Fies pue 101

@ § FEDERAL INFORMATION
g PROCESSING STANDARDS PUBLICATION

1983 JUNE 6

R
.....
4

GUIDELINE

FOR

LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING
OF COMPUTER SOFTWARE

~iFPL +..B 101
- »4 G B

CATEGORY: SOFTWARE
SUBCATEGORY: VALIDATION, VERIFICATION,
AND TESTING

1J.5. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ainbler, Direcror

Foreword

The Federal Information Processing Standards Publication Series of the National Bureau of
Standards (NBS) is the official publication relating to standards and guidelines adopted and
promulgated under the provisions of Public Law 89.306 (Brooks Act) and under Part 6 of Title 15,
Code of Federal Regulations These legislative and executive mandates have given the Secretary
of Commerce important responsibiltnes for improving the utilization and management of
computers and automatic data processing in the Federai Government. To carry out the
Secretary's responsibilities, NBS, through its Institute for Computer Sciences and Technology,
provides leadership. technical guidance, and coordination of Government efforts in the
development of guidehnes and standards in these areas.

Comments concerning Federal Informaton Processing Standards Publications are welcomed
and should be addressed to the Director, Institute for Computer Sciences and Technology,
National Bureau of Standards. Washington, DC 20234,

James H. Burrows, Director
Instutute for Computer Sciences and Technology

Abstract

This Guideline s intended for those who direct or implement software development projects It recommends thai
validation, verification, and testing (VV&T) be performed throughout the software development hfecycle 8nd presents
information on selection and use of such techmques to meet project requiremnents The Guideline slse explains hew io
develop a VVA&T plan io fulfill a specific project’s VV&T requirements

Key words automated <oftware tools. computer software Federal Informanon Processing Standards Pubhcanon. sefiware
lifecyele: software tesuing: software vahidation software verificanon: test coverage. test data generation

~Nail Bur Stand (U'S) Fed Info Process Stand Pubt (FIPS PUB 101, 37 pages

Mg

CODENFIPPAT

Ferosale tythe Sanonas Techuea doionmanor Sovice, U8 Departinent of Comgere, Springlieis. VA 220

FIPS PUB 10!

Federal Information
Processing Standards Publication 101

1983 June 6

ANNOUNCING THE

GUIDELINE FOR LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING OF
COMPUTER SOFTWARE

Federal tnformanion Processing Standards Publcations are issued by the Natonal Bureau of Standards pursuant to the Federal
Property and Adminstrative Services Act of 1949, as amended, Public Law 89.306 (79 Stat 1127), and as implemented by Executive
Order 11717 (38 FR 12315, dated May 1, 1973} and Part 6 of Title 15 Code of Federal Regulations (CFR)

Name of Guideline: (u:deline for Lifecycle Validation, Verification, and Testing of Computer Software
(FIPS PUB 101)

Category of Guideline: Software; Validation, Verification, and Testing

Explanation: This Guideline presents an integrated approach to vahdation. verification, and testing
(VV&T) that should be used throughout the software hifecvcle Also mcluded 1s a glossary of technical
terms and & hst of supporting ICST publications. An appendix provides an outline for formulaung a VV&T
plan, including the 1dentification of VV&T requirements and the selection of supportive techniques and
1oois. This Guidehine 1s intended for use by software developers, managers, verifiers, maintainers, and end-
users

Approving Authority: U.S Department of Commerce. National Bureau of Standards (Instiute for
Computer Sciences and Technclogy)

Maintenance Agency: U.S Department of Cémmerce, Nationa! Bureau of Standards (Institute for
Computer Sciences and Technology)

Cross Index: None

Applicability: This Gudeline is mntended as a basic reference guide for Federal ADP managers and
software developers for ensuring quality software by using yalidation, verification, and testing procedures
during development and operation. Its use 1s encouraged but 1s not mandatory.

Implementation: This Guideline should be consulied whenever Federal departments or agencies develop
new apphcations software or undertake major revisions of existing software.

Specifications: Federal Information Processing Standards Publication 101 (FIPS PUB 101). Guideline for
Lifecvele Vahdation, Venficanon, and Testing of Computer Software (affixed)

Qualifications: This Guideline 1s planned for use by Federal agencies when they develop new software or
undertake major revisions of existing software The general lifecvcle VV&T approach should be
implemented but may be augmented or dimimished according to project goals and constraints

Where to Obtain Copies of the Guideline: Copies of this pubhication are for sale by the Nanonal Techmcal
tnformauon Service. U.S Department of Commerce, Springfield, VA 2216! When ordering refer to
fFederai Information Processing Standards Pubhication 101 (FIPS-PLIB-101), and nutie When microfiche 13
desiared. this should be spectfied. Pavment may be made by check. monev order. or NTIS deposit account

S4PS PUB 10!

