
FiPS PUB t 01

z
‘#

KL,.-
$,

GUIDELINE
FOR

LIFECYCLE VALIDATION,
VERIFICATION, ANDI TESTING

OF COMPUTER SOFTWARE

,-,,,,.. !.,,
-*

. .. .

CATEGORY: SOFTWARE
SIJBCATEGOFW: VALIDATION, VERIFICATION,

AND TESTING

Foreword

The Federal Information Processing Standards Publication Series of [he Nat]onal Bureau of
Standards (NBS) is the official publication relatlng to standards and guidelines adopted and
promulgated under the provisions of Public Law 89.306 (Brooks Act) and under Part 6 of Title 15,

Code of Federal Regulations ‘These legislative and execut]ve mandates have g!ven the Secretary
of Corrrrner(;e important responstblltt~es for improving, the utlllzatlon and managemen(of

compu~ers and automatic data processing In the Federal Government To carry out the

Secretar}’s responsibil!tles, NBS, through Its lnstltute for Computer Sciences and Technology>,
provides leadership. technical guidance, and coordination of Government effcms In the
development of guidelines and standards In these areas

Comments concerning Federal information Processing Standards F’ubllcxiuons are welcomed
and should be addressed to the Dlrec[or, inst]tute for Computer Sc]ences and Technoiog},

National Bureau of Standards, Washington, DC 20234

Jame\ H Burrows, Lhrecror

lnstltute for Computer Sc)ences and Technology

Abstract

TFNsGuidellnc IS)ntcnded for those who dlrccl or !mplemcnl sof!warc development prowcts II re~~mmend~lha:
va]ldnt]on vcrlfrcat]on, and test]ng (\ ’V&T) be performed !hroughou[the .mflware dcvclcrpmemlII(CCVCICand prescnt~
(nformaimn on selcc(ton and we of such(echn)ques to meet pro)ect rcqu!remen!$ The Guldcllne als(e~pla]ns hew i(
drvclop t V\AT plan to fulfilla specIf_ILprolect’<V\ ’&T requirements

Kt=}words au!oma(ed mflware 1001<compuler software Federal Information })r(we$slngStandards Publu!{on. s(,fI*arc
Iifec>cle mftwarc resting sof!warr val]dat)on $of!warc venficat)on lest coverage. lest dam penera!lon

FIPS PUB !0!

=–—--..4

GUIDELINE FOR LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING OF

COMPUTER SOFTWARE

Fedcr#l lriftwmalmn Processing Slandards Pub!!csuons are]sucd b> [he Na~mnal Bureau of Standard$ pursuant [o the Fedcrai
Propert} and Admln(strall$e Services ACIof 1949 as amended, Publlc Law 8~ 3M (Tq ~~al 1127) and a< lmplemen!~d~v .ExeCu~lve
OrIder II ‘~I’(IX FR !?315,dawd May ~i 19v) and Par! 6 of Tick if Code of Federal Rcguhattons(CFR)

Name of Guideline: Gu:deltne for Lifecycle Validation, Verification, and Testing of C.ompuler Soflware

(FIPS PL’B 101)

Category of Guideline: Software; Val]ciatlon, V’eriticatwn, and Testing

Explanation: This Guideline presents an Integrated approach to val]datlon. verifrcatlon, and testing
(VI &T) that should be used throughout the software ~lfecycle Also]ncluded IS a glossary of [echnlcal
terms and a IISI of supporting lCST publications. An apppndlx provides an ou[l]ne for formulating a \’V&T

plan, Inciudlng the Identification of VV&T requirements and the selectlon of supportive techniques and

toots This Guldellne 15 Intended for use b} software developers, managers, verlfters, maintainers, and end
users

Approving Authority: L’S Department of Commerce, Nat]rmal Bureau of Standards (Institute for
Compu[er Sclence~ and

Maintenance Agency

Computer Smences and

Cross index: None

Technology)

U.S Department of Commerce, National Bureau of Standards (lnstitu[e for

Technology)

Applicability: This Guldellrre IS Intended as a basic reference guide for Federal ADP managers and
software developers for ensur~ng quallt} software b} using yalldatlon, veriflcatlon, and ~estmg procedures
ciurlng development and operation 1[s use IS encouraged but IS not mandator}.

Implementation: Th~s GuKie!]ne should be consulted whenever Federal departments or agencies develop
new applications software or unclerta~e major rev!slons of exlsttng software

Specifications: Federal Information Processing Standards Publication 101 (FIPS PUB 101). CJuidellne for

Lifecycle \’aldation, Verlfica[]on, and Tes[ing of Computer Software (affixed)

Qualifications: Th}s Guldel]ne IS planned for use by Federal agencies when they develop new software or

undertake major revlslons of exls(lng software The general llfecycle i’Lr&_f approach should be
~mplemented bu[ma} be augmerr[ed or dlmln]shed accord]ng to pro~ect goals and constl-alnts

Where to obtain Copies of the Guideline: Coptes of [h/s publlca[lon arc for sale b} thr Nat]onal Tcchn!cal
in f’orma[]ov Ser\ tcr, [.’.S Department. of Commerce, Springfield, \’A 2216! when ordering refer (o

Fed-ral Inl(lrmatloli Prormslng S[andards Publlcatmn 101 (FIPS. PlJ13. 101), and !l[)e When mlcrofich~ IS

dc$tred, fhl~ should I>,:iprc[fled. Payment ma} be made b! check mont=i order or NTIS depos]t account

r =.. Federal Informdion\ \Mfo##~b
&. ‘k Processing Standards Publication 101

6

(p)

> s.. &
z 1983 June 6
0 $-
‘I(J

“Hs s21
Specifications for

GUIDELINE FOR LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING OF

COMPUTER SOFIWARE

Contents

Page

1. OVERVIEW' ..,, ,,.,

2. LIFECYCLE VALIDATION, VERIFICATION, AND TESTING

2.1 Requirements Defimt]on and Analysis PhX

2.2 Design Phase,,,..,
2.3 Programming and Testing Ph~
2.4 Installation Phw
2.5 Operations and Maintenance Phase

3. SELECTION AND COMBINATION OF TECHNIQUES
3.1 Requirements Definition and Analysis

3.6 Recommended Tahniqua
SUPPORTING ICST ~UME~S
REFERENCES,

GLOSSARY
APPENDIX A, Planning for Validation, Verification, ~d T~tlng
APPENDIX B. Example Apphcations of Validation, Verification, ~d T~ting T~hnoiogy

B.1 Overview of Examples
B.2 Example 1: Software Development IJsing Bmic VV&T T~hniqU~
B 3 Example 2. Software Development Using a Comprehensive VV&T Approach

4

5

5
7
7

8
8
9

10

11

12
13
13

13
15
]~

16

19
21

21
23

32

f’iigt

Figure 1. I

Figure 1 I

Figure 12
Figure ~,~

Figure 14

Figure 35

F\gure 36
Figure 37
Figure A 1

Figure B 1 I
Figure B 21

Flgurc B 22
Figure B,2. I

Figure B 24
Fqgure B.2 5
F~gure B 3 1
Figure B 32

Tablr El 1

Tab]e B.2

Summary of VV&Tactiv~ties

General VV&T mtegratmn strategy,

Integrated approach [o requ]rernents VV&”T, .,,..,

integrated approach to design VV&T.

integrated approach to code VV&l_

Recommended techniques for lifecycle VV’&T (basic approach)
Recommended techniques for VV&T (comprehensive approach)
Recommended techniques for VV&T for critical software
A detailed outline of a project’s VV&T plan
(Werwew of txamp)es

Informal prose requirements . . ,

ftequlrements graphd representat]cm

Sample data base schema showing cilent-claims relation

Sample CLAIMS record description.

Sample pormon of code inspection checkhst

Detailed PDL with ASSERTIONS
Flndpolicy subroutine and corresponding assertion violation message

5

10
II

12
12

13
14

14

20
21

24

26

29
30

31

35
37

F[PS F’t!B 1{01

1, OVERVIEW

Ti-IIs Guideline presents a methodology} of Iifecycle val}datlon, ~erlfical)on, and l~s[lng (\ ’\’&T) for

computer software. It is addressed to peopie associated w,llh software devel(~pmen[and maintenance
Including managers, developers, verifiers, ma]ntalners, and end-users. Th]s Cru)ciellne If a basic reference

guide for ensuring the production and maintenance of quallty software II recommends [ha! \“\’&T be
performed throughout the software lifecycle.

A software lifecycle IS the period of time beglnnlng when the software product IS conceived and ending
when the resultint software products are no longer a~al]ab]e for use. The software IIfecycie IS [yplcal]>

broken into phases. such as requirements, design, progran]rrll[lg and [e>[IIIg, ins[a]]a[]on, u[]d uperii[)c)ns dnd
maintenance Each phase consists of a we]] -defined set OFac[lvitles whose products lead 10 [he evolut]~)n of
the activities and products of each successive phase From the ou[]lne of the specific IIfecycle actt~ltles and

PrOdUcts of a parocult?r software projec[, managers can more easily direct, and end.user~ can examine, the
progress of the software development and maintenance Software developers and maln(alners have a weli
defined set of tasks to perform. Verifiers, b} check~ng (he products of these tasks, can verift tha! lhe project
requirements are met at each phase

A VV&T methodology IS a procedure of rev]ew, analyws, and [estlng employed throughout the
wftware Iifecycle from software plannlng through the end of software use [o ensure the production and
maintenance of qua]lty software. Vallda[lon determines the correctness of the final program or so f[ware

with respect to the software reqtnrements Vertfica~lon employs]ntegnt} and evolutlon checking to
determine internal consistency and completeness, Integnty checking venftes the soundness of the products
at each phase of development b~ analyzlng each product for Internal consls[rnc} and completeness
Evolution checking ensures the completeness and conslstenc> of produc[s al dlfferen[de~eloprnen[phases.
where one product IS a refinement or elabora[)on of the other Testing, either au[omaled or manual,
examines program behavior by executing the program on sample data sets

The term VV&T defines a method incorporating all [hree techniques for appllca(lon [hroughout the
software lifecycle to determine functionality, to d!scover errors. and [o ensure the production and
maintenance of quall[y software Dlsclpllned use of \’\’&T techniques ~hould permca[e all of the
development! and maintenance processes A \’\’&T methoaolog> should also Include [he review . analysls,
and evaluation of Inter-mediate and final products (documents as well as codes) of the Ilfecycle

For purposes of illustration, the Ilfecycle phases used In [his Gulde]lnr arc requirements definltlon,
design, programming and testing, Lnstallatlon, and oper?tlons and maintenance 5ecl Ion 2 presents generic
VV&T activities that should accompany each of these phases Descrlp[}ons of de~elopmen~ and
maintenance actlvltles are a]so Included]n [he text so thal \’\~&T LSplaced In IIS apprt>pr)ate perspective
Specific techniques for Implementing a \’V&T approach are dependent upon a projec[and Its de~elopmen!
method, hence, specific techniques var> with a pro)ect However, the \’\”&T actl~l[les summarized In
ftgure 2,1 should occur for a]] pro!ects The Integra[lnn of a \’\’&T methodology> with the overall projec[,

beginning at the requirements phase, IS iessentlal)n producing and maln(alnlng quallf\ soltware
NO slng]e \’V&-f technique can guarantee correct, err~~r.free software Howe\cr, a carefu]l} chosen set

of techniques for a specIfic project can help 10 ensure [he deve]opmen[and maln[enance of qua]lty soflware
for that proj~t Section 3 prcrvldes guidance in seiectlng and comblnlng different types of techniques to
fotlm an effective \’V&T program .Stat}c, d), namlc, and formal analyses are d)scussed and gu[dancc for their
use provided, Figures establishing three dlfferenl levels of recommended \’\’&T_ approaches are aiso

Included.

