hline \end{aligned}$ | $\begin{aligned} & .091 \\ & .16 \\ & .39 \\ & \hline \end{aligned}$ | $\begin{array}{r} .13 \\ .23 \\ .47 \\ \hline \end{array}$ | $\begin{array}{r} 12 \\ .21 \\ .44 \\ \hline \end{array}$ | $\begin{array}{r} .13 \\ .24 \\ .49 \\ \hline \end{array}$ | $\begin{aligned} & .17 \\ & .32 \\ & .65 \\ & \hline \end{aligned}$ | $\begin{array}{r} .22 \\ .39 \\ .11 \\ \hline \end{array}$ | $\begin{array}{r} .18 \\ .31 \\ .65 \\ \hline \end{array}$ | $\begin{aligned} & .028 \\ & .052 \\ & .11 \\ & \hline \end{aligned}$ | $\begin{array}{r} 11 \\ .20 \\ .42 \\ \hline \end{array}$ | $\begin{array}{r} .24 \\ .41 \\ .88 \\ \hline \end{array}$ | $\begin{array}{r} 3.3 \\ 5.6 \\ 12 \\ \hline \end{array}$ |
| 5.1 |  | $(40$ Pin DIV $(84$ Pin Poid <br> (12a Mn REA) | $\begin{aligned} & .048 \\ & .093 \\ & .19 \\ & \hline \end{aligned}$ | $\begin{aligned} & .089 \\ & .17 \\ & .34 \\ & \hline \end{aligned}$ | $\begin{array}{r} .13 \\ .24 \\ .49 \\ \hline \end{array}$ | $\begin{array}{r} 12 \\ .22 \\ .45 \\ \hline \end{array}$ | $\begin{array}{r} 16 \\ .29 \\ .60 \\ \hline \end{array}$ | $\begin{array}{r} .16 \\ .30 \\ .61 \\ \hline \end{array}$ | $\begin{array}{r} .17 \\ .32 \\ .86 \\ \hline \end{array}$ | $\begin{aligned} & .24 \\ & .45 \\ & .90 \\ & \hline \end{aligned}$ | $\begin{array}{r} .28 \\ .52 \\ 1.1 \\ \hline \end{array}$ | $\begin{array}{r} .22 \\ .40 \\ .82 \\ \hline \end{array}$ | $\begin{aligned} & .048 \\ & .093 \\ & .19 \\ & \hline \end{aligned}$ | $\begin{array}{r} 15 \\ .27 \\ .54 \\ \hline \end{array}$ | $\begin{array}{r} .28 \\ .50 \\ 1.0 \\ \hline \end{array}$ | $\begin{array}{r} 3.4 \\ 5.6 \\ 12 \\ \hline \end{array}$ |

MIL-HDBK-217F
NOTICE 1
APPENDIX A: PARTS COUNT

| Sisetion | Patlypo | $\begin{aligned} & \text { Environ. } \\ & T_{J}(\circ C) \rightarrow \end{aligned}$ | $\begin{aligned} & \mathrm{G}_{8} \\ & 50 \end{aligned}$ | $\begin{aligned} & G_{F} \\ & 60 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{G}_{\mathrm{M}} \\ & 65 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{N}_{5} \\ & 60 \end{aligned}$ | $\begin{aligned} & \hline N_{u} \\ & 65 \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{1 K} \\ & 75 \end{aligned}$ | $\begin{aligned} & \hline \mathbf{A}_{\mathbf{F}} \\ & 75 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { AUC } \\ & 90 \end{aligned}$ | $\begin{gathered} A_{U F} \\ 90 \end{gathered}$ | $\begin{gathered} A_{R W} \\ 75 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{S}_{\mathrm{f}} \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 65 \end{aligned}$ | $\begin{aligned} & \hline M_{L} \\ & 75 \end{aligned}$ | $C_{L}$ 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.2 |  |  | $\begin{array}{r} .0047 \\ .0059 \\ .0067 \\ \hline \end{array}$ | $\begin{array}{r} .018 \\ .022 \\ .023 \\ .038 \end{array}$ | $\begin{array}{r} .038 \\ .043 \\ .045 \\ .088 \end{array}$ | $\begin{aligned} & .035 \\ & .042 \\ & .044 \\ & .068 \end{aligned}$ | $\begin{aligned} & .053 \\ & .063 \\ & .068 \\ & .098 \end{aligned}$ | $\begin{aligned} & .037 \\ & .045 \\ & .048 \\ & .075 \end{aligned}$ | .045 .055 .059 .090 | $\begin{aligned} & .80 \\ & .0 .18 \\ & .0180 \\ & .088 \\ & .11 \end{aligned}$ | $\begin{aligned} & .90 \\ & .074 \\ & .090 \\ & .099 \\ & .15 \end{aligned}$ | $\begin{aligned} & 10 \\ & \\ & .071 \\ & .086 \\ & .089 \\ & .14 \end{aligned}$ | .0047 .0059 .0067 .011 |  | $\begin{aligned} & 13 \\ & \hline .11 \\ & .13 \\ & .13 \\ & .20 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.3 \end{aligned}$ |
| 5.2 | Momorios PATOM, UVEPPRSM, EEPROM, EAPROM EEADG: Up io iok 18K 10 64M 64K 10 2501K 256K $\quad 1 \mathrm{MB}$ | $\begin{aligned} & \text { (24 Pin DFF } \\ & \text { (2A Pin DFF' } \\ & \text { (28 Pn DFF' } \\ & (40 \text { Pn DFF' } \end{aligned}$ | $\begin{array}{r} .0049 \\ .0061 \\ .0072 \\ .012 \\ \hline \end{array}$ | $\begin{array}{r} .018 \\ .022 \\ .024 \\ .038 \\ \hline \end{array}$ | $\begin{aligned} & .036 \\ & .044 \\ & .046 \\ & .077 \\ & \hline \end{aligned}$ | $\begin{array}{r} .036 \\ .043 \\ .045 \\ .068 \\ \hline \end{array}$ | $\begin{aligned} & .053 \\ & .084 \\ & .087 \\ & .10 \\ & \hline \end{aligned}$ | $\begin{aligned} & .037 \\ & .048 \\ & .051 \\ & .080 \\ & \hline \end{aligned}$ | $\begin{array}{r} .046 \\ .058 \\ .061 \\ .095 \\ \hline \end{array}$ | $\begin{aligned} & .049 \\ & .082 \\ & .073 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & .075 \\ & .093 \\ & .10 \\ & .16 \\ & \hline \end{aligned}$ | $\begin{array}{r} .072 \\ .087 \\ .092 \\ \hline 14 \\ \hline \end{array}$ | $\begin{aligned} & .0048 \\ & .0082 \\ & .0072 \\ & .012 \\ & \hline \end{aligned}$ | $\begin{aligned} & .045 \\ & .054 \\ & .057 \\ & .088 \end{aligned}$ | $\begin{array}{r} .11 \\ .13 \\ .13 \\ .20 \\ \hline \end{array}$ | $\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.3 \\ & \hline \end{aligned}$ |
| 5.2 |  | $\begin{aligned} & \text { (18 Pin DFFy } \\ & \text { (22 Pin OFF' } \\ & 124 \text { Pn DFF' } \\ & 128 \text { Pn DFFI } \end{aligned}$ | $\begin{array}{r} .0040 \\ .0055 \\ .0074 \\ .011 \\ \hline \end{array}$ | $\begin{array}{r} .014 \\ .019 \\ .023 \\ .032 \\ \hline \end{array}$ | $\begin{aligned} & .027 \\ & .036 \\ & .043 \\ & .057 \\ & \hline \end{aligned}$ | $\begin{array}{r} .027 \\ .034 \\ .040 \\ .053 \\ \hline \end{array}$ | $\begin{array}{r} .040 \\ .051 \\ .000 \\ .077 \\ \hline \end{array}$ | $\begin{aligned} & .029 \\ & .039 \\ & .049 \\ & .070 \\ & \hline \end{aligned}$ | $\begin{array}{r} .035 \\ .047 \\ .058 \\ .080 \end{array}$ | $\begin{aligned} & .040 \\ & .046 \\ & .078 \\ & .12 \end{aligned}$ | $\begin{aligned} & .059 \\ & .079 \\ & .10 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{aligned} & .055 \\ & .070 \\ & .084 \\ & .11 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0040 \\ & .0055 \\ & .0074 \\ & .011 \\ & \hline \end{aligned}$ | $\begin{array}{r} .034 \\ .043 \\ .051 \\ .067 \\ \hline \end{array}$ | $\begin{aligned} & .080 \\ & .10 \\ & .12 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 1.7 \\ & 1.9 \\ & 2.3 \end{aligned}$ |
| 5.2 |  |  | $\begin{aligned} & .0079 \\ & .014 \\ & .023 \\ & .043 \\ & \hline \end{aligned}$ | $\begin{array}{r} .022 \\ .034 \\ .053 \\ .092 \\ \hline \end{array}$ | $\begin{aligned} & .038 \\ & .057 \\ & .084 \\ & .14 \\ & \hline \end{aligned}$ | $\begin{array}{r} .034 \\ .050 \\ .071 \\ .11 \\ \hline \end{array}$ | $\begin{aligned} & .050 \\ & .073 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .048 \\ & .077 \\ & .12 \\ & .22 \\ & \hline \end{aligned}$ | $\begin{array}{r} .054 \\ .085 \\ .13 \\ .23 \\ \hline \end{array}$ | $\begin{array}{r} .083 \\ .14 \\ .25 \\ .48 \\ \hline \end{array}$ | $\begin{array}{r} .10 \\ .17 \\ .27 \\ .49 \\ \hline \end{array}$ | $\begin{aligned} & .073 \\ & .11 \\ & .16 \\ & .26 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0079 \\ & .014 \\ & .023 \\ & .043 \\ & \hline \end{aligned}$ | $\begin{aligned} & .044 \\ & .065 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{aligned} & .098 \\ & .14 \\ & .19 \\ & .30 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1.4 \\ 1.8 \\ 1.9 \\ .3 .3 \\ \hline \end{array}$ |
| 5.2 |  |  | $\begin{array}{r} .010 \\ .017 \\ .028 \\ .053 \\ \hline \end{array}$ | $\begin{aligned} & .0218 \\ & .043 \\ & .065 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & .050 \\ & .071 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .048 \\ & .0013 \\ & .065 \\ & .15 \end{aligned}$ | $\begin{aligned} & .087 \\ & .091 \\ & .12 \\ & .21 \\ & \hline \end{aligned}$ | $\begin{aligned} & .082 \\ & .095 \\ & .15 \\ & .27 \\ & \hline \end{aligned}$ | $\begin{aligned} & .070 \\ & .11 \\ & .18 \\ & .29 \\ & \hline \end{aligned}$ | $\begin{array}{r} .10 \\ .18 \\ .30 \\ .58 \\ \hline \end{array}$ | $\begin{array}{r} .13 \\ .21 \\ .33 \\ .81 \\ \hline \end{array}$ | $\begin{aligned} & .098 \\ & .14 \\ & .19 \\ & .33 \\ & \hline \end{aligned}$ | $\begin{aligned} & .010 \\ & .017 \\ & .028 \\ & .053 \\ & \hline \end{aligned}$ | $\begin{aligned} & .058 \\ & .081 \\ & .11 \\ & .19 \\ & \hline \end{aligned}$ | $\begin{array}{r} .13 \\ .18 \\ .23 \\ .39 \\ \hline \end{array}$ | $\begin{array}{r} 1.9 \\ 2.3 \\ 2.3 \\ 3.4 \\ \hline \end{array}$ |
| 5.2 |  |  | $\begin{aligned} & .0075 \\ & .012 \\ & .18 \\ & .033 \\ & \hline \end{aligned}$ | $\begin{array}{r} .023 \\ .033 \\ .045 \\ .079 \\ \hline \end{array}$ | $\begin{aligned} & .043 \\ & .058 \\ & .074 \\ & .13 \\ & \hline \end{aligned}$ | $\begin{aligned} & .041 \\ & .054 \\ & .065 \\ & .11 \\ & \hline \end{aligned}$ | $\begin{array}{r} .060 \\ .079 \\ .095 \\ .16 \\ \hline \end{array}$ | $\begin{aligned} & .050 \\ & .072 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .058 \\ & .083 \\ & .11 \\ & .20 \\ & \hline \end{aligned}$ | $\begin{aligned} & .077 \\ & .12 \\ & .19 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{array}{r} .10 \\ .15 \\ .22 \\ 30 \\ \hline \end{array}$ | $\begin{aligned} & .084 \\ & .11 \\ & .14 \\ & .24 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0075 \\ & .012 \\ & .18 \\ & .033 \\ & \hline \end{aligned}$ | $\begin{array}{r} .052 \\ .089 \\ .084 \\ .14 \\ \hline \end{array}$ | $\begin{array}{r} .12 \\ .15 \\ .18 \\ .30 \\ \hline \end{array}$ | 1.8 <br> 2.3 <br> 2.3 <br> 3.4 |
| 5.3 | VHSIC Norocialy CNOS |  |  | der 10 | cioon | VHSIC | MOS |  |  |  |  |  |  |  |  |  |
| 5.4 | GeAs NNMC (EII = 1.5 ) <br> 1 to 100 Eloments <br> 101 10 1000 Actipe Elomens <br>  | (8 Pn DPP) (16 Pin DW ${ }^{1}$ ) | $\begin{aligned} & .0013 \\ & .0028 \end{aligned}$ | $\begin{aligned} & .0052 \\ & .011 \end{aligned}$ | $\begin{aligned} & .010 \\ & .022 \end{aligned}$ | $\begin{aligned} & .010 \\ & 0202 \end{aligned}$ | $\begin{aligned} & .018 \\ & .034 \end{aligned}$ | $\begin{aligned} & .011 \\ & .023 \end{aligned}$ | $\begin{aligned} & .013 \\ & .028 \end{aligned}$ | $\begin{aligned} & .015 \\ & .030 \end{aligned}$ | $\begin{aligned} & .022 \\ & .047 \end{aligned}$ | $.021$ | $\begin{aligned} & .0013 \\ & .0028 \end{aligned}$ | $\begin{aligned} & .013 \\ & .028 \end{aligned}$ | $\begin{aligned} & .031 \\ & .068 \end{aligned}$ | ${ }_{1.2}^{.57}$ |
| 5.4 | $\begin{aligned} & \text { Geas Digh (Ee }=1.4) \\ & 101000 \text { Active Elomensa } \\ & 1001 \text { io } 10,000 \text { Active Elements } \end{aligned}$ | $\begin{aligned} & (38 \mathrm{Pin} \mathrm{DIP}) \\ & (64 \text { Pin PGA) } \end{aligned}$ | $\begin{aligned} & .0086 \\ & .013 \\ & \hline \end{aligned}$ | $\begin{array}{r} .028 \\ .050 \\ \hline \end{array}$ | $\begin{array}{r} .052 \\ .10 \\ \hline \end{array}$ | $.052$ | $\begin{aligned} & .078 \\ & 15 \end{aligned}$ | $\begin{aligned} & .054 \\ & .10 \end{aligned}$ | $\begin{aligned} & .087 \\ & 13 \end{aligned}$ | $.078$ | $\begin{array}{r} 12 \\ .23 \end{array}$ | $\begin{array}{r} 11 \\ .20 \\ \hline \end{array}$ | $\begin{aligned} & .0066 \\ & .013 \\ & \hline \end{aligned}$ | $\begin{array}{r} .065 \\ .13 \\ \hline \end{array}$ | $\begin{array}{r} .16 \\ .30 \end{array}$ | 2.9 <br> 5.5 |



APPENDIX A: PARTS COUNT


NOTICE 1
APPENDIX A: PARTS COUNT
Cimentic Fallure Rave - $\lambda_{0}$ (Fillures $/ 10^{6}$ Howrs) for Dlecrete Semiconductors (cont'd)

| Seration | Pant Type | $\begin{aligned} & \text { Env. } \rightarrow a_{B} \\ & T_{y}(C) \rightarrow 50 \end{aligned}$ | $\begin{aligned} & a_{F} \\ & \infty \end{aligned}$ | $\begin{aligned} & a_{M} \\ & 65 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{N}_{\mathrm{S}} \\ & 60 \end{aligned}$ | $\begin{aligned} & N_{v} \\ & \infty \end{aligned}$ | $\begin{aligned} & A_{1} \\ & 75 \end{aligned}$ | $\begin{aligned} & A_{1 F} \\ & 75 \end{aligned}$ | $\begin{aligned} & A_{u c} \\ & 90 \end{aligned}$ | $\begin{aligned} & A_{U F} \\ & 90 \end{aligned}$ | $\begin{gathered} A_{\mathrm{PN}} \\ 75 \end{gathered}$ | $\begin{aligned} & s_{F} \\ & 50 \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 65 \end{aligned}$ | $\begin{aligned} & M_{L} \\ & 75 \end{aligned}$ | $\begin{aligned} & c_{1} \\ & \text { so } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | opto-mectrionics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6.11 | Photodetector | . 011 | . 029 | . 13 | . 074 | . 20 | . 084 | 13 | 17 | 23 | 36 | 0057 | 15 | . 51 | 6.6 |
| 6.11 | Optoteocrear | . 027 | . 070 | . 31 | . 17 | . 47 | . 20 | . 30 | 42 | . 56 | 85 | . 013 | . 35 | 1.2 | 16 |
| 6.11 | Empres | . 00047 | . 0012 | . 0056 | . 0031 | . 0084 | . 0035 | . 0053 | . 0074 | 0098 | 015 | . 00324 | . 0067 | . 021 | 28 |
| 6.12 | Aphaxumerce Dimplay | . 0062 | . 016 | 073 | 040 | . 11 | . 046 | . 069 | . 096 | . 13 | 20 | . 0031 | 082 | 28 | 3.6 |
| 0.13 | Lreor Dloco. CraneN Gans | 5.1 | 16 | 78 | 39 | 120 | 58 | 86 | ${ }^{\infty}$ | 110 | 240 | 2.6 | 87 | 350 | 3500 |
| 6.13 |  | 9.0 | 28 | 135 | 69 | 200 | 100 | 150 | 150 | 200 | 403) | 4.5 | 150 | 600 | 6200 |
| 7 | tuass | 5 | Seation | Hnctuca | Focative | CRTE, | Fror | Inptiore | ystrone | WTs, M | errons) |  |  |  |  |
| 8 | Lasers |  | seator | 。 |  |  |  |  |  |  |  |  |  |  |  |




| $\begin{gathered} \text { Section } \\ \hline \end{gathered}$ | Pert Type or Diencetric | Sirle | Minc- | $\begin{aligned} & E_{N v} \rightarrow G_{B} \\ & T_{A}(C) \rightarrow 30 \end{aligned}$ | ${ }_{4}^{C_{F}}$ | $G_{4}$ | $\begin{aligned} & \mathrm{N}_{\mathrm{s}} \\ & 40 \end{aligned}$ | $\begin{aligned} & h_{U} \\ & 45 \end{aligned}$ | $\begin{aligned} & A_{1 C} \\ & 55 \end{aligned}$ | $\begin{aligned} & \hline A_{I F} \\ & 55 \end{aligned}$ | $\begin{aligned} & 4_{14} \\ & 70 \end{aligned}$ | $\begin{aligned} & \lambda_{u F} \\ & 70 \end{aligned}$ | $\begin{aligned} & A_{\text {RW }} \\ & 55 \end{aligned}$ | $\begin{aligned} & \mathcal{S}_{\mathrm{F}} \\ & 30 \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 45 \end{aligned}$ | $\begin{gathered} M_{L} \\ 55 \end{gathered}$ | $C_{1}$ 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.1 | Paper. By Pase | ${ }_{\sim}$ | 25 | . 0038 | . 0072 | . 033 | 018 | . 055 | . 023 | 03 | 070 | . 13 | . 083 | . 0018 | . 044 | . 12 | 2.1 |
| 10.1 | Paper, ByPases | CA | 12800 | . 0039 | . 0087 | . 042 | 022 | . 070 | . 035 | . 047 | . 19 | . 35 | . 13 | . 002 | . 056 | . 19 | 2.5 |
| 10.2 | Pepempliaric. Foeat orrough | GRT | 11003 | . 0047 | . 0096 | . 044 | . 034 | . 073 | . 030 | . 040 | . 094 | . 15 | . 11 | . 0024 | . 058 | . 16 | 2.7 |
| 10.3 | Preariflatic Fimm | CPV | 14157 | 0021 | . 0042 | . 017 | . 010 | . 030 | . 0088 | 013 | . 026 | . 048 | . 044 | . 0010 | . 023 | . 063 | 1.1 |
| 10.3 | Puperfitaste Fim | COR | 19979 | . 0021 | . 0042 | . 017 | . 010 | . 030 | 0088 | . 013 | . 026 | . 048 | . 044 | . 0010 | . 023 | . 063 | 1.1 |
| 10.4 | Moselitred Paperplastic | वR | 30022 | . 0029 | . 0058 | . 023 | . 014 | . 041 | . 012 | 018 | . 037 | . 066 | . 060 | . 0014 | . 032 | 088 | 1.5 |
| 10.4 | Monilized Pinita Plastic | CH | 18912 | . 0029 | . 0058 | . 023 | 014 | . 041 | . 012 | 018 | . 037 | . 066 | 060 | . 0014 | . 032 | . 088 | 1.5 |
| 10.5 | Mcmilied PaperPieate | CFR | 55514 | . 0041 | . 0083 | . 042 | . 021 | . 067 | . 026 | . 048 | 086 | 14 | . 10 | . 0020 | . 054 | . 15 | 2.5 |
| 10.8 | Mcmelized Plasuc | CPH | 83421 | . 0023 | . 0092 | . 019 | 012 | . 033 | . 0096 | . 014 | . 034 | . 053 | . 048 | . 0011 | . 026 | . 07 | 1.2 |
| 10.7 | MICA (Dpped er Moideal | CWA | 39001 | . 0005 | . 0015 | . 0091 | . 0044 | . 014 | . 0068 | . 0095 | . 054 | . 069 | 031 | . 00025 | . 012 | . 046 | 45 |
| 10.7 | mica (0ppedt | Cn | 5 | . 0005 | . 0015 | . 0091 | . 0044 | . 014 | . 0068 | . 0095 | . 054 | . 060 | 031 | . 00025 | . 012 | . 046 | . 45 |
| 10.8 | MICA fevions | CB | 10050 | . 018 | . 037 | . 19 | . 094 | . 31 | . 10 | . 14 | 47 | . 60 | . 48 | . 0091 | . 25 | . 68 | 11 |
| 10.9 | Glase | CrA | 23280 | . 00032 | . 00098 | . 0059 | . 0029 | . 0094 | . 0044 | . 0062 | . 035 | . 046 | . 020 | . 00016 | . 0078 | . 030 | . 29 |
| 10.9 | Glase | cr | 11272 | .00032 | . 00088 | . 0050 | . 0029 | . 0094 | . 0044 | . 0062 | . 035 | . 046 | 020 | . 00016 | . 0076 | . 030 | 29 |
| 10.10 | Cerunte (Gen Pupoer) | $\mathrm{CK}^{\prime}$ | 11915 | . 0036 | . 0074 | . 034 | . 019 | . 056 | . 015 | . 015 | . 092 | . 048 | . 077 | . 0014 | . 049 | . 13 | 2.3 |
| 10.10 | Carante (Gion Pupowe) | CNA | 39014 | . 0038 | . 0074 | . 034 | . 019 | . 058 | . 015 | . 015 | . 032 | . 048 | 077 | . 0014 | . 049 | . 13 | 2.3 |
| 10.11 | Cersuric (Tompa Cormp) | $\sim_{C}$ | 20 | .00078 | . 0022 | . 013 | . 0056 | . 023 | . 0077 | . 015 | . 053 | . 12 | 046 | . 00039 | . 017 | . 085 | 68 |
| 10.11 | Censote Chip | Con | 55881 | .00078 | . 0022 | . 013 | . 0056 | . 023 | . 0077 | . 015 | . 053 | . 12 | . 046 | . 00039 | . 017 | . 065 | . 68 |
| 10.12 | Triniom, 8014 | Csp | 38000 | . 0018 | . 0039 | . 016 | . 0097 | . 028 | . 0091 | . 011 | . 034 | . 057 | 055 | . 00072 | . 022 | . 066 | 1.0 |
| 10.13 | Tramem, Morrsold | as | 38008 | . 0081 | . 013 | . 069 | . 039 | . 11 | . 031 | .061 | . 13 | 29 | . 18 | . 0030 | . 089 | 26 | 4.0 |
| 10.13 | Tormam, Mor-Sold | $a$ | 3885 | . 0081 | . 013 | . 069 | . 038 | . 11 | . 031 | . 061 | . 13 | 29 | . 18 | . 0030 | . 089 | 28 | 4.0 |
| 10.14 | Auminum Oade | an | 39018 | . 024 | . 081 | . 42 | . 18 | . 59 | 46 | 55 | 2.1 | 2.6 | 1.2 | . 012 | . 49 | 1.7 | 21 |
| 10.15 | Aknirum Dy | CE | 62 | . 020 | . 081 | . 58 | 24 | . 83 | . 73 | 88 | 4.3 | 5.4 | 2.0 | . 015 | . 68 | 2.8 | 28 |
| 10.16 | Verieto, Corrartic | cV | 81 | . 00 | . 27 | 1.2 | . 71 | 2.3 | . 69 | 1.1 | 6.2 | 12 | 4.1 | . 032 | 1.9 | 5.9 | 85 |
| 10.17 | Verietio, Fiven | PC | 14000 | . 033 | . 13 | . 62 | . 31 | . 93 | . 21 | 28 | 2.2 | 3.3 | 2.2 | . 016 | . 93 | 3.2 | 37 |
| 10.18 | Varnela, Ar Timmer | CT | 92 | . 000 | . 33 | 1.6 | . 87 | 3.0 | 1.0 | 1.7 | 9.9 | 10 | 6.1 | . 040 | 2.5 | 8.9 | 100 |
| 10.19 | Verable Veamm | 0 | 23180 | 0.4 | 1.3 | 6.7 | 3.6 | 13 | 5.7 | 10 | 58 | 90 | 23 | . 20 | . | . |  |
| NOTE: $1{ }^{-}$- Not Morrally ueed in tha Ef <br> a $T_{A}=$ Dotmill Compormen Antion |  |  |  | ontrorment vent Tormperalur | $\text { ( }{ }^{(C)}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | Quatly |  | S Established Renability Syles |  |  |  | Mnl-SPEC |  | $\frac{\text { Lover }}{10}$ |  |  |  |  |  |