Federal Information o Co.%
Processing Standards Publication 101 s y
1983 June 6 %o 75

3 £

Specifications for ®pgay ot ¥

GUIDELINE FOR LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING OF
COMPUTER SOFTWARE
Contents

Page

L OV E R VI E W et e 4
2. LIFECYCLE VALIDATION, VERIFICATION, AND TESTING ..o 5
2.1 Requirements Definition and Analysis Phaseccc oo 5

2.2 DeSIZN PRASE ..o o e 7

2.3 Programming and Testing Phase 7

2.4 Installation Phase 8

8

2.5 Operations and Maintenance Phase

3. SELECTION AND COMBINATION OF TECHNIQUES ... 9
3.1 Requirements Definition and Analysis.. ... e 10
R I © 1T ¢« H U TN O U U OO U UUPURUIUPRO 11
3.3 Programming And TeSIIME . ..oo.iiiii ittt ettt eee st h e en e e e 12
34 INSEANIALION ..o e e et 13
3.5 Operations and MaINEENATNICE ... e e, 13
3.6 Recommended TeChIIQUES ..ottt et sb e n b nae e ne 13
SUPPORTING ICST DOCUMENTS ..ottt ettt 15
REFERENCES............ e e, R U ST U OO RO RO PO PO USPUUPRRPUUSURUURPOI 15
GO S A R Y e e e et 16
APPENDIX A. Planning for Validation, Verification, and Testingccooerieniiniininceeeecns 19
APPENDIX B. Example Applications of Validation, Verification, and Testing Technology 2]
Bl Overview of EXaMPIEs ... s e e 2]
B.2 Example 1. Software Development Using Basic VV&T Techniques ... 23
B3 Example 2: Software Development Ustng 3 Comprehensive VV&T Approach3

Figure 2.1
Figure 3 |
Figure 32
Figure 3.3
Figure 31 4
Figure 3.5
Figure 3.6
Figure 37
Figure A]
Figure B 1]
Figure B 2
Figure 822
Figure B.2.3
Figure B2 4
Figure B.2 5
Figure B.3 1
Figure B 1.2

Table 8 l

FIPS PUB 10!

tigures
Page
Summary of VV&T activities e e 5
General VVET Integration SIFALEZY . .. oo oiis i e e e e 10
Integrated approach to requirements VV&T... . e 1t
Integrated approach to design VV&T. USSR SRUU RS ORSOTORIS 12
Integrated approach to code VV&T . 12
Recommended techmgques for lifecycle VV&T (basu:: approach) ... 13
Recommended techmques for VV&T (comprehensive approach) ... 14
Recommended techniques for VV&T for critical software.................on 14
A detailed outline of a project's VV&T plan..... oo 20
Overview of examples e e e e e 21
{nformal prose requirements....... e e s e 24
Requirements graphical representationo i 26
Sample data base schema showing client-claims relation 29
Sample CLAIMS record description. i ot i o oo 30
Sample portion of code inspection checklist....... U 31
Detailed PDL with ASSERTIONS BRSO UUU U PRI POTRURRION 35
Find-policy subroutine and corresponding assertion violation message 37
Tables
Page

.. 22
... 33

FIPs PUB 101

1. OVERVIEW

This Guideline presents a methodology of lifecycle vahdation. verification, and 1esung (VV&T) for
computer software. It 1s addressed to people associated with software development and maintenance
including managers, developers, verifiers, maintainers, and end-users. This Guideline iy @ basic reference
guide for ensuring the production and maintenance of quality software It recommends that VV&T be
performed throughout the software lifecycle.