A \’V&T program should be tailored [c [he needs and c~nstratnts associated with lhe soft~are project.

An outl]ne for developing a \r\’&_J program IS presented In [he appendix 1[lndlcate~ the Information tha~

should be included and can als{l be used as a checkils([O d:termlne Lf appropriate plannlng I< be{ng done

and to ensure :hat necessarj decisions are recorded

Further aids for the understanding Of \’\f&l concepts, ltsts Of tcchn]ques and Iools, and details on
lrV&T plannlng are aval]able from the supp(~rtlng d[~cumen~s IIsted ITIthl< Guldellne A glojsar> pro~rdes
definitions for s(~me of the more frequently used V\’&T terms

vv&T ,$ a proceS\ of 7WeW analys!s, and testing employed throughout the software Iifecycle to

rnsure the production of qualit! software. The rewew and analvsls should include the examinatmn of the
.lc’vclopmen(product and the doc JmenIallon a[each phase Figure 2.1 presents an overview of the \rV&T

activities lha[\hould accompan! each phase of development, This summary provides a framework from

which a \’\”& I_ program can be tailored for specific projects. Each Iifecycle phase IS comprv$ed of both
r!evelopmerrl and VV&T actlvi[~es In order to emphasize [heir relationships to each other, the following

sections elaborate on both the development and VV&T llf.ecycle act]vlttes and their products. Uppercase
[~(les are used for \’\’&T acttvl[]es and products for which the v\ ’&T team is responsible. The VV”&T team
jna> be members of the deveiopmen[group, the same organ lzatlon, or an lndeprmcient group

LIFECYCLE \’V&T ACTIVITIES
— .=—
1. Requirements Definition and Analysis Phase

● Development of the project VV&T plan

● Generation of requirements-based test cases
* Rev}ew and analys~s of the requirements
* Revlev and analysls of the draft user manual

II, Design Phase

● Completion of \’\’&T plan
● GeneraIlon of design-based test scenarios
* Rev~ew and analysls of the des]gn

Preliminary design integrity check
PrellrnInar) design evolut~on check

* Developrnenl of [esl support software

111. Programming and Testing Phase

“ Completion of test case specification
* Review, analys]s, and testtng of the program

Code lntegrlty check

Code evolul]on check
Llnlt [es!
lntegratlorr test
Syslem tes[

I\ Installation Phase

● System acceptance

1. Operations and Maintenance Phase

“ Software evaluat]rrn
* Snftware modification evaluatmn

* RegressIon Iesllng

2,1 Requirements Definition and Analysis Phase

FIPS PUH 10!

T’hese modiftcatlons must be documented to create a traceable record of the progress rind evolullon of the

final product. TWCI planntng act]vltles occur during this phase, (1) project plans, budgets, and schedules are ‘“

developed, and (2) a VV&T plan IS developed from the V\:&T requirements identified In this phase

DEVELOPMENT PRODUCTS.

* The Software Requirements Document: Th]s document specifies what the system must do, lncludlng

the requisite reformation flows, processing functions, performance constraints, and the acceptance crrteria

for deciding that specified requirements are satisfied. This documen[also contains those internal

specifications which, although transparent to the end user, are necessary to the development of the end
product (Development Product)

● The Pro]ect Plan: The projec~ plan explalns. the strategy for managing the development of the

software. Th]s document defines the goals and activities for all phases of the project, estimates resource
requlremen[s, and specifies intermediate milestones, Including management and ~echnical reviews 1[defines

methods for design, coding, VV&T, documentation, problem reporting, and change control In particular, lt
assigns responslbll]t} for the VV&”T effort, depending on project size. crltlcalitv, and budget. The

responsible party may be the programmer, a separate member of a development group, member(s) outside

the development group but from the same organmation, or from a complete]} independent organlzat]on.
The project plan also specifies supporting techniques and tools. (Development Product)

● Proyx! Standards Project standards define specIfIc techniques and formats for requtremenls. design.
coding, languages, documentation, con fl,guratton managemen~, and \rV&T. (Development Product)

● Draft of Users’ Manual: A users’ manual describes in non-ADP [ermlnology hov to use the system

The manual describes both the system functionality and the user Interface Its preparation durtng the
requirements phase IS an excellen~ mechan~sm for ensuring rha[both the users and the developers share [he
same vtew of the sys[em. The manual serves as a reference documen[for the preparation of lnpu[data iind

parameters and for lnterpreta[~on of results. (Development Product)
—

\’V&T ACTIVITIES AND PRODUCTS:

● DEVELOPMENT OF THE PROJECT VV&T PLAN: During this act]vlty, the VV&T analyst (who
~~la} be parl of the deve)opmenl group or from a separa[e ~rganlza[lon) w,]]] delermlne Yr\r&T requirements

dc~ign a f’\’&T process, select techniques and tools, and establlsh schedules, responsibi}lt]es, and budgets
(\’\ .%T Act]\tt))

● THE VA L.IDATION, \’EDIFICATION, AND TESTING PLAN The VV&T plan speclftes goals

and approaches to the \’\’&T activities. lt con[alns [he outl]ne for a project specific l:l’&T process,
Identifies technlquec and tools to be used, and specifies plans (schedules, budgets, respons]blilt]es, etc) frrr

performing [he \’\&l actl~lrle< (V\ ’&T Producl~

“ INITIAL SO FTV’ARE TEST CASE SPECIFICATION. A basic set of test cases 1s developed to

clarify and [o de[ermlne measurablll[y of each software requirement. The acceptance criteria are used to

develop the test cases lnpu! data and expected results for each tes[case are Included]n the speclftcatlon
(\ ’\ ’&T Act]vlt), Produc{)

● REVIEW AND ANALYSIS OF THE PROJECT’ REQLll REhl ENTS Pro]ect requirements are

rewewed for clarlt>, completeness, conststenc~, testabillr> and traceabillt} to the problem statement The

goal of this actlvlt> IS [o ensure that these requirements will resul[In ~ practical, usable solutlon to the entire
problem (Vv&T Acll~’lt~)

● REVIEW AND AN AL.YSIS OF USERS’ MANUAL. The users’ manual IS revtewed for clarlty and

consistency 1(IS checked for completeness against the requlremen[s document. in addition, this verification

acuwty includes ensuring that the]n[ema! speclftcat]ons of the requirements document are defined

~uff]clenfl} to lead 10 the produrtton of the functions and interfaces described m the users’ manual (v~:~ r

Actlwty)

t

FfPS PIJk3I]!

2s2 Design Phase

DE.SCR1PTION: The goal of this phase]s to desl~n a solution that satlsties the requ~rements and
constraints Altematlve solutlons are formulated and analyzed and the best solution is selected and refined

A high-level speclficaticm which defines ~nforrnation aggregates, information flows, and logical processing
steps is generated and is refined into a detailed specification describing the phvs]cal solution (algorithms and

data structures) The result is a solution specification that can be implemented in code with little acidltional

refinement ProJect plans (schedules, budgets, deliverables, etc) are reviewed and revised as appropriate.

DEVELOPMENT PRODUC 1S:

* The Des~gn Specificatmn Frequent] y this specifrcatlon contains two documents: (1) a preliminary

design document to identify a high-level solution deve)oped during this phase and (2) a detailed design
document wiuch defines and refines software (algorithms and da~) to be coded in the following phw
(Developineut Product)

● A Revised Requirements Specification Design activities may reveal incormxt, inconsistent, infeasible, or
ambiguous mqulrements resulting in the revis]on of their specification. (Development Product)

* An Updated Project P\an. Upon completion of the preliminary design, the scope and complexity of the
solution should be well understood ,4s a result, the project plan (schedules, budgets, deliverables, etc.) 1S

more accurate and realistic. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

● AN UPDATED VV&T PLAN: New or revised project requirements may warrant revision of the
VV& T’ plan, me dehlleci ~es]gn plan nl~y indicate t}~e need for additional testing pr.xedures. (VV&T

Product)

● REVIEW AND ANALYSIS OF THE DESIGN The design IS analyzed to ensure inlernal consistence},
completeness, correctness and clarity, and to verif~ tha[the design, when Implemented, will satisfy the
requirements, (VV&T Actiwty)

● SOFTWARE TEST CASE SPECIFICATION: Additional test scenanos and test cases (input data and
expected results) are developed to exercise and test]oglcal and st.ructura] aspects of the design OW&T
Product)

“ IMPLEMENT OR ACQUIRE TESTING SUPPORT TOOLS Development or acqulsltlon of any
support software needed for unit, mtegrat]on, or system testing should be completed and installed during the
detailed dewgn phase to ensure readiness during programrmng and testing, (V V&T Activity)

2,3 Programming and Testing Phase

DESCRIPTION: During this phase, the detailed design IS implemented in code, resultlng m a
program or system ready for installation Three types Of testing are performed: unit, integration, and system.
Although the programmer is responsible for unit testing, the responsibility for integration and system test!ng

is determined b} the project management, depending on pro~ec[size and crltlcalitv The project plan

contains general mforrnation, and the \’V&T plan specific details, asslgnmg responsibllltles fol the
development, execution, and eva]uatlon of all test cases and data at the various levels cf testing For large or

critical software, separate test teams may be used Unit testing checks for Iypographlc, svntactlc, and loglcal
errors Code modules are checked]nd]vldua]l}, h} the programmers who wrote them [{J ensure that each
correcil} Implements [ts design and satisfies the specified requirements in[egratlon Iest]ng focuses on
checking the lnterrnodule communlca[ion links and Or tcstlng aggregate functtons formed by grouPs of

modules $ys~em testing examines the operation of ~he system as an entl~}, some~~mes tn a s[mulated

operat}~tg env~ronrnent This type of tcstlng ensures that the software requirements baf e been wtlsfied troth

sing). and]n cmnhtn:i!l~r Th{, final ;~rrI\Il~l, of thI\ p}~aw ~<t[\ en<llrr readlne<< for the wftware lnstallat~nn.