MIL-HDBK-217F
NOTICE 1
APPENDIX A: PARTS COUNT


[^3]Coneric Fallure Rete, $\lambda_{\mathrm{g}}$ (Fallures/10 $0^{6}$ Hours) for Miscellencous Parts

| $\begin{gathered} \text { Section } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Por Type } \\ & \text { Devectic } \end{aligned}$ | MR. | $\begin{aligned} & E m_{v} \rightarrow \sigma_{B} \\ & T_{A}(c) \rightarrow 30 \end{aligned}$ | $\begin{aligned} & G_{F} \\ & 40 \end{aligned}$ | $\begin{aligned} & G_{M} \\ & 45 \end{aligned}$ | $\begin{gathered} \mathrm{N}_{\mathrm{S}} \\ 40 \end{gathered}$ | $\begin{aligned} & N_{U} \\ & 45 \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{1 C} \\ & 55 \end{aligned}$ | $\begin{aligned} & A_{\text {IF }} \\ & 55 \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{U C} \\ & 70 \end{aligned}$ | $\begin{aligned} & A_{1 F} \\ & 70 \end{aligned}$ | $\begin{gathered} A_{\text {PW }} \\ 55 \end{gathered}$ | $\begin{aligned} & \mathrm{S}_{\mathrm{F}} \\ & 30 \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 45 \end{aligned}$ | $\begin{aligned} & M_{l} \\ & 55 \end{aligned}$ | $\begin{aligned} & G_{2} \\ & 40 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SNGLE CONECTIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17.1 | Hend Sotter, wo Wrapping |  | . 0028 | . 0052 | 018 | . 010 | . 029 | . 010 | . 016 | . 016 | . 021 | . 042 | . 0013 | . 023 | . 062 | 1.1 |
| 17.1 | Hend Sodier, wWreppha |  | . 00014 | . 00028 | . 00098 | . 00056 | . 0015 | . 00056 | . 00084 | . 00004 | . 0011 | . 0022 | . 00007 | . 0013 | . 0034 | 059 |
| 17.1 | Comp |  | . 00028 | . 00052 | . 0018 | . 0010 | . 0020 | . 0010 | . 0016 | . 0016 | . 0021 | . 0042 | . 00013 | . 0023 | . 0062 | . 11 |
| 17.1 | Wed |  | . 000050 | . 000100 | . 000350 | . 000200 | . 000550 | . 000200 | . 000300 | . 000300 | . 000400 | . 000800 | . 000025 | . 000450 | . 001200 | . 021000 |
| 17.1 | Sotberieno Whep |  | . 0000035 | . 000007 | . 000025 | . 000014 | . 000039 | . 000014 | . 000021 | . 000021 | .000028 | . 000056 | . 0000018 | . 000031 | . 000084 | 0015 |
| 17.1 | Clip Tammation |  | . 00012 | . 00024 | 00084 | . 00048 | . 0013 | .00048 | . 00072 | . 00072 | . 00096 | . 0019 | . 00006 | . 0011 | . 0029 | . 050 |
| 17.1 | Achow Solde |  | . 000068 | . 000138 | . 000483 | . 000278 | . 000759 | . 000278 | . 000414 | . 000214 | . 000552 | . 001104 | . 000035 | . 000621 | . 001656 | 02898 |
|  | METERS, PXNEL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18.1 | OC Anmaterar ortomer | M-1030 | 0.09 | 0.36 | 2.3 | 1.1 | 3.2 | 2.5 | 3.8 | 5.2 | 8.6 | 5.4 | 0.099 | 5.4 | N/A | N/A |
| 18.1 | AC Amonerer or Vothater | M-1050n | 0.15 | 0.61 | 3.8 | 1.8 | 5.4 | 4.3 | 6.4 | 8.0 | 11 | 9.2 | 0.17 | 8.2 | N/A | N/A |
| 19.1 | Ount Cryan | C-3008 | . 032 | . 096 | . 32 | . 18 | . 51 | . 38 | . 54 | . 70 | . 90 | 14 | . 016 | .42 | 1.0 | 16 |
| 20.1 | Lempe, moendecoerst, AC |  | 3.9 | 7.8 | 12 | 12 | 16 | 16 | 16 | 19 | 23 | 19 | 2.7 | 16 | 23 | 100 |
| 20.1 | Lempe, haendencent, DC |  | 13 | 26 | 38 | 38 | 51 | 51 | 51 | 64 | 77 | 64 | 0.0 | 51 | 77 | 350 |
|  | ELECTRONC FLITERS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21.1 | Cementofarito | F.15738 | . 022 | . 044 | . 13 | . 088 | . 20 | . 15 | . 20 | . 24 | . 29 | 24 | . 018 | . 15 | . 33 | 2.8 |
| 21.1 | Divarum LC Comp | F-15733 | . 12 | 24 | . 72 | . 48 | 1.1 | . 84 | 1.1 | 1.3 | 1.6 | 1.3 | . 096 | . 84 | 4.8 | 14 |
| 21.1 |  | F-18027 | . 27 | 54 | 1.6 | 1.1 | 2.4 | 1.9 | 2.4 | 3.0 | 9.5 | 3.0 | . 22 | 1.9 | 4.1 | 32 |
| 22.1 | Fuses |  | . 010 | . 020 | . 080 | . 050 | . 11 | . 090 | . 12 | . 15 | . 18 | 16 | . 009 | . 10 | 21 | 2.3 |

## MIL-HDBK-217F

$\pi_{\mathrm{Q}}$ Factor for Use with Section $\mathbf{1 1 - 2 2}$ Devices

| Section \# | Pant Type | $\begin{gathered} \hline \text { Established } \\ \text { Reliability } \end{gathered}$ | MIL-SPEC | Non-MIL |
| :---: | :---: | :---: | :---: | :---: |
| 11.1, 11.2 | Inductive Devices | .25* | 1.0 | 10 |
| 12.1, 12.2, 12.3 | Rotating Devices | N/A | N/A | N/A |
| 13.1 | Retays, Merchanical | . 60 | 3.0 | 9.0 |
| 13.2 | Relays, Solid State and Time Delay (H)brid \& Solid State) | N/A | 1.0 | 4 |
| 14.1, 14.2 | Swilches, Toggle, Pushbutton, Sensitive | N/A | 1.0 | 20 |
| 14.3 | Switches, Rotary Water | N/A | 1.0 | 50 |
| 14.4 | Swhiches, Thuintwheel | N/A | 1.0 | 10 |
| 14.5 | Clrcult Breakers, Thermal | N/A | 1.0 | 8.4 |
| 15.1, 15.2, 15.3 | Connectors | N/A | 1.0 | 2.0 |
| 16.1 | Interconnection Assemblies | N/A | 1.0 | 2.0 |
| 17.1 | Connections | N/A | N/A | N/A |
| 18.1 | Meters, Panel | N/A | 1.0 | 3.4 |
| 19.1 | Quartz Crystals | N/A | 1.0 | 2.1 |
| 20.1 | Lamps, Incandescent | N/A | N/A | N/A |
| 21.4 | Electronic Fillers | N/A | 1.0 | 2.9 |
| 22.1 | Fuses | N/A | N/A | N/A |

[^4]APPENDIX A: PARTS COUNT

Default Parameters for Dlscrete Semlconductors


## MIL-HDBK-217F NOTICE 1

| Default Parametors for Fesistors |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section | Part Type | Sryte | MIL-R-SPEC | ${ }^{\prime}$ R | $\pi$ | ${ }^{\text {T TAPS }}$ | Cominents |
| 9.1 9.1 | Composition Compostion | ${ }_{\text {FICR }}$ | 39008 11 | $\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$ |  |  | Pw. Stess = 5, 1M ohm Pwr. Stress = 5. 1 Mohm |
| 9.2 | Film, Insulated | FLR | 39017 | 1.1 |  |  | Pwr. Stress = 5, 1 M ohm |
| 9.2 | Film, Insulated | RL | $2 ? 684$ | 1.1 |  |  | Pwr. Stress $=5.1 \mathrm{M} \mathrm{ohm}$ |
| 9.2 | Fim, RN(R,Cor $N$ ) | FNR | 55182 | 1.1 |  |  | Pwr. Stress $=5.1 \mathrm{~N}$ ohm |
| 9.2 | Fim | FN | 10509 | 1.1 |  |  | Pwr. Stress = 5, 1 N chm |
| 9.3 9.4 | Film. Povver Fixed, Notwork | $\begin{aligned} & \text { PD } \\ & \text { RZ } \end{aligned}$ | $\begin{aligned} & 11804 \\ & 83401 \end{aligned}$ | 1.0 |  |  | Pwr. Stress = 5, 100 ohm <br> Pur. Stress $=.5, T_{C}=T_{A}+28^{\circ} \mathrm{C}$, 10 Film Resistors |
| 9.5 | Wrewound, Accurate | FBR | 39005 | 1.7 |  |  | Pwr. Stress $=5,100 \mathrm{~K}$ ohms |
| 9.5 | Wrewound, Accisrate | RB | 93 | 1.7 |  |  | Pwr. Stress = 5, 100 K ohms |
| 9.6 | Wrowound, Power | FWR | 39007 | 1.1 |  |  | $P^{\text {PWr. Stress }}=.5,5 \mathrm{~K}$ ohms, RWR 84 |
| 9.6 | Wrewound, Power | RW | 26 | 1.0 |  |  | Pwr. Stress $=.5,5 \mathrm{~K}$ ohms. AW10 |
| 9.7 | Wirewound, Power, Charsts Mountad | PER | 39009 | 1.1 |  |  | Pwr. Stress = .5. Noninductlvely Wound, 5K ohm, RER 55 |
| 9.7 | Wrewound, Power, Chassts Mounterd | RE | 18546 | 1.1 |  |  | PWr. Stress $=.5, \mathrm{MIL}-\mathrm{R}-18546$, Char. N, 5K ohm, RE75 |
| 8.8 | Thermistor | HTH | 236413 |  |  |  | Disk Type |
| 9.9 | Wrowound, Verinble | PIR | 39015 | 1.4 | 1.1 | 1.0 | Pwr. Stress = 5, 5K ohms, 3 Taps, Voltage Stress $=.1$ |
| 9.9 9.10 | Wrowound, Vartable Wrewound, Variable, Procision | RT | 27208 12934 | 1.4 | 1.1 1.1 | 1.0 1.0 | PWr. Siress $=5,3$ Taps, Voltage Stresti $=.1$ Pur. Siress $=5$, Construction Class $5(\pi=1.5)$ |
| 9.10 9.11 | Wrewound, Veriabie, Procision | PR | 12934 19 | 1.4 1.4 | 1.1 1.0 | 1.0 1.0 | Pwr. Siress $=.5$, Construction Class $5\left(\pi_{c}=1.5\right)$. <br> 50K ohm, 3 Taps, Voltage Siress = . 1 <br> PWr. Siress $=5,5 \mathrm{~K}$ ohms, 3 Taps, Voltage Stress = 5 |
| 9.11 | Wirewound, Variable, Semipreciston | PA | 19 | 1.4 | 1.0 | 1.0 | Pwr. Siress = b, bk ohms, 3 Taps, Voitage Stress m. 5 |
| 9.11 | Wrimound, Senilpreciston | $\begin{aligned} & \text { PK } \\ & \text { OK } \end{aligned}$ | 39002 | $1.4$ | 1.0 1.0 | $1.0$ |  |
| 9.12 | Wirmound, Variable, Power | PP | 22 | 1.4 | 1.0 | 1.0 | Pwr. Stress $=5,3$ Taps, Voltage Stessis $=.5$, Unenclosed ( $\pi_{c}=1$ ) |
| 9.13 | Nonwirewound, Vartable | RNR | 39035 | 1.2 | 1.0 | 1.0 | Pwr. Stress $=5.5200 \mathrm{Kohm}, 3$ Taps, Voltage Stress $=.5$ |
| 9.13 | Nonwtrewound, Variable | RJ | 22097 | 1.2 | 1.0 | 1.0 | Pwr. Stress = .5, 200 K ohm, 3 Taps, Voltagi Stress $=.5$ |
| 9.14 | Comporition, Varlable | RN | 94 | 1.2 | 1.0 | 1.0 | Pwr. Stress $=5,270 \mathrm{~K}$ ohm, 3 Taps, Voltage Stoss $=.5$ |
| 9.15 | Nonwrewound, Variable Precision | RO | 39023 | 1.2 | 1.0 | 1.0 | Pwr. Stiesis $=.5,200 \mathrm{Kohm}$,3 Taps, Voltage Stress $=.5$ |
| 9.15 | Fim, Vartable | FVC: | 23285 | 1.2 | 1.0 | 1.0 | Pwr. Stess $=.5$ 200K ohm, 3 Taps, Voltage Stress $=.5$ |

Default Parameters for Capacitors

| Section | Part Type or | Style | MIL-C-SPEC | ${ }^{\pi} \mathrm{CV}$ | Temp. Rating | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.1 | Paper, By-Pass | ${ }^{\text {c }}$ | 25 | 1.0 | 125 | Voltage Stress $=.5, .15 \mu \mathrm{~F}$ |
| 10.1 | Paper, By-Pass | CA | 12889 | 1.0 | 85 | Voltage Stress $=.5, .15 \mu \mathrm{~F}$ |
| 10.2 | Paper/Plastic, Feed-through | CZR | 11693 | 1.0 | 125 | Voltage Stress $=.5$, $.061 \mu \mathrm{~F}$ |
| 10.3 | Paper/Plastic Film | CPV | 14157 | 1.0 | 125 | Voltage Stress $=.5, .027 \mu \mathrm{~F}$ |
| 10.3 | Papor/Plastic Fllm | CAR | 19978 | 1.0 | 125 | Volage Stress $=.5$, $.033 \mu \mathrm{~F}$ |
| 10.4 | Metalized Paper/Plastic | CH | 39022 | 1.0 | 125 | Voltage Stress $=.5, .14 \mu \mathrm{~F}$ |
| 10.4 | Metallized Plastic/Plastic | CH | 18312 | 1.0 | 125 | Voltage Stress $=.5, .14 \mu \mathrm{~F}$ |
| 10.5 | Metalized PaperPlastic | CPR | 55514 | 1.0 | 125 | Voltage Stress $=.5 . .33 \mu \mathrm{~F}$ |
| 10.6 | Metallized Plastic | CPH | 83421 | 1.0 | 125 | Voltage Stress $=.5, .14 \mu \mathrm{~F}$ |
| 10.7 10.7 | MICA (Dipped or Molded) | CMR | 39001 | 1.0 | 125 | Voltage Stress $=.5,300 \mathrm{pF}$ |
| 10.8 | MICA (Dipped) MICA (Bution) | CM | 5 | 1.0 | 125 | Voltage Stress $=.5,300 \mathrm{pF}$ |
| 10.9 | Glass | CYR | 10950 23269 | 1.0 1.0 | 150 125 | Voltage Stress $=.5,160 \mathrm{pF}$ |
| 10.9 | Glass | Cr | 11272 | 1.0 | 125 | Voltage Stress = .5.30 pF |
| 10.10 | Ceramic (Gen. Purpose) | ck | 11015 | 1.0 | 125 | Voltage Stress $=.5,3300 \mathrm{pF}$ |
| 10.10 | Ceramic (Cen. Puppee) | CKR | 39014 | 1.0 | 125 | Voltage Stress $=.5,3300 \mathrm{pF}$ |
| 10.11 10.11 | Cerminic (Tomp. Comp.) | COR | 20 | 1.0 | 125 | Votage Stress $=.5 .81 \mathrm{pF}$ |
| 10.12 | leremic chip | COR | 55681 39003 | 1.0 1.0 | 125 125 | Voltage Stress $=$.5, 81 pF |
|  |  |  |  |  |  | resistance, $\pi_{S R}=.13$ |
| 10.13 | Tenmum, Non-Solld | CLR | 39006 | 1.0 | 125 | Voltage Stress $=.5$, Foil, Hermetic, $20 \mu \mathrm{~F}, \pi_{\mathrm{C}}=1$ |
| 10.13 | Tenmum, Non-Solld | a | 3965 | 1.0 | 125 | Voltage Stress $=.5$, Foil, Hermetic, $20 \mu \mathrm{~F}, \pi_{\mathrm{c}}=1$ |
| 10.14 | Auminum Oxide | CuR | 39018 | 1.3 | 125 | Voltage Stress $=.5 .1700 \mu \mathrm{~F}$ |
| 10.15 | Aluminum Dry | CE | 62 | 1.3 | 85 | Voltage Stress $=.5,1600 \mu \mathrm{~F}$ |
| 10.16 10.17 | Variable, Ceramic Variable, Piston | CV | 81 |  | 85 | Voltage Stress $=.5$ |
| 10.18 | Variabbe, Piston Varkble, Ak Trimmer | PC CT | 14409 92 |  | 125 | Voltage Stress $=.5$ |
| 10.19 | Variable, Vacuum | cG | 23183 |  | 85 | Voltage Stress $=.5$, Variable Configuration |

APPENDIX A: PARTS COUNT


# THIS HANDBOOK IS FOR GUIDANCE ONLY DO NOT CITE THIS DOCUMENT AS A REQUIREMENT 

MILITARY HANDBOOK<br>RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

| New Page(s) | Date | Superseded Page(s) | Dato |
| :---: | :---: | :---: | :---: |
| Front Cover |  | Front Cover | 2 December 1991 |
| iii | 2 December 1991 | iii | Reprinted without change |
| iv |  | iv | 2 Decamber 1991 |
| $v$ |  | $v$ | 2 December 1991 |
| vi |  | vi | 2 December 1991 |
| vii |  | vii | 10 July 1992 |
| viii |  | New Page |  |
| 1-1 |  | 1-1 | 2 December 1891 |
| 1-2 |  | Now Page |  |
| 2-1 |  | 2.1 | 2 December 1989 |
| 2-2 |  | 2-2 | 2 December 1891 |
| $2 \cdot 3$ |  | 2-3 | 2 December 1981 |
| 2-4 |  | 2-4 | 2 December 1991 |
| 2-5 |  | 2-5 | 2 December 1991 |
| 2-6 |  | 2-6 | 2 December 1991 |
| 2.7 |  | New Page |  |
| 2.8 |  | New Page |  |
| 5-3 |  | 5-3 | 10 Juty 1992 |
| 5-4 | 10 July 1992 | 5-4 | Reprinted without change |
| 5-5 |  | 5-5 | 2 December 1991 |
| 5-6 |  | 5-6 | 2 December 1991 |
| 5-9 |  | 5-9 | 10 July 1992 |
| 5-10 | 2 December 1991 | $5 \cdot 10$ | Reprinted without change |
| 5-23 |  | 5-23 | 2 December 1991 |
| 5-24 |  | 5-24 | 2 December 1991 |
| 6-1 | 2 December 1991 | 6-1 | Reprinted without change |
| 6-2 |  | 6-2 | 2 December 1991 |
| 7-3 |  | $7-3$ | 2 December 1991 |
| $7-4$ | 2 December 1991 | 7-4 | Reprinted without change |
| 9-1 through 9-3 |  | 9-1 through 9-29 | 2 December 1991 |
| 10-1 through 10-6 |  | 10-1 through 10-32 | 2 December 1991 |
| 11-1 |  | 11-1 | 2 December 1991 |
| 11-2 |  | 11-2 | 2 December 1991 |
| $11-3$ |  | 11-3 | 2 December 1991 |
| 11-4 |  | 11-4, 11-5 | 2 December 1991 |
| $12-1$ |  | $12 \cdot 1$ | 2 December 1991 |
| 12-2 |  | $12 \cdot 2$ | 2 December 1991 |


| New Page(s) | Date | Superseded Page(s) | Date |
| :---: | :---: | :---: | :---: |
| 12.3 |  | 12-3 | 10 July 1992 |
| 12.4 |  | 12.4 | 2 December 1991 |
| 12.5 |  | 12.5 | 2 December 1991 |
| 13-1 |  | 13-1 | 2 December 1991 |
| 13-2 |  | 13-2 | 2 December 1991 |
| 13-3 |  | 13-3 | 2 December 1991 |
| 14-1 through 14-2 |  | 14-1 through 14-4 | 2 December 1991 |
| 14-3 |  | 14.5 | 2 December 1991 |
| 15-1 through 15-3 |  | 15-1 through 15-6 | 2 December 1991 |
| 16-1 |  | $16-1$ | 2 Decomber 1991 |
| 16-2 |  | New Page |  |
| 16-3 |  | New Page |  |
| 16-4 |  | New Page |  |
| 17-1 |  | 17-1 | 2 December 1991 |
| Appendix A |  | A-1 through A-18 | 2 December 1991, 10 July 1992 |
| C-3 |  | C-3 | 2 December 1991 |
| C. 4 |  | C-4 | 2 December 1991 |

2. Retain the pages of this notice and insert before the Table of Contents.
3. Holders of MIL-HDBK-217F will verity that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:
Army - CR
Navy - EC
Air Force-17

Preparing Activity:
Air Force - 17
Project No. RELI-0074

Review Activities:
Army - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 15, 19, 99

Army - AT, ME, GL
Navy - CG, MC, YD, TD
Air Force-85

AMSC N/A
DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

NOT MEASUREMENT SENSITIVE MIL-HDBK-217F
2 DECEMBER 1991
SUPERSEDING
MIL-HDBK-217E, Notice 1
2 January 1990

# MILITARY HANDBOOK 

## RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT



THIS HANDBOOK IS FOR GUIDANCE ONLY - DO NOT CITE THIS DOCUMENT AS A REQUIREMENT

## DEPARTMENT OF DEFENSE WASHINGTON DC 20301

## RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Rome Laboratory/ERSR, Attn: Seymour F. Morris, 525 Brooks Rd., Griffiss AFB, NY 13441-4505, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.
SECTION 1: SCOPE
1.1 Purpose ..... 1-1
1.2 Application ..... 1-1
1.3 Computerized Reliability Prediction ..... 1-1
SECTION 2: REFERENCE DOCUMENTS ..... $2 \cdot 1$
SECTION 3: INTRODUCTION
3.1 Reliability Engineering ..... 3-1
3.2 The Role of Reliability Prediction ..... 3-1
3.3 Limitations of Reliabiiity Predictions ..... 3-2
3.4 Part Stress Analysis Prediction ..... 3-2
SECTION 4: RELIABILITY ANALYSIS EVALUATION ..... 4-1
SECTION 5: MICROCIRCUITS, INTRODUCTION ..... 5-1
5.1 Gate/Logic Arrays and Microprocessors ..... 5-3
5.2 Memories ..... 5-4
5.3 VHSICNHSIC Like ..... 5-7
5.4 GaAs MMIC and Digital Devices ..... $5 \cdot 8$
5.5 Hybrids ..... 5-9
5.6 SAWW Devices ..... $5 \cdot 10$
5.7 Magnetic Bubble Memories ..... 5-11
$5.8 \pi_{T}$ Table for All ..... 5-13
$5.9 \quad \mathrm{C}_{2}$ Table for All ..... 5-14
$5.10 \quad \pi_{E}, \pi_{L}$ and $\pi_{Q}$ Tables for All ..... 5-15
$5.14 \mathrm{~T}_{\mathrm{J}}$ Datermination, (All Except Hybrids) ..... 5-17
$5.12 \mathrm{~T}_{\mathrm{J}}$ Determination, (For Hybrids) ..... 5-18
5.13 Exampies ..... 5-20
SECTION 6: DISCRETE SEMICONDUCTORS
6.0 Discrete Semiconductors, Introduction ..... 6.1
6.1 Diodes, Low Frequency ..... 6-2
6.2 Diodes, High Frequency (Microwave, RF) ..... 6-4
6.3 Transistors, Low Frequency, Bipoiar ..... 6-6
6.4 Transistors, Low Frequency, Si FET ..... 6-8
6.5 Transistors, Unijunction ..... 6-9
6.6 Transistors, Low Noise, High Frequency, Bipolar ..... 6-10
6.7 Transistors, High Power, High Frequency, Bipolar. ..... 6-12
6.8 Transistors, High Frequency, GaAs FET ..... 6-14
6.9 Transistors, High Fiequency, Si FET ..... 6-16
6.10 Thyristors and SCRs ..... 6-17
6.11 Optoelectronics, Detectors, Isolators, Emitters ..... 6-19
6.12 Optoelectronics, Alphanumeric Displays ..... 6-20
6.13 Optoelectronics, Laser Diode ..... 6-21
$6.14 T_{J}$ Determination ..... 6-23
6.15 Example ..... 6.25

## TABLE OF CONTENTS

SECTION 7: TUBES ..... $7-1$
7.1 All Types Except TWT and Magnetron ..... $7-3$
7.2 Traveling Wave ..... $7 \cdot 4$
7.3 Magnetron
SECTION 8: LASERS ..... 8-1
8.0 Introduction ..... 8-2
8.1 Helium and Argon ..... 8 -3
8.2 Carbon Dioxide, Sealed ..... 8.4
8.3 Carbon Dioxide, Flowing ..... 8-5 ..... 8-5
8.4 Solid State, ND:YAG and Ruby Rod$9-1$
SECTION 9: RESISTORS
9.1 Resistors
SECTION 10: CAPACITORS ..... 10-1
10.1 Capacitors ..... 10-6
10.2 Capacitors, Example
SECTION 11: INDUCTIVE DEVICES ..... 11-1
11.1 Transformers ..... $11-3$
11.2 Coils ..... 11-411.3 Determination of Hot Spot Temperature
SECTION 12: ROTATING DEVICES ..... $12-1$
12.1 Motors ..... 12-4
12.2 Synchros and Resolvers ..... 12-5
12.3 Elapsed Time Meters
SECTION 13: RELAYS ..... 13-1
13.1 Mechanical ..... 13-3
13.2 Solid State and Time Delay
SECTION 14: SWITCHES ..... $14-1$
14.1 Switches ..... 14-2
14.2 Circuit Breakers
SECTION 15: CONNECTORS ..... 15-115.1 Connectors, General
15.2 Connectors, Sockets
SECTION 16: INTERCONNECTION ASSEMBLIES Holes ..... 16-1 ..... 16-1
16.1 Interconnection Assemblies with Plated Through Holes... 16.2 Interconnection Assemblies, ..... 16-2
16.2 Interconnection Assemblies, Surface Mount Technology
SECTION 17: CONNECTIONS ..... 17-1
17.1 Connections
17.1 Connections
SECTION 18: METERS ..... 18-1
18.1 Meters, Panel
SECTION 19: QUARTZ CRYSTALS ..... $19-1$
19.1 Quartz Crystals
SECTION 20: LAMPS ..... 20-1
20.1 Lamps
SECTION 21: ELECTRONNIC FiLTERS
21.1 Electionic Fiters, Non-Tunable ..... 21-1
SECTION 22: FUSES ..... 22-1
22.1 Fuses
23-1
SECTION 23: MISCELLANEOUS PARTS
23.1 Miscellaneous Parts
A- 1
APPENDIX A: PARTS COUNT RELIABILITY PREDICTION
B-1
APPENDIX B: VHSICNHSIC-LIKE AND VLS! CMOS (DETAILED MODEL)C-1
APPENDIX C: BIBLIOGRAPHY
LIST OF TABLES
Table 3-1: Parts with Multi-Level Quality Specifications ..... 3-3
Table 3-2: Environmental Symbol and Description ..... $3-4$ ..... $3-4$ ..... 4-1
Table 4-1: Reliability Analysis Checklist
Tábié 6-1: Default Case Temperatures for All Environments ( ${ }^{\circ} \mathrm{C}$ ) ..... 6-23
Table 6-2 Approximate Thermal Resistance for Semiconductor Devices in Various Package Sizes ..... 6-24
LIST OF FIGURES
Figure 5-1: Cross Sectional View of a Hybrid with a Single Multi-Layered Substrate ..... 5-18
Figure 8-1: Examples of Active Optical Surfaces ..... 8-1 ..... 8-1
1.0 THIS HANDBOOK IS FOR GUIDANCE ONLY. THIS HANDBOOK SHALL not be cited as a requirement. If it is, the contractor does not have to comiply.