A software lifecycle is the period of ume beginning when the software product 1s conceived and ending
when the resultant software products are no longer available for use. The software lifecycle is typically
broken into phases. such as requirements, design, programming and lesting, installaton, and operations and
maintenance Each phase consists of a well-defined set of activities whose products jead to the evolution of
the activities and products of each successive phase. From the outline of the specific lifecycie activines and
products of a particular software project, managers can more easily direct, and end-users can examine, the
progress of the software development and maintenance. Software developers and maintainers have a weli-
defined set of tasks to perform. Verifiers, by checking the products of these tasks. can verify that the project
requirements are met at each phase

A VV&T methodology is a procedure of review, analysis, and testing employved throughout the
software lifecycle from software planning through the end of software use to ensure the production and
maintenance of quality software. Validation determines the correctness of the final program or software
with respect to the software requirements. Verificauon employs integrity and evolution checking to
determine internal consistency and completeness. Integnty checking venfies the soundness of the products
at each phase of development by analyzing each product for internal consistency and completeness.
Evolution checking ensures the completeness and consistency of products at different development phases.
where one product i1s a refinement or elaboration of the other Tesuing, either automated or manual,
examines program behavior by executing the program on sample data sets

The term VV&T defines a method incorporating all three techmques for apphcaton throughout the
software lifecycle to determine functionality, to discover errors. and to ensure the production and
maintenance of quahity software Disciplined use of VV&T techniques should permeate all of the
development and maintenance processes. A VV&T methodology should also mclude the review. analysis,
and evaluation of intermediate and final products (documents as well as codes) of the hifecycle

For purposes of illustration, the hfecycle phases used 1n this Guideline are requirements definition.
design, programming and testing. installation, and operations and matntenance Section 2 presents generic
VV&T activities that should accompany each of these phases Descriptions of development and
maintenance activities are also included in the text so that VV&T i placed in s appropriate perspective
Specific techniques for implementing a V'V&T approach are dependent upon a project and 1ts development
method; hence, specific techniques vary with a project. However. the VV&T activiues summarized in
figure 2.1 should occur for all projects. The ntegration of a VV&T methodology with the overall project.
beginming at the requirements phase, 1s assential in producing and mainiaining guahity software.

No single VV&T technique can guarantee correct, error-free software. However, a carefully chosen set
of techmques for a specific project can nelp to ensure the development and maintenance of quality software
for that project. Section 3 provides guidance in selecting and combiming different types of techmques to
form an effective VV&T program. Static, dynamic, and formal analyses are discussed and guidance for their
use provided. Figures establishing three different levels of recommended VV&T approaches are also
included.

A VV&T program should be tailored to the needs and constraints associated with the software project.
An outhne for developing a V'V&T program 15 presented 1n the appendix 1t indicates the mformation that
should be included and can also be used as a checkhst to determine 1f appropriate planning 1< being done
and to ensure that necessary decisions are recorded

Further aids for the understanding of V'V&T concepts. hsts of techmiques and tools, and details on
VV&T planning are available from the supporting documents histed in thic Guideline A glossary provides
definitions for some of the more frequently used VV&T terms

0% PUB 101

2 LIFECYCLE VALIDATION, VERIFICATION, AN TESTING

VV&T s a process of review analysis, and tesung emploved throughout the software hifecycle to
ensure the oroductuon of quality software. The review and analvsis should include the examinathon of the
development product and the docamentation at each phase Figure 2.1 presents an overview of the VV&T
activities thal should accompany each phase of development. This summary provides a framework from
which a VV&T program can be tallored for specific projects. Each iifecycle phase is comprised of both
development and VV&T activites In order to emphasize their relationships to each other, the following
sections eiaborate on both the development and VV&T lifecycle acuivities and their products. Uppercase
tstles are used for VV&T activities and products for which the VV&T team is responsible. The VV&T team
inay be members of the deveiopment group, the same organization, or an independent group.

LIFECYCLE VV&T ACTIVITIES

I. Requirements Definition and Analysis Phase

* Development of the project VV&T plan

* Generation of requirements-based test cases
Review and analysis of the requirements
Review and analysis of the draft user manual

*

*

1I. Design Phase
* Completion of VV&T plan
* Generation of design-based test scenarios
Review and analysis of the design
Preliminary design integrity check
Prehminary destgn evolution check
Development of test support software

L4

II1. Programming and Testing Phase
* Completion of test case specification

Review, analysis, and testing of the program
Code integrity check

Code evolution check

Unit test

Integration test

System test

*

1V, Installation Phase
* System acceptance

V. Operations and Maintenance Phase

* Software evaluation
Software modification evaluation
Regression testing

*

»

Figure 2.1 Summanr of VY& T activiies

2.1 Requirements Definition and Analysis Phase

DESCRIPTION The goal of the requitements phase s 1o speetfy both the problem and the
constramis uron the sofution te g rigorous form Reguirements sdeattbicanion s somew hat terative with the

fouuirement sonement heing suhiect foomadileanon denne desize oy the probiem os better undersooed

FIPS PUB 10!