Including. ri=vlslon of p]fins as ne~essari and ~~mp]etltln of ali (~(her cod!n~. [e+l!n~. and d~~umlCrlt4tl~~rl

Fi?s PUB 101

DEVELOPMENT PRODUCTS

* Program Code Fulty documented and tested code IS cons! :uc~ed, read} for Ins[alla[ron (Dcvelopmen[

Actiwty, Product)

* User Documentation: Manuals describing the Input and report formals, user commands. error messages
ard instructions for operation by the user are completed. (Development Product)

* Maintenance Manual: Documentation to maintain the system 1s written, however, Ihe manual ma} be
modified or completed during the installation phase (Development Product)

● Installation Plan. Such a pian specifies the approach to. and details of, the Ins[alla[)on of the soflware.
(Development Product)

‘ Problem Reports: Observed problems are recorded in formal statements and ma> require return [o a
previous phase for resolut~orr (Development Product)

VV&T ACTIVITIES AND PRODUCTS

● SOFTWARE TEST CASE SPECIFICATION: Final revlstons and addltlons to the [est data are made.
(VV&T Activity, Product)

* REVIEW AND ANALYSIS OF THE PROGRAM This actiwty Includes check]ng for adherence to

coding standards and manual/automated analysls of the program b>’ stat]c, dyramlc, and formal methods
(’VV&’T Act]wty)

* TESTING THE PROGRAM: The program IS executed w~th the test data, actual results are compared

with the expected results and are validated for satisfaction of the requirements (v V&T Actiwty)

● TEST RESLTLTS AND TEST EVALLIATION REPORTS The testlrrg acl]~ities. Includrng
comparison of actual and expected results, are documented. (\’\’&T Product)

“ PROBLEM REPORTS: Observed problems are recorded In formal statements and ma> necexv[ale
retumlng to a previous phase for resolution f\r\’&T Product)

2,4 Installation Phase

DESCRIPTION During this phase the system IS placed rnto operatton The first [ask.)n[egrat~ng the
system components, may include installing hardware, Installing the program(s) on the compuler
reformatting/creating the data base(s), and verifying that all components have been included ?vlodificatlon
of the program code may be necessary to obtain compatibility between hardware and software, or between
different software modules for wh)ch earlier simu]atlon testing ma> not have been adequate The next task IS

LO tes[the sv<l.em In I(S comple[e operating environment The [es~ data from earner phase< 1~enhanced and

used The result is a system quai!fied and accepteci for produc[lon use The third [ask is the start of system

operation. If a previous system extsts, then strategies for Its replacement include Immedla[e totai
replacement, “phasing-in” of the new system, or parallel operation of both systems A complete>’ new
program could either be phased into operat]on or could be lmplemen~ed al once This task also Includes
operator and user training.

DEVELOPMENT PRODUCT

● Installation Report. Th)s report descr~bes the results 01’ the Instalia[lon actlll[les. rnciudtng data

converslol~, Installation testing/results and softu’are,jsyslem problems and modlfrcat~rms (Development

Product)

FORMA L A(XEPf’AN(2E, A custIJmer rcpreseritati..e ~hould formal) y sign off on a form mdicat(ng that

testing has been completed and that the system IS accepted (VV&T Product)

2.5 Operations md Maintenance Phase

DESCRIPTION: This phase involves the actual me of the software and monitoring of Its operat;on

to ensure that It succeeds m solwng the user’s problem. Most often, some need for modify~ng the software
arises during this phase “I%e maintenance process Involves determining the cause for each modification

wh}ch could be an error made in the or~ginal development or previous mamtenance, a change in the
surrounding environment, the recognition of a new or evolving requirement, or the deswe for a dewgn

modificatlrm to improve performance, usabillty, etc Once the cause is determined, the sofrware (code and
documentation) is “redeveloped” from that point. For example, redevelopment due to a change m

reqwrements would result in modifkations to the requirements specification, the design, the code, and user

and operation manuals Problem reportrng, change requests, and other change control mechanisms are used
to facil~tatc the systematic correction and evolution of the software. In addition, performance measurement
and evaluatmn activities are performed to ensure that the system continues to meet performance

requiremertts m the context of a changing system environment.

DEVELOPMENT PRODUCTS

● Problem Reports: These are formal statements of observed problems. Their analyses may result m
software change requests. (Development Product)

* Change Requests: These are formal requests for specific moditicatlons to the software. These could be
generated due to an error (1.e , problem report) or a modification of the requirements or desgn
(Development Product)

‘ Revlslon to [nltla! Development Products: As a result of change requests, any one or all of the products

of the ~nltlatlon and development phases may requme rewsion. (Development Product)

VV&T ACTIVITIES AND PRODUCTS.

● SOFTWARE EVALUATION: Continuous monitoring and evaluation to assess the operation of the

sof[ware and to ensure continued satisfaction of user requirements occurs throughout the operation and
maintenance of the st~!‘ware. (VV&T Activity)

* CHANGE REQUE$ l_S: Formal requests by VV&T personnel for specific changes to the software must
be submitted to those responsible for rnakmg the revisions. (VV&T Product)

* REGRESSION TESTING: Test cases which a program has previously executed correctly in order tO

detec~ errors created during software modiftcatlon are rerun and compared (VV&T Actlvtty)

“ SOFTWARE MODIFICATION EVALUATION: Requested modifications to the system are
evaluated in the same manner that the original software development was evaluated If the requirements or
destgn specifications are modified, the VV&T act]vitles appropriate to those phases should be performed
When the modifications are compieted, they must be rewewed and testecl to ensure that they not only fulfill

the modification request, but also have not adversely affected any other part of the system. (VV&T

Acuwty)

3. SELECHON AND COMBINATION’ OF TECHNIQUES

Software V\’&T detects errors and validates that the produc[IS correct, complete, and consistent with
respec~ to Its requ~rements However, no single \’V&T technique can guarantee correct, error-free software.

A combination of carefully -appiied techniques can provide confidence In the adequacy of the software.

Tiirrc !ypes of analysis (statlcl dynamic, formal) are available and each provides the V\ ’&T analysf with

differ?n[tvpes of specific information about the solutlon being examined

1 S~aLLLtiIidi)’SIS detects errors ihrough fhc cxam!nal~cm of the product]! focust’s rm the form and

strut-ti~re of rhe solutlori, but not the functmnal or computational aspects 1[is tiiw~ !h~ technique used to

cxamlnc fill di)cumrn! ~lem~ al z!! phav.?s ofdrvrlnr? men!

FIF’S Pus 10

2, Dynwnric analysis
studying the program’s

computational aspects,

is the process of d~;termlnmg
response to a set of input

fhc va]ld)ty of a program Bnd of detecting errors by

data. It addresses the functional, structural, and

3. Formal analysis uries rigorous mathematlml techniques to analyze the algorithms or properties of a

~]utlon. It can provide a strong statement regarding ccrtam properties of a solution including correctness,
but is limited by the difficulty of application and lack of automated support.

T&se three types of analysis shou]d bC u~d in conjunction with one another to prowdc a powerful
VV&T t~hnoiogy.-

C’) Test Data & Assertions

~ T.:., ..:YSSNeed for Need for
Add$tlonai Additional

Criteria
4

No
Analysis

Specification k Dynamic No
* FormalI ,

Analysis Errors Analysis Errors Analysis
~ Satisfactorily

b Completed

Errors Errors Errors

1 J /

Figsre 3.1 GawrJ/ W.-4 T inftgmtlon srmqv

The integration strategy shown in figure 3.1 is simpie. First, static analysis techniques are applied to
amdyz.e the form of the specification. These techniques are strwghtforward and usually the least expensive

to apply. Applicable to all levels of specification, they identify flaws that could prevent application of
dynamic and formal techniques. However, dynamic analysis methods are needed to focus on the functional
meaning of the solution and to det~t errors in their specification. These may be manutdly applied to the
requirements and design specifications. The code may undergo dynamic testing by executing test data on 1:
Dynttrmc artrdysis techniques, when applied properly, are effective, comprehensive, and within the resource

constraints of nearly all projects For further assurances, formal analysls techmques may be used, these are

usual]y quite expensive because they requ~re highly trained people and sophisticated support

The analysis techniques discussed above apply to different phases of the lifecycle. in figures 3.5

through 3.7, three levels of recommended combinations of VV&T techniques are presented. A V\’& T
approach appropriate to the software requirements and resources of the project should be used. All
recommendations are cumulative For example, the comprehensive set of techniques includes the basic set
NBS Special Publications 5(075 and 500.93 contain information on specific techniques and tools that can be
used to support iifecycle VV&T

3.1 Requirements Definition and Analysis

During the requirements phase, stat]c analysts focuses on check]ng adherence to specifica[!o)l

conventions, consistency, completeness, and language syntax Dynamic analysis focuses upon mformat~on

flows, functional mterrelat~onshlps, and performance requirements Manual methods such as Inspectmns,

peer reviews, and walkthroughs are effect]ve In accomplishing both types of analvsl< if rigorously

performed if the constructs of the requirements speclficatlori scheme are clearly defined and capable of

being represented In a computer processahlc form. then aulomatetl [CWISmay be used to perform both [he
$Ut{c End dynnmlr anaiyws Srvcra! such speclfic21;on rnr; hod~ wl~i] supporttn~ tool< are ~vallable

I“[,flctmnal Traces to be Examir; :@

G. -

for Correctness of Intent
~ -~

VV&T Test Scenarios
Analyst

Requirements Speclflcatlon
Static No Errors Found Analysis

1-

Analysis Completed

9

Detected Errors Detected Errors

~odif~--- 1 .-)

F@Jrt U Integrated approach to rqwremcn?s VV& T

3.2 Design

As with the requirements, the representation schemes used to specify the design determine the specific

analysis techmques which should be employed. Design specification schemes generally provide rnecharusms
for specifying algorithms and their mptits and outputs in terms of modules. Inconsistencies in specifying the
flow of ctata objects through the modules can be detected by static ansdysls techniques. Grtfun errors made

during the composition of ri des!gn can be detected, such as the inconsistencies between the inputs and
outputs spec]fied for a high level module and the cumulative inputs and outputs of the subrnodules.

Dynamic analysis of a design IS accomplished by some form of design simulation, This may be a manual
walkthrough or an automated simulation using a model of the design. Manual walkti-troughs, when
rigorously performed and guided by documented test scenarios, are an eflective technique for analyzing a
software design For larger software designs and highly critical systems or components, an automated
simulation may be appropriate Th)s requires the construction and execut}on of ri solution model with the

test scenarios To be credible the model must be validated as a faithful representation of the solution,
although the higher the requmed degree of model fidelity, the higher the cost of simulation This cost

generally increases with the complexity of the model.
Formal anrdysis techmques may be manually applied to a design specification if the specification is

sutTclently formal and exact. This revolves tracing paths through the cteslgn specification and formulating a
composite funct]on for each. Th]s procedure IS more feasible at higher levels of a h]erarchtcal dewgn

specification. Less detail is present and the resulting algorithm paths are relat~vely short and few in number

Thus, the evolved functions remain concise and manageable. The purpose of deriving these composite
functions for a given level of design is to compare them to the functions of the prewous level, Tlus process

ensures that the design continues to specify the same functional solution as is h]erarch]cally elaborated.
The formal analysls of a design specification can be improved by using automated symbolic execution

[OOIS. Such tools can be expensive to create and operate; In return, however, they offer greater speed and

capacity for manipulating detailed specifications. Thus, the functional effects of all levels of a design

specification can be determined

--.::” ‘H?iiiies
No

Errors No Errors
Design Specitlcatton Static Found * Functional ,+ Found Formal

1 Analysis Slmulatlon Analysls

1-}
Conslslency

I I

Analysts

1- Modify
Detected Errors

~igurt J.3 Infegrared appmoch IO design l’}& 1

3.3 Programming and Testing

static analysis ~echniques and Irmls are used to ensure the proper form of programming products, for
example, code and ciocumentat)on This can be accomplished b) checking adherence [(l coding and

documentation conventions, Interface and type checking, etc. The checking can be done by manual
techniques and automated tools. InspectIons and code auditors fi[Into these categories, respecllvely
Dynamic analyws [echnlques are employed to stud> the functional and computational correctness of the
code. Inltlally, such manual techniques as walkthroughs can be used as an effective forerunner to testing.
Testing 1s accomplished b} running the code on the tesl data sets which were developed during the
requirements and design phases and completed during the programming and tes[lng pha.w. The correctness

of the MS executions 15 determined more deflnltlvely when the expected resul~s are specified Tesung for

adherence to assertions IS also highly advisable. These assertions, are products of the design actiwty and

provde additional information regarding expected behav]or of the soflware.