MIL-HDBK-217F; Notice 2 provides the following changes based upon a recently completed study (see Ref. 37 listed in Appendix C):

- Revised resistor and capacitor modeis, inciuding new modeis io address chip devices.
- Updated failure rate models for transformers, coils, motors, relays, switches, circuit breakers, connectors, printed circuit boards (with and without surface mount technology) and connections.
- A new model to address surface mounted technology solder connections.
- A revised Traveling Wave Tube model based upon data supplied by the Electronic Industries Association Microwave Tube Division. This further lowers the calculated failure rates beyond the earlier modifications made in the base document (MIL-HDBK-217F, 2 December 1991).
- Revised the Fast Recovery Power Rectifier base iailure rate downward based on a reevaluation of Ref. 28.
2.0 MIL-HDBK-217F, Notice 1, (10 July 1992) was issued to correct minor typographical errors in the basic $F$ Revision.
3.0 MIL-HDBK-217F, (base document), (2 December 1991) provided the following changes based upon recentiy completed studies (see Ref. 30 and 32 listed in Appendix C ):

1. New failure rate prediction models are provided for the following nine major classes of microcircuits:

- Monolithic Bipolar Digital and Linear Gate/Logic Ârray Devices
- Monolithic MOS Digital and Linear Gate/Logic Array Devices
- Monolithic Bipolar and MOS Digital Microprocessor Devices (including Controllers)
- Monolithic Bipolar and MOS Memory Devices
- Monolithic GaAs Digital Devices
- Monolithic GaAs MMIC Devices
- Hybrid Microcircuits
- Magnetic Bubble Memories
- Surface Acoustic Wave Devices

The 2 December 1991 revision provided new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000 , linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and co-processors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The $\mathrm{C}_{1}$ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice $\left(\pi_{T}\right)$ have been changed for MOS devices and for memories. The
$C_{2}$ factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-seaied duai in-line packages. New values have been included for the quality factor ( $\pi_{Q}$ ), the learning factor $\left(\pi_{\mathrm{L}}\right)$, and the environmental tactor $\left(\pi_{\mathrm{E}}\right)$. The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.
2. A new model for Very High Speed Integrated Circuits (VHSICNHSIC Like) and Very Large Scale integration (VLSI) devices (gate counts above 60,000 ).
3. The reformatting of the entire handbook to make it easier to use.
4. A reduction in the number of environmental factors $\left(\pi_{E}\right)$ from 27 to 14.
5. A revised failure rate model for Network Resistors.
6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.
1.1 Purpose - This handbook is for guidance only and shall not be cited as a requirement. If it is, the contractor does not have to comply (see Page 1-2). The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reiiability of a mature design) of military electronic equipment and systems. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipment. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs. The handbook is intended to be used as a tool to increase the reliability of the equipment being designed.
1.2 Application - This handbook contains two methods of reliability prediction - "Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual hardware and circuits are being designed. The Parts Count Method requires less information, generally part quantities, quality level, and the application environment. This method is applicable during the early design phase and during proposal formulation. In general, the Parts Count Method wil! usually result in a more conservative estimate (i.e., higher failure rate) of system reliability than the Parts Stress Method.

OFFICE OF THE ASSISTANT SECRETARY OF DEFENSE 3300 DEFENSE PENTAGON WASMINGTON. DC 20001.3500

F TB 26 m
COMPANDER, ROME LABORATORY (AFMC), ATTN: RL/ERSR, MR. S. MORRIS
SUBJECT: Notice 2 to MIL-RDBK-217F, Reliability Prediction of Electronic Equipment*. Project REKI-0074

Prior to sending the subject notice to the DOD single stock Point for printing and distribution, the following additions mast be made:

- Across the cover in BIG BOLD Brick LEITERS - ALI CArs: Insert -THIS HANDBOOK IS FOR GUIDANCE ORLY. DO MOTS CITE THIS DOCUMENT AS A REQUIREMENT".
- In the FOREWORD (Page vii of Notice 2), paragraph 1.0: Add THIS HANDBOOK IS FOR GUIDANCE ONLY. TETS ERNDBOOX SHALL NOT BE CITED AS A REQULRTRTATI. IP IT IS, THE CONTRACTOR DOES NOT have to comply."
- Add an entry for the SCOPE, paragraph 1.1 (Purpose): "This handbook is for guidance only and shall not be cited as a requirement. If it is, the contractor does not have to family."

If you have any questions regarding this request, please contact Ms. Carla Jenkins.


Walter B. Bergry for, II Chairman, Defense stamatade Improvent Council

CC: OUSD(AET)DTSEEE/SE, Mr. M. Zsak

This handbook cites some specifications which have been canceiled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-shelf" equipment which the Department of Detense purchases. The documents cited in this section are for guidance and information.

| SPECIFICATION | SECTION \# | titie |
| :---: | :---: | :---: |
| MIL-C-5 | 10.1 | Capacitors, Fixed, Mica Dielectric, General Specification for |
| MIL-R. 11 | 9.1 | Resistor, Fixed, Composition (Insulated), General Specification for |
| MIL-R-19 | 9.1 | Resistor, Variable, Wirewound (Low Operating Temperature) General Specification for |
| MIL-C-20 | 10.1 | Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating). Established Reliability and Nonestablished Reliability, General Specification for |
| MIL-R-22 | 9.1 | Resistor, Variable, Wirewound (Power Type), General Specification for |
| M11-C-25 | 10.1 | Capacitor, Fixed, Paper-Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for |
| MiL-R-26 | 9.1 | Resistor, Fixed, Wirewound (Power Type), General Specificaation for |
| MIL-T-27 | 11.1 | Transformer and Inductors (Audio, Power, High Power Pulse), General Specitication for |
| MII-C-62 | 10.1 | Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized), General Specification for |
| MiL-C-81 | 10.1 | Capacitor, Variable, Ceramic Dielectric, Genoral Specification for |
| MIL-C-92 | 10.1 | Capacitor, Variable, Air Dielectric (Trimmer), General Specification for |
| MIL-R-93 | 9.1 | Resistor, Fixed, Wirewound (Accurate), General Specification for |
| MIL-R-94 | 9.14 | Resistor, Variable, Composition, General Specification for |
| MIL-V-95 | 23.1 | Vibrator, Interrupter and Sell-Pectifying, General Specification for |
| W-L-111 | 20.1 | Lamp, Incandescent Miniature, Tungsten Filament |
| $W=C-375$ | 14.5 | Circuit Breaker, Molded Case, Branch Circuit and Service |
| W-F-1726 | 22.1 | Fuse, Cartridge, Class H (this covers renewable and nonrenewable) |
| W-F-1814 | 22.1 | Fuse, Cartridge, High Interrupting Capacity |
| MIL-C-3098 | 19.1 | Crystal Unit, Quartz, General Specification for |
| MIL-C-3607 | 15.1 | Connector, Coaxial, Radio Fiequency, Series Pulse, General Specifications for |
| MIL-C-3643 | 15.1 | Connector, Coaxial, Radio Frequency, Series HN and Associated Fittings, General Specificatıon for |


| MIL-C-3650 | 15.1 | Connector, Coaxial, Radio Frequency, Series LC |
| :---: | :---: | :---: |
| MIL-C-3655 | 15.1 | Connector, Plug and Receptacle, Electrical (Coaxial Series Twin) and Associated Fittings, General Specification for |
| MIL-S-3786 | 14.3 | Switch, Rotary (Circuit Selector, Low-Current (Capacity)), General Specification for |
| MIL-S-3950 | 14.1 | Switch, Toggle, Environmentally Sealed, General Specification for |
| MIL-C-3965 | 10.1 | Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, General Specification for |
| MIL-C-5015 | 15.1 | Connector, Electrical, Circular Threaded, AN Type, General Specification for |
| MIL-F-5372 | 22.1 | Fuse, Current Limiter Type, Aircratt |
| MIL-S-5594 | 14.1 | Switches, Toggle, Electrically Held Sealed, General Specification for |
| MIL-R-5757 | 13.1 | Relays, Electromagnetic, General Specification for |
| Mil-R-6106 | 13.1 | Relay, Electromagnetic (Including Established Reliability (ER) Types), General Specification for |
| MIL-L-6363 | 20.1 | Lamp, Incandescent, Aircratt Service, General Specification for |
| MIIL-S-8805 | 14.1, 14.2 | Switches and Switch Assemblies, Sensitive and Push (Snap Action). General Specification for |
| MIL-S-8834 | 14.1 | Switches, Toggle, Positive Break, General Specification for |
| MIL-S-8932 | 14.1 | Switches, Pressure, Aircratt, General Specification for |
| MIL-S-9395 | 14.1 | Switches, Pressure, (Absolute, Gage, and Ditferential), General Specification for |
| MIL-S-9419 | 14.1 | Switch, Toggle, Momentary Four Position On, Center Off, General Specinication for |
| MIL-M-10304 | 18.1 | Meter, Electrical Indicating, Panel Type, Ruggedized, General Specification for |
| AIIL-P-10509 | 9.1 | Resistor, Fixed Film (High Reliability), General Specification for |
| MIL-C-10950 | 10.1 | Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for |
| MIL-C-11015 | 10.1 | Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Specification for |
| MIL-C-11272 | 10.1 | Capacitor, Fixed, Glass Dielectric, General Specification for |


| MIL-C-11693 | 10.1 | Capacitor, Feed Through, Radio Interference Reduction AC and DC, (Hermetically Seaied in Merai Cases) Estabished and Nonestablished Reliability, General Specification for |
| :---: | :---: | :---: |
| MIL-R-11804 | 9.1 | Resistor, Fixed, Film (Power Type), General Specification for |
| MIL-S-12211 | 14.1 | Switch, Pressure |
| MIL-S-12285 | 14.1 | Switches. Thermostatic |
| MIL-S-12883 | 15.3 | Sockets and Accessories for Plug-In Electronic Components, General Specification for |
| MIL-C-12889 | 10.1 | Capachor, By-Pass, Radio - Interference Reduction, Paper Dielectric. AC and DC, (Hermetically Sealed in Metallic Cases), General Specification for |
| MIL-R-12934 | 9.1 | Resistor, Variable, Wirewound, Precision, General Specification for |
| MIL-S-13484 | 14.1 | Switch, Sensitive: 30 Volts Direct Current Maximum, Waterproof |
| MIL-C-13516 | 14.2 | Circuit Breakers, Manual and Automatic (28 Volts DC) |
| MiL-S-130 ${ }^{\text {a }}$ | 14.1 | Switctes, Potary: 28 Voh DC |
| MIL-R-13718 | 13.1 | Relays, Electromagnetic 24 Volt DC |
| MILI-S-13735 | 14.1 | Switctes, Toggle: 28 Voh DC |
| MIL-C-14409 | 10.1 | Capacitor, Variable (Piston Type, Tubular Trimmer), General Spectication for |
| MRIL-F-15460 | 22.1 | Fuse, Instrument, Power and Telephone |
| MIL-S-15291 | 14.1 | Switches, Rotary, Snap Action and Detent/Spring Return Action, General Specification for |
| MIL-C-15305 | 11.2 | Coils, Electrical, Fixed and Variable, Radio Frequency, General Specification for |
| MIL-C-15370 | 15.1 | Couplers, Directional, General Specification for |
| MIL-F-15733 | 21.1 | Fiters and Capacitors, Radio Frequency Interierence, General Specification for |
| MIL-S-15743 | 14.1 | Switches, Rotary, Enclosed |
| MIL-C-18312 | 10.1 | Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Mermetically Seaied in Metal Cases), General Specitication for |
| MIL-F-18327 | 21.1 | Fitter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for |


| MIL-R-18546 | 9.1 | Resistor, Fixed, Wirewound (Power Type. Chassis Mounted), General Specification for |
| :---: | :---: | :---: |
| MIL-S-19500 | 6.0 | Semiconductor Device, General Specification for |
| MIL-R-19523 | 13.1 | Reiays, Control |
| MIL-R-19648 | 13.1 | Relay, Time, Delay, Thermal, General Specification for |
| MIL-C-19978 | 10.1 | Capactor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Meta!, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for |
| MIL-T-21038 | 11.1 | Transiormer, Puise, Low Power, General Specification for |
| MIL-C-21097 | 15.1 | Connector, Electrical, Printed Wiring Board, General Purpose, General Specification for |
| MIL-S-21277 | 14.1 | Switches, Liquid Level, General Specification for |
| MIL-C-21617 | 15.1 | Connectors, Plug and Receptable - Electrical Rectangular, Polarized Shell, Miniature Type |
| MIL-R-22097 | 9.1 | Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for |
| MIL-S-22614 | 14.1 | Switches, Sensitive |
| MIL-R-22684 | 9.2 | Resistor, Fixed, Film, insuiated, Generail Specitication for |
| MIL-S-22710 | 14.4 | Switches, Code Indicating Wheel (Printed Circuit), (Thumbwheel, In-line and Pushbutton), General Specification for |
| MIL-S-22885 | 14.1 | Switches, Pushbutton, Illuminated, General Specification for |
| MIL-C-22992 | 15.1 | Connectors, Plugs and Receptacles, Electrical, Water-Proot, Quick Disconnect, Heavy Duty Type, General Specification for |
| MIL-C-23183 | 10.1 | Capacitors, Fixed or Variable, Vacuum or Gas Dielectric, General Specitication for |
| MIL-C-23269 | 10.1 | Capacitor, Fixed, Glass Dielectric, Established Reliability, General Spectication for |
| MIL-R-23285 | 9.1 | Resistor, Variable, Nonwirewound, General Specification for |
| MIL-F-23419 | 22.1 | Fuse, Carridge, Instrument Type, General Specification for |
| MIL-T-23648 | 9.1 | Resistor, Thermal, (Thermally Sensitive Resistor), Insulated, General Specification for |
| MS-24055 | 15.1 | Connector, Plug-Receptacle, Electrical, Hexagonal, 9 Contacts, Female, 7.5 Amps |
| MS-24056 | 15.1 | Connector, Plug-Receptacle, Electrical, Hexagonal, 9 Contacts, Male, 7.5 Amps |


| MIL-C-24308 | 15.1 | Connectors, Electric, Rectangular, Nonenvironmental, Miniature, Polarized Shel!, Rack and Pane!, General Specification for |
| :---: | :---: | :---: |
| MIL-S-24317 | 14.1 | Switches, Multistation, Pushbutton (Illuminated and Non-illuminated), General Specification for |
| MIL-C-25516 | 15.1 | Connector, Electrical, Miniature, Coaxial, Environment Resistant Type, General Specification for |
| MIL-C-26482 | 15.1 | Connector, Electrical (Circular, Miniature, Quick Disconnect, Environment Resisting). Receptacles and Plugs, General Specification for |
| MIL- C-26500 | 15.1 | Connectors, Genneral Pupose, Electrical, Miniature, Circular. Environment Resisting, General Spechication for |
| MIL-R-27208 | 9.1 | Resistor, Variable, Wirewound, Nonprecision, General Specification for |
| MIL-C-28731 | 15.1 | Connectors, Electrical, Rectangular, Removable Contact, Formed Blade, Fork Type (For Rack and Panel and Other Applications), General Specification for |
| M11-C-28748 | 15.1 | Connector, Plug and Receptacte, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specitication for |
| MiL-ri-28750 | 13.2 | Relay, Solid State, General Specification for |
| MIL-C-28804 | 15.1 | Connectors, Plug and Receptacle, Electric Rectangular, High Density. Polarized Center Jackscrew, General Specification for, Inactive for New Designs |
| MIL-C-28840 | 15.1 | Connector, Electrical, Circular Threaded, High Density, High Shock Shipboard, Class D, General Specitication for |
| MIL-M-38510 | 5.0 | Microcircuits, General Specification for |
| MIL-S-38533 | 15.3 | Sockets, Chip Carrier, Ceramic, General Specification ior |
| MIL-H-38534 | 5.0 | Hybrid Microcircuits, General Specification for |
| MIL-I-38535 | 5.0 | Integrated Circuits (Microcircuits) Manufacturing, General Spectification for |
| MIL-C-38999 | 15.1 | Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Soider Contacis, General Specification for |
| MIL-C-39001 | 10.1 | Capacitor, Fixed, Mica-Dielectric, Established Reliability, General Specification for |
| MIL-R-39002 | 9.1 | Resistor, Variable, Wirewound, Semi-Precision, General Specification for |
| MIL-C-39003 | 10.1 | Capacitor, Fixed, Electrolytic, (Solid Electrolyte). Tantalum, Esiablished Reliability, General Specification for |


| MIL-R-39005 | 9.1 | Resistor, Fixed, Wirewound (Accurate), Established Reliability, General Specification tor |
| :---: | :---: | :---: |
| MIL-C-39006 | 10.1 | Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reiliability, General Specification for |
| MIL-R-39007 | 9.1 | Resistor, Fixed, Wirewound (Power Type), Established Reliability, General Specification for |
| MIL-R-39008 | 9.1 | Resistor, Fixed, Composition (Insulated), Established Reliability. General Specification for |
| MIL-R-39009 | 9.1 | Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Established Reliability, General Specification for |
| MIL-C-39010 | 11.2 | Coils, Electrical, Fixed, Radio Frequency, Molded, Established Reliability, General Specification for |
| MIL-C-39012 | 15.1 | Connector, Coaxial, Radio Frequency, General Specification for |
| MIL-C-39014 | 10.1 | Capacitor, Fixed, Ceramic Dielectric (General Purpose), Established Reliability, General Specitication for |
| MIL-R-39015 | 9.1 | Resistor, Variable, Wirewound (Lead Screw Actuated), Established Reliability, General Specification for |
| MIL-R-39016 | 13.1 | Relay, Electromagnetic, Established Reliability. General Specification for |
| MIL-R-39017 | 9.1 | Resistor, Fixed, Film (Insulated), Established Reliability, General Specitication for |
| MIL-C-39018 | 10.1 | Capacitor, Fixed, Electrolytic (Aluminum Oxide), Established Reliability and Nonestablished Reliability, General Specification for |
| MIL-C-39019 | 14.5 | Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free, General Specification for |
| MIL-C-39022 | 10.1 | Capacitors, Fixed, Metallized, Paper-Plastic Film or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal or Ceramic Cases), Established Reliability, General Specification for |
| MIL-R-39023 | 9.1 | Resistor, Variable, Nonwirewound, Precision, General Specification for |
| MIL-R-39035 | 9.1 | Resistor, Variable, Nonwirewound (Adjustment Type), Established Reliability, General Specification for |
| MIL-S-45885 | 14.1 | Switch, Rotary |
| MIL-C-49142 | 15.1 | Connectors, Plugs and Receptacle, Electrical Triaxial, Radio Frequency, General Specitication for |
| MIL-C-55074 | 15.1 | Connectors, Plug and Receptacie, Telephone, Electrical, Subassembly and Accessories and Contact Assembly. Electrical, General Specification for |
| MIL-P-55110 | 15.2 | Printed Wiring Board, General Specification for |
| Mill $\cdot$ R 55182 | 9.1 | Resistor, Fixed, Film. Established Reliability, General Specirication for |


| MIL-C-55235 | 15.1 | Connectors, Coaxial, Radio Frequency, Series TPS |
| :---: | :---: | :---: |
| MIL-C-55302 | 15.1 | Connector, Printed Circuit, Subassembly and Accessories |
| MIL-A-55339 | 15.1 | Adaptors, Connector, Coaxial, Radio Frequency. (Between Series and Within Series), General Specification for |
| MIL-R-55342 | 9.1 | Resistors, Fixed, Film, Chip, Established Reliability, General Specification for |
| Mil-C-55365 | 10.1 | Capacitor, Fixed, Electrolytic (Tantalum), Chip, Established Reliability, General Specification for |
| MIL-S-55433 | 14.1 | Switches, Reed, General Specification for |
| MIL-C-55514 | 10.1 | Capactors, Fixed, Plastic (or Metallized Plastic) Dielectric, DC or DCAC, In Non-Metal Cases, Established Reliability, General Specification for |
| MIL-C-55629 | 14.5 | Circuit Breaker, Magnetic, Unsealed, or Panel Seal, Trip-Free, General Specification for |
| MIL-T-55631 | 11.1 | Transtormer, Intermediate Frequency, Radio Frequency and Discriminator, General Specification for |
| MIL-C-55681 | 10.1 | Capacitor, Chip, Multiple Layer, Fixed, Unencapsulated Ceramic Dielectric, Established Reliability, General Specification for |
| MIL-C-81511 | 15.1 | Connector, Electrical, Circular, High Density, Ouick Disconnect, Environment Resisting and Accessories, General Specification for |
| MIL-S-81551 | 14.1 | Switches; Toggle, Hermetically Sealed, General Specitication for |
| MIL-C-81659 | 15.1 | Connectors, Electrical Rectangular, Crimp Contact |
| MIL-S-82359 | 14.1 | Switch, Rotary, Variable Resistor Assembly Type |
| MIL-C-83383 | 14.5 | Circuit Breaker, Remote Control, Thermal, Trip-Free, General Specification for |
| MIL-R-83401 | 9.1 | Resistor Networks, Fixed, Film and Capacitor-Resistor Networks, Ceramic Capacitors and Fixed Film Resistors, General Specification for |
| MIL-C-83421 | 10.1 | Capacitors, Fixed Metallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal or Ceramic Cases, Established Reliability, General Specification for |
| MIL-C-83446 | 11.2 | Coils, Radio Frequency, Chip. Fixed or Variable, General Specification for |
| MIL-C-83500 | 10.1 | Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum Cathode, General Specification for |
| MIL-S-83504 | 14.1 | Switches, Dual In-Line Package (DIP). General Specitication for |
| MIL-C-83513 | 15.1 | Connector, Electrical, Rectangular, Microminiature, Polarized Shell, General Specification for |


| MIL-C-83515 | 15.1 | Connectors, Telecommunication, Polarized Shell, General Specification for |
| :---: | :---: | :---: |
| MIL-R-83516 | 13.1 | Relays, Reed, Dry. General Specification for |
| MIL-C-83517 | 15.1 | Connectors, Coaxial, Radio Frequency for Coaxial, Strip or Microstrip Transmission Line, General Specification for |
| MIL-R-83520 | 13.1 | Relays, Electromechanical, General Purpose, Non-Hermetically Sealed, Plastic Enclosure (Dust Cover), General Specification for |
| MIL-C-83527 | 15.1 | Connectors, Plug and Receptacle, Electrical, Rectangular Multiple Insert Type, Rack to Panel, Environment Resisting, $150^{\circ} \mathrm{C}$ Total Continuous Operating Temperature, General Specification for |
| MIL-R-83536 | 13.1 | Relays, Electromagnetic, Established Reliability, General Specification for |
| MIL-C-83723 | 15.1 | Connector, Electrical (Circular Environment Resisting), Receptacles and Plugs, General Specification for |
| MIL-R-83725 | 13.1 | Relay, Vacuum, General Specification for |
| MIL-R-83726 | $\begin{array}{r} 13.1, ~ 13.2 \\ 13.3 \end{array}$ | Relays, Hybrid and Solid State, Time Delay, General Specification for |
| MIL-S-83731 | 14.1 | Switch, Toggle, Unsealed and Sealed Toggle, General Specitication for |
| MIL-C-83733 | 15.1 | Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, $200^{\circ} \mathrm{C}$ Total Continuous Operating Temperature, General Specification for |
| MIL-S-83734 | 15.3 | Sockets, Plug-In Electronic Components, Dual-In-Line (DIPS) and Single-In-Line Packages (SIPS), General Specification for |
| MIL-C-85028 | 15.1 | Connector, Electrical, Rectangular, Individual Contact Sealing, Polarized Center Jackscrew, General Specification for |
| TANDARD |  | TITLE |
| MIL-STD-756 |  | Reliability Modeling and Prediction |
| MIL-STD-883 |  | Test Methods and Procodures for Microelectronics |
| MIL-STD-975 |  | NASA Standard Electrical, Electronic and Electromechanical (EEE) Parts List |
| MIL-STD-1547 |  | Electronic Parts, Materials and Processes for Space and Launch Vehicles, Technical Requirements for |
| MIL-STD-1772 |  | Certification Requirements for Hybrid Microcircuit Facilities and Lines |