These modifications must be documented to create a traceadble record of the progress and evolution of the
final product. Two planning activities occur during this phase: (1) project plans, budgets, and schedules are
developed; and (2) a VV&T plan 1s developed from the VV&T requirements identified in this phase.

DEVELOPMENT PRODUCTS.

* The Software Requirements Document: This document specifies what the system must do, inciuding
the requisite information flows, processing functions, performance constraints, and the acceptance criteria
for deciding that specified requirements are satisfied. This document also contains those internal
specifications which, although transparent 1o the end user, are necessary to the development of the end
product. (Development Product)

* The Project Plan: The project plan explains the strategy for managing the development of the
software. This document defines the goals and activities for all phases of the project, estimates resource
requirements. and specifies intermediate milestones, including management and technical reviews It defines
methods for design. coding, VV&T, documentation, problem reporting, and change control. In particular, 1t
assigns responsibihty for the VV&T effort, depending on project size. criticality, and budget. The
responsible party may be the programmer, a separate member of a development group, member(s) outside
the development group but from the same organization, or from a completely independent organization.
The project plan also specifies supporting techniques and tools. (Development Product)

* Project Standards: Project standards define specific techniques and formats for requirements. design,
coding. languages, documentation, configuration management, and VV&T. (Development Product)

* Draft of Users’ Manual: A users’ manual describes in non-ADP terminology how to use the system
The manual describes both the system functionality and the user interface. Its preparation during the
requirements phase s an excellent mechanism for ensuring that both the users and the developers share the
same view of the system. The manual serves as a reference document for the preparation of input data and
parameters and for interpretanion of results. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* DEVELOPMENT OF THE PROJECT VV&T PLAN: Durning this activity, the VV&T analyst (who
may be part of the development group or from a separate organization) will determine VV&T requirements.
design a VV&T process; select techniques and tools, and establish schedules, responsibihties, and budgets
(VVET Actuivity)

* THE VALIDATION. VERIFICATION., AND TESTING PLAN: The VV&T plan specifies goals
and approaches to the VV&T acuvities. 1t contans the outhne for a project specific VV&T process,
identifies techniques and tools to be used, and specifies plans (schedules, budgets, responsibiities, etc) for
performing the VV&T activities (VV&T Product)

* INITIAL SOFTWARE TEST CASE SPECIFICATION: A basic set of test cases 1s developed to
clarify and 10 determine measurability of each software requirement. The acceptance criteria are used to
develop the test cases Input data and expected results for each test case are included in the specification
(VVE&T Activity, Product)

* REVIEW AND ANALYSIS OF THE PROJECT REQUIREMENTS: Project requirements are
reviewed for clarity, completeness, consistency, testability, and traceability 1o the problem statement The
goal of this activity is to ensure that these requirements will result in & practical, usable solution to the entire
problem. (VV&T Activity)

* REVIEW AND ANALYSIS OF USERS' MANUAL: The users' manual i1s reviewed for clarnity and
consistency It 1s checked for completeness against the requirements document. In addition, this verification
activity includes ensuring that the internal specificatons of the requirements document are defined
<ufficiently to lead to the production of the functions and interfaces described in the users’ manual (VV&T
Activity)

FIPS PUS I3

2.2 Design Phase

DESCRIPTION: The goal of this phase 1s to design a solution that satisfies the requirements and
constrainis. Alternative solutions are formulated and analyzed and the best solution is selected and refined
A high-level specification which defines information aggregates, information flows, and logical processing
steps is generated and is refined into a detailed specification describing the physical solution (algorithms and
data structures). The result is a solution specification that can be implemented in code with little additional
refinement. Project plans (schedules, budgets, deliverables, etc.) are reviewed and revised as appropriate.

DEVELOPMENT PRODUCIS:

* The Design Specification Frequently this specification contains two documents: (1) a preliminary

design document to ident:fy a high-level solution developed during this phase and (2) a detailed design
document which defines and refines software (algorithms and data) to be coded in the following phase.
(Developnent Product)

* A Rewvised Requirements Specification Design activities may reveal incorrect, inconsistent, infeasible, or

ambiguous requirements resulting in the revision of their specification. (Development Product)

* An Updated Project Plan. Upon completion of the preliminary design, the scope and complexity of the

solution should be well understood. As a result, the project plan (schedules, budgets, deliverables, etc.) 18
more accurate and realistic. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* AN UPDATED VV&T PLAN: New or revised project requirements may warrant revision of the
VV&T plan. The detailed design plan may indicate the need for additional testing procedures. (VV&T
Product)