If software is being developed In an envlronmen[other than the productmn en~tronmt :It, testing is
more problematic, Here the production environment can be slmtdated or taken Into account Inlorrnally. in
an>’ case, the validity of the test results depends upon the fidellty of [hc slmu!atlon or Informal Jud~menls. If
there IS a significant difference ~n the two environments, there will be an eventual need for some additional
testing in the actual production environment The balance between slmuiatlon tesilng and actual production
env~ronment testing must be determined for each Individual project, based partlall~ upon how available and

expensive the production environment IS
Whenever assurances of correctness over and above those provided b, dynamtc analyws are required,

formal analyws follows testing. Symbollc evaluation and forma! proof techniques can be effective in

achieving high levels of confidence An Integrated \’V&T approach is shown In figure 14.

- *
Test Cases/Data \ \

Differences Intormatlon About
Between Aclual 8 Numerical Properties,
Expecied Outputs Complexltv & Correctness

No 1 No 1* ‘Errors ~ ‘ Errors * 1
Code Static Found Dynamic Found Formal Analysls.— * + I *

+
Analysls Ana!ysls Analysls ~ Completed

1

L
f)(>i(>’lf>(? Errors

F1P2 PUB 101

3.4 Instdl.iikm

During thr Installation phase, testing is ciorie to verify earlier test result:,, to test special caws, and to

determine whether or not to accept the system In the first case, samples of e6rlier tests from any phase and
!echnique are selected and rerun. ‘This gives added assurance thaf the tests were accurate when first used

and that their results were not negated at a iater stage of development. If earner testing required simulation,

then some special tests may be run to verify those results in the actual production environment Situations
unique to the operating environment are examined at this stage. Formal acceptance testing IS performed, to
the extent required by the project. Such testing may include functional tests and trial use of the user

documentation or training,

3.5 Operations and Maintenance

During operations and maintenance, any problems within the system, additions and enhancements to it,

.~r rnodificatmns due to en wronmental changes lnvo] ve the uw of techniques appropriate to the
development pkr- ~hat are affected,

3.6 Recommended Techniques

The methodology of valdation. verification, and testing (VV’&”r) throughout the Iifecycie of computer
software requires (he integration of development activities with VV&T activities. The VV&T requirements
are tai]ored specifically to a pro!ect, and Its requlrernents, constraints, and resources. Methodologies may
range from simple for small projects to very complex for large, and/or highly critical projects. Disciplined
application of a VV&T methodology developed from careful selection and combination of VV&T

techniques can help ensure the production of high quality software. All recommendations are cumulative;
for example, the comprehensive set of techniques assume the inclusion of the basic set

Phaae

Requirements

Design

Code

.——— .——. -—. .—. .

Installation

— ——.

Operations and rnaln[enance

Teehnique

Review—

in~ction——. ..———.

InspectIon
Test Coverage

Unit 100% statement
Integration 1009’. module call
System 957. module cdl
ItX)% of major loglc paths—— . —..——-—. .._—

Acceptance Test ing

Insure continued vahd]ty of system test—— — .—

For affected code,

lrrspectton

Test Coverage
I()()qr statement

IOCYZC module
-.-—

—

—.
Phaae

Requirements ——

Design

Code

Installation

Operations and maintenance

Phase

Requirements

Design

Code

-.
Techniaue

Inspection

Interface Anal ysis

Data Flow Analysis

Assertions

Standards Audit
Interface Analvsl$

Data Flow Analysis
Expllclt Trace-back of Code to Requirements

Acceptance Testing—...— — .

For affected code
RMpply ~echnlques used during development

FiguIx 3.6 Recommended techn:quex for &’b’& T (comprchenww approach)

installation

Operations and maintenance

Technique

Automated Consistency Analysis

Aulomated Consistency Analysls
Automated Slmulatlon
Proof of Cntlcal SectIons

Symbolic Evaluation
Proof of Critical SectIons or Properties

Acceptance Tes[lng

System Certificatmn—

Re-do proofs that cover affected areas: retes[

Figure 3.7 Recommended rechmques jor F“L’& T.kor cnrtcol soft wan

.-

Nole ,41) recommendations are cumulal!vc for example the comprchcn$!ve seI of !cchnlques assume [he inclusion of the hml, WI

SUPPOR”IYNG I(XT DOCU 34ENTS

● NBS Special Publication 500-56 “Validation, Verification, and Tinting for the individual Programmer “
M 13ianstad, J. Cherntavsky, and W. Adnon, 1980.

* NBS Special Pubiicatlon 50075 “Validation, Verficat~on, and Testing of Computer Software, ” %’
Adrlon, M Branstad, and J Chernlavsky, 1981.

● NBS Spec]al Publication 500-87 “,Management Guide to Software Documentatloo, ” A. Neumann, 1982

● NBS Special Publ~catmn 500-88 “’Software Development Tools. ” R Houghton, Jr., 1982

“ NBS Special Pubhcatlon 5C093 “Software Vaildation, Verification, and Testing Technique and TOOI

Reference Gude, ” P Powell, Editor,]982.

● NBS Special Publlcatlon 500 9S ‘;Plann~ng for %ftware Val~da[ion, Verification, and Testing “’ P
Powell Edttor, 1982

● * FIRS 38 “Guldellnes for Docurnentatlon of Computer Programs and Automated Data Systems,” 1976

** FIPS M “Guidelines for Documentation of Computer Programs and Automated Data Systems for the

lnitiat~on Phase,” 1979.

NOTES:

1. Subsequent NBS documents will Include guidance on acceptance besting and maintenance
J- hrBS documents may be ordermi from

* Supmntendent of Documents
U.S Government Printing Office
Washington, DC 20402
(202) 783-3238

“0 National Techmcal Inforrnatlon Service
5~~5 port RoYa] Road

Springfield, VA 22101
(703) 4874650

REFERENCES

ICAINI Caine, S. H: Gordon, E K. PDL A tool for software design Proceedings of the National

Computer Conference, 1975.

~SAMM) SAMM (Svstematw Activity Modeling Method) Primer. BCS 10167; 1978 October

[TEICi Telchroew D ; Hershey, E PSA/PSL: A computer-aided technique for structured documentatlor~
o! information processing svstems {EEE Transact.mns on Software Emglneerlng, Vol SE-3 NO 1, 1977

GLOSSARY

ACCEPTANCE TESTING: formal test;ng conducted to determine whether a software

acceptance criteria and to enable the customer to determine whether to accep[the system

ASSERTION: a logical expression specifying a program state that must exist or a set

program variables must satisfy at a partlcuhir po]nt during program execution.

system satisfies Its

of conditions that

CERTIFICATION: acceptance of software by an authorized agent usual]) af!er the software
validated hy the agent, or after Its vaiidity has been demonstrated to the agent.

COMPLETENESS: the property that all necessary parts of the entity In question are

has been

Included

Completeness of a product is often used to express the fact that all requirements have been mel by the
product

CONSISTENCY the property of log]cal coherency among cons[}luent parts. Consistency ma\ also be.—.
expressed as adherence to a given set of rules.

CORRECTNESS: the extent to which software IS free from design and coding defects, I.e., fault free It is
dso the extent to which software meets its specified requirements and user objec[l~es.

DATA FLOW ANALYSIS: a graphical analys[s technique to trace behav}or of program variables as the)

are initialized, modified, or referenced while the program executes

DEBUGGING: the process of correcting syntactic and log]cal errors detected during coding With the
primary goal of obtaining an executing piece of code, debugging shares certain techruques and strategies
with testing but differs in its usual ad hoc application and local scope.

DYNAMIC ANALYSIS: revolves execution or simulation of a development phase produc~ lt detects
errors by analyzing the response of a product to sets of input data

EVOLUTION CHECKING testing to ensure the completeness and consistency of a software product at
different levels of specification, where one product IS a refinement or elaboration of another.

FORMAL ANALYSIS: use of rigorous mathematical techniques to analyze the algorithms of a solut]on

The algorithms may be analyzed for numerical properties, efflclenc!. andlor correctness

FUNCTIONAL TESTING. application of tes[data berlved from the speclfred functional requirements
without regard [o the final program structure

lNSPECTION: a manual analysls technique which examines the program (requirements, design, or code) In
a very formal and disciplined manner to discover errors.

INTEGRATION TESTING: orderly progression of testing in which software elements, hardware

elements, or both., are combined and tested, un~ll all]ntermodule commun)catlon IInks have been Integrated

[NTEGRIT}’

development.

INTERFACE

LIFECYCLE

CHECKING testing [Q ver~fj the soundness of a soft~are product al each phase of

ANALYSIS checking that !ntermodule communica[lon Itnks arr performed correcll!

see SOFTW’ARE LIFEC}”CLE

(()

[’[{(-X)F L)F CORRECTNESS !.;e ~.)f techniqu: :, o!’ mathematic?,l lc,gIc to infer [hat a relation between

program vatvables atsumed [rue at pr~’grarn err!rt Irr(pltm that another relation between program va(lables
hoid~ at program cxll

RECJRESS1ON TESTING Rerunning lest cases whlctr a program has previousl} executed correctly to

detect errors crealed during soflware correction OT mod) frcatlon actlv)tles

SIhf UL.A”TlON use of an executable model !O represent the behavmr of an object During testing, the

computa[]onal harduare, the external errvlronment and even code segments may be slmulaled

SOFTWARE computer programs, procedures, rules, and possibly associated documentation and data

pertaining to the crperatlcrn of a computer system

SOFTWARE LIFEC} CLE period of t]me beginning when a soffware product IS ccmcelved and encfmg

when lhe product is no longer avallablc for use i he software Ilfecycle IS typically broken Into phases, $~ch

as, reqllirements, des~gn programming and testing, Instaliatlon, and operation and rnalrr[enance.

ST4NDARDS AUDIT check to ensure tha[appll~ahle standards are used properl!’

STATEMENT TES_l’l NG a test method satisfying the crl[erion (hat each s[atemen~ m a program be
executed al Ieas[oncr during program testing

STATIC ANALYSIS ci]rec[arralvsls o! the form and structure of a product without executing the product.
1[may be applied [o the requlremen[s. cies~gn, or code

S} ’M130L.1(’ EXECI “T](>N or E?\ ’A[. [.; ATlo N an analys]s technique derlv}ng a symbolic expr?sslorr for

each program pa[h

S} ’STEM TEST process of testing an ln~egra[ed hardware and software system to venf> that the system
meets IIS specified requirements

TESTING exarnlnlng the behai IOTof a program h} execu!lng the program on sample data sets

LIN1’T TEST [estlng rrf a moduie for !ypographlc, svntactlc, and logical errors, for correcl tmplementatlon
of (IS design, and for sattsfac[lon of Its requirements

VALIDATION cietermlnatlon of the correctness of the final program or software produced from a

developmerr[proiec~ with respect 10 the user needs and requlrernenis

VEKIFl CATlt3ii the demonstration of conststencj, compie[eness. and correctness o!” (he softwarr at each

stage and between each stage of the development IIfecycle

\’\’&T: valldatlon, ~,erifica[torr, and testing, used as an entity to oefrne a procedure of review. analysw and

testtng throughout the v>ftvare Ilfecycle to d[scover errors, cie(ermtrre func(tonaillj, and ensure the
~rocfuctlon of qua]ltt software

-,

IEEE Computer %c]ety, Technlca! Comrnltlee on Soflwa;e Engineering G\ossary of scfiware engineering

terminology (Draft-IEEE Pro~ec[729). The Ins[itute of Elcctrlcal and Electronics Engineers, Inc , 345 EaSI

47th St , Neu }’orb, N}’ [00[7

.