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

Standardization Document Order Desk, 700 Robins Ave, Building 4. Section D. Philadelphia. PA 19111-5094, (215) 697-2667

## MIL-HDBK-217F <br> NOTICE 2

5.1 MICROCIRCUITS, GATEILOGIC ARRAYS AND MICROPROCESSORS

## DESCRIPTION

1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
2. MOS Devices, Digital and Linear Gate/Logic Arrays
3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
4. Microprocessors

$$
\lambda_{D}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Bjpolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - $\mathrm{C}_{1}$


MOS Linear and Digital Gate/Logic Array Die Complexity Failure Rate - C1 ${ }^{*}$

| Digital |  | Linear |  |  |  | PLA/PAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. Gates | $\mathrm{C}_{1}$ | No. | rans | sistors | $\mathrm{C}_{1}$ | No. Gates | $\mathrm{C}_{1}$ |
| 1 to 100 | . 010 | 1 | to | 100 | . 010 | Up to 500 | . 00085 |
| 101 to 1,000 | . 020 | 101 | to | 300 | . 020 | 501 to 1,000 | . 0017 |
| 1,001 to 3,000 | . 040 | 301 | to | 1,000 | . 040 | 2,001 to 5,000 | . 0034 |
| 3,001 to 10,000 | . 080 | 1,001 |  | 10,000 | . 060 | 5,001 to 20,000 | . 0068 |
| 10,001 to 30,000 | . 16 |  |  |  |  |  |  |
| 30,001 to 60,000 | . 29 |  |  |  |  |  |  |

-NOTE: For CMOS gate counts above 60,000 use the VHSICNHSIC-Like model in Section 5.3

Microprocessor
Die Complexity Failure Rate $-\mathrm{C}_{1}$

| No. Bits | Bipolar | MOS |
| :---: | :---: | :---: |
|  | $\mathrm{C}_{1}$ | $\mathrm{C}_{1}$ |
| Up to 8 | .060 | .14 |
| Up to 16 | .12 | .28 |
| Up 1032 | .24 | .56 |

All Other Model Parameters

| Parameter | Refer to |
| :---: | :---: |
| $\pi_{T}$ | Section 5.8 |
| $C_{2}$ | Section 5.9 |
| $\pi_{E}, \pi_{Q}, \pi_{L}$ | Section 5.10 |

## DESCRIPTION

1. Read Only Memories (ROM)
2. Programmable Read Only Memories (PROM)
3. Uitravioiet Eraseable PROMs (UVEPROM)
4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and iextured polysilicon type EEPROMs
5. Static Random Access Memories (SRAM)
6. Dynamic Random Access Memories (DRAM)

$$
\lambda_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{c y c}\right) \pi_{Q} \pi_{L} \quad \text { Failures } / 10^{6} \text { Hours }
$$

| Die Complexity Failure Rate - $\mathrm{C}_{1}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MOS |  |  |  | Bipolar |  |
| Memory Size, B (Bits) | ROM | PROM, UVEPROM, EEPROM, EAPROM | DRAM | $\begin{aligned} & \text { SRAM } \\ & \text { (MOS \& } \\ & \text { BIMOS }) \end{aligned}$ | ROM, PROM | SRAM |
| $\begin{aligned} & \text { Up to } 16 K \\ & 16 K<B \leq 64 K \\ & 64 K<B \leq 256 K \\ & 256 K<B \leq 1 M \end{aligned}$ | $\begin{aligned} & .00065 \\ & .0013 \\ & .0026 \\ & .0052 \end{aligned}$ | $\begin{aligned} & .00085 \\ & .0017 \\ & .0034 \\ & .0068 \end{aligned}$ | $\begin{aligned} & .0013 \\ & .0025 \\ & .0050 \\ & .010 \end{aligned}$ | .0078 .016 .031 .062 | $\begin{aligned} & .0094 \\ & .019 \\ & .038 \\ & .075 \end{aligned}$ | $\begin{aligned} & .0052 \\ & .011 \\ & .021 \\ & .042 \end{aligned}$ |

$A_{1}$ Factor for $\lambda_{\text {cyc }}$ Calculation

| Total No. of <br> Programming <br> Cycles Over <br> EEPROM Life, C | Flotox ${ }^{1}$ | Textured- <br> Poly $^{2}$ |
| :--- | :--- | :---: |
|  | .00070 | .0097 |
| Up to 100 | .0014 | .014 |
| $100<C \leq 200$ | .0034 | .023 |
| $200<C \leq 500$ | .0068 | .033 |
| $500<C \leq 1 K$ | .020 | .061 |
| $1 K<C \leq 3 K$ | .049 | .14 |
| $3 K<C \leq 7 K$ | .10 | .30 |
| $7 K<C \leq 15 K$ | .14 | .30 |
| $15 K<C \leq 20 K$ | .20 | .30 |
| $20 K<C \leq 30 K$ | .68 | .30 |
| $30 K<C \leq 100 K$ | .60 |  |
| $100 K<C \leq 200 K$ | 1.3 | .30 |
| $200 K<C \leq 400 K$ | 2.7 | .30 |
| $400 K<C \leq 500 K$ | 3.4 |  |


| Total No. Ố <br> Programming Cycles <br> Over EEPROM Life, $C$ | Textured-Poly $A_{2}$ |
| :---: | :---: |
| Up to 300 K | 0 |
| $300 \mathrm{~K}<C \leq 400 \mathrm{~K}$ | 1.1 |
| $400 \mathrm{~K}<C \leq 500 \mathrm{~K}$ | 2.3 |

1. $A_{1}=6.817 \times 10^{-6}(C)$
2. No underlying equation for TexturedPoly.
[^5]EEPROM Read/Write Cycling Induced Failure Rate $-\lambda_{\text {cyc }}$

| All Memory Devices Except Flotox and Textured-Poly EEPROMS |  | $\lambda_{\text {cyc }}=0$ |
| :---: | :---: | :---: |
|  |  | [ ${ }^{\left.A_{1} B_{1}+\frac{A_{2} B_{2}}{}\right]}$ |
| Flotox and Textured Poly EEPROMs |  | $\lambda_{\text {cyc }}=\left[A_{1} B_{1}+\frac{\pi_{Q}}{}\right] \pi_{E C C}$ |
|  | $\frac{\text { Flotox }}{\text { Page 5-4 }}$ | Iextured-Poly |
| Model Factor |  | Page 5-4 |
| $A_{1}$ |  | Page 5-6 |
| $B_{1}$ | Page 5-6 | Page 5-5 |
| $A_{2}$ | $A_{2}=0$ | Page 5-6 |
| $\mathrm{B}_{2}$ | $B_{2}=0$ <br> Section 5.10 | Section 5.10 |
| $\pi_{Q}$ |  |  |
| Error Correction Code (ECC) Options: <br> 1. No On-Chip ECC <br> 2. On-Chip Hamming Code <br> 3. Two-iveeds-One Redundant Cell Approach | $\pi_{E C C}=1.0$ $\pi_{E C C}=.72$ $\pi_{E C C}=.68$ | $\begin{aligned} & \pi_{E C C}=1.0 \\ & \pi_{E C C}=.72 \\ & \pi_{E C C}=.68 \end{aligned}$ |

NOTES: 1. See Reference 24 for modeling off-chip error detection and correction schemes at the memory systom leve!.
2. If EEPROM type is unknown, assume Flotox.
3. Error Correction Code Options: Some EEPROM manufacturers have incorporated on-chip error correction circuitry into their EEPROM devices. This is represented by ine on-chip hamming code entry. Other manufacturers have taken a redundant cell approach which incorporates an extra storage transistor in every memory cell. This is represented by the two-needs-one redundant cell entry.
4. The $A_{1}$ and $A_{2}$ factors shown in Section 5.2 were developed based on an assumed system life of 10,000 operating hours. For EEPROMs used in systems with significantly longer or shorter expected lifetimes the $A_{1}$ and $A_{2}$ factors siould be multiplied by:

System Lifetime Operating Hours
10,000

## MiL-HDBK-217F <br> NOTICE 2

$\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ Factors for $\lambda_{\text {cyc }}$ Calculation

|  | Flotox ${ }^{1}\left(E_{1}\right)$ |  |  |  |  | Textured-Poly ${ }^{2}$ ( $\mathrm{B}_{1}$ ) |  |  |  |  | Textured-Poty ${ }^{3}\left(\mathrm{~B}_{2}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Memory Size, B(Bits) $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | $\rightarrow 4 \mathrm{~K}$ | 16K | 64 K | 256 K | 1 M | 4K | 16 K | 64K | 256K | 1 M | 4K | 16 K | 64 K | 256 K | 1 M |
| - 25 | . 27 | 0.55 | 1.1 | 2.2 | 4.3 | . 47 | . 66 | . 94 | 1.3 | 1.9 | . 54 | 0.76 | 1.1 | 1.5 | 2.1 |
| 30 | 30 | 0.60 | 1.2 | 2.4 | 4.8 | . 50 | . 71 | 1.0 | 1.4 | 2.0 | . 50 | 0.71 | 1.0 | 1.4 | 2.0 |
| 35 | . 3.3 | 0.66 | 1.3 | 2.7 | 5.2 | . 54 | . 77 | 1.1 | 1.5 | 2.2 | . 47 | 0.67 | . 95 | 1.3 | 1.9 1.8 |
| 40 | . 36 | 0.72 | 1.4 | 2.9 | 5.7 | . 58 | . 82 | 1.2 | 1.6 | 2.3 | . 45 | 0.63 | . 89 | 1.3 | 1.8 |
| 45 | 40 | 0.79 | 1.6 | 3.2 | 6.3 | . 62 | . 88 | 1.3 | 1.8 | 2.5 | . 42 | 0.59 | . 84 | 1.2 | 1.7 |
| 50 | . 43 | 0.86 | 1.7 | 3.4 | 6.8 | . 67 | . 95 | 1.3 | 1.9 | 2.7 | . 40 | 0.56 | . 80 | 1.1 | 1.6 |
| 55 | . 47 | 0.93 | 1.9 | 3.7 | 7.4 | . 71 | 1.0 | 1.4 | 2.0 | 2.8 | . 38 | 0.53 0.50 | . 72 | 1.0 | 1.4 |
| 60 | . 51 | 1.0 | 2.0 | 4.1 | 8.0 | . 76 | 1.1 | 1.5 | 2.1 2.3 | 3.0 3.2 | .36 .34 | 0.50 0.48 | . 68 | 1.0 | 1.4 |
| 65 | . 515 | 1.1 | 2.2 | 4.4 | 8.6 | . 181 | 1.1 | 1.6 | 2.3 2.4 | 3.2 3.4 | . 32 | 0.45 | . 65 | . 91 | 1.3 |
| 70 | . 59 | 1.2 | 2.4 | 4.7 | 9.3 | . 86 | 1.2 | 1.8 | 2.6 | 3.6 | . 31 | 0.43 | . 62 | . 87 | 1.2 |
| 75 | . 63 | 1.3 | 2.5 | 5.1 | 10 | . 91 | 1.3 | 1.8 1.9 | 2.7 | 3.8 | . 29 | 0.41 | . 59 | . 83 | 1.2 |
| 80 | . 68 | 1.4 | 2.7 | 5.4 | 11 | . 96 | 1.4 | 1.9 2.0 | 2.9 | 4.0 | . 28 | 0.39 | . 56 | . 79 | 1.1 |
| 85 | 73 | 1.5 | 2.9 | 5.8 | 12 | 1.0 | 1.4 | 2.0 | 2.9 30 | 4.3 | .27 | 0.38 | . 54 | 75 | 1.1 |
| 90 | . 78 | 1.6 | 3.1 | 6.2 | 12 | 1.1 | 1.5 | 2.2 | 3.0 | 4.3 | .26 | 0.36 | . 51 | . 72 | 1.0 |
| 95 | . 83 | 1.7 | 3.3 | 6.7 | 13 | 1.1 | 1.6 | 2.3 | 3.2 | 4.5 | . 25 | 0.35 | . 49 | . 69 | . 98 |
| 100 | . 89 | 1.8 | 3.5 | 7.1 | 14 | 1.2 | 1.7 | 2.4 | 3.4 | 4.7 | . 24 | 0.33 | . 47 | . 66 | . 94 |
| 105 | . 94 | 1.9 | 3.8 | 7.5 | 15 | 1.3 | 1.8 | 2.5 | 3.5 | 5.0 | . 24 | 0.33 | . 45 | . 64 | . 90 |
| 110 | 1.0 | 2.0 | 4.0 | 8.0 | 16 | 1.3 | 1.9 | 2.6 | 3.7 | 5.2 | . 22 | 0.31 | . 44 | . 61 | . 86 |
| 115 | 1.1 | 2.1 | 4.2 | 8.5 | 17 | 1.4 | 1.9 | 2.8 2.9 | 3.9 4.1 | 5.7 | . 21 | 0.30 | . 42 | . 59 | . 83 |
| 120 | 1.1 | 2.2 | 4.5 | 9.0 | 18 | 1.4 | 2.0 | 2.9 3.0 | 4.3 | 6.0 | . 20 | 0.29 | . 41 | . 57 | . 80 |
| 125 | 1.2 | 2.4 | 4.7 | 9.5 | 19 | 1.5 | 2.1 | 3.0 3.2 | 4.3 | 6.3 | . 19 | 0.27 | . 39 | . 55 | . 77 |
| 130 | 1.3 | 2.5 | 5.0 | 10 | 20 | 1.6 | 2.2 | 3.2 3.3 | 4.4 4.6 | 6.5 | . 19 | 0.27 | . 38 | . 53 | . 75 |
| 135 | 1.3 | 2.6 | 5.3 | 11 | 21 | 1.6 | 2.3 | 3.3 | 4.6 | 6.5 6.8 | . 18 | 0.26 | . 36 | . 51 | . 72 |
| 140 | 1.4 | 2.8 | 5.6 | 11 | 22 | 1.7 | 2.4 | 3.4 | 4.8 50 | 6.8 7.1 | . 18 | 0.25 | . 35 | . 50 | . 70 |
| 145 | 1.5 | 2.9 | 5.8 | 12 | 23 | 1.8 | 2.5 | 3.6 | 5.0 | 7.1 | . 17 | 0.24 | . 34 | . 48 | . 68 |
| 150 | 1.5 | 3.1 | 6.1 | 12 | 24 | 1.9 | 2.6 | 3.7 | 5.2 | 7.4 | . 16 | 0.23 | . 33 | 46 | . 65 |
| 155 | 1.6 | 3.2 | 6.4 | 13 | 26 | 1.9 | 2.7 | 3.9 | 5.4 | 7.7 | .16 | 0.23 | . 32 | . 45 | . 63 |
| 160 | 1.7 | 3.4 | 6.8 | 14 | 27 | 2.0 | 2.8 | 4.0 | 5.6 | 8.0 | . 16 | 0.23 | . 31 | . 44 | . 61 |
| 165 | 1.8 | 3.5 | 7.1 | 14 | 28 | 2.1 | 2.9 | 4.2 | 5.9 | 8.2 | .15 .15 | 0.22 | . 30 | . 42 | . 60 |
| 170 | 1.9 | 3.7 | 7.4 | 15 | 29 | 2.2 | 3.0 | 4.3 | 6.1 6.3 | 8.6 8.9 | .15 .15 | 0.21 0.21 | . 29 | . 41 | . 58 |
| 175 | 1.9 | 3.9 | 7.7 | 15 | 31 | 2.2 | 3.1 | 4.5 | 6.3 | 8.9 | . 15 | 0.21 | 2 |  |  |



## DESCRIPTION

Hybrid Microcircuits

$$
\quad \lambda_{p}=\left[\Sigma N_{C} \lambda_{C}\right]\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{Q} \pi_{L} \quad \text { Failures } / 10^{6} \text { Hours }
$$

$N_{C}=$ Number of Each Particular Component
$\lambda_{C}=$ Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function $\left(\pi_{\mathrm{F}}\right)$, screening level $\left(\pi_{\mathrm{Q}}\right)$, and maturity $\left(\pi_{\mathrm{L}}\right)$. The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., ( $1+.2$ $\pi_{E}$ ) ). Onty the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_{Q}=1, \pi_{E}=1$ and $T_{A}=$ Hybrid Case Temperature for these calculations.

| Determination of $\lambda_{C}$ |  |  |
| :--- | :---: | :--- |
| Determine $\lambda_{C}$ for These <br> Component Types | Handbook Section | Make These Assumptions When Determining <br> $\lambda_{C}$ |
| Microcircuits | 5 | $C_{2}=0, \pi_{Q}=1, \pi_{L}=1, T_{J}$ as Determined from <br> Section $5.12, \lambda_{B P}=0$ (for VHSIC). <br> Discrete Semiconductors |
| Capacitors | 6 | $\pi_{Q}=1, \pi_{A}=1, T_{J}$ as Determined from Section <br> $6.14, \pi_{E}=1$. <br> $\pi_{Q}=1, T_{A}=$ Hybrid Case Temperature, <br> $\pi_{E}=1$. |

NOTE: If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.
Circuit Function Factor $-\pi_{F}$

| Circuit Type | $\pi_{F}$ |
| :--- | :---: |
| Digital | 1.0 |
| Video, $10 \mathrm{MHz}<\mathrm{f}<1 \mathrm{GHz}$ | 1.2 |
| Microwave, $\mathrm{f}>1 \mathrm{GHz}$ | 2.6 |
| Linear, $f<10 \mathrm{MHz}$ | 5.8 |
| Power | 21 |

## All Other Hybrid Model Parameters

| $\pi_{\mathrm{L}}, \pi_{\mathrm{Q}}, \pi_{\mathrm{E}}$ | Refer to Section 5.10 |
| :---: | :---: |

## DESCRIPTION

Surface Acoustic Wave Devices

$$
\lambda_{P}=2.1 \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

| Quality Factor $-\pi_{\mathrm{O}}$ |
| :--- |
| Screening Level $\pi_{\mathrm{Q}}$ <br> 10 Temperature Cycles $\left(-55^{\circ} \mathrm{C}\right.$ to <br> $\left.+125^{\circ} \mathrm{C}\right)$ with end point electrical <br> tests at temperature extremes. <br> None beyond best commerical <br> practices. .10 |

Environmental Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | .5 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 4.0 |
| $N_{S}$ | 4.0 |
| $N_{U}$ | 6.0 |
| $A_{I C}$ | 4.0 |
| $A_{I F}$ | 5.0 |
| $A_{U C}$ | 5.0 |
| $A_{U F}$ | 8.0 |
| $A_{R W}$ | 8.0 |
| $S_{F}$ | .50 |
| $M_{F}$ | 5.0 |
| $M_{L}$ | 12 |
| $C_{L}$ | 220 |


|  | LM106 | LM741A | Si NPN | Si PNP | Si Diode | Source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Pins | 8 | 14 | 3 | 3 | 2 | Vendor Spec. Sheet |
| Power Dissipation, | . 33 | . 35 | 6 | 6 | 42 | Circuit Analysis |
| ol | . 0041 | . 0065 | . 0025 | . 0025 | . 0022 | Equ. 2 Above |
| $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{CM}\right)$ | 30.8 | 19.4 | 50.3 | 50.3 | 56.3 | Equ. 1 Above |
| $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | 75 | 72 | 95 | 95 | 89 | Equ. 3 Above |

2. Calculate Failure Rates for Each Component:
A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$
\lambda_{\mathrm{P}}=\left[C_{1} \pi_{\mathrm{T}}+C_{2} \pi_{E}\right] \pi_{Q} \pi_{\mathrm{L}}
$$

Section 5.1

Because $C_{2}=0$;
$\lambda_{\mathrm{p}}=C_{1} \pi_{T} \pi_{\mathrm{Q}} \pi_{\mathrm{L}} \quad \pi_{\mathrm{T}}:$ Section $5.8 ; \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$ Default to 1.0
$=(.01)(3.8)(1)(1)=.038$ Failures $/ 10^{6}$ Hours
B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

$$
\lambda_{\mathrm{P}}=C_{1} \pi_{T} \pi_{\mathrm{Q}} \pi_{\mathrm{L}}=(.01)(3.1)(1)(1)=.031 \text { Failures } / 10^{6} \text { Hours }
$$

C) Silicon NPN Transistor, Rated Power $=5 W$ (From Vendor Spec. Sheet), $\mathrm{V}_{\text {CE }}{ }^{N_{C E O}}=.6$, Linear Application

$$
\begin{aligned}
\lambda_{P} & =\lambda_{D} \pi_{T} \pi_{A} \pi_{R} \pi_{S} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \\
& =(.00074)(3.9)(1.0)(1.8)(.29)(1)(1) \\
& =.0015 \text { Failures } / 10^{6} \text { Hours }
\end{aligned}
$$

D) Silicon PNP Transistor, Same as C.

$$
\lambda_{p}=.0015 \text { Failures } / 10^{6} \text { Hours }
$$

E) Silicon General Purpose Diode (Analog), Voltage Stress $=60 \%$, Metallurgically Bonded Construction.

$$
\begin{array}{rlr}
\lambda_{\mathrm{P}} & =\lambda_{\mathrm{D}} \pi_{\mathrm{T}} \pi_{\mathrm{S}} \pi_{\mathrm{C}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} & \text { Section 6.1; } \pi_{\mathrm{Q}}, \pi_{\mathrm{E}} \text { Default to } 1.0 \\
& =(.0038)(6.3)(.29)(1)(1)(1) & \\
& =.0069 \text { Failures } / 10^{6} \text { Hours } &
\end{array}
$$

F) Ceramic Chip Capacitor, Vohage Stress $=50 \%$, $T_{A}=T_{\text {CASE }}$ for the Hybrid, $1340 \mathrm{pF}, 125^{\circ} \mathrm{C}$ Rated Temp.

$$
\begin{aligned}
\lambda_{\mathrm{p}} & =\lambda_{\mathrm{b}} \pi_{\mathrm{CV}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \\
& =(.0028)(1.4)(1)(1) \\
& =.0039 \text { Failures } / 10^{6} \text { Hours }
\end{aligned}
$$

G) Thick Film Resistors, per instructions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall hybrid failure rate and they may be ignored.

## Overall Hybrid Pan Failure Rate Calculation:

$$
\begin{array}{ll}
\lambda_{\mathrm{P}}=\left[\sum N_{\mathrm{C}} \lambda_{\mathrm{C}}\right]\left(1+.2 \pi_{\mathrm{E}}\right) \pi_{\mathrm{F}} \pi_{\mathrm{Q}} \pi_{\mathrm{L}} & \\
\pi_{\mathrm{E}}=6.0 & \text { Section } 5.10 \\
\pi_{F}=5.8 & \text { Section } 5.5 \\
\pi_{\mathrm{Q}}=1 & \text { Section } 5.10 \\
\pi_{\mathrm{L}}=1 & \text { Section } 5.10 \\
\lambda_{\mathrm{P}}=1 & \\
& \\
& \\
\left.\lambda_{P}=1(1)(.038)+(1)(.031)+(2)(.0069)+(2)(.0039)\right](1+.2(6.0))(5.8)(1)(1) \\
& \\
&
\end{array}
$$

The semiconductor transistor, diode and opto-electronic device sections present the failure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different failure rate models that vary to some degree. The models apply to single devices unless otherwise noted. For multiple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor ( $\pi_{T}$ ) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device junction to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section

## DESCRIPTION

Low Frequency Diodes: General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor, Current Regulator, Voltage Regulator, Voitage Rétereñce

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{S} \pi_{C} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$

| Diode Type/Application | $\lambda_{b}$ |
| :--- | :--- |
| General Purpose Analog | .0038 |
| Switching | .0010 |
| Fast Recovery Power Rectifier | .025 |
| Power Recitifier/Schotiky | .0030 |
| Power Diode |  |
| Power Rectifier with | $.0050 /$ |
| High Voltage Stacks | Junction |
| Transient SuppressorNaristor | .0013 |
| Current Regulator | .0034 |
| Voltage Regulator and Voltage | .0020 |
| Reterence (Avalanche |  |
| and Zener) |  |

Temperature Factor - $\pi_{T}$
(General Purpose Anaiog, Swithing, Fast Rocovery, Power Rectifier, Transient Suppressor)

| $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ | $\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| :---: | :---: | :---: | :---: |
| 25 | 1.0 | 105 | 9.0 |
| 30 | 1.2 | 110 | 10 |
| 35 | 1.4 | 115 | 11 |
| 40 | 1.6 | 120 | 12 |
| 45 | 1.9 | 125 | 14 |
| 50 | 2.2 | 130 | 15 |
| 55 | 2.6 | 135 | 16 |
| 60 | 3.0 | 140 | 18 |
| 65 | 3.4 | 145 | 20 |
| 70 | 3.9 | 150 | 21 |
| 75 | 4.4 | 155 | 23 |
| 80 | 5.0 | 160 | 25 |
| 85 | 5.7 | 165 | 28 |
| 90 | 6.4 | 170 | 30 |
| 95 | 7.2 | 175 | 32 |
| 100 | 8.0 |  |  |
| $\pi_{T}=\exp \left(\cdot 3091\left(\overline{T_{J}+273} \cdot \frac{1}{298}\right)\right)$ |  |  |  |
| $\mathrm{T}_{\mathrm{j}}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |

Temperature Factor - $\pi_{T}$
(Voltage Regulator, Voltage Reference, and Current Regulator)


## MIL-HDBK-217F <br> NOTICE 2

7.2 TUBES, TRAVELING WAVE

## DESCRIPTION

Traveling Wave Tubes
$\lambda_{p}=\lambda_{b} \pi_{E}$ Failures $/ 10^{6}$ Hours

| Base Failure Rate $-\lambda_{\text {b }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Frequency (GH) |  |  |  |  |  |  |  |  |
| Power M | . 1 | 1 | 2 |  |  |  |  |  |  |
| 10 | 11 | 12 | 13 | 16 | 19 | 24 | 29 | 42 | 61 |
| 100 | 11 | 12 | 13 | 16 | 20 | 24 |  | 42 | 61 |
| 500 | 11 | 12 | 13 | 16 | 20 | 24 |  | 42 |  |
| 1000 | 11 | 12 | 13 | 16 | 20 | 24 | 29 | 42 | ${ }_{6}^{62}$ |
| 3000 | 11 | 12 | 14 | 17 | 20 | 24 | 29 | 4 | ${ }_{6} 6$ |
| 5000 | 12 | 13 | 14 | 17 | 20 | 25 |  |  |  |
| 8000 | 12 | 13 | 14 | 17 | 21 | 26 | 31 | 45 | 66 |
| 10000 | 12 | 13 | 15 | 18 | 22 | 26 | 32 |  |  |
| 15000 | 13 | 14 | 15 | 19 | 23 |  |  | 49 | 71 |
| 20000 | 14 | 15 | 16 | 20 | 24 | 29 | 35 | 51 |  |
| 30000 | 15 | 16 | 18 | 22 | 26 | 32 |  |  | 83 91 |
| 40000 | 17 | 18 | 20 | 24 | 29 |  | 43 | 62 |  |
| $\lambda_{b}=11(1.00001)^{P}(1.1)^{F}$ <br> P = Rated Power in Watts (Peak, if Pulsed), .001 SP S 40.000 <br> $F=$ Operating Frequency in $\mathrm{GHz}, .1 \leq F \leq 18$ <br> If the operating frequency is a band, or iwo different values, use the geometric mean of the end point trequencles when using table. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | .5 |
| $G_{F}$ | 1.5 |
| $G_{M}$ | 7.0 |
| $N_{S}$ | 3.0 |
| $N_{U}$ | 10 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 7.0 |
| $A_{U C}$ | 6.0 |
| $A_{U F}$ | 9.0 |
| $A_{R W}$ | 20 |
| $S_{F}$ | .05 |
| $M_{F}$ | 11 |
| $M_{L}$ | 33 |
| $C_{L}$ | 500 |

## DESCRIPTION

Magnetrons, Pulsed and Continuous Wave (CW)

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{b}} \pi_{\mathrm{U}} \pi_{\mathrm{C}} \pi_{\mathrm{E}} \text { Failures/ } 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{0}$

|  |  |  |  |  |  |  |  | ncy ( |  |  |  |  |  | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P(MW) | . 1 | . 5 | 1 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| . 01 | 1.4 | 4.6 | 7.6 | 24 | 41 | 67 | 91 | 110 | 130 | 150 | 170 | 190 | 200 | 220 300 |
| . 05 | 1.9 | 6.3 | 10 | 34 | 56 | 93 | 120 | 150 | 180 | 210 | 270 | 290 | 320 | 350 |
| . 1 | 2.2 | 7.2 | 12 | 39 | 64 | 110 | 140 | 180 | 210 | 340 | 330 | 370 | 400 | 430 |
| . 3 | 2.8 | 9.0 | 15 | 48 | 80 | 130 | 180 | 220 | 260 | 330 | 370 | 410 | 440 | 480 |
| . 5 | 3.1 | 10 | 17 | 54 | 89 | 150 | 200 | 240 | 330 | 380 | 420 | 470 | 510 | 550 |
| 1 | 3.5 | 11 | 19 | 62 | 100 | 170 | 230 | 380 | 410 | 470 | 530 | 580 | 630 | 680 |
| 3 | 4.4 | 14 | 24 | 77 | 130 | 210 | 280 310 | 350 390 | 460 | 520 | 580 | 640 | 700 | 760 |
| 5 | 4.9 | 16 | 26 | 85 | 140 | 230 |  |  |  |  |  |  |  |  |
| Pulsed $\lambda_{b}$ $F$ P | Magn <br> 19(F) <br> Oper <br> Outp | ons: (P). ing Fre Power | MW | GH | . 15 | 100 $\leq 5$ |  |  | Mag | tron | 8 | owe | 5 K |  |



| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 4.0 |
| $N_{S}$ | 15 |
| $N_{U}$ | 47 |
| $A_{I C}$ | 10 |
| $A_{I F}$ | 16 |
| $A_{U C}$ | 12 |
| $A_{U F}$ | 23 |
| $A_{R W}$ | 80 |
| $S_{F}$ | .50 |
| $M_{F}$ | 43 |
| $M_{L}$ | 133 |
| $C_{L}$ | 2000 |

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{T}} \pi_{\mathrm{P}} \pi_{\mathrm{S}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

| Resistor Style | Specification MIL-R- | Description | $\lambda_{0}$ | $\pi_{T}$ Table Use Column: | $\pi_{S}$ Table Use Column: |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RC | 11 | Resistor, Fixed, Composition (Insulated) | . 0017 | 1 | 2 |
| RCR | 39008 | Resistor, Fixed, Composition (Insulated) Est. Rel. | . 0017 | 1 | 2 |
| RL | 22684 | Resistor, Fixed, Film, Insulated | . 0037 | 2 | 1 |
| RLR | 39017 | Resistor, Fixed, Film (Insulated), Est. Rel. | . 0037 | 2 | 1 |
| RN (R, Cor $N$ ) | 55182 | Resistor, Fixed, Film, Established Reliability | . 0037 | 2 | 1 |
| RM | 55342 | Resistor, Fixed, Film, Chip, Established Reliability | . 0037 | 2 | 1 |
| RN | 10509 | Resistor, Fixed Film (High Stability) | . 0037 | 2 | 1 |
| RD | 11804 | Resistor, Fixed, Film (Power Type) | . 0037 | $N / A, \pi_{T}=1$ | 1 |
| RZ | 83401 | Resistor Networks, Fixed, Film | . 0019 | 1 | $N / A, \pi_{S}=1$ |
| RB | 93 | Resistor, Fixed, Wirewound (Accurate) | . 0024 | 2 | 1 |
| RBR | 39005 | Resistor, Fixed, Wirewound (Accurate) Est. Rel. | . 0024 | 2 | 1 |
| RW | 26 | Resistor, Fixed, Wirewound (Power Type) | . 0024 | 2 | 2 |
| RWR | 39007 | Resistor, Fixed, Wirewound (Power Type) Est. Rel. | . 0024 | 2 | 2 |
| RE | 18546 | Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) | . 0024 | 2 | 2 |
| RER | 39009 | Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Est. Rel. | . 0024 | 2 | 2 |
| RTH | 23648 | Thermistor, (Thermally Sensitive Resistor), Insulated | . 0019 | $N / A, \pi_{T}=1$ | $N / A, \pi_{S}=1$ |
| RT | 27208 | Resistor, Variable, Wirewound (Lead Screw Activated) | . 0024 | 2 | 1 |
| RTR | 39015 | Resistor, Variable, Wirewound (Lead Screw Activated), Established Reliability | . 0024 | 2 | 1 |
| RR | 12934 | Resistor, Variable, Wirewound, Precision | . 0024 | 2 | 1 |
| RA | 19 | Resistor, Variable, Wirewound (Low Operating Temperature) | . 0024 | 1 | 1 |
| RK | 39002 | Resistor, Variable, Wirewound, Semi-Precision | . 0024 | 1 | 1 |
| RP | 22 | Resistor, Wirewound, Power Type | . 0024 | 2 | 1 |
| RJ | 22097 | Resistor, Variable, Nonwirewound | . 0037 | 2 | 1 |
| RJR | 39035 | Resistor, Variable, Nonwirewound Est. Rel. | . 0037 | 2 | 1 |
| RV | 94 | Resistor, Variable, Composition | . 0037 | 2 | 1 |
| RQ | 39023 | Resistor, Variable, Nonwirewound, Precision | . 0037 | 1 | 1 |
| RVC | 23285 | Resistor, Variable, Nonwirewound | . 0037 | 1 | 4 |



| Power Factor $-\pi_{P}$ |  |
| :---: | :---: |
| Power Dissipation (Watts) | $\pi_{p}$ |
| .001 | .068 |
| .01 | .17 |
| .13 | .44 |
| .25 | .58 |
| .50 | .76 |
| .75 | .89 |
| 1.0 | 1.0 |
| 2.0 | 1.3 |
| 3.0 | 1.5 |
| 4.0 | 1.7 |
| 5.0 | 1.9 |
| 10 | 2.5 |
| 25 | 3.5 |
| 50 | 4.6 |
| 100 | 6.0 |
| 150 | 7.1 |


| Power Stress Factor - $\pi_{S}$ |  |  |
| :---: | :---: | :---: |
| Power Stress | Column 1 | Column 2 |
| .1 | .79 | .66 |
| .2 | .88 | .81 |
| .3 | .99 | 1.0 |
| .4 | 1.1 | 1.2 |
| .5 | 1.2 | 1.5 |
| .6 | 1.4 | 1.8 |
| .7 | 1.5 | 2.3 |
| .8 | 1.7 | 2.8 |
| .9 | 1.9 | 3.4 |

Column 1: $\pi_{S}=.71 \mathrm{e}^{1.1(\mathrm{~S})}$
Column 2: $\pi_{S}=.54 \mathrm{e}^{2.04(S)}$
$S=\frac{\text { Actual Power Dissipation }}{\text { Rated Power }}$
Rated Power

Environment Factor - $\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 4.0 |
| $G_{M}$ | 16 |
| $N_{S}$ | 12 |
| $N_{U}$ | 42 |
| $A_{I C}$ | 18 |
| $A_{I F}$ | 23 |
| $A_{U C}$ | 31 |
| $A_{U F}$ | 43 |
| $A_{R W}$ | 63 |
| $S_{F}$ | 37 |
| $M_{F}$ | 87 |
| $M_{L}$ | 1728 |
| $C_{L}$ |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :---: | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| Established Reliability Styles |  |
| S | .03 |
| R | 0.1 |
| P | 0.3 |
| M | 1.0 |
| Non-Established Reliability |  |
| Resistors (Most Two-Letter Styles) | 3.0 |
| Commercial or Unknown Screening | 10 |
| Level |  |

NOTE: Established reliability styles are failure rate graded ( $S, R, P, M$ ) based on lite testing defined in the applicable military device specification. This category usually applies only to three-letter styles with an "R" suffix
10.1 CAPACITORS

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{C} \pi_{V} \pi_{S R} \pi_{Q} \pi_{E} \text { Failures/10 } 0^{6} \text { Hours }
$$

| Capacitor Style | Spec. MIL-C. | Description | $\lambda_{b}$ | $\pi_{T}$ Table - <br> Use Column: | $\pi_{C} \text { Table - }$ <br> Use Column: | $\pi_{V}$ Table - <br> Use <br> Column: | $\pi_{S R}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CP | 25 | Capacitor, Fixed, PaperDielectric, Direct Current (Hermetically Sealed in Metal Cases) | . 00037 | 1 | 1 | 1 | 1 |
| CA | 12889 | Capacitor, By-Pass, Radio Interference Reduction, Paper Dielectric, AC and DC (Hermetically sealed in Metallic Cases) | . 00037 | 1 | 1 | 1 | 1 |
| CZ, CZR | 11693 | Capacitor, Feed through, Radio Interference Reduction AC and DC (Hermetically sealed in metal cases), Established and Nonestablished Reliability | . 00037 | 1 | 1 | 1 | 1 |
| CQ, COR | 19978 | Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically sealed in metal, ceramic or glass cases). Established and Nonestablished Reliability | . 00051 | 1 | 1 | 1 | 1 |
| CH | 18312 | Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases) | . 00037 | 1 | 1 | 1 | 1 |
| CHR | 39022 | Capacitor, Fixed, Metallized Paper, Paper-Plastic Film or Plastic Film Dielectric | . 00051 | 1 | 1 | 1 | 1 |
| CFR | 55514 | Capacitor, Fixed, Plastic (or Metallized Plastic) Dieloctric. Direct Current in Non-Metal Cases | . 00051 | 1 | 1 | 1 | 1 |
| CPH | 83421 | Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal Cases, Established Reliability | . 00051 | 1 | 1 | 1 | 1 |
|  |  | Capacitors, Fixed, Mica Dielectric | . 00076 | 2 | 1 | 2 | 1 |
| CM | 5 |  |  |  |  | 2 | 1 |
| CNR | 39001 | Capacitor, Fixed, Mica Dielectric, Established Reliability | . 00076 | 2 | 1 | 2 | 1 |
| CB | 10950 | Capacitor, Fixed, Mica Dielectric, Button Style | . 00076 | 2 | 1 | 2 | 1 |
| CY |  | Capacitor, Fixed, Glass Dielectric | . 00076 | 2 | 1 | 2 | 1 |
| C | 11 |  | . 00076 | 2 | 1 | 2 | 1 |
| CYR | 23269 | Capacitor, Fixed, Glass Dielectric, Established Reliability | . 00076 |  |  |  |  |


| Capacitor Style | Spec. MIL-C- | Description | $\lambda_{0}$ $\pi_{T}$ | $\pi_{T}$ Table - <br> Use <br> Column: | $\pi_{C}$ Table Use Column: | $\pi_{V}$ Table <br> Use <br> Column: | $\pi_{\text {SR }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CK | 11015 | Capacitor, Fixed, Ceramic Dielectric (General Purpose) | . 00099 | 2 | 1 | 3 | 1 |
| CKR | 39014 | Capacitor, Fixed, Ceramic Dielectric (General Purpose), Estabiisned Reeliability | . 00099 | 2 | 1 | 3 | 1 |
| CC. CCR | 20 | Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating), Established and Nonestablished Reliability | . 00099 | 2 | 1 | 3 | 1 |
| CDR | 55681 | Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric. Established Reliability | . 0020 | 2 | 1 | 3 | 1 |
| CSR | 39003 | Capacitor, Fixed, Electrolytic (Solid Electroiyte), Tantalum. Established Reliability | . 00040 | 1 | 2 | 4 | See <br> $\pi_{\text {SR }}$ <br> Tabie |
| CWR | 55365 | Capacitor, Fixed, Electrolytic (Tantalum), Chip, Established Reliability | . 00005 | 1 | 2 | 4 | See <br> $\pi_{\text {SR }}$ <br> Tabie |
| CL | 3365 | Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum | . 00040 | 1 | 2 | 4 | 1 |
| CLP | 39006 | Capachor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, Estabisisied Roliatuility | . 00040 | 1 | 2 | 4 | 1 |
| CRL | 83500 | Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum Cathode | . 00040 | 1 | 2 | 4 | 1 |
| CU, CUR | 39018 | Capacitor. Fixed, Electrolytic (Aluminum Oxide), Established Reliability and Nonestablished Reliability | . 00012 | 2 | 2 | 1 | 1 |
| CE | 62 | Capacitor, Fixed Electrolytic (DC. Aluminum, Dry Electrolyte. Polarized) | . 00012 | 2 | 2 | 1 | 1 |
| CV | 81 | Capacitor, Variable, Ceramic Dielectric (Trimmer) | . 0079 | 1 | 1 | 5 | 1 |
| PC | 14409 | Capacitor, Variable (Piston Type, Tubular Trimmer) | .00060 | 2 | 1 | 5 | 1 |
| CT | 92 | Capacitor, Variabie, Air Dielectic (Trimmer) | .0000072 | 2 | 1 | 5 | 1 |
| CG | 23183 | (Trimmer) <br> Capacitor, Fixed or Variable. Vacuum Dielectric | . 0060 | 1 | 1 | 5 | 1 |


| Temperature Factor $\pi_{T}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left.T^{\circ} \mathrm{C}\right)$ | Column 1 | Column 2 |  |
| 20 | .91 | .79 |  |
| 30 | 1.1 | 1.3 |  |
| 40 | 1.3 | 1.9 |  |
| 50 | 1.6 | 2.9 |  |
| 60 | 1.8 | 4.2 |  |
| 70 | 2.2 | 6.0 |  |
| 80 | 2.5 | 8.4 |  |
| 90 | 2.8 | 11 |  |
| 100 | 3.2 | 15 |  |
| 110 | 3.7 | 21 |  |
| 120 | 4.1 | 27 |  |
| 130 | 4.6 | 35 |  |
| 140 | 5.1 | 44 |  |
| 150 | 5.6 | 56 |  |


| Capacitance Factor $-\pi_{C}$ |  |  |
| :--- | :---: | :---: |
| Capacitance, <br> $\mathrm{C}(\mu \mathrm{F})$ Column 1 Column 2 <br> .000001 .29 .04 <br> .00001 .35 .07 <br> .0001 .44 .12 <br> .001 .54 .20 <br> .01 .66 .35 <br> .05 .76 .50 <br> .1 .81 .59 <br> .5 .94 .85 <br> 1 1.0 1.0 <br> 3 1.1 1.3 <br> 8 1.2 1.6 <br> 18 1.3 1.9 <br> 40 1.4 2.3 <br> 200 1.6 3.4 <br> 1000 1.9 4.9 <br> 3000 2.1 6.3 <br> 10000 2.3 8.3 <br> 30000 2.5 11 <br> 60000 2.7 13 <br> 120000 2.9 15 <br> Column 1: $\pi_{C}=\mathrm{C} .09$   <br> Column $2: \pi_{C}=\mathrm{C} .23$   |  |  |


| Voltage Stress | Column 1 | Column 2 | Column 3 | Column 4 | Coiumn 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.2 | 1.0 | 1.0 | 1.0 | 1.0 | 1.1 |
| 0.3 | 1.0 | 1.0 | 1.1 | 1.0 | 1.2 |
| 0.4 | 1.1 | 1.0 | 1.3 | 1.0 | 1.5 |
| 0.5 | 1.4 | 1.2 | 1.6 | 1.0 | 2.0 |
| 0.6 | 2.0 | 2.0 | 2.0 | 2.0 | 2.7 |
| 0.7 | 3.2 | 5.7 | 2.6 | 15 | 3.7 |
| 0.8 | 5.2 | 19 | 3.4 | 130 | 5.1 |
| 0.9 | 8.6 | 59 | 4.4 | 990 | 6.8 |
| 1 | 14 | 166 | 5.6 | 5900 | 9.0 |

Column 1: $\pi_{V}=\left(\frac{S}{6}\right)^{5}+1$
Column 4: $\quad \pi_{V}=\left(\frac{S}{.6}\right)^{17}+1$
Column 2: $\pi_{V}=\left(\frac{S}{6}\right)^{10}+1$
Column 5: $\quad \pi_{V}=\left(\frac{S}{5}\right)^{3}+1$
Column 3: $\pi_{V}=\left(\frac{S}{6}\right)^{3}+1$
$S=\frac{\text { Operating Voltage }}{\text { Raied Voitage }}$
Note: Operating voltage is the sum of applied DC voltage and peak AC voltage.

Series Resistance Factor
(Tantalum CSR Style Capacitors Only) - $\pi_{\text {SR }}$

| Circuit Resistance, CR (ohms/volt) | $\pi_{\text {SR }}$ |
| :---: | :---: |
| $>0.8$ | . 66 |
| $>0.6$ to 0.8 | 1.0 |
| $>0.4$ io 0.6 | 1.3 |
| $>0.2$ to 0.4 | 2.0 |
| $>0.1$ to 0.2 | 2.7 |
| 0 to 0.1 | 3.3 |
| $C R=\text { Eft. Res. Between Cap. and Pwr Supply }$ |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :---: | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| Established Reliability Styles <br> D | .001 |
| C | .01 |
| S,B | .03 |
| R | .1 |
| P | .3 |
| M | 1.0 |
| L | 1.5 |
| Non-Established Reliability <br> Capacitors (Most Two-Letter Styles) | 3.0 |
| Commercial or Unknown Screening <br> Level | 10. |
| NOTE: Establisted reliability styles are failure <br> rate graded (D, C, S, etc.) based on lite testing <br> defined in the applicable military device <br> specification. This category usually applies only <br> to three-letter styles with an "R" suffix. |  |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 10 |
| $G_{M}$ | 20 |
| $N_{S}$ | 7.0 |
| $N_{U}$ | 15 |
| $A_{1 C}$ | 12 |
| $A_{I F}$ | 15 |
| $A_{U C}$ | 25 |
| $A_{U F}$ | 30 |
| $A_{R W}$ | 40 |
| $S_{F}$ | .50 |
| $M_{F}$ | 20 |
| $M_{L}$ | 50 |
| $C_{L}$ | 570 |

## Example

Given: A 400 VDC rated capacitor type CQ09A1KE153K3 is being used in a fixed ground environment, $50^{\circ} \mathrm{C}$ component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz . The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a NonEstablished Reliability quality level. The " $E$ " in the designation corresponds to a 400 volt $D C$ rating. The " 153 " in the designation expresses the capacitance in picotarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picofarads. (NOTE: Pico $=10^{-12}, \mu=10^{-6}$ )

Based on the given information the following model factors are determined from the tables shown in Section 10.1.

```
\(\lambda_{b}=.00051\)
\(\pi_{T}=1.6\)
\(\pi_{C}=.69 \quad\) Use Table Equation (Note 15,000 \(\mathrm{pF}=.015 \mu \mathrm{~F}\) )
\(\pi_{V}=2.9\)
    \(S=\frac{D C \text { Volts Applied }+\sqrt{2} \text { (AC Volts Applied) }}{D C \text { Rated Voltage }}\)
    \(S=\frac{200+\sqrt{2}(50)}{400}=.68\)
\(\pi_{S R}=1\)
\(\pi_{Q}=3.0\)
    \(\pi_{E}=10\)
    \(\lambda_{\mathrm{P}}=\lambda_{\mathrm{D}} \pi_{\mathrm{T}} \pi_{\mathrm{C}} \pi_{V} \pi_{\mathrm{SR}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}=(.00051)(1.6)(.69)(2.9)(1)(3.0)(10)\)
    \(\lambda_{p}=.049\) Failures \(/ 10^{6}\) Hours
```

11.1 INDUCTIVE DEVICES, TRANSFORMERS

|  |  | DESCRIPTION |
| :--- | :--- | :--- |
| SPECIFICATION | STYLE | Audio, Power and High Power Pulse |
| MIL-T-27 | TF | Auw Power Pulse |
| MIL-T-21038 | TP | Intermediate Frequency (IF), RF and Discriminator |
| MIL-T-55631 | - |  |
|  | $\lambda_{p}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours |  |


| Transformer | $\lambda_{b}\left(\mathrm{~F} / 10^{6} \mathrm{hrs}\right.$.) |
| :---: | :---: |
| Flyback (<20 Volts) | . 0054 |
| Audio ( 15 -20K Hz) | . 014 |
| Low Power Pulse <br> (Peak Pwr. < 300W, <br> Avg. Pwr. < 5W) | . 022 |
| High Power, High Power Pulse (Peak Power $\geq 300 \mathrm{~W}$, Avg. Pwr. 2 5W) | . 049 |
| RF ( $10 \mathrm{~K} \cdot 10 \mathrm{M} \mathrm{Hz}$ ) | . 13 |


| Qualiity Factor $-\pi_{\bar{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{Q}$ |
| MIL-SPEC | 1 |
| Lower | 3 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 6.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 16 |
| $A_{I C}$ | 6.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 7.0 |
| $A_{U F}$ | 9.0 |
| $A_{P W}$ | 24 |
| $S_{F}$ | .50 |
| $M_{F}$ | 13 |
| $M_{L}$ | 34 |
| $C_{L}$ | 610 |


| Temperature Factor $-\pi_{T}$ |
| :---: |
| $T_{H S}\left({ }^{\circ} \mathrm{C}\right)$ |
| 20 |
| 30 |
| 40 |
| 50 |
| 60 |
| 70 |
| 80 |
| 90 |
| 100 |
| 110 |
| 120 |
| 130 |
| 140 |
| 150 |
| 160 |
| 170 |
| 180 |
| 190 |

Supersedes page 11-1 of Revision F

Transformer Characteristlc
Determination Note
MIL-T-27 Example Designation



 576

Family Type Codes Are:
Power Transtormer and Fither: 01 through 09, 37 through 41

Audio Transtormer: 10 through 21, 50 through 53
Pulse Transtormer: 22 through 36, 54

MIL-T-21038 Example Designation
$\left.\left.\right|_{\text {MIL-T-21038 }} ^{T P}\right|_{\text {Grade }} ^{4}$

X1100BC001

MIL.T-55631. The Transformers are Designated with the following Types, Grades and Classes.