Fj ,.: ‘.’8 Io I

Ai’i’i~NDIX A
PLANNING FOR ~’ALIDATiON, VERIFIC.AI<ION, AND TESTING

A validation, verification, and testing plan is a document, or group of documents, specifying a project’s
VV&T requirements and the procedures needed tc>achieve them. An outline of the plan may be general and

brwf, or detailed as shown in figure A. 1. 13ecause the general plann]ng drives the VV’&T planning, in turn

prowdmg feedback to the overall development, the general project planning and (he VV&T planning are
closely integrated. Once the general background, goals, and requirements are clearly understood, the

VV&T planning beg~ns The following four.step approach IS useful in developing a project’s VV&T plan:

(1) ideritify the VV&T reqmsements

(2) determme the constraints on the VV&T act!vitles

(3) seiect VV&T techniques
(4) Jternwe rcsiJIM of the firs! three steps m a written VV&T document

%me factors 10 cons~der during VV&T plann!ng are the foiiowmg:

● VV&T reqwrements are based on project needs and constraints.

“ The VV&T techniques and toois that can be used are dependent upon and must be consistent with

the project’s development approach
‘ The detmls of the \’V&T plan, e.g., time and resource requlremcmts, must be coordinated with the

overall schedule and budgets

● Planning actlvitm take place durtng the requirements phase, with attention paid to actlvltm that
require long lead time or must begin early In the project, such as personnel training or the initiation of
tool acqumition
“ Revwons and refinements of the pian may occur during the design phase.
* A small project may have a brief plan, however, as the wze complexity, and critical nature of the

project incretme, so will the complexity and formality of its VV&”T pian and the effort required to
develop 1[.

The outline ~n figure A. 1 indicates the contents of a VV&T plan. The project’s background and
reqturements, as well im the mforrnat)on from the first three steps tif the four- step approach are included.

Section 1 contains the general project background and information on the proposed solutlrm Section 2
speclfses the V\ ’&T requwements, measurement crlter~a, and constraints. Section 3 states the VV&T

procedures to be applled during development in general and by phase Supporting [nformatlon for the
selections made ~n Section 4 IS detailed In Appendix B of the pian. Further information on planning a
Vv&~ met~l~ology ~av & found In NBS Specia] pubi!cation 5(X_J.98,P]anntng for software validation,

verification, and testing.

11.,

——- —. —
[. Background nnd introduction

%tabllshes [he contex[for Ihr \ \’&_I document 1s brief and tn[roduc[ory ;n nature.

Focuses on those XWcts of [he problem and/or solutlon which Influence the VV&T needs
rmd approach.

A. Statemcn(of probiem
13 Proposed solution

C. References/rela(eu documents

11. W&T Requirements and Nleasurement Criteria

Presents the \’V&cT r~qulrements In one of several formats: the total VV&T requirements,

with all worksheets and phase lnformallon. a summary of reqsurements lnformatton,

statemen(of project Ievei lnformatlon, with phase data presented later.

A VV&T ~equl?ements and their impofince
1 Functional
2. Performance

3. Reliability
4. @ther

B. Measurcmen! criteria for each requirement
1 General
2 Product specific
3. Phase specific

C. References/related documents

III. Phase by Pbaae VV&T Plans

Ftrst, describes VV&T approach by phases, produc~ m)or reviews atld checkpoints,

and practices common to al! phases T?sen, presents the specirlc acti~tties to be carried

out phase by phase

A. Project background and summary information
1. Project phases and products
2. Mapr reviews (both management and technical)

B. Requiremenfi phase VV&T activities

1 VV&T activities

2, VV&T techniques and toois selected
a. Reviews

b Methods of analysls
3 Required supfmrt toois, automated & other
4 Roles and responstbllities
5, schedules

6. Budgets
7. Personnel

C. Design phase
D. Programming and testing phase

E. Installation phase
F. Operations msd maintenance phase

(C-F contain tlems I -7. as lndlcated m B, as needed)

Appendix A Project and Environmental Considerations

A Tewhn]cai issues

13 Pro)ec(constra!nls

C Compu:lng rwmircm

Appendix II Technique and Tool Selection Information
A bndldd{[’ 11S(of [~c’tl[l)(lllc> dIld [{K)l\

FIPS PUB

APPENDIX B
EX AMPLE APPLICATIONS OF ?) ALIDATION, VIH?IFICATION,

AND TESTING TECHNOLOGY

Th]s appcncilx presents examples [n which the concepts c)f software development, software VV&T, and
VV&T piannlng are ll)us?rated The purpow t~ !C show how these concepts may be applled in 8 varie[y of

si(uatlons

‘Two examples are presented, which use an automobile insurance transact~on processing procedure as
the system being developed, These examples \llustrate adaptatmn of both the bas]c and the comprehensive
\r\’&T approacl)es (O specific projects. These examples cover only [he development phases, with [he design

phase subdivided into a preliminary design and a detailed design The VV&T techniques for these examples

differ slightly from the recommended \~V&T approaches of figures 3.5 and 3.6. These ditTerences illustrate
t.ha[a VV&_f meth[~ology ma} be [allored to fit the goals and constraints of a specific software pro]ect

B, 1 OverYkw of Examples

Example 2 builds upon E~arnple i The tools introduced in Example 2 are to be used in addltlon to the
techniques described in the frrsi example. Figure B. 1.1 presents an overv~ew of the different VV&T tools
and techniques whtch are used In the examples

Software Development

.

ExarnpJe
(#1) .
Basic
Techniques

Supporting Graph]cal Requirements

Technology Representation
— -—

Static Analysis Walkthroughs
Reviews

-“--1[rrspect]on

Dynamic Analysls Functional Testing

l=.y~
Figure B 1,1 OvemIeWof examples

The software development subphases for each example are

o Requirements,
o Prellm~nary design,

c1 Detailed design, and
o Programming (Includes testing)

Each of the examples will be presented ;howlng for each phase:

c Inputs to the phase,

o Outputs from the phaw,
o Suppnr(tng trchnolo~y uwd In the pha~c, ~nt.i

(~ ~~-t]~r!(te~ whlrh (omp:-l\r fh{, ;>haff

:!

(#2)
Ccrmprehens!vr

I

—.
Interface Checker
Dataflow Analyzer
Standards Checker

AssertIon Generation

Assert!on Check]ng

—— -.

hlos[fict]vlues will conta~n:

o \’V&T purpose for the activity,
o \’V&T technique(s) used by the act]v][y, and

o Example(s)

Tables B. 1 and B.2 prov]de a summar~ of the development and \’\”&T techrr]ques and act]vlttes for the
basic and comprehensive activities These tables present a synopsis of the exampies

Table B.1 Lxumpk 1 5umm0q sojlwort dewlopmenl uJInp host- J’1 & T lechrl)qucs

—

Subphamu I Requlremenc Pre//m,nun destgn Lkl(7i/C%7dt-wg” Pmyromm:rfp

—

●Informal prow ~ ●DeIaIled requ,rcrrrcnt, ●Prel)mlnar> dcsl~r! ●Delalled de>lpn

requ, remcnt\ spec)fical Ior documrnt d<wumfnl

INPUT -Rev Ised prow z\ ’\&T plan .\ \’&”I plan

dew:r]pl,or ST cst ,:ases ●TCSI cases

-Revwed grapb!cal
I GR rcpresenmt!on

I ●\JV&T plan
—- ——— .—

ol-f-PuT

SUPPORTING
TECHNOL02’

●DcIaIled requtremcnts ‘Pre)]m!nar> demgr, ●Dcmllcd deslgll ●S\stem wfrv. arr

speclficalmn documen[documenl -Test re\ul I.

-Further refined GR ‘Addil!(ma! (ml

syftcm rcpresenlatmn caw~

.vv&T plan

●lnlllal Lest cmes

-De[a)led user Inpu!

OUIpUI svclricalmn

-Basic control tl[~w

dewgn “

-EiasIc svslem Infer

mauon spectilcatlon

*Addm onal !esf c-s
. —— ..-. —---

●Formal reqwrementf ●Rcvlcw\ ● Itev]eus ●Cro\\ r~iCrCnLL

rev)cws ●A graphlca! requirements ‘Databw managemen[\ “Compllem

●A graph]cal requlrcmenls represen[atton method sys(em (D EIMSI ●Databaw manage

rcprescntat)on method ●Des{gn-basm5 funcl[onal ●Desl~n-based func men[syslcm

●Requrrcmenwbased teslrng t)onai Ic\tlng ●C)~ratlng svslem

func!lonal tmtlng ● Review\

.Tes I c-o~ cragc

~-

analyzer
_-— ——~ -—

●Inltlal requlrcmenl< ●Refmemenl of graphical

rrvirw$ rcpresen[allon

●Rcquwcmcn!s rmalysIs 1 ●SpeI: If\ lnforma[ion

●VVK T planning design

●lnltlal Iesl ,case ●Des]gn program archllec

gcneralmn lure & allocate requ]re
~

●ln(eractlon with I menl~

●Dcualkd database .Cwde cktrlopmcnf

d esr g n ●Mtiuie tesl)n~

●Detallrd module .Functlnn !N)nc

dcslgn ●Tes I covera~r

●Tcs[raw Eencra arralvsl~

III)L ●1 raceback

ACTIVITIES ●Destgn revwu

cus!omcr I ●Design bas]c control fIrrw ●Des IgII Injpectl{)n

●Stgn-ofT b> cuslomcr ●Test caw gencratwr{ . Trace back

●Prellmlnar> desl~n

re~fle~

●T rncehark
— —.

The application area used in the examples I\ representa[l~. t of a iarge number of’ G[~vernmen[and

commercial svstems TransactIon processing sys{ems are perhaps the mosl common of all commercl:~l
sys[ems Many banking, blll~ng, payroll, tnven[or>, and Insurance appl]cat]ons are In [his category T~u~. ~h~

f~jur exampies focus on this area.

The transac[lorr process~ng system IS set In the context of an au[i) tniurancr appllcatlc~n in ~~rcl(’r If
Iln]ll the $]ZKnl [he present atlc)rls some slmpil~lciilioni haic heel: lnml? III ltl(Uppilcd(l(lll arc.: ~J~ t’~l~t’li 1:

i~]~ .,1,1,o Insurance field wi]l surely de(e,; [omissions and s~mp]ificatlons in details ofthe system as described

‘f’he reader IS encouraged, however, to not focus on the application area, but rather on the VV&T princip~es
applled The details provided enable presentation of specific Instances of the application of V\r&T
techrtlques,

The Auto Insurance Management System (AIMS) described in the examples supports all the major

activities of such a company: accounts payable (clams processing), accounts receivable (prernlum

processing), management reports, and database management. AIMS must Issue cllent premium due nouces,
checks to repair shops (or cllents), recommend policies that should be cancelled, monitor the company’s
day.ro.day finnnctal heaith, and so forth Further deta~ls of the system’s requirements are]nc)uded In the
first example

13.2 EXAMPLE 1: Software Development Using Basic VV&T Techniques

~n this example the details of the AIMS are presented]n addition to the actual manual V\&T practices
which are applled wlthln each of the four phases of the software development Itfecycle

B,2.I Requirements Subphase Activity Descriptions

B, 2,], I Initia[~equlremen(s Review

The informal prose requirements for the AIMS IS given m figure B.2. 1. Appropriate management and
technical personnel from the software development group review these requirements for completeness,

consistency, and correctness and prepare a ltst of ques[lons addressing particular aspects of the
requirements This list ts then supplled to the cuslomer and a Requirements Review meeting]s scheduled

and held w~th customer and user, e.~ clerks, agents During the meeting the questions are dlscusse,d to
establwh a more spectfic and unambiguous set of requirements,

V’$’&T Purpose. T o produce a requirements speclticatlor, providing [he foundation from which more
formal requirements specification, \rV&T planning. and tes~ planning ~,ill be accomp]lshed.