Type 1 - Intermediate Frequency Transformer
Type II - Radio Frequency Transformer
Type III - Discriminator Transformer
Grade 1 - For Use When Immersion and Moisture Resistance Tests are Required
Grade 2 - For Use When Moisture Resistance Test is Required
Grade 3 - For Use in Sealed Assemblies
Class O - $85^{\circ} \mathrm{C}$ Maximum Operating Temperature
Class A - $105^{\circ} \mathrm{C}$ Maximum Operating Temperature
Class B - $125^{\circ} \mathrm{C}$ Maximum Operating Temperature
Class C - $\geq 125^{\circ} \mathrm{C}$ Maximum Operating Temperature

The class denotes the maximum operating temperature (iemperature rise plus maximum ambient temperature)

### 11.2 INDUCTIVE DEVICES, COILS

## SPECIFICATION

MIL-C-15305
STYLE
-
-
-

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{D}}$

| Inductor Type | $\lambda_{\mathrm{D}}$ F/10 ${ }^{6}$ hrs. |
| :--- | :---: |
| Fixed Inductor or Choke | .000030 |
| Variable Inductor | .000050 |


| Temperature Factor - $\pi_{T}$ |  |
| :---: | :---: |
| $\left.\mathrm{THS}^{(10}{ }^{\circ} \mathrm{C}\right)$ | $\pi_{T}$ |
| 20 | . 93 |
| 30 | 1.1 |
| 40 | 1.2 |
| 50 | 1.4 |
| 60 | 1.6 |
| 70 | 1.8 |
| 80 | 1.9 |
| 90 | 2.2 |
| 100 | 2.4 |
| 110 | 2.6 |
| 120 | 2.8 |
| 130 | 3.1 |
| 140 | 3.3 |
| 150 | 3.5 |
| 160 | 3.8 |
| 170 | 4.1 |
| 180 | 4.3 |
| 190 | 4.6 |
| $\pi_{T}=\exp \left(\frac{.11}{8.617 \times 10^{-5}}\left(\frac{1}{T_{H S}+273}-\frac{1}{298}\right)\right)$ |  |
| $T_{H S}=$ Hot Spot Temperature $\left({ }^{\circ} \mathrm{C}\right)$. <br> See Section 11.3 |  |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :---: | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| S | .03 |
| R | .10 |
| P | .30 |
| M | 1.0 |
| MIL-SPEC | 1.0 |
| Lower | 3.0 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 6.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 16 |
| $A_{i C}$ | 6.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 7.0 |
| $A_{U F}$ | 9.0 |
| $A_{R W}$ | 24 |
| $S_{F}$ | .50 |
| $M_{F}$ | 13 |
| $M_{L}$ | 34 |
| $C_{L}$ | 610 |

### 11.3 INDUCTIVE DEVICES, DETERMINATION OF HOT SPOT TEMPERATURE

Hot Spol temperature can be estimated as follows:

$$
T_{H S}=T_{A}+1.1(\Delta T)
$$

where:

$$
\begin{aligned}
& T_{H S}=\text { Hot Spot Temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& T_{A}=\text { Inductive Device Ambient Operating Temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& \Delta T=\text { Average Temperature Rise Above Ambient }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$\Delta T$ can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below. For space environments a dedicated thermal analysis should be performed.
$\Delta T$ Approximation (Non-space Environments)

| Information Known |  | $\triangle T$ Approximation |
| :---: | :---: | :---: |
| 1. | MIL-C-39010 Slash Sheet Number <br> MIL-C-39010/1C-3C, 5C, 7C, 9A, 10A, 13, 14 | $\Delta T=15^{\circ} \mathrm{C}$ |
|  | MIL-C-39010/4C, 6C, 8A, 11, 12 | $\Delta T=35^{\circ} \mathrm{C}$ |
| 2. | Power Loss Case Radiating Surface Area | $\Delta T=125 \mathrm{~W}_{\mathrm{L}} / \mathrm{A}$ |
| 3. | Power Loss <br> Transtormer Weight | $\Delta T=11.5 \mathrm{~W}_{\mathrm{L}} /(\mathrm{Wt} .)^{6766}$ |
| 4. | Input Power <br> Transtormer Weight (Assumes 80\% Efficiency) |  |

$W_{L}=$ Power Loss (W)
A = Radiating Surface Area of Case (in2). See below for MIL-T-27 Case Areas
Wt. = Transformer Weight (lbs.)
$W_{1}=$ input Power (W)
NOTE: Methods are listed in preferred order (i.e., most to least accurate). MIL-C-39010 are microminiature devices with surface areas less than $1 \mathrm{in}^{2}$. Equations 2-4 are applicable to devices with surface areas from $3 \mathrm{in}^{2}$ to $150 \mathrm{in}^{2}$. Do not include the mounting surface when determining radiating surface area.

| MIL-T-27 Case Radiating Areas (Excludes Mounting Surface) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Case | Area $\left(\right.$ in $\left.^{2}\right)$ | Case | Area $\left(\right.$ in $^{2}$ ) | Case | Area $\left(\right.$ in $^{2}$ ) |
| AF | 4 | GB | 33 | LB | 82 |
| AG | 7 | GA | 43 | LA | 98 |
| AH | 11 | HB | 42 | MB | 98 |
| AJ | 18 | HA | 53 | MA | 115 |
| EB | 21 | JB | 58 | NB | 117 |
| EA | 23 | JA | 71 | NA | 139 |
| FB | 25 | KB | 72 | OA | 146 |
| FA | 31 | KA | 84 |  |  |

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor stant and run and shaded pole motors. Its application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as well as various other motor applications. The model is based on Reterences 4 and 37, which contain a more comprehensive treatment of motor life prediction methods. The references should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous failure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period "7". This time period is either the system design life cycle (LC) or the time period the motor must last between complete refurbishment (or replacement). The model assumes that motors are replaced upon failure and that an effective constant failure rate is achieved atter a given time due to the fact that the effective "time zero" of replaced motors becomes random after a significant portion of the population is replaced. The average failure rate, $\lambda_{p}$, can be treated as a constant failure rate and added to other part failure rates from this Handbook.

$$
\lambda_{p}=\left[\frac{\lambda_{1}}{A \alpha_{B}}+\frac{\lambda_{2}}{B \alpha_{W}}\right] \times 10^{6} \text { Failures } / 10^{6} \text { Hours }
$$

Bearing \& Winding Characteristic Life $-\alpha_{B}$ and $\alpha_{W}$

| $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | $\alpha_{B}(\mathrm{Hr}$. | $\alpha_{W}$ (Hr.) | $\left.\mathrm{T}_{\mathrm{A}}{ }^{\circ} \mathrm{C}\right)$ | $\alpha_{B}$ ( Hr .) | $a_{W}(\mathrm{Hr}$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 3600 | 6.4e+06 | 70 | 22000 | $1.10+05$ |
| 10 | 13000 | $3.20+06$ | 80 | 14000 | $7.00+04$ |
| 20 | 39000 | $1.60+06$ | 90 | 9100 | $4.60+04$ |
| 30 | 78000 | $8.99+05$ | 100 | 6100 | $3.10+04$ |
| 40 | 80000 | $5.00+05$ | 110 | 4200 | $2.10+04$ |
| 50 | 55000 | $2.99+05$ | 120 | 2900 | $1.50+04$ |
| 60 | 35000 | $1.8 \theta+05$ | 130 | 2100 | $1.00+04$ |

$$
\begin{aligned}
& \alpha_{B}=\left[{ }_{10}\left(2.534-\frac{2357}{T_{A}+273}\right)+\frac{1}{\left(20-\frac{4500}{T_{A}+273}\right)+300}\right] \\
& \left.\alpha_{W}=10^{\left[\frac{2357}{T_{A}+273}\right.}-1.83\right] \\
& \alpha_{B}=\text { Weibull Characteristic Lite for the Motor Bearing } \\
& \alpha_{W}=\text { Weibull Characteristic Life for the Motor Windings } \\
& \left.T_{A}=\text { Ambient Temperature ( }{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

NOTE: See page 12-3 for method to calculate $\alpha_{B}$ and $\alpha_{W}$ when temperature is not constant.
12.1 ROTATING DEVICES, MOTORS


## $\alpha_{\text {Calculation }}$ for Cycled Temperature

The following equation can be used to calculate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute $\alpha_{B}$ for all $\alpha$ 's in equation).

$$
\alpha=\frac{\left(h_{1}+h_{2}+h_{3}+\cdots \cdots \cdot h_{m}\right)}{\frac{h_{1}}{\alpha_{1}}+\frac{h_{2}}{\alpha_{2}}+\frac{h_{3}}{\alpha_{3}}+\cdots \cdots \cdot \frac{h_{m}}{\alpha_{m}}}
$$

where:
$\alpha=$ either $\alpha_{B}$ or $\alpha_{W}$
$h_{1}=$ Time at Temperature $T_{1}$
$h_{2}=$ Time to Cycle From Temperature $T_{1}$ to $T_{3}$
$h_{3}=$ Time at Temperature $T_{3}$
$n_{m}=$ Time at Temperature $T_{m}$
$\alpha_{1}=$ Bearing (or Winding) Life at $T_{1}$
$\alpha_{2}=$ Bearing (or Winding) Life at $T_{2}$
NOTE: $\quad T_{2}=\frac{T_{1}+T_{3}}{2}, \quad T_{4}=\frac{T_{3}+T_{1}}{2}$


Hours (h)
Thermal Cycle

## DESCRIPTION

Rotating Synchros and Resolvers

$$
\lambda_{p}=\lambda_{b} \pi_{S} \pi_{N} \pi_{E} \text { Failures/106 Hours }
$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are inirequent so that the electrical tailure mode dominates, and no mechanical mode failure rate is required in the model above.

| Base Failure Rate - $\lambda_{D}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)$ | $\lambda_{b}$ | $\mathrm{T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)$ | $\lambda_{b}$ |
| $\begin{aligned} & 30 \\ & 35 \\ & 40 \\ & 45 \\ & 50 \\ & 55 \\ & 60 \\ & 65 \\ & 70 \\ & 75 \\ & 80 \end{aligned}$ | .0083 .0088 .0095 .010 .011 .013 .014 .016 .019 .022 .027 | $\begin{array}{r}85 \\ 90 \\ 95 \\ 100 \\ 105 \\ 110 \\ 115 \\ 120 \\ 125 \\ 130 \\ 135 \\ \hline\end{array}$ | .032 <br> .041 <br> .052 <br> .069 <br> .094 <br> .13 <br> .19 <br> .29 <br> .45 <br> .74 <br> 1.3 |
| $\begin{aligned} & \lambda_{b}=.00535 \exp \left(\frac{T_{F}+273}{334}\right)^{8.5} \\ & T_{F}=\text { Frame Temperature }\left(^{\circ} \mathrm{C}\right) \end{aligned}$ <br> If Frame Temperature is Unknown Assume $T_{F}=40^{\circ} \mathrm{C}+$ Ambient Temperature |  |  |  |


| Size Factor $-\pi_{S}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| DEVICE <br> TYPE | $\pi_{S}$ |  |  |
|  | Size 8 or <br> Smaller | Size $10-16$ | Size 18 or <br> Larger |
| Synchro |  |  |  |
| Resolver |  |  |  |


| Number of Brushes Factor - $\pi_{\mathrm{N}}$ |  |
| :---: | :---: |
| Number of Brushes | $\pi_{N}$ |
| $\leq 2$ | 1.4 |
| 3 | 2.5 |
| 4 | 3.2 |
| Environment Factor - $\pi_{E}$ |  |
| Cnvironment | $\pi_{E}$ |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 12 |
| $\mathrm{N}_{S}$ | 7.0 |
| Nu | 18 |
| $A_{1}$ | 4.0 |
| $A_{\text {IF }}$ | 6.0 |
| $A_{i C}$ | 16 |
| A UF | 25 |
| $A_{\text {RW }}$ | 26 |
| $S_{F}$ | . 50 |
| $M_{F}$ | 14 |
| $M_{L}$ | 36 |
| $C_{L}$ | 680 |

## DESCRIPTION

Elapsed Time Meters

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{D}}$ |  |
| :--- | :--- |
| Type | $\lambda_{\mathrm{b}}$ |
| A.C. | 20 |
| Inverter Driven | 30 |
| Commutator D.C. | 80 |


| Temperature Stress Factor $-\pi_{\mathrm{T}}$ |  |
| :---: | ---: |
| Operating $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) /$ Rated $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\pi_{\mathrm{T}}$ |
| 0 to .5 | .5 |
| .6 | .6 |
| .8 | .8 |
| 1.0 | 1.0 |


| Environment Factor $-\pi_{E}$ |
| :--- |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 2.0 <br> $G_{M}$ 12 <br> $N_{S}$ 7.0 <br> $N_{U}$ 18 <br> $A_{I C}$ 5.0 <br> $A_{I F}$ 8.0 <br> $A_{U C}$ 16 <br> $A_{U F}$ 25 <br> $A_{R W}$ 26 <br> $S_{F}$ .50 <br> $M_{F}$ 14 <br> $M_{L}$ 38 <br> $C_{L}$ $N / A$ |

13.1 RELAYS, MECHANICAL

## DESCRIPTION

## SPECIFICATION

MIL-R-5757
MIL-R-6106
MiL-R-13718
MIL-R-19648
MIL-R-19523
MIL-R-39016

MIL-R-83516
MIL-R-83520
MIL-R-83536
MIL-R-83725
MIL-R-83726 (Except Class C. Solid State Type)

Mechanical Relay

$$
\lambda_{p}=\lambda_{b} \pi_{L} \pi_{C} \pi_{C Y C} \pi_{F} \pi_{Q} \pi_{E} \text { Failures/10 } 0^{6} \text { Hours }
$$



Load Stress Factor $-\pi_{L}$


| S | Load Type |  |  |
| :---: | :---: | :---: | :---: |
|  | Resistive ${ }^{1}$ | Inductive ${ }^{2}$ | Lamp ${ }^{3}$ |
| . 05 | 1.00 | 1.02 | 1.06 128 |
| . 10 | 1.02 | 1.06 | 2.72 |
| . 20 | 1.06 | 1.28 1.76 | 9.49 |
| . 30 | 1.15 | 2.72 | 54.6 |
| . 40 | 1.28 | 4.72 |  |
| . 50 | 1.48 1.76 | $\begin{array}{r} 4.77 \\ 9.49 \end{array}$ |  |
| . 60 | 1.76 2.15 | $\begin{gathered} 9.49 \\ 21.4 \end{gathered}$ |  |
| . 70 | 2.15 |  |  |
| . 80 | 2.72 3.55 |  |  |
| $\begin{array}{r}.90 \\ 1.00 \\ \hline\end{array}$ | 3.55 4.77 |  |  |
|  | $\left(\frac{S}{.8}\right)^{2}$ | 3. $\pi$ | $\left(\frac{\mathrm{S}}{.2}\right)^{2}$ |
|  | $\left(\frac{5}{.4}\right)^{2}$ | $s=\frac{\text { Oper }}{\text { Ratod }}$ | Lod Curren |

For single devices which switch two different load types, evaluate $\pi_{L}$ for each possible stress load type combination and use the worse case (largest $\pi_{L}$ ).

| Cycling Factor $-\pi$ CYC |  |
| :---: | :---: |
| Cycle Rate <br> (Cycles per Hour) | $\pi$ CYC <br> (MilL-SPEC) |
| 21.0 | $\frac{\text { Cycles_perHour }}{10}$ |
| $<1.0$ | 0.1 |


| Cycle Rate <br> (Cycles per Hour) | $\pi_{\text {CYC }}$ <br> (Commercial Quality) |
| :---: | :---: |
| $>1000$ | $\left(\frac{\text { Cycles per Hour }}{100}\right)^{2}$ |
| $10-1000$ | $\frac{\text { Cycles per Hour }}{10}$ |
| $<10$ | 1.0 |
| NOTE: Values of $\pi_{\mathrm{CYC}}$ for cycling rates beyond the <br> basic design limitations of the relay are noi valid. Design <br> specifications should be consulted prior to evaluation of <br> $\pi_{\text {CYC }}$ |  |

MIL-HDBK-217F
NOTICE 2
13.1 RELAYS, MECHANICAL

| Quality Factor $-\pi_{Q}$ |  |
| :--- | :---: |
| Quality | $\pi_{Q}$ |
| R | .10 |
| $P$ | .30 |
| X | .45 |
| U | .60 |
| M | 1.0 |
| L | 1.5 |
| MIL-SPEC, Non-Est. Rel. | 1.5 |
| Commercial | 2.9 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment | $\pi_{E}$ |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 15 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 27 |
| $A_{I C}$ | 7.0 |
| $A_{I F}$ | 9.0 |
| $A_{U C}$ | 11 |
| $A_{U F}$ | 12 |
| $A_{R W}$ | 46 |
| $S_{F}$ | .50 |
| $M_{F}$ | 25 |
| $M_{L}$ | 66 |
| $C_{L}$ | $N / A$ |


| Contact Rating | Application Type | Construction Type | $\pi_{F}$ |
| :---: | :---: | :---: | :---: |
| Signal Curent (Low mv and ma) | Dry Circuit | Armature (Long) <br> Dry Reed <br> Mercury Wetted <br> Magnetic Latching <br> Balanced Armature <br> Solenoid | $\begin{aligned} & \hline 4 \\ & 6 \\ & 1 \\ & 4 \\ & 4 \\ & 7 \\ & 7 \end{aligned}$ |
| 0-5 Amp | General Purpose | Armature (Long) <br> Bajancod Aimatura <br> Solenoid | $\begin{aligned} & 3 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$ |
|  | $\begin{array}{\|l} \text { Sensitive } \\ \text { (0-100 mw) } \end{array}$ | Armature (Long and Short) <br> Mercury Wetted Magnetic Latching Meter Movement Baianced Ârmatuíe | $\begin{array}{r} 5 \\ 2 \\ 6 \\ 100 \\ 10 \\ \hline \end{array}$ |
|  | Polarized | Armature (Short) Meter Movement | $\begin{array}{r} 10 \\ 100 \\ \hline \end{array}$ |
|  | Vibrating Reed | Dry Reed Mercury Weried | $\begin{aligned} & 6 \\ & 1 \\ & \hline \end{aligned}$ |
|  | High Speed | Armature (Balanced and Short) <br> Dry Read | $\begin{array}{r} 25 \\ 6 \end{array}$ |
|  | Thermal Time Delay | Bimetal | 10 |
|  | Eloctronic Time Delay, Non-Thermal |  | 9 |
|  | Latching. Magnetic | Dry Reed Mercury Wetted Balanced armature | $\begin{array}{r}10 \\ 5 \\ 5 \\ \hline\end{array}$ |
| 5-20 Amp | High Voltage | Vacuum ('Giasss) Vacuum (Ceramic) | 20 5 |
|  | Medium Power | Armature (Long and Short) <br> Mercury Wetied Magnetic Latching Mechanical Latching Balanced Armature Solenoid | 3 <br> 1 <br> 2 <br> 3 <br> 2 <br> 2 |
| $\begin{aligned} & 25-600 \\ & \text { Amp } \end{aligned}$ | Contactors (High Current) | Armature (Shor) <br> Mochanical Latching <br> Balanced Armature <br> Sôleñoid | 7 12 10 5 |

## SPECIFICATION

MIL-R-28750
MIL-R-83726

## DESCRIPTION

Relay, Solid State
Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the modeis provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

$$
\lambda_{P}=\lambda_{b} \pi_{Q} \pi_{E} \text { Faikures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{D}}$ |  |
| :--- | :--- |
| Relay Type | $\lambda_{\mathrm{b}}$ |
| Solid State | .029 |
| Solid State Time Delay | .029 |
| Hyorid | .029 |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :--- |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 1.0 |
| Commercial | 1.9 |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 3.0 |
| $G_{M}$ | 12 |
| $N_{S}$ | 6.0 |
| $N_{U}$ | 17 |
| $A_{I C}$ | 12 |
| $A_{I F}$ | 19 |
| $A_{U C}$ | 21 |
| $A_{U F}$ | 32 |
| $A_{R W}$ | 23 |
| $S_{F}$ | 12 |
| $M_{F}$ | 33 |
| $M_{L}$ | 590 |
| $C_{L}$ |  |

14.1 SWITCHES

$$
\lambda_{P}=\lambda_{b} \pi_{L} \pi_{C} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$



| Quality Factor $-\pi_{Q}$ |  |
| :--- | :---: |
| Quality | $\pi_{Q}$ |
| MIL-SPEC | 1 |
| Lower | 2 |


| Environment Factor $-\pi_{E}$ |  |
| :---: | :---: |
| Environment $\pi_{E}$ <br> $G_{B}$ 1.0 <br> $G_{F}$ 3.0 <br> $G_{M}$ 18 <br> $N_{S}$ 8.0 <br> $N_{U}$ 29 <br> $A_{I C}$ 10 <br> $A_{I F}$ 18 <br> $A_{U C}$ 13 <br> $A_{U F}$ 22 <br> $A_{R W}$ 46 <br> $S_{F}$ .50 <br> $M_{F}$ 25 <br> $M_{\underline{I}}$ 67 <br> $C_{L}$ 1200 |  |

SPECIFICATION
MIL-C-13516
MIL-C-55629
MIL-C-83383
MIL-C-39019
W-C. 375

## DESCRIPTION

Circuit Breakers, Manual and Automatic
Circuit Breakers, Magnetic, Unsealed, Trip-Free
Circuit Breakers, Remote Control, Thermal, Trip-Free
Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service
Circuit Breakers, Molded Case, Branch Circuit and Service

$$
\lambda_{p}=\lambda_{b} \pi_{C} \pi_{U} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{\mathrm{b}}$ |  |
| :--- | :--- |
| Description |  |
| Magnetic | .34 |
| Thermal | .34 |
| Thermal-Magnetic | .34 |


| Quality Factor $-\pi_{\mathrm{Q}}$ |  |
| :--- | :---: |
| Quality | $\pi_{\mathrm{Q}}$ |
| MIL-SPEC | 1.0 |
| Lower | 8.4 |

Environment Factor $-\pi_{E}$
Configuration Factor $-\pi_{\mathrm{C}}$

| Configuration | $\pi_{\mathrm{C}}$ |
| :--- | :--- |
| SPST | 1.0 |
| DPST | 2.0 |
| 3PST | 3.0 |
| 4PST | 4.0 |


| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 15 |
| $N_{S}$ | 8.0 |
| $N_{U}$ | 27 |
| $A_{I C}$ | 7.0 |
| $A_{I F}$ | 9.0 |
| $A_{U C}$ | 11 |
| $A_{U F}$ | 46 |
| $A_{R W}$ | .50 |
| $S_{F}$ | 25 |
| $M_{F}$ | 66 |
| $M_{L}$ | $N / A$ |

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{K} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign hall of the overall mated pair connector (i.e., single connector) faiture rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is tor input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide $\lambda_{p}$ by two.


[^6]
## MIL-HDBK-217F

## NOTICE 2

15.1 CONNECTORS, GENERAL

| Default Insert Temperature Rise ( $\Delta T^{\circ} \mathrm{C}$ ) Determination |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Amperes Per Contact | Contact Gauge |  |  |  |  |
|  | 30 | 22 | 20 | 16 | 12 |
| 2 | 10 | 4 | 2 | 1 | 0 |
| 3 | 22 | 8 | 5 | 2 | 1 |
| 4 | 37 | 13 | 8 | 4 | 1 |
| 5 | 56 | 19 | 13 | 5 | 2 |
| 6 | 79 | 27 | 18 | 8 | 3 |
| 7 |  | 36 | 23 | 10 | 4 |
| 8 |  | 46 | 30 | 13 | 5 |
| 9 |  | 57 | 37 | 16 | 6 |
| 10 |  | 70 | 45 | 19 | 7 |
| 15 |  |  | 96 | 41 | 15 |
| 20 |  |  |  | 70 | 26 |
| 25 |  |  |  | 106 | 39 |
| 30 |  |  |  |  | 54 |
| 35 |  |  |  |  | 72 |
| 40 |  |  |  |  | 92 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| RF Coaxial Connectors $\quad \Delta T=5^{\circ} \mathrm{C}$ |  |  |  |  |  |
| RF Coaxial Connectors (High Power Applications) $\quad \Delta T=50^{\circ} \mathrm{C}$ |  |  |  |  |  |


| $\begin{aligned} & \hline \text { Mating/Unmating Cycle } \\ & \text { (per 1000 hours) } \end{aligned}$ | $\pi_{K}$ |
| :---: | :---: |
| 0 to . 05 | 1.0 |
| $>.05$ to .5 | 1.5 |
| $>.5$ to 5 | 2.0 |
| $>5$ to 50 | 3.0 |
| $>50$ | 4.0 |
| "One cycle includes both connect and disconnect. |  |
| Quality Factor - $\pi_{0}$ |  |
| Quality | $\pi_{0}$ |
| MIL-SPEC | 1 |
| Lower | 2 |

Environment Factor - $\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{B}}$ | 1.0 |
| $\mathrm{G}_{\mathrm{F}}$ | 1.0 |
| $\mathrm{G}_{M}$ | 8.0 |
| $\mathrm{N}_{S}$ | 5.0 |
| $\mathrm{N}_{\mathrm{U}}$ | 13 |
| $A_{1 C}$ | 3.0 |
| $A_{i F}$ | 5.0 |
| $A_{\cup C}$ | 8.0 |
| AuF | 12 |
| Apw | 19 |
| $S_{F}$ | . 50 |
| $M_{F}$ | 10 |
| $M_{L}$ | 27 |
| $C_{L}$ | 490 |

$$
\lambda_{P}=\lambda_{B} \pi_{P} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate - $\lambda_{D}$ |  |  | Active Pins Factor - $\pi_{P}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Spec. MIL-S | $\lambda_{b}$ | Number of Active Contacts | $\pi_{\mathrm{P}}$ | Number of Active Contacts | $\pi_{P}$ |
| Dual-In-Line Package | 83734 | . 00064 | 1 | 1.0 | 55 | 6.9 |
| Singl-In-Line Package |  | 00064 | 2 | 1.5 | 60 | 7.4 |
| Single-In-Line Package | 83734 | . 00064 | 3 | 1.7 | 65 | 7.9 |
| Chip Carrier | 38533 | . 00064 | 4 | 1.9 2.0 | 70 75 | 8.4 8.9 |
| Pin Grid Array | N/A | . 00064 | 6 | 2.1 | 80 | 9.4 |
|  |  |  | 7 | 2.3 | 85 | 9.9 |
| Relay | 12883 | . 037 | 8 | 2.4 | 90 | 10 |
| Transistor | 12883 | . 0051 | 10 | 2.6 | 100 | 12 |
|  |  |  | 11 | 2.7 | 105 | 12 |
| Electron Tube, CRT | 12883 | . 011 | 12 | 2.8 | 110 | 13 |
| Quality Factor - $\pi_{0}$ |  |  | 13 | 2.9 | 115 | 13 |
|  |  |  | 14 15 | 3.0 3.1 | 120 125 | 14 14 |
| Quality | $\pi_{0}$ |  | 16 | 3.2 | 130 | 15 |
| MIL-SPEC. | . 3 |  | 18 | 3.4 | 140 | 16 |
| MIL-SPEC. |  |  | 19 | 3.5 | 145 | 17 |
| Lower | 1.0 |  | 20 | 3.6 | 150 | 18 18 18 |
| Environment Factor - $\pi_{E}$ |  |  | 30 | 4.5 | 160 | 19 |
|  |  |  |  | 5.0 | 165 | 20 |
| Environment |  | $\pi_{E}$ | $\begin{aligned} & 40 \\ & 45 \end{aligned}$ | 5.5 5.9 | 175 | 21 |
| $G_{B}$ |  | 1.0 |  | 6.4 | 180 | 22 |
| $\mathrm{G}_{\mathrm{M}}$ |  |  | $\pi_{P}=\exp \left(\frac{N-1}{10}\right)^{q}$ |  |  |  |
|  |  | 3.0 |  |  |  |  |
|  |  | 14 |  |  |  |  |
| $\mathrm{N}_{S}$ |  | 6.0 | $\mathrm{q}=.39$ |  |  |  |
| $\mathrm{N}_{\mathrm{U}}$ |  | 18 | $N=$ Number of Active Pins |  |  |  |
| $A_{1 C}$ |  | 8.0 | An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy. |  |  |  |
| $A_{\text {IF }}$ |  | 12 |  |  |  |  |
| $A_{U C}$ |  | 11 |  |  |  |  |
| A UF |  | 13 |  |  |  |  |
| $A_{\text {RW }}$ |  | 25 |  |  |  |  |
| $S_{F}$ |  | . 50 |  |  |  |  |
| $M_{F}$ |  | 14 |  |  |  |  |
| $M_{L}$ |  | 36 |  |  |  |  |
| $\mathrm{C}_{\mathrm{L}}$ |  | 650 |  |  |  |  |

$$
\lambda_{p}=\lambda_{\mathrm{b}}\left[N_{1} \pi_{C}+N_{2}\left(\pi_{C}+13\right)\right] \pi_{O} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

APPLICATION NOTE: This model applies to board configurations with leaded devices mounted into the plated through holes and assumes failures are predominately defect related. For boards using surface mount technology, use Section 16.2. For a mix of leaded devices mounted into plated through holes and surface mount devices, use this model for the leaded devices and use Section 16.2 for the surface mount contribution.