VV&T Technique: The rewew Itself is the VV&T technique used In this actlvlt~. Some of the

questions addressed dur~ng the review could be:

o Shouldn’t a cialms record contain some kind of mdlcatlon as to the nature of the clalrni’ For

example if lt is due to an accident, who was at fault?

o How is the “reasonableness” of ~ clalm amount determined?
o How does one know what cla]m numbers are valld for wh]ch agents’)
o When M the premium rate computed? HOW M itcomputed”

o Shouldn’t the acceptance criteria include provismns for testing more
capabihtles~

han)ust the functional

.

O
cco

coo
00000

FIPS W!il 10I

! 2 ! 2 Requirements Analysts

The requirements analysis mvolvcs translation of the informal prose requi~ements into a formal
iepiesentation This results m identifying other aspects of the requirements needing clartftcation or further

definition For this example, the graphtcal representation (GR) scheme used is a modification of the

Systematic Activity Modeling Method [SAMM].
VV&T Purpose To identify inadequately specified requirements such as incomplete, ambiguous, or

otherwise unclear requirements statements.

VV&T Technique: Formal reviews are used to achieve the above purpose on this project. Problem
issues identified during the requirements anidysls are documented and distributed to the customer and a

second Reqtnrements Rewew is scheduled. This review again involves dialogue between the customer and
the developers; it centers on the formal requirements statement and the identified issues. The restslt is a
revised SC(of requirements in bth formal and infom-na] forms and a graphlca] representation (GR), Specific

acttwt~es performed within this review are.
c Verification that all requirements have been correct] y represented using the formal scheme,

o identification of the problems encountered during the restatement elaboration of the requmements,
and

o Dmxwton and resolution of the problems

Example:

The formal representation for the basic system and the accounts payable function are shown]n figure
B.2.2. The graphical representation M interpreted as follows:

Master input files are at the top of the d]agram

Master output files are at the right of the dlagrarn

The upper half of figure B.2.2 is the root which contains five modules, A-E The data flow wlthln
the root and to and from master files are labeled according to their source. If the data are internal to

the root, Its identifier is preceded by the module letter.

The lower half of figure B.2 2 is an expansion of modtde A from the roo[. The lower left comer of
each box conta!ns the parent, i.e., A In the root, The lower right corner of each box is the letter
dewgnato! for each module, i.e., A-E. Data created by the accounts payabie act!vlty labeled

according to source, e.g., data B 1, a validated claims transactlcm, n crea!ed by module B, ~’alidate
clmms transaction, and used by modules C-E. Data B.2,]nva]id clalms transaction notice, IS created

by B and put on master file 7, user/cllent notices

Some of the problems which could be identlfred are
o What does the system do with an invalid clalms (ransact~on? Solution Outpu[a notice to the user

!dentlfymg the errors.

o The revolved driver’s record in the client’s record needs to be updated to reflect a new cialm due to

an accident. There does not appear to be enough ~nformat]on In the cllent record for thts. Solution
Add the necessary]nformatlon to the clalms transaction.

ACTIVITY-DATA FLOW DIAGRAM

Illla

Auto Insuronct Msnsgemont Sys!om (AIMS)

DATA ID DATA DESCRIPTION

AIMS Dala Base

Clalms Transacl{oo FIIe

Premtum Payment Tlansac!, on File

Cllent lransacltor)

Payout Accoun! Transact, ofi

C:a Irr Paymen’ Check

UserlC<(enf Not, ces

updated AIMS Data Base

Management Renor!s

AIMS Accounl In formal!on

AIMS Accounl Transact, on%

AC TIVfTY. DATA FLOW OIAGFi AM

title
Accounts Psyable

DATA 10 OATA DESCRIPTION

1

2

A:

Eil

B2

c1

D1

D2

O?

04

El

E?

Es

AIMS Da[abase

Clalms Transac, !o. ‘IIe

clwnl Record

Valldaled Cla!ms Transacllon

Inval!d Cla, m$ Transacl!or, Nol,ce

Cla(ms RecorC

Clafms Paymenl Check

Updaled Payout Account

\nsulflcvenf Funds Noltce

Cla{ms Transaction Log

Upaa!ed Cl,enl Recorc

Cancel Ia!,On Nol Ice

Rate Increase Nol Ice

hot
—

Payable *

A

?.
Accounls

Receivable

B
i

—

ET-
Ma#nlatn

AIMS
Dalabase

c
c1

t, Generate
Management

.,d,

Reports
D

COmpanv.W!Oe
Genera
Ledger

E

A

!2 :,
1

iq
>

Read
Cllen7 .A1.

F4ecofo

t.k
1<

Val!dale 32— 7
Clafms

Transaction BI

A

$: ~

Be, BI

Slore cl B
Cla, ms
Recorc

AC

c1
Issue

Chech ,,- :;

to Payee

A D
@

Slofe E ‘ E2 7
Cllenl E3

Record

A_E _

B.2. I 3 l’V&TPlannlng

-),

FIPS PUB 101

B 2 I 4 In i!iol Test Case Gent-ra{{on

The AIMS requirements w~ll be analyzed and test cases will be designed to test ~he functional
capabilities of the svstem These test cases will also form the basic set of acceptance tests

VV&T Purpose To design test cases wh~ch, when used to test the AIMS software, will maximize the

possibility of revealing the presence of errors in the software.
VV&T Technique Requirements. based functlcmal testing is applied to generate this initial set of test

cases.

F.xample

In the accounts payable function a clalms transaction IS valldaied by checking (among other things)
that the clalm number IS valld for the g]ven agent Each agent has a specified range in which clalm
numbers assoc~ated with clalms issued by that agen! must fall Assuming an agent was assigned claim
numbers ~n the range 801000 to 801999, rest cases which are generated to test accounts payable
should include clalm numbers as follows

Test data ckrss res[claltn ?rUr?r?)fr Expected outpu[com m en [

Non-extremal

Non-extremal
Extremal
Extremal

Extremal
Extremal

Specla}
SPeclal

Specla!
Special

Special

801500
801317
801OOO

801999
800999
U02MM
80 l(M)A
8(I1002
80150
-tl15m

80L5CK)

None valid

None valid

None upper bound

None lower bound

Invalld clalm number . lower bound-1

Invalid claim number upper bound A I

invalid claim number
lnvahd clmm number
lnvalld cla]m number
lnvalld clalm number

Invalld clalm number

E. 2.2 Preliminary Design Subphase Activity Descriptions

B 2.2 1 R efinemen[of Graph~cal Represerrtatlon *

The GR diagrams ~eveioped durln~ requirements analysls will be decomposed to reflect the

requirements for the system in more detail.
VV&T Purpose: The completeness and consistency of the GR descrrptlon of the requirements and

preliminary design should be ensured
VV&T Technique A rewew of the resulting diagrams will be performed to verrfy
o
0

0

!dentlficat]on of all bstslc acttvlttes necessary to perform a particular function
identification of all Inputs and outputs required by each actiwty, and

consistency and completeness of the data flows.

formats for the rnanagemen! reports are also defrnd SDeciftcation of the basic data structures and content

will consist of identification of variables and records needea by the system, and the relationships among

them.

VV&T Purpow: The VV&T purpose in th~s actlvlty is twofold, First, the detailed user specifrcatlons
need to be shown to be usable and that they satisfy the needs of the user. Second, the system data structures

and content need to be verified and shown to be complete (I.e., that which is required to perform all system
functions) and correct (i.e., the data types and relationships are consistent with the functions which need to

be performed).

VV&T Technique

o A formal session will be held with the customer to review the detailed user input/output
specifications. ~ls session will be preceded by mforrnal dialogue between the user community and the

developers to assist m the development of the specifications. Once stmsfied, the customer will formally
sign off on the specifscat]on
o Formal inspect~ons of [he sysrern data structures and content will be performed

Example:

Discovered by the customer participating in the formal review of the detailed mpu[/output spec was
that a client is not always the owner of the car. so thal Iien.hoider reformation needs to be included
in the client record,

B.2. 2.3 Design Program Architecture & Allocate Requirements

The program architecture design gives a complete high-level descrrptmn of the software It refines and
groups functions defining software components and interfaces

VV&T Purpose: Reqwrements are cross-referenced b> the design to ensure tha[all the requirements
have beerr addressed.

VV&T Technique. Requirement trace-back

Example:

A complete set of cross-references IS defined and maintained. These show the evolution from the

prose reqwrements to the requirements represented by the GR and f’tnally to the components
identified in the design.

B. 2.2.4 Design Basic Control Flon

The GR represents the d~ta flow wlthln a system but only shows control flow in an ~mplicit way The

system’s control flow, therefore. needs to be explicitly designed. The act]vlttes dent]fted in the GR need to

be mapped]nto modules The con!rol flow be!ween modules must dso be described using an informal

design language. This defines the program architecture. The hierarchical structure of the modules
comprising the sys[em are developed.

VV&T Purpose To produce a correct and understandable description of the bas]c control flow of the
system.

VV&T Technique An inspection of the control flou design will be performed to verifj’

o consistency with the GR representation,

o correctness of the high.)evel Iog)c, and

o qual~t) of the modularlzation, I.e., are the funct]rma] boundaries natural?

822.5 Tesr CUSP Generaflon

—

\’v&-r Pur pose TO generate tes[data (hat WI]] exercls.e and tes[each function, and also 10

clemorrs[rate that the code IS consistent wtth the design
\’V’&T Tcchn\que Design.based functional testtng

FIPS PUB 101

“i-:.mrnpje:

Test case,, for a fun~::~>n adding the amount of the ptemium payment to the payout account would

Include a negative (or zero) amount, an amount which M greater than zero but less than thal which

would leave the balance larger than (he maximum allowed, and one wh)ch would leave the balance

greater than the maximum allowed

B 22.6 Prellm(naty Deqgn Rewern

At the completion of the prel}mlnary design actiwty, a formal review M held. This rewew Involves

management and technical staff representing the developer and the customer,~uscr and covers all aspects of

the design and results of \’V&T actlv!ties Management of customer/user and developer sign off of

acceptance IS required

13.2,.3 Dettsikd Design Subpkse Activit} W wriptions

B 2. J. 1 Deiu(led Database De~ign

The format and structure of the data to be stored In [he system database]s designed This includes
descr~blng data which are Ioglcally related In the form of records, as well as the relat~onships exlstmg

between records The Ioglcal structure of the database WI]] be described using a graph]cal databme design

representation Record dewmptmns will be specified in a data definition language Examples are shown in
figures B,? 3 and B 24

In figure B 2 1, ovals represent record access (key) fields, boxes represent records, “ I :M” means that
for each clienl record there are potentially

q

Pollcy-Num

many (1 or more) clalms records.