A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through-hole (PTH) problems (e.g., barrel cracking).

| Base Failure Rate $-\lambda_{\mathrm{D}}$ |  |
| :--- | :---: |
| Technology $\lambda_{\mathrm{b}}$ <br> Printed Wiring Assembly/Printed <br> Circuit Boards with PTHs .000017 <br> Discrete Wiring with Electroless <br> Deposited PTH ( $\leq 2$ Levels of Circuitry) .00011 |  |

Number of PTHs Factor $-\mathrm{N}_{1}$ and $\mathrm{N}_{2}$

| Factor | Quantity |
| :---: | :---: |
| $N_{1}$ | Automated Techniques: Quantity of <br> Wave Infrared (IR) or Vapor Phase <br> Soidered Functional PTHS |
| $N_{2}$ | Quantity of Hand Soldered PTHs |


| Complexity Factor $-\pi_{C}$ |
| :--- |
| Number of Circuit Planes, $P$ $\pi_{\mathrm{C}}$ <br> $\leq 2$ 1.0 <br> 3 1.3 <br> 4 1.6 <br> 5 1.8 <br> 6 2.0 <br> 7 2.2 <br> 8 2.4 <br> 9 2.6 <br> 10 2.8 <br> 11 2.9 <br> 12 3.1 <br> 13 3.3 <br> 14 3.4 <br> 15 3.6 <br> 16 3.9 <br> 17 4.0 <br> 18 1 |
| Discrete Wiring w/PTH |
| $\pi_{C}=.65 \mathrm{P} 63$ |



Environment Factor - $\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 7.0 |
| $N_{S}$ | 5.0 |
| $N_{U}$ | 13 |
| $A_{I C}$ | 5.0 |
| $A_{I F}$ | 8.0 |
| $A_{U C}$ | 16 |
| $A_{U F}$ | 28 |
| $A_{A W}$ | 19 |
| $S_{F}$ | .50 |
| $M_{F}$ | 10 |
| $M_{L}$ | 27 |
| $C_{L}$ | 500 |

APPLICATION NOTE: The SMT Model was developed to assess the life integrity of leadless and leaded devices. It provides a relative measure of circuit card wearout due to thermai cyciing fatigue failure of the "weakest link" SMT device. An analysis should be performed on all circuit board SMT components. The component with the largest failure rate value (weakest link) is assessed as the overall board failure rate due to SMT. The model assumes the board is completely renewed upon failure of the weakest link and the results do not consider solder or lead manufacturing defects. This model is based on the techniques developed in Reference 37.
$\lambda_{\text {SMT }}=$ Average failure rate over the expected equipment life cycle due to surface mount device wearout. This failure rate contribution to the system is for the Surface Mount Device on each board exhibiting the highest absolute value of the strain range:


ECF = Effective cumulative number of failures over the Weibull characteristic life.

Effective Cumulative Failures - ECF

| $\frac{L C}{}$ QSMT | ECF |
| :---: | :---: |
| $0-.1$ | .13 |
| $.11-.20$ | .15 |
| $.21-.30$ | . .31 |
| $.11-.40$ | .41 |
| $.41-.50$ | .51 |
| $.51-.60$ | .61 |
| $.61-.70$ | .78 |
| $.71-.80$ | .76 |
| $.81-.90$ | 1.0 |

LC = Design life cycle of the equipment in which the circuit board is operating.
$\alpha_{S M T}=$ The Weibull characteristic life. $\alpha_{S M T}$ is a function of device and substrate material, the manufacturing methods, and the application environment used.

$$
\alpha S M T=\frac{N_{i}}{C R}
$$

where:
$C R=$ Temperature cycling rate in cycles per calendar hour. Base on a thermal analysis of the circuit board. Use table default values if other estimates do not exist.
$N_{f}=$ Average number of thermal cycles to failure
$N_{f}=3.5\left(\left.\frac{d}{.65 h} \right\rvert\,\left(\alpha S \Delta T-\alpha c C\left(\Delta T+T_{\text {RISE }}\right) \mid \times 10^{-6}\right)^{-2.26}\left(\pi_{L C}\right)\right.$
where:
d = Distance from center of device to the furthest solder joint in mils (thousandths of an inch)
$h=$ Solder joint height in mils for leadless devices. Default to $\mathrm{h}=8$ for all leaded configurations.
$\alpha_{S}=$ Circuit board substrate thermal coefficient of expansion (TCE)
$\Delta T=$ Use environment temperature extreme difference
$\alpha c c=$ Package material thermal coefficient of expansion (TCE)

TRISE $=$ Temperature rise due to power dissipation (Pd)
$\mathrm{Pd}=\theta_{\mathrm{JC}} \mathrm{P}$
$\theta_{\mathrm{JC}}=$ Thermal resistance $^{\circ} \mathrm{Watt}$
$P=$ Power Dissipation (Watts)
$\pi_{L C}=$ Lead configuration factor
16.2 INTERCONNECTION ASSEMBLIES, SURFACE MOUNT TECHNOLOGY

| CR - Cycling Rate Default Values |  | $\alpha_{S}$ - Default TCE Substrate Values |  |
| :---: | :---: | :---: | :---: |
| Automotive <br> Consumer (television, radio, recorder) <br> Computer <br> Telecommunications <br> Commercial Aircraft <br> Industrial <br> Military Ground Applications <br> Military Aircratt (Cargo) <br> Military Aircraft (Fighter) | 1.0 | FR-4 Laminaie | 18 |
|  | . 08 | FR-4 Multilayer Board FR-4 Multilayer Board w/Copper | 11 |
|  | 17 | Clad Invar |  |
|  | . 0042 | Ceramic Multilayer Board | 7 |
|  | . 25 | Copper Clad Invar | 5 |
|  | . 021 | Copper Clad Molybderum | 5 |
|  | . 03 | Carbon-Fiber/Epoxy Composite | 1 |
|  | .12 .5 | Keviar Fiber | 3 |
|  |  | Quartz Fiber | 1 |
| $\pi_{L C}$ - Lead Configuration Factor |  | Glass Fiber | 5 |
| Lead Configuration | $\pi \mathrm{LC}$ | Epoxy/Glass Laminate | 15 |
| Leadless $J$ or SLead Gull Wing | 1 | Polyamide/Giass Laminate | 6 |
|  | $\begin{array}{r} 150 \\ 5,000 \end{array}$ | Poiyamide/Quartz Laminate | 8 |
|  |  | Epoxy/Kevlar Laminate | 7 |
| acc-TCE Package Vaiues |  | Alumina (Ceramic) | 7 |
| Substrate Material ${ }^{\text {acc }}$ | acc Average Value | Epoxy Aramid Fiber | 7 |
| Plastic Ceramic | 7 | Polyamide Aramid Fiber | 6 |
|  |  | Epoxy-Quartz | 9 |
| $\Delta T$ - Use Environment Default Temperature Difference |  | Fiberglass Tefion Laminates <br> Porcelainized Copper Clad Invar | 7 |
|  |  | Fiberglass Ceramic Fiber | 7 |

EXAMPLE: A large plastic encapsulated leadless chip carrier is mounted on a epoxyglass prinied wiring assembly. The design considerations are: a square package is 1480 mils on a side, solder height is 5 mils, power dissipation is .5 watts, thermal resistance is $20^{\circ} \mathrm{C} /$ watt, the design life is 20 years and environment is military ground application. The faliure rate developed is the impact of SMT for a single circuit board and accounts for all SMT devices on this board. This failure rate is added to the sum of all of the component tailure rates on the circuit board.

$$
\begin{aligned}
& \lambda_{S M T}=\frac{E C F}{\alpha S M T} \\
& \alpha S M T=\frac{N_{\mathrm{f}}}{C R}
\end{aligned}
$$

$N_{f}=3.5\left(\left.\frac{d}{(.65)(h)} \right\rvert\,\left(\alpha S \Delta T-\alpha C C(\Delta T+T \text { RISE }) \mid \times 10^{-6}\right)^{-2.26}\left(\pi_{L C}\right)\right.$
For d: $\quad d=\frac{1}{2}(1480)=740$ mils
For $h: \quad h=5$ mils
For $\alpha_{S}: \quad \alpha_{S}=15$ (Table - Epoxy Glass)
For $\Delta T$ : $\quad \Delta T=21$ (Table $-G_{F}$ )
For acc: $\quad$ acc $=7$ (Table - Plastic)
For $T_{\text {RISE }} \quad T_{\text {RISE }}=\theta_{\text {J ic }} P=20(.5)=10^{\circ} \mathrm{C}$
For $\pi_{L C}: \quad \pi_{L C}=1$ (Table-Leadiess)
For CR: $\quad C R=.03$ cycles/hour (Table - Military Ground)
$N_{t}=3.5\left(\frac{740}{(.65)(5)}|(15(21) \cdot 7(21+10))| \times 10^{-6}\right)^{-2.26}$
$N_{f}=16,033$ thermal cycles to failure

$$
\alpha_{S M T}=\frac{18,893 \text { cycles }}{.03 \text { cyles } / \text { hour }}=629,767 \text { hours }
$$

$\frac{L C}{\text { OSMT }}=\frac{(20 \mathrm{yrs} .)\left(8760 \frac{\mathrm{hr}}{\mathrm{yr}}\right)}{629,767 \mathrm{hrs} .}=.28$
ELF = .23 failures (Table - Effective Cumulative Failures)
$\lambda_{S M T}=\frac{E C F}{\alpha S M T}=\frac{.23 \text { failures }}{629,767 \text { hours }}=.0000004$ failures/hour
$\lambda_{\text {SST }}=.4$ failures $/ 10^{6}$ hours

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes or surface mount technology. Use the interconnection Assembly Afode! in Section 16 to account for connections to a circuit board using either plated through hole technology or surface mount technology. The failure raie of the structure which supports the connections and parts, e.g.. non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post, whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$$
\lambda_{p}=\lambda_{D} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

| Base Failure Rate $-\lambda_{D}$ |  |
| :--- | :--- |
| Connection Type | $\lambda_{D}$ (F/106 hrs) |
| Hand Solder, w/o Wrapping | .0013 |
| Hand Solder, w/Wrapping | .000070 |
| Crimp | .00026 |
| Weld | .000015 |
| Solderless Wrap | .0000068 |
| Clip Termination | .00012 |
| Reflow Solder | .000069 |
| Spring Contact | .17 |
| Terminal Block | .062 |

Environment Factor $-\pi_{E}$

| Environment | $\pi_{E}$ |
| :---: | :---: |
| $G_{B}$ | 1.0 |
| $G_{F}$ | 2.0 |
| $G_{M}$ | 7.0 |
| $N_{S}$ | 4.0 |
| $N_{U}$ | 11 |
| $A_{1 C}$ | 4.0 |
| $A_{I F}$ | 6.0 |
| $A_{U C}$ | 6.0 |
| $A_{U F}$ | 8.0 |
| $A_{R W}$ | 16 |
| $S_{F}$ | .50 |
| $M_{F}$ | 9.0 |
| $M_{L}$ | 24 |
| $C_{L}$ | 420 |

Parts Count Rellabllity Prediction - This prediction method is applicable during bid proposal and eariy design phases when insufficient information is available to use the pant stress analysis modets shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$
\lambda_{\text {EQUIP }}=\sum_{i=1}^{i=n} N_{i}\left(\lambda_{g} \pi_{\alpha^{2}}\right)_{i}
$$

Equation 1
for a given equipment environment where:

| $\lambda_{\text {EQUIP }}$ | Total equipment failure rate (Failures/10 ${ }^{6}$ Hours) |
| :---: | :---: |
| $\lambda_{g}$ | Generic failure rate for the $i^{\text {th }}$ generic part (Failures $/ 10^{6}$ Hours) |
| $\pi_{Q}$ | Quality factor for the $i^{\text {th }}$ generic part |
| $\mathrm{N}_{\mathrm{i}}$ | Quantity of $\mathrm{i}^{\text {th }}$ generic part |
| $n$ | Number of different generic part categories in the equipment |

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airoorme inhabited ( $A_{1}$ ) and uninhabtited ( $A_{U}$ ) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable $\lambda_{\mathrm{g}}$ tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, $\pi_{L}$, which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, $\lambda_{g}$ should be multiplied by the appropriate $\pi_{\mathrm{L}}$ factor (See page A-4).

It shouid be noted that no generic tallure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific defaut values used for the model parameters are shown with the $\lambda_{g}$ Tables for microcircuits. Defaull parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which difter significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

|  |  | le Fallure Rate, $\lambda_{g}$ Shown. Solder or |  | Faflurea/10 ${ }^{6}$ Hours) for cold sual DiPapcias ( |  |  | Alerccire <br> Plns |  | Pago A. 4 for ro Values Below), $\pi_{L}=1$ (Device in |  |  |  | oducilon 22 Yr .) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Environ. } \rightarrow \\ & T_{j}\left({ }^{\circ} \mathrm{C}\right) \rightarrow \end{aligned}$ | $\begin{aligned} & \mathbf{G}_{\mathbf{B}} \\ & 50 \\ & \hline \end{aligned}$ | $\begin{array}{r} G_{F} \\ B 0 \end{array}$ | $\begin{gathered} G_{M} \\ 65 \\ \hline \end{gathered}$ | $\begin{aligned} & N_{S} \\ & 60 \\ & \hline \end{aligned}$ | $\begin{gathered} N_{U} \\ 65 \end{gathered}$ | $\begin{aligned} & A_{1 C} \\ & 75 \end{aligned}$ | $\begin{aligned} & \mathrm{A}_{1 F} \\ & 75 \end{aligned}$ | ${ }^{A}$ UC 90 | $\begin{gathered} A_{U F} \\ 90 \end{gathered}$ | $\begin{gathered} A_{\text {RW }} \\ 75 \end{gathered}$ | $50$ | $\begin{aligned} & M_{F} \\ & 65 \end{aligned}$ | 75 | 60 |
| 5.1 | Bipolir Technolpgy <br> Gatenogic Arrays. Diginal $(E a=.4)$ <br> 1-100 Gates <br> 101 - 1000 Gales <br> 1001 to 3000 Gates <br> 3001 to 10,000 Gates <br> 10,000 to 30.000 Gates <br> 30,000 to 60,000 Gates | (16 Pin DIP) <br> (24 Pin DIP) <br> (40 Pin DIP) <br> ( 128 Pin PGA) <br> (180 Pin PGA) <br> (224 Pin PGA) | 0036 <br> 0060 <br> 011 <br> 033 <br> 052 <br> 075 | $\begin{array}{r} .012 \\ .020 \\ .035 \\ .12 \\ .17 \\ .23 \\ \hline \end{array}$ | $\begin{aligned} & .024 \\ & .038 \\ & .086 \\ & .22 \\ & .33 \\ & .44 \\ & \hline \end{aligned}$ | .024 .037 .068 .22 .33 .43 | .035 <br> .055 <br> .097 <br> .33 <br> .48 <br> .63 | $\begin{aligned} & .025 \\ & .039 \\ & .070 \\ & .23 \\ & .34 \\ & .46 \end{aligned}$ | .030 <br> .048 <br> .085 <br> .28 <br> .42 <br> .56 | $\begin{aligned} & .032 \\ & .051 \\ & .091 \\ & .30 \\ & .45 \\ & .61 \\ & \hline \end{aligned}$ | $\begin{aligned} & .049 \\ & .077 \\ & .14 \\ & 46 \\ & 68 \\ & .90 \\ & \hline \end{aligned}$ | $\begin{aligned} & .047 \\ & .074 \\ & .13 \\ & .44 \\ & .65 \\ & .85 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0036 \\ & .0060 \\ & .011 \\ & .033 \\ & .052 \\ & .075 \\ & \hline \end{aligned}$ | $\begin{aligned} & .030 \\ & .046 \\ & 082 \\ & .28 \\ & .41 \\ & .53 \\ & \hline \end{aligned}$ | $\begin{gathered} .069 \\ .11 \\ .19 \\ .65 \\ .95 \\ 1.2 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.2 \\ & 19 \\ & 3.3 \\ & 12 \\ & 17 \\ & 21 \\ & \hline \end{aligned}$ |
| 51 | Linear Microcircuits ( $\mathbf{E a}=.65$ ) 1 100 Transistors 101-300 Transistors 301 - 1000 Transistors 1001-10,000 Transistors | (14 Pin DIP) <br> (18 Pin DIP) <br> (24 Pin DIP) <br> (40 Pin DIP) | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .050 \\ & \hline \end{aligned}$ | $\begin{aligned} & .024 \\ & .041 \\ & .074 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & .038 \\ & .065 \\ & .11 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{array}{r} .034 \\ .054 \\ .092 \\ .15 \\ \hline \end{array}$ | $\begin{aligned} & .049 \\ & .078 \\ & .13 \\ & .21 \\ & \hline \end{aligned}$ | $\begin{aligned} & .057 \\ & 10 \\ & .19 \\ & .29 \\ & \hline \end{aligned}$ | $\begin{aligned} & .062 \\ & .11 \\ & .19 \\ & .30 \\ & \hline \end{aligned}$ | $\begin{array}{r} .12 \\ .22 \\ .41 \\ .63 \\ \hline \end{array}$ | $\begin{array}{r} .13 \\ .24 \\ .44 \\ .67 \\ \hline \end{array}$ | $\begin{aligned} & .078 \\ & .13 \\ & .22 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0095 \\ & .0117 \\ & .033 \\ & .050 \\ & \hline \end{aligned}$ | $\begin{aligned} & .044 \\ & 072 \\ & 12 \\ & 19 \\ & \hline \end{aligned}$ | $\begin{aligned} & .096 \\ & .15 \\ & .26 \\ & .41 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.4 \\ & 2.0 \\ & 3.4 \\ & \hline \end{aligned}$ |
| 5 | Programmable Logic Arrays ( $\mathrm{Ea}=.4$ ) <br> Up to 200 Gates 201 to 1000 Gates 1001 to 5000 Gates | (16 Pin DIP) <br> (24 Pin DIP) <br> (40 Pin DIP) | $\begin{aligned} & .0061 \\ & .011 \\ & .022 \\ & \hline \end{aligned}$ | $\begin{aligned} & .018 \\ & .028 \\ & 052 \end{aligned}$ | $\begin{array}{r} .029 \\ .048 \\ .087 \\ \hline \end{array}$ | $\begin{aligned} & .027 \\ & .045 \\ & .082 \\ & \hline \end{aligned}$ | $\begin{array}{r} .040 \\ .065 \\ .12 \\ \hline \end{array}$ | $\begin{array}{r} .032 \\ .054 \\ .099 \\ \hline \end{array}$ | $\begin{array}{r} .037 \\ .063 \\ .11 \\ \hline \end{array}$ | $\begin{aligned} & .044 \\ & .077 \\ & .14 \\ & \hline \end{aligned}$ | $\begin{array}{r} .081 \\ .10 \\ .19 \\ \hline \end{array}$ | $\begin{aligned} & .054 \\ & .089 \\ & .16 \end{aligned}$ | $\begin{aligned} & .0061 \\ & .011 \\ & .022 \\ & \hline \end{aligned}$ | $\begin{aligned} & 034 \\ & 057 \\ & 10 \end{aligned}$ | $\begin{aligned} & .076 \\ & .12 \\ & .22 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1.2 \\ 1.9 \\ 3.3 \\ \hline \end{array}$ |
| 51 | Linelar Microcircuits ( $\mathrm{Ea}=.6 \mathrm{~S}$ ) 1 to 100 Transistors 101 to 300 Transisiors 301 to 1.000 Transistors 1001 to 10000 Transisions | (14 Pin DIP) <br> (18 Pin DIP) <br> (24 Pin DIP) | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .05 \end{aligned}$ | $\begin{aligned} & 024 \\ & .041 \\ & .074 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & .039 \\ & .065 \\ & .11 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .034 \\ & .054 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{aligned} & .048 \\ & .078 \\ & .13 \\ & .21 \\ & \hline \end{aligned}$ | $\begin{aligned} & .057 \\ & .10 \\ & .19 \\ & .29 \\ & \hline \end{aligned}$ | $\begin{aligned} & .062 \\ & .11 \\ & 19 \\ & 30 \\ & \hline \end{aligned}$ | $\begin{array}{r} .12 \\ .22 \\ .41 \\ .63 \\ \hline \end{array}$ | $\begin{array}{r} .13 \\ .24 \\ .44 \\ .67 \\ \hline \end{array}$ | $\begin{aligned} & .076 \\ & .13 \\ & .22 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .05 \\ & \hline \end{aligned}$ | $\begin{aligned} & .044 \\ & .072 \\ & .12 \\ & .19 \\ & \hline \end{aligned}$ | $\begin{aligned} & .096 \\ & .15 \\ & .26 \\ & .41 \\ & \hline \end{aligned}$ | 1.1 <br> 1.4 <br> 2.0 <br> 3.4 |
| 5 | Floating Gate Programmable Logic Array, MOS ( $\mathrm{E}:=\mathbf{z}=35$ ) Up to 500 Gates 501-2000 Gates 2001 - 5000 Gates | (24 Pin DIP) (28 Pin DIP) (28 Pin DIP) | .0046 .0056 .0061 0095 | .018 .021 .022 <br> 033 | .035 <br> .042 <br> .043 <br> 084 | $\begin{aligned} & .035 \\ & .042 \\ & .042 \\ & .083 \end{aligned}$ | $\begin{aligned} & .052 \\ & .0132 \\ & .0133 \\ & .094 \\ & \hline \end{aligned}$ | $\begin{array}{r} .035 \\ .042 \\ .043 \\ .065 \\ \hline \end{array}$ | $\begin{array}{r} .044 \\ .052 \\ .054 \\ .080 \\ \hline \end{array}$ | $\begin{array}{r} 044 \\ 053 \\ 055 \\ 083 \\ \hline \end{array}$ | $\begin{aligned} & .070 \\ & .084 \\ & .086 \\ & .13 \\ & \hline \end{aligned}$ | $\begin{array}{r} .070 \\ .083 \\ .084 \\ .13 \\ \hline \end{array}$ | $\begin{array}{r} .0046 \\ .0056 \\ .0061 \\ .0095 \\ \hline \end{array}$ | $\begin{array}{r} .044 \\ .052 \\ .053 \\ .079 \\ \hline \end{array}$ | $\begin{array}{r} 10 \\ 12 \\ 13 \\ 19 \end{array}$ | 1.9 2.3 2.3 3.3 |
| 51 | Microprocessors, Bipolar ( $\left.E_{81}=.4\right)$ Up to 8 Bits Up to 16 Bits | (40 Pin DIP) (64 Pin P(GA) (128 Pin PGA) | $\begin{aligned} & .028 \\ & .052 \\ & .11 \end{aligned}$ | $\begin{aligned} & .061 \\ & .11 \\ & 23 \\ & \hline \end{aligned}$ | $\begin{aligned} & .098 \\ & .18 \\ & .38 \\ & \hline \end{aligned}$ | $\begin{aligned} & .081 \\ & .16 \\ & .33 \\ & \hline \end{aligned}$ | $\begin{array}{r} .13 \\ .23 \\ .47 \end{array}$ | $\begin{array}{r} 12 \\ .21 \\ .44 \end{array}$ | $\begin{array}{r} 13 \\ .24 \\ .49 \\ \hline \end{array}$ | $\begin{array}{r} .17 \\ .32 \\ .65 \\ \hline \end{array}$ | $\begin{array}{r} .22 \\ .39 \\ .81 \\ \hline \end{array}$ | $\begin{array}{r} .18 \\ .31 \\ .65 \\ \hline \end{array}$ | $\begin{aligned} & .028 \\ & .052 \\ & .11 \\ & \hline \end{aligned}$ | $\begin{array}{r} 11 \\ .20 \\ .42 \\ \hline \end{array}$ | $\begin{array}{r} 24 \\ .41 \\ .86 \\ \hline \end{array}$ | $\begin{array}{r} 3.3 \\ 5.6 \\ 12 \\ \hline \end{array}$ |
| 51 | Microprocessors, MOS (Ea: $=\mathbf{3 i 5})$ up to 8 Bits Up to 16 Bits | (40 Pin DIIP) <br> (64 Pin PGA) | $\begin{array}{r} .048 \\ .093 \end{array}$ | $\begin{aligned} & 089 \\ & 17 \\ & .34 \end{aligned}$ | $\begin{array}{r} .13 \\ .24 \\ .40 \end{array}$ | $\begin{aligned} & .12 \\ & .22 \\ & .46 \end{aligned}$ | $\begin{array}{r} .16 \\ .29 \\ .60 \end{array}$ | $\begin{array}{r} .16 \\ .30 \\ .61 \end{array}$ | $\begin{array}{r} 17 \\ .32 \\ .66 \end{array}$ | $\begin{array}{r} .24 \\ .45 \\ 90 \\ \hline \end{array}$ | $\begin{array}{r} .28 \\ .52 \\ 1.1 \\ \hline \end{array}$ | $\begin{array}{r} .22 \\ .40 \\ .82 \\ \hline \end{array}$ | $\begin{array}{r} .048 \\ .093 \\ .19 \\ \hline \end{array}$ | $\begin{array}{r} .15 \\ .27 \\ .54 \\ \hline \end{array}$ | $\begin{array}{r} .28 \\ .50 \\ 1.0 \\ \hline \end{array}$ | $\begin{array}{r} 3.4 \\ 5.6 \\ 12 \\ \hline \end{array}$ |