~

m

Figure B.2.3 Satnpie database schema rhowing clwri-clatmx rvlo!Ion

VV&T Purpose The database design must be verified f~Jr consistency with the preliminary design In

addition, the database structure will be verified to ensure that it IS correc(and is reasonable w]th respecl lo

potential storage consumption and access time.
\’\’&’T Technique An inspection of the database design IS peri”ormed to ensure that the above \“v’&T

purpose ts met

Example

During [he ~nspecll[~n of the database design an err(,) i$ found In [he cla!m$ recorc! (fig f3.2.4) whe~e

POLl[-}’. NI_~M I, ~den[lfied as the key field whcr~a~ ~he schema diagram (frg B.2 3) ~ndicates

CL AIMNUM The ~olu[lon IS I(> change the ke> h(.lti IN the Cl~i(iq\ record descr~p!]on to CLAIM

N[lbf

F’j FS P[Jt3 1(1’

record narfie ts CLAIMS

Iocatlon mode IS talc
01 CLAIM-YUM
01 DATE-OF-CLAIM

01 AC(-REP-NLYJ

i 01 DRII’FR

02 LAST

02 FIRST

02 MIDDLE I?JTL
01 PAYEE

02 VAME
02 ADDRESS

O? STREET
0“ Crn
o{ STATF

03 ZIP
01 POLIC\’lWhi
01 AGENT

In CALC-KE}’using POLIC\’-YLki
PIC 9 (6)
PIC 9 (6)

PIC9 (9)

PIC X (15)
p!c~ (If)

PIC x

PIC X (24)
PICX (15)
PIC X (2)

PIC X (5)
PIC 9 (8)

PIC 9 (5)

Fimrc B.2.4 Sampie CLAIMS rmorddescrip(jon

B. 23.2 De[oiled Module Design

Detailed module design Includes, for each module, a ciescnption of the function performed and

descnptlonsoflnpu[and output data, as well as a h;gh.level descnpt]on ofhov the function IS to be done
(1.e,thealgonthm used).

VV&T Purpose. To show that (1) all of thesystem’s func[lonal capab)lltles are addressed b> one or
more modules, and (2) each module addresses one or more system functions Moreover. relationships
among and interfaces between all modules are ldent~fied and verified.

\’\’&T [echnlque

o InspectIons of [he system modules include (1) manual checking of the module Interfaces to ensure

that all modules are used and that their Inputs and outputs are consmtent, and (2) In fcrmal veriflcatloll
of the correctness of the algorithms used.
o Requirement\ tracing IS accomplished b) Identlfylng each module wl[h the lowest level GR actlvtty
(from th~: prellmlnar\ desl~n} In which the rmodule IS conta!ned

Example

A module w’hlch updates the date and time of the last access to the payout account record has the
premium pavmen[transaction as one of its inputs However, manual interface checking detects an

Incmtslstency whereby the premium payment transaction IS not supplied As it turns out, the

transaction IS nof used ~rthln [he module and 1s deleted as an input

F’[PS rLIF) I(II

The modul~ which vahdates a claim number checks for SIX error conditions Associated w, h {hese

conditions are three actions. Testdata are developed to exercise all comblnat]ons of error condltlons
and resulting actions, i.e., all branches and all paths through the modules.

8,.23.4 Design Review (DR)

After the detailed design IS completed, a f~rmal review IS held Primarily lnvolvmg project

management and technical personnel, this review covers all aspects of the design (lncludmg the tti~ cases)
Sign ofi by management mdmating their aaxptance of the design 1s requmed,

B.2.4 Programming Subpbaae Activity Descriptions

B 2.4 ! Code Development

The detailed design of a given component prov!des the]nformat]on needed to wntc the code for that

cornponen[m the host programming language, e.g., COBOL. Once wrttten, the code IS entered Intc the

computer and al] compilation errors are removed,
\’V&T Purpose: VV&T of the compiled code is performed to,

o Verify the consistency of the code with the detailed design.
o Identify errors, and
c Ensure adherence to programming standards
VV&T Technique !nspectlon of each system module,

Example:

During an inspect~on of “issue policy notices” module the section of code responsible for wsumg a
premium due notice IS found to be m error, The error E that the premium due notice N prtnted

w]thout having the appropriate data moved Into the printer buffer. A sample portion of the
mspect]on checklist used IS shown below]rr figure B.2 5. Th~s particular error is discovered using

question two under “data reference “

I
DATA DECLARATION

I

1, Are all variables declared?
~ Are the correct attributes asslgned~
3. Are variables properly]nitial]zedq
4. Are variable naming conventions followedg

5. Is the proper explanatory comment Included for each variabie?

I DATA REFERENCE I
1 Are there any unreferenced variables?
7. Are there any references to unassigned vanablesv

3 Are subscripts withtn range?
4. Are there ofT-by-one errors in subscript computations?

F@rc B.I.5 Sample porfton of codr tnspecrjon checklt~[

c A cross. referencer IS used LOproduce crc~ss-refererwe llsts of all ~den[~fiers used by a pr~gfd(~i T-h I$

~Is[)S Included with the source code listlngs I“or module inspect!,-)n~,

S.xa. rnple

.5’2.4.2 Module Tes!ing

An incremental, bottorn.up test!ng strateg} IS used to tesl the AIMS modules. This)nvolves

individually testing the lowest level modules; then combining and testing those modules with the higher
level modules which call them. The process continues until al] modules are combined !nto the complete

system. Test drivers are written to control the testing of the individual modules. The tes[data used is tha~
created by dewgn-based functional testing which were generaled from analyses of the functional, structural
and interface specifications of the mdivldual modules dur~ng detaiiea design

VV&T Purpose: To reveal errors present tn the individual moduies.

VV&T Technique: A test coverage analyzer is used to supplement module iesting Each module to be
tested is instrumented to coliec; execut!on frequency counts and then executed The execution counts for

each statement are then Ilsted with the corresponding statement by a post-execution rou[lne Untested Or

poorly tested portions of the module can be identlfed and additional test cases can be generated to [est
those specific segments

ACCOUNTS-PAYABLE processes claims transac~ions read from a file whtch conta]ns a g~ven da)’s

claims. The module contains a check to verify that each record IS Indeed a clalms transaction and, if

not, invokes an error handling routine which logs the error. Use of a test coverage analyzer showed

th8t this particular situation dld not arise during testing of the module using the tests created during
detailed dewgn. As a result, those tes!s are supplemented with invalld claims transactions and the

module retestec. Thw in turn, resu]ts In an error being revealed whereby the error handler responds
with an Incorrect output response

E?.2.4.3 Function Testing

Function testing of AIMS uses the test cases developed from requwements.based functional testing

during preliminary design to test the functional capabilities of the AIMS software.
VV&T Put-pose: To reveal errors where the software fails to per[orm a function as specified tn the

rqulrements.

Function testing 1s supplemented with the use of a file comparator Associated with each of the

reqrnrements-baaed functional test cases is the expected output. This IS stored on a file in the exact formal
expected to be produced. When the AIMS software is tested, the resulting output IS stored on a separate
file. A file comparator M used to dete([automatically any discrepancies which ma> have occurred

Example:

in preparing the test cases for the New Citents report, a form is used whtch formats the expected
output data m accordance with the specification Each report corresponding to a given test case IS

then stored on a file In the order In wh~ch the tests are to be executed. Testing IS then performed and

Che actual output IS compared to the expected outpu[us)ng a file comparator The results show the
presence of two errors, a format error and a data output error. The format error v a mlsahgnrnenl
caused by incorrect spacing between output fields The data output error 1s a m!ssxng agent name
which is to be printed with the agent number

11.3 EXAMPLE 2: Software Development using a Comprehensive VV&T Approach

The comprehensive \rV&T Includes those techniques con[alned In the bawc approach descrtbed ear]ter
as weil as those descrltxd in t}]ls section The add)rl~nal tOo}S and the app]lcable Ilfecycie phase arc shown

below

o Prellmlnary Design

- Assertion genera(icm

(I De[ailed Design

- Assertmn generation

) c cd ?
- interface checker

.Datsi flow analyzer
,4ssertlon processor

Standards analyzer
- Requ~rements trace-back

rsblc i3,2 Exampie 2. Summary sqjrwore Awlopmmf uwng a comp,~hensiw VV& T approach

.-.-g- ———

!5ubphaxs ~ Requirements j khsmnnry Cics,gn~ Desmkd dcwgn Programming

—. ..- ———..
I

1?{ PL!T {o(No additions to *(No add]uonsl mpuls) ●Prelimmary dewgn I .Det.aikd drmgn

I basic approach) document mchsding rtocutnen! mcludmg

asaertlons
L

~

aaaertlons
..—. — .—.. . .

,r:u~ptjrr ~e(No wkttt)ons m $Prcltmmary design ●Dcsadcd dcugn *[No addltlor,al outputs)

, basic approach) dcxumcnt mcludmg document mchsdmg

assertionsabcsuIthe addmonal asactmons

.—— .._...Lm!nLm!n --
SUPPORTING I*(Nc addl[tons !O -Assertion gcnerat)on

j--
●Aaaermon gcncrat!on I ●lrslerfacc checker

TECHNOLOGY base approach) ~ ●Dstd flow analyzer

1 * AssertIon processor

I *Standards RIlat)’ZCr

I_.—A __ —~.
●Requmementstraceback

——..—-——.—.—
AC TI\’lTIES j.(~o ~dd,t,on~ 10 “Dcsyzn bas]c control I “Detaikd module

‘m” apprO’ch’-_-L_!!!w _._!Q2Y-:E::;:~L-- ..._c —.. ..—----..—.

B ,3.1 Requirements Subplmse Activity Description

(No additions to basic approach.)

B.3..2 Preliminary Design Subphaae Activity Description

V V&”T Technique. AssertIon generatmn is used to specify the demred functional properties of the
Irrdlvidual modu)es This ts done b) including in the module specifications input and, to the extent possible,
outpul assertions

Policy numbers are stored m the database in blocks of arrays where each block contains a fixed

number (n) of pollcy numbers (policy -num) and the address (policy -addr) of the!r asscsclated client
records. Policy numbers are stored In the policy-num array in ascencimg order. A procedure, find-

polIcy {s called to search the pollcy-num array for a supplied policy number and return the address
of Its ci~ent record. lf [he supplied policy number IS not found an address of zero is returned. The
Input and output assertions which capture the functional properties of find-policy are given below

1) /*asser(/npur polwy.num (I)< = num< = policy-num (m) ●/ and

2) /*a~~err ,npuf Jor~/[I In 1,.. n -l:policy-num (i)< = Poiicy-num (i + 1, ‘/

3) /*aM~rf ourpuf (ex]srs :n I in l..,n num = policy -ourn (i)) ‘/ or

4) f“as.wr~ ourpu((add =0 and forall i In l...n:num = ~licy-num (i)) */

3.i

B.-3,3 K.Mdied Dedgn %tbpke Aetid?y Description

VV&T Techtnque: Assertions are generated to Include algorithmic detail m addit]on to Input ancl

output s~ifications of t!w functional properties of the ~ndlv~dual modules.

Example.

?%e exnmplc in the previous sect~on describes the find policy procedure and specifies the input and

output assertions associated with it, Shown in figure B.3. 1 is the PDL for find-policy which is
implemented using a binary search algorithm.

The input and output aaaertions capture the functional propertm of the procedure Independent of the

algorithm used to implement the search. As.sertlons 1, 2 and 3, however, capture conditions which
are very dependent upon the algorithm. Assertion 1 is always correct whenever num is In the
policy.num nrray. [f num is not in the array, assertion 1 is violated the lasttime through the loop

(when high = 10W). This E a acceptable result, however, m thut num should be a valld policy
rlumkr

:,,;

.- ;}’S PUB)01

Fmd-gxrjit. y:
-= — -... —- .- . .