|  (Defauls: $\pi_{T}$ Based on Ea Shown, Solder or Welcl Sual DIPa/PGAs (No. Pine as shown Below), $\pi_{L}=1$ (Device in Production $\geq 2$ Yr.)) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Section } \\ n \end{gathered}$ | Part Type | $\begin{aligned} & \text { Environ } \rightarrow \\ & T_{j}\left({ }^{\circ} \mathrm{C}\right) \rightarrow \end{aligned}$ | $\begin{aligned} & \bar{G}_{\mathbf{B}} \\ & \mathbf{5 0} \end{aligned}$ | $\begin{aligned} & \bar{G}_{F} \\ & 80 \end{aligned}$ | $\begin{aligned} & \mathrm{G}_{\mathrm{M}} \\ & 65 \end{aligned}$ | $\begin{aligned} & N_{S} \\ & B 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{N}_{\mathrm{U}} \\ & 65 \end{aligned}$ | $\begin{aligned} & A_{1 C} \\ & 75 \end{aligned}$ | $\begin{aligned} & A_{1 F} \\ & 75 \end{aligned}$ | $\begin{gathered} A_{U C} \\ 90 \end{gathered}$ | $\begin{gathered} \lambda_{\mathrm{UF}} \\ 80 \end{gathered}$ | $\begin{gathered} A_{\mathrm{AW}} \\ 75 \end{gathered}$ | $\begin{aligned} & \mathrm{S}_{\mathrm{F}} \\ & 50 \end{aligned}$ | $\begin{aligned} & M_{F} \\ & 65 \end{aligned}$ | $\begin{aligned} & \hline M_{L} \\ & 75 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline C_{L} \\ & 60 \\ & \hline \end{aligned}$ |
| 52 |  | $\begin{aligned} & \text { (24 Pin DIP) } \\ & \text { (28 Pin DIP) } \\ & 28 \text { Pin DIP) } \\ & 40 \text { Pin DIP) } \\ & \hline \end{aligned}$ | $\begin{array}{r} .0047 \\ .0059 \\ .0067 \\ \hline \end{array}$ | .018 .022 .023 .036 | $\begin{array}{r} .036 \\ .043 \\ .045 \\ .068 \\ \hline \end{array}$ | $\begin{array}{r} .035 \\ .042 \\ .044 \\ .086 \\ \hline \end{array}$ | $\begin{array}{r} .053 \\ .083 \\ .088 \\ .098 \\ \hline \end{array}$ | $\begin{aligned} & .037 \\ & .045 \\ & .048 \\ & .075 \\ & \hline \end{aligned}$ | $\begin{array}{r} .045 \\ .055 \\ .059 \\ .090 \\ \hline \end{array}$ | $\begin{array}{r} .048 \\ .080 \\ .068 \\ .11 \\ \hline \end{array}$ | .074 .090 .099 .15 | $\begin{array}{r} .071 \\ .086 \\ .089 \\ .14 \\ \hline \end{array}$ | $\begin{aligned} & .0047 \\ & .0059 \\ & .0067 \\ & .011 \\ & \hline \end{aligned}$ | 044 <br> .053 <br> .055 <br> 083 | $\begin{array}{r} 11 \\ .13 \\ .13 \\ .20 \\ \hline \end{array}$ | $\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.3 \\ & \hline \end{aligned}$ |
| 52 | Memories, PROM, UVEPROM, EEPAOM. EAPROM (EA $=.6)$ <br>  Up to 16 K 16 K to 64 K 64 K to 256 K 256k 101 MB | $\begin{aligned} & \text { (24 Pin DIP) } \\ & \text { (28 Pin DIP) } \\ & \text { 28 Pin DIP) } \\ & (40 \text { Pin DIP) } \end{aligned}$ | $\begin{array}{r} .0049 \\ .0061 \\ .0072 \\ .012 \\ \hline \end{array}$ | $\begin{array}{r} .018 \\ .022 \\ .024 \\ .038 \\ \hline \end{array}$ | $\begin{array}{r} .038 \\ .044 \\ .046 \\ .071 \\ \hline \end{array}$ | $\begin{array}{r} .038 \\ .043 \\ .045 \\ .088 \end{array}$ | $\begin{aligned} & .053 \\ & .064 \\ & .067 \\ & .10 \\ & \hline \end{aligned}$ | $\begin{array}{r} .037 \\ .046 \\ .051 \\ .030 \\ \hline \end{array}$ | $\begin{array}{r} .046 \\ .056 \\ .061 \\ .095 \\ \hline \end{array}$ | $\begin{aligned} & .049 \\ & .082 \\ & .013 \\ & .12 \\ & \hline \end{aligned}$ | $\begin{aligned} & .075 \\ & .093 \\ & .10 \\ & .16 \\ & \hline \end{aligned}$ | $\begin{array}{r} .072 \\ .087 \\ .092 \\ .14 \\ \hline \end{array}$ | $\begin{array}{r} .0048 \\ .0062 \\ .0072 \\ .012 \\ \hline \end{array}$ | .045 .054 .057 .088 | $\begin{array}{r} 11 \\ .13 \\ .13 \\ .20 \\ \hline \end{array}$ | $\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.3 \\ & \hline \end{aligned}$ |
| $\overline{5} 2$ | ```Âemories. DRAM ( \(\mathrm{Ea}=6\) ) Up to 16 K 16 K to 64 K 64K to 256K 256jK to 1 MB``` | ( 18 PIn DIP) (22 Pin DIP) (24 Pm DIP) (28 Pin DIP) | $\begin{array}{r} .0040 \\ .0055 \\ .0074 \\ .011 \\ \hline \end{array}$ | $\begin{array}{r} .014 \\ .019 \\ .023 \\ .032 \\ \hline \end{array}$ | $\begin{array}{r} .027 \\ .036 \\ .043 \\ .057 \\ \hline \end{array}$ | $\begin{array}{r} .027 \\ .034 \\ .040 \\ .053 \\ \hline \end{array}$ | $\begin{array}{r} .040 \\ .051 \\ .060 \\ .077 \end{array}$ | $\begin{array}{r} .029 \\ .039 \\ .049 \\ .070 \\ \hline \end{array}$ | $\begin{array}{r} .035 \\ .047 \\ .058 \\ .080 \\ \hline \end{array}$ | $\begin{array}{r} .040 \\ .058 \\ .076 \\ .12 \\ \hline \end{array}$ | $\begin{array}{r} .059 \\ .079 \\ .10 \\ .15 \\ \hline \end{array}$ | $\begin{array}{r} .055 \\ .070 \\ .084 \\ .11 \\ \hline \end{array}$ | $\begin{array}{r} .0040 \\ .0055 \\ .0074 \\ .011 \\ \hline \end{array}$ | $\begin{array}{r} .034 \\ .043 \\ 051 \\ 067 \\ \hline \end{array}$ | $\begin{aligned} & .080 \\ & .10 \\ & 12 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 1.7 \\ & 1.9 \\ & 2.3 \\ & \hline \end{aligned}$ |
| 5, 2 | ```Mamories. SRAM, (MOS \& BIMOS) ( \(\mathrm{Ea}=6\) ) Up to 16 K 16K 10 64K 64K to 256K 256K to 1 MB``` | (18 Pm DIP) (22 Pm DIP) (24 Pin DIP) (28 Pin DIP) | $\begin{aligned} & .0079 \\ & .014 \\ & .023 \\ & .043 \\ & \hline \end{aligned}$ | $\begin{array}{r} .022 \\ .034 \\ .053 \\ .092 \\ \hline \end{array}$ | $\begin{aligned} & .038 \\ & .057 \\ & .084 \\ & .14 \\ & \hline \end{aligned}$ | $\begin{array}{r} .034 \\ .050 \\ .071 \\ .11 \\ \hline \end{array}$ | $\begin{aligned} & .050 \\ & .073 \\ & .10 \\ & .16 \\ & \hline \end{aligned}$ | $\begin{aligned} & .048 \\ & .077 \\ & .12 \\ & .22 \\ & \hline \end{aligned}$ | $\begin{aligned} & .054 \\ & .085 \\ & .13 \\ & .23 \\ & \hline \end{aligned}$ | $\begin{aligned} & .083 \\ & .14 \\ & .25 \\ & .46 \\ & \hline \end{aligned}$ | $\begin{array}{r} .10 \\ .17 \\ .27 \\ .49 \\ \hline \end{array}$ | $\begin{aligned} & .073 \\ & .11 \\ & .18 \\ & .26 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0079 \\ & .014 \\ & .023 \\ & .043 \\ & \hline \end{aligned}$ | $\begin{aligned} & .044 \\ & .065 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{aligned} & .098 \\ & .14 \\ & 19 \\ & .30 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1.4 \\ 1.8 \\ 1.9 \\ 2.3 \\ \hline \end{array}$ |
| 52 |  | $\begin{aligned} & \text { (24 Pin DIP) } \\ & \text { (28 Pin DIP) } \\ & \text { 28 Pin DIP) } \\ & 40 \mathrm{Pin} \text { DtP) } \end{aligned}$ | $\begin{array}{r} .010 \\ .017 \\ .028 \\ .053 \\ \hline \end{array}$ | $\begin{array}{r} .028 \\ .043 \\ .085 \\ .12 \\ \hline \end{array}$ | $\begin{aligned} & .050 \\ & .071 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .048 \\ & .063 \\ & .085 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{aligned} & .087 \\ & .091 \\ & .12 \\ & .21 \\ & \hline \end{aligned}$ | $\begin{aligned} & .082 \\ & .095 \\ & .15 \\ & .27 \\ & \hline \end{aligned}$ | $\begin{aligned} & .070 \\ & .11 \\ & .16 \\ & .29 \\ & \hline \end{aligned}$ | $\begin{array}{r} 10 \\ .18 \\ .30 \\ .56 \\ \hline \end{array}$ | $\begin{array}{r} .13 \\ .21 \\ .33 \\ .61 \\ \hline \end{array}$ | $\begin{aligned} & .096 \\ & .14 \\ & .19 \\ & .33 \\ & \hline \end{aligned}$ | $\begin{array}{r} .010 \\ .017 \\ .028 \\ .053 \\ \hline \end{array}$ | $\begin{aligned} & .058 \\ & .081 \\ & 11 \\ & 19 \\ & \hline \end{aligned}$ | $\begin{array}{r} .13 \\ .18 \\ .23 \\ .39 \\ \hline \end{array}$ | $\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.4 \end{aligned}$ |
| 5.2 | ```Mermorles, SRAM (Ea \(=.6\) ) up to 16 K 16 K to 64 K 6AK to 256 K 253k to 1 MB``` | $\begin{aligned} & \text { (24 PM DIP) } \\ & (28 \text { PM DIP) } \\ & (28 \text { PM OIP }) \\ & (40 \text { PM DIP) } \end{aligned}$ | $\begin{aligned} & .0075 \\ & .012 \\ & .018 \\ & .033 \\ & \hline \end{aligned}$ | $\begin{array}{r} .023 \\ .033 \\ .045 \\ .079 \\ \hline \end{array}$ | $\begin{array}{r} .043 \\ .058 \\ .074 \\ .13 \\ \hline \end{array}$ | $\begin{array}{r} .041 \\ .054 \\ .065 \\ .11 \\ \hline \end{array}$ | $\begin{array}{r} .060 \\ .079 \\ .095 \\ .16 \\ \hline \end{array}$ | $\begin{aligned} & .050 \\ & .072 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$ | $\begin{aligned} & .058 \\ & .083 \\ & .11 \\ & .20 \\ & \hline \end{aligned}$ | $\begin{aligned} & .077 \\ & .12 \\ & .19 \\ & .35 \\ & \hline \end{aligned}$ | $\begin{array}{r} .10 \\ .15 \\ .22 \\ .39 \\ \hline \end{array}$ | $\begin{aligned} & .084 \\ & .11 \\ & .14 \\ & .24 \\ & \hline \end{aligned}$ | $\begin{aligned} & .0075 \\ & .012 \\ & .018 \\ & .033 \\ & \hline \end{aligned}$ | $\begin{aligned} & .052 \\ & .069 \\ & .084 \\ & .14 \\ & \hline \end{aligned}$ | $\begin{array}{r} 12 \\ .15 \\ .18 \\ .30 \\ \hline \end{array}$ | $\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.4 \\ & \hline \end{aligned}$ |
| 53 | VHISIC Microcircuits, CMOS |  |  | elar 10 | ection | Vris | CMOS |  |  |  |  |  |  |  |  |  |
| 54 | GaAs IAMIC ( $\mathrm{Ea}=1.5$ ) <br> 1 to 100 Elements <br> 101 io 1000 Active Elements | (8 Pin DIP) (16 Pin DIP) | $\begin{array}{r} .0013 \\ .0028 \end{array}$ | $\begin{aligned} & 0052 \\ & .011 \end{aligned}$ | $\begin{array}{r} .010 \\ .022 \end{array}$ | $.010 .$ | $\begin{aligned} & .016 \\ & .034 \end{aligned}$ | $\begin{aligned} & .011 \\ & .023 \end{aligned}$ | $\begin{array}{r} .013 \\ .028 \end{array}$ | $\begin{aligned} & 015 \\ & .030 \end{aligned}$ | $\begin{aligned} & .022 \\ & .047 \end{aligned}$ | $\begin{aligned} & .021 \\ & .045 \end{aligned}$ | $\begin{aligned} & .0013 \\ & .0028 \end{aligned}$ | $\begin{aligned} & 013 \\ & 028 \end{aligned}$ | $\begin{array}{r} 031 \\ .068 \end{array}$ | $\begin{aligned} & .57 \\ & 1.2 \end{aligned}$ |
| 54 | GaAs Digital $(E a=1.4)$ <br> 1t to 1000 Active Elements <br> 1001 to 10,000 Activa Elements | (36 Pin DIP) | $\begin{array}{r} .0066 \\ .013 \\ \hline \end{array}$ | $\begin{array}{r} .026 \\ .050 \\ \hline \end{array}$ | $\begin{aligned} & .052 \\ & .10 \end{aligned}$ | $\begin{array}{r} .05 i 2 \\ .10 \\ \hline \end{array}$ | $\begin{aligned} & .078 \\ & .15 \\ & \hline \end{aligned}$ | $\begin{array}{r} .054 \\ .10 \\ \hline \end{array}$ | $\begin{array}{r} .067 \\ .13 \\ \hline \end{array}$ | $\begin{array}{r} .078 \\ .15 \\ \hline \end{array}$ | $\begin{array}{r} .12 \\ .23 \\ \hline \end{array}$ | $\begin{array}{r} .11 \\ .20 \\ \hline \end{array}$ | $\begin{array}{r} .0066 \\ .013 \\ \hline \end{array}$ | $\begin{array}{r} .065 \\ .13 \\ \hline \end{array}$ | $\begin{array}{r} .16 \\ .30 \\ \hline \end{array}$ | $\begin{array}{r} 2.9 \\ 5.5 \\ \hline \end{array}$ |



APPENDIX A: PARTS COUNT





[^7]Goneric Fallure Rata，$\lambda_{g}$（Falluraz $10^{6}$ Hours）for Inductive，Electromechanical and Miscellineous Parts

| v9 |  |  | －$\quad$－ |  | ర¢ ¢ ¢ ¢ \＆¢ ¢ ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2\％ |  |  | $\hat{i}=\underset{\sim}{\infty}=\hat{i} \hat{\sim}$ |  |  |
| 爯 |  |  | べうが， |  |  |
| い ${ }^{\circ}$ |  | ONが |  |  |  |
| を 3 |  |  |  |  |  |
| 若 $\bar{R}$ |  |  |  |  |  |
| \％ 2 |  |  |  |  |  |
| 눙 |  |  |  |  |  |
| 용 |  |  | ¢ ¢ ¢ ¢ ¢ \％\％\％\％ | ¢\％ |  |
| 2 |  |  |  |  | 은 |
| $z^{\infty}$ |  |  |  |  |  |
| $0^{5}$ |  |  |  |  | シャn |
| 0 |  |  |  |  | $\overline{8}$ |
| $\left\lvert\, \begin{array}{ll} \infty & 8 \\ 0 & 0 \\ 1 & t \\ c & 0 \\ 3 & 0 \\ \hline \end{array}\right.$ |  |  |  |  | $\overline{8} \frac{7}{6} \%$ |
| 立 | 骨 |  |  |  |  |
| $\underset{\substack{5}}{\stackrel{\otimes}{5}}$ |  |  |  |  |  |
| 管－ |  |  |  |  |  |



[^8]$\pi_{G}$ Factor for Use wilth Section 11-22 Devices

| Section \# | Part Type | Established Reliability | MIL-SPEC | Non-MIL |
| :---: | :---: | :---: | :---: | :---: |
| 11.1, 11.2 | Inductive Devices | .25* | 1.0 | 3.0 |
| 12.1, 12.2, 12.3 | Rotating Devices | N/A | N/A | N/A |
| 13.1 | Relays, Mechanical | . 60 | 1.5 | 2.9 |
| 13.2 | Relays, Solid State and Time Delay (Hybrid \& Solid State) | N/A | 1.0 | 1.9 |
| 14.1 | Switches, Toggle, Pushbutton, Sensitive | N/A | 1.0 | 2.0 |
| 14.2 | Circuit Breakers | N/A | 1.0 | 8.4 |
| 15.1 | Connectors | N/A | 1.0 | 2.0 |
| 15.2 | Connectors, Sockets | N/A | 3 | 1.0 |
| 16.1 | Plated Through Hole Circuil Boards | N/A | 1.0 | 2.0 |
| 16.2 | Surface Mount Tech. Circuil Boards | N/A | N/A | N/A |
| 17.1 | Connections | N/A | N/A | N/A |
| 18.1 | Meters, Panel | N/A | 1.0 | 3.4 |
| 19.1 | Quartz Crystals | N/A | 1.0 | 2.1 |
| 20.1 | Lamps, Inciandescent | N/A | N/A | N/A |
| 21.1 | Electronic Filters | N/A | 1.0 | 2.9 |
| 22.1 | Fuses | N/A | N/A | N/A |

[^9]
## APPENDIX A: PARTS COUNT



26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
27. "Reliability Assessment of Surface Mount Technology," RADC-TR-88-72, AD A193759.
28. "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new failure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, Infrared LEDs, Diode Array Displays and Current Regulator Diodes.
29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
30. "VHSICNHSIC Like Reliability Prediction Modeling," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.
31. "Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's plated-through-hole (PTH) connections. The report gives a detailed account of the factors to be considered when performing an FEA and the procedure used to transfer the results to a reliability figure-of-merit.
32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microcircuit models (except VHSIC and Bubble Memories) appearing in MIL-HDBK-217F, Section 5.
33. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-81-1052.
34. "Reliability/Design Thermal Applications," MIL-HDBK-251.
35. "NASA Parts Application Handbook," MIL-HDBK-978-B (NASA).

This handbook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, failure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
36. "Nonelectronic Parts Reliability Data 1991," NPRD-91.

This report contains field failure rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies ( 1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.
37. "Reliability Assessment of Critical Electronic Components," RL-TR-92-197, AD-A256996. This study is the basis for new or revised failure rate models in MIL-HDBK-217F, Notice 2, for the following device categories: resistors, capacitors, transformers, coils, motors, relays, switches, circuit breakers, connectors, printed circuit boards and surface mount technology.

# 38. "Handbook of Reliability Prediction Procedures for Mechanical Equipment," NSWC-94/LO7. This Handbook includes a methodology for nineteen basic mechanical components for evaluating a design for R\&M that considers the material properties, operating environment and critical failure modes. It is available from the Carderock Division, Naval Surface Warfare Center, Bethesda, MD 20084-5000, Phone (301) 227-1694. 

Custodians:
Army - CR
Nawy EC
Air Force - 17

Preparing Activity:
Air Force - 17
Project No. RELI-0074

## Review Activities:

Army - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 15, 19, 99
User Activities:
Army - AT, ME, GL
Navy - CG, MC, YD, TD
Air Force - 85

| STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL <br> (See Instruction - Reverse Side) |  |
| :---: | :---: |
| 1. DOCUMENT NUMBER MIL-HDBK-217F Notice 2 | 2. DOCUMENT TTLE <br> Reliability Prediction of Electronic Equipment |
| 3a. NAME OF SUBMITTING ORGANLIATION | 4. TVPE OF ORGANIZATION (MaIk one) VENDOR USER |
| D. ADDRESS (Street, Chy, State, ZIP Codo) | manufacturer OTHER (Specify): $\qquad$ |

b Recommended Wording
c. Reason/Rationale for Recommendation:
8. REMARKS

| 7a. NAME OF SUBMITTER (Last, First. MI) - Optional | b.WORK TELEPHONE NUMBER <br> (Include Ares COde) - Optional |
| :--- | :--- |
| c. MAILING ADDRESS (Streat. City, State, ZIP Code) - Optional | 8. DATE OF SUBMISSION (MMMMDD) |

INSTRUCTIONS in a continuing effor to make our standardization documents better, the DOD provides this form for use in submiting comments and suggestions for improvements All users of military standardization documents are invited to provide suggestions This form may De detacher, folined along ine lines indicated taped along the loose eage IDO NOT STAPLE, dind madied in Diock 5 , De as Specific as possibie about paricular problem areas such as wording which required interpretation, was too rigid, restrictive, hoose. ambigucus, or was incompatible, and give proposed wording changes which would alleviate the probiems Enter in block 6 any remarks not related to a specitic paragraph of the document. If block 7 is hiled out, an acknowledgement will be malled to you within 30 days to lel you know that your comments were received and are being considered

NOTE: This form may not be used to request copies of documents, nor to request waivers deviations. or clanfication of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to walve any portion of ine reterenced document(s) or to amend contractual requirements

DEPARTMENT OF THE AIR FORCE RLERSS
Gritfiss AFB, NY 13441-5700


IN THE UNITED STATES



[^0]:    - If a mating pair of connectors uses two types of insert materials, use the average of the base failure rates for the two insert material types. See following page for insert material determination.

[^1]:    "Caution: Excessive Mating-Demating Cycies May Seriousiy Degrade Reliabiiity

[^2]:    NOTE: 1) ${ }^{\text {a }}$. Not Normelly used in His Environment
    2) $\mathrm{T}_{\mathrm{A}}=$ Default Component Arblerd Temperature (c)

[^3]:    

[^4]:    - Category applies onty to MIL-C-39010 Coils.

[^5]:    $\lambda_{c y c}=0 \quad$ For all other devices

[^6]:    - Printed Circuil Board Connector

[^7]:    NOTES. ${ }^{1 /} \quad$ Not Normalty used in this Environment
    

[^8]:    NOTES 1) - Not normally weed in this environment.
    2) $T_{A}=$ Dufain Componint Ambient $T$ emperature ( ${ }^{\circ} \mathrm{C}$ ), a a $_{T}$ bessad on $T_{A}$ llhown
    
    
    6) Connector assumploins: $x_{K}=1$ : Sockets: 40 phns.
    7 Plated inrouph hole chicult boand aseumptona: 1000
    veling the delault $\Delta T$ valuess shown in Secton 18.2 .
    

[^9]:    - Category applies only to MIL-C-39010 Coils.