/“ searches sorted global array po!!cy-nurm for

num (Input argument) and, If

found. returns the associated pol[cy-addr {n

addr (output argument) If

not found a zero IS returned !n addr ‘/

,/* assert Input pollcy-num (1)< = numf ‘

pollcyrtum (n) ●\

/“ assert input forall i ~ I.. .i:i: PO] CY-OUD

(i)< = pollcy-nurr (i+]) ●/

set addr to O— —
set low to 1— —
set high to n.— —

do until high(IOU or num = PO—-
(1) /“ assert 1< = 10W<—= high{ =

(low)< = num<=

policy-num (high) “/

se[m [o (Iou + high) /2

~num-pollcy-num ())—
set h]gh to m-].
Zie lf n=} policy

set Iou to m+i— —

else goto $Uccessfu

num (i’)

Icy-num (1)

n and policy-num—

enddo

/ ‘“ unsuccessful ●/

(2) /“ assert high = low-l and po]icy-num (hJ@s)(

num< Pollcy.num (1ow) ●,/ —

‘* assert output addr : 0 and forall i In—— .-
1 n. num : Pollcy.nur {1) ‘/

re[urn

/*successful*/

/* assert output exists I tn I.,n num -—
pollc)-num (i) “/

relurn

end f!nd.pollcv:—.

FiRvrcB.3.l DeraiiedPDLw/rhASSERTloNS

B.3.4 ProgTa.mming Subphu Activi~ Desm@ions

B.3.41 Coiie Lkvelopmen[

The cd? development actlv~t~es descr]bed In earner sections are supplemented
environment with an interface checker, data flOW analyzer, and standards ~najvz~r. l%ex !OOIS can be

in a full [00[M?t

SCpartite bu{ 8rL ofteri]ncltidec! as capahillr~rn prnvlded hv a Slnule tool, Thev are RI{ sratic ana}~s]s

techrrlques and are [hcrefore ripp~led prmr I() software testing. The Output resu!trng frmn each of [he

ctipah~lltlr~ 1< !nc]ude;! WItb, rhe materttl for thr formal code Inspectlnns

j>

!’\’&T Techniques
o Interface checking IS used [O chech the con~ls!.ency O(the Interfaces between modules

Example

An error IS detec[ed between the module which reads cl]en[records for prem]um payment

processing and [he “frnd. pol~cy” module. 1[IS an]nconsistenc> In the ~ype of the arguments for [he

policy numbers “F]ndpol]c>” is being called w I[h a polic~ number of type character where II should
be type Inleger

o Data flow anaiys]s IS used 10 ident]f’y ~ar]able relerencel definlt]on ancsmal~es

Example:

W’hen data flo~ anal~s]s IS perfr)rrned on [hF module wh]ch updates [he payout account With a

prem]um pa~men[a reference (~~ an unlnl[]allzed varlabie is no:ed The var~able should conta]n the
curren! dale and [Ime and IS {used to update !he date and IIme of the Iasl change 10 the pav{]ut
account A call to [he routtne uhlch upda[es the t]me and date should be made prior {o the reference

o Standards’ analyzers are used to ensure adherence to program coding and documentation standards
(lnc of (he pnmar} capablitrles pro~lded b} mos[commonlj a~ailable s[andards’ analyzers IS the
notlficat]on of ~he use of nonstandard language features

Example.

C)ne of the requirements for the AIMS software IS !ha[II be portable To assls[]n [he development of

portable code, a COBOL s[andards’ analyzer I+ used All places where a standards’ ~r]olat]on occurs
IS e]the~ changed or Jusflfied E~en tr]~ral nonstandard features such as the use of [he abbre~]allon
“DISP” for “DISPLA}’”’ are detected III addltlon. a ,arle!} of undmlrable standard Ianguape

constructs such a~ thr ‘<ALTER” statemeni and “~E~T sE\TENcE” clau~e arc detected wtth [he

tool

o Requirements trace-back, via code to destgn and design 10 code IS used 10 venf> Ihat !he code

adheres to, and satlsfles. the requirements as speclfred b~ the design Both mlss]ng code and extraneous
code ma> he dlsco~ered

Example

One of the requirements for the client record for each polIc> holder IS [o con[aln the number of

clalms made on Ihls po]lc\ Dur]n,g a trace of [he design IQ the code, II K found tha[no code ex]sts 10
keep track of the number nf clalms However, code is discovered that beeps track of [he number of
change< t{) lhe I;OI era,ge

‘F!PS PIJsl 0!

I
.—. . . = . ..t-.-—==- ... -. —---- ..——.. .

1~~1(.x] .TIN’UE
14 c“ ASSERT(I I.E L(N AYC L~J.LE HIGH AND HIGH LE. h
15 c* AND POLNLIM(LOU)L? ILW AND Nl!i! LE. POL~l’Vt(HI12H))

16 M : (LOU + HIGH)/2

!7 IF (NLIM LT. POLM,ki(M)) FHEK

18 HIGH ~ M A I

19 ELSE IF (NI!V GT POLWW(M)) THEh

20 LOU : M + I

21 ELSE
12 GO ro 200
23 END1F

i 24 IF(HIGV !.F [..0} 4W *:I!i J!F POLN~M(M)j l) TO ICO

i

L

“** 4SSERIIO~ VIOLATIO~ AT LINE \4 OF S\’BROLTI’iE FNilPOL
CIJRRE\T E.\EC’LTIO\ COL’KT : 2

LOU , [, HI~H z OS \ = 44, \i_V : 22707

POLWW(LOU} = 16747, POL\LW(HI(;H) = 36757

PERK2DICALS

JCJLJRh AL OF RE.SEARCM.-Thc Journ~l of Research of the

N~ilonal Bureau of S!andards reports NBS research and dcveiop-

rrsenl III those dlsmpllncs of Itsc physical srnd crrgfrreermg sctenccs II?

which Ihc Bureau is ac!lvc These tncludc physics chem!slry

englneertng, matherrsaljcs, and computer scicnccx Papers cover a

broad range of sssbpas, w)lh major cmphas!s on mcasurcmcnl

methodology unif !hc bas}c technology underlying s!andisrdtzat~on

Also !ccludcd from (~mc to t!me are $urvc) arttcJcs on lopIc$

closely rcldtcd 10 the Bureau s icchrslcal und scwn!lfic programs

A~ fl spcc Ial scrvlcc IO subscrlhcrs each Issue conta!ns complclc

cl!dt]ons 10 all rcccnl F3urcdu publlc~tlons tn both NBS dt?d non-

NBS mcdld Issued SIX times ~ year Annuai subscrip~lon domcs!lc

$18. (c]rcrgn S22 50 S}ngk cop} S< W domcs[ic, $b WI foreign

NONPERKM.NCALS

Mssnqrsphs-Ma~or conirlbu(lons 10 lhc ~cchn]Ldl IIlcralurc or’

var Iou\ ~,ubjcc!s rcl.sled (s! [hc Burcsu s $ctcn[lrlc dnd techn!cal dc.

Ilvlllcs

Hmdbooks-R ccommcncJcd ccrdcs of cnglnccrtn~ dnd lndusiri~l

pr.ic[,cc (Includlng si+fcI] codes) developed !n co~pcrii~!on wl(h In.

tcrcstcd indus)rlc~ prolcis)on. i urgdni~~!lon~ And regu\4\or\

bosiics

5pecisl PWicatksas-1 ncl.dc procccdlng> ol conferences spon-

sored bt NBS NBS unnual reports and olhcr SPCC14 publlca!)ons

appropritilc 10 !hls grouping such as *.111 cbssrts pocket c.irds, ~nd

blbilof!r,sphics

National Standard Rrferencr Dsta Swim-. Provide\ quan{it.illvc

d~!~ on ihc ph~s)c~l ~nd chcm!c~l propcrlics of TIdtC~ltSi\, com-

pI]cd lrorr !he .*orld \ Illcr.ilure ~nd crI!ILJll) cvdlualcd

Developed under J worldwldc progr~m coordln~lcd by NBS under

the Au[horfit> of (hc h,![lcvn.:! $t~nd~rd DJI.J AC I (Puhl]c I-.+*

90-396)

N’OTF The prtnc)pw publlc~[lon OUIICI for the [orcgolng data I<

the Journdl of Physj.dl ~nd rhcmlc~l Rcfcrcncc Dd~a [I PCRD)

publ!sbcd qu,jr[crl! lor NBS b> ihc rlmcrjc~n chcmic.il ‘$OCICI)

IA~S) ~nd Ihc Amcrlc~rl Inslliulc of Phywsx (AIPI Suh$crlptlons

r<prinlj. and supplcrncn l.. ~vdll.]hlc Irom A(S I 155 Slx(ccn(b, St

?4$+ W~shtng{on 0(. XM156

fkildint %inxy Scrks-Dlsscm, n~!cs lcchnlc~l I-rormutmn

dcvclolxd irI !hc 3urcau on bsalldln~ m~tcrmls componcn{s

syslcms, and whole structures The series prescn(i rescisrch results

ICSI methods, and Pcr(ormdncc crltcrld rcldicd IO the struciurdl and

cnv[ronmcntal [uncltons and (hc durdb]ll[> and safclj charac

~crls[lcs of hulldln~ elcmenls and s)slemi

Tcefsnical Notes-Stsadlcs or rcpor[s whrch ~rc complc(c in ihcm

SCIWCS bu~ rcsIr IcIIvc in [hclr trcalmen(O(~ suh~cc[Analogous 10

monographs bul nol $0 comprchcnslvc LP scope or dcf!nl(lvc in

Ircdlmcnl 0(!hc 5.ubJcCl ,Ircti Oflcn +crvc dS J vchlclc for fina(

rcporls of work pcrlormccf a! NBS under [hc sponsorship O(ofhcr

~ovcrnrqcn! iigcnclcs

VolssntSry Prodwt Sacdsrks- Dc.cic)pcd under procedures

putrl!shcd by [hc Dcpartmcn[of Comrnercc m Par! 10, TIIIC 15 of

the Code of Fcckrtil Rcgukallon> The st~ndards csIdtsl, sh

nd(mn.sll) rccogn)zcd rcqulrcmcn[s for prrxfucts, and provldc JII

conccrncd in!cres[s +Ilh d basts for common undcrs(arsding of Ibc

char~clcr}sllcs of [hc prcrduct~ NBS admlnlstcrs this progrdm as d

supplcrncn[10 !hc ACII\IItCS of ihc pr~viitc sector stand ardiz~ng

csrg~nlzd(l~!n$

C’otrssarmw Informtlion Strks— Pr4c!tc~: !nfrsrmat}on, based on

NBS research dfld cKprKncc, covcrlng irrcds O()nlcrcsl 10 ihc con

sumcr Eds!ly undcrslansiabk l~n~uagc .ind !llu$lral/ons pro~ldc

useful background knowledge for shopping In Iodiiy’s lcch

nological markclplacc

(2zdrr Ihc Arvr NBS @r/IrafIon (/rem Suprrm/cnderr/ 0,1 Doru.

rrtrn<t Gowmmrrr[PrIrrtIQg CJJJicr ~o.fhmg! on. DC W02

Ord,-r Ih< fdlouiag %8X puhltrolton~--- FlPS and N BSIR t—jrom
/h< ha/!rmol 7rrhn{ml in/orma/fon Srrwc~ Spr:ngJ7cld I’A 22{6 1

or--- -- --’” ---- -“LID
/lEJ7CE

-J

I ~’

A&mAIL

3rd ClaSS 3Mlk RDta ~@