* REVIEW AND ANALYSIS OF THE DESIGN: The design 1s analyzed to ensure iniernal consistency,
completeness, correctness and clarity, and to verify that the design, when implemented, will satisfy the
requirements. (VV&T Activity)

* SOFTWARE TEST CASE SPECIFICATION: Additional test scenarios and test cases (input data and
expected results) are developed to exercise and test logical and structural aspects of the design (VV&T
Product)

* IMPLEMENT OR ACQUIRE TESTING SUPPORT TOOLS: Development or acquisihon of any
support software needed for unit, integration, or system testing should be completed and installed during the
detailed design phase to ensure readiness during programming and testing. (VV&T Activity)

2.3 Programming and Testing Phase

DESCRIPTION: During this phase, the detailed design 1s implemented in code, resulting w a
program or system ready for installation. Three types of testing are performed: unit, integration, and system.
Although the programmer is responsibie for unit testing, the responsibility for integration and system testing
1s determined by the project management, depending on project size and crincality The project plan
contams general information, and the VV&T plan specific details, assigning responsibihties for the
development, execution, and evaluation of all test cases and data at the various levels of testing For large or
critical software, separate test teams may be used. Umt testing checks for typographic. syntactic, and logical
errors Code modules are checked individually by the programmers who wrote them to ensure thai each
correctly 1mplements its design and sausfies the specified requirements. Integration testing focuses on
checking the intermodule communication links and on testing aggregate functions formed by groups of
modules Sysiem testing exarmunes the operanon of the system as an entity, someumes tn a Simulated
operatiig environment This tvpe of testing ensures that the software requirements have been satisfied both
singlv and in combmating, The final aciivity of this phase 1< to ensure readiness for the software installatinn,
including revision of plans as necessary and completion of ali other coding, testing, and documentation

FiP5 PUB 101

DEVELOPMENT PRODUCTS

* Program Code: Fully documentsd and testec code is constructed, ready for installation. (Development
Activity, Product)

* User Documentation: Manuals describing the input and report formats, user commands, error messages.
and instructions for operation by the user are completed. (Development Product)

* Maintenance Manual: Documentation to maintain the system is written: however, the manual may be
modified or completed during the installation phase. (Development Product)

* Installation Plan. Such a plan specifies the approach to. anc dezails of, the installaton of the software.
(Development Product)

* Problem Reports: Observed problems are recorded in formal statements and may require return o a
previous phase for resolution (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* SOFTWARE TEST CASE SPECIFICATION: Final revisions and additions to the test data are made.
(VV&T Activity, Product)

* REVIEW AND ANALYSIS OF THE PROGRAM: This activity includes checking for adherence 10
coding standards and manual/automated analysts of the program by static. dvnamic, and formal methods.
(VV&T Activity)

* TESTING THE PROGRAM: The program 1s executed with the test data; actual results are compared
with the expected results and are validated for satisfaction of the requirements (VV&T Activity)

* TEST RESULTS AND TEST EVALUATION REPORTS: The tesung acuvites, including
comparnson of actual and expected results, are documented. (VV&T Product)

* PROBLEM REPORTS: Observed problems are recorded in formal statements and may necessitate
returning to a previous phase for resolution (VV&T Product)

2.4 Installation Phase

DESCRIPTION: During this phase the system 1s placed into operation. The first task. integrating the
system components, may include installing hardware, installing the programis) on the computer,
reformatting/creating the data base(s), and verifying that all components have been included. Modification
of the program code may be necessary to obtain compatibility between hardware and software, or between
different software modules for which earlier simulation testing may not have been adequate The next task 1s
L0 test the sysiem n tts complete operating environment. The test data from earhier phases 1« enhanced and
used The result 13 a system qualified and accepiec for production use The third task is the start of system
operation. If a previous system exists, then strategies for s replacement include immediate totai
replacement, “phasing-in" of the new system. or paralle! operation of both sysiems A completely new
program could either be phased into operation or could be implemented at once. This task also includes
operater and user training.

DEVELOPMENT PRODUCT:

* Installaion Report: This report describes the results of the installation activittes. inciuding data

conversion, installation testing/results, and software/system problems and modificanons. (Development
Product)

VV&T ACTIVITIES AND PRODUCTS.

* ACCEPTANCE TESTING: Once the svstem is tested. the primary VV&T acuviy centers on
seceptance of the «vstem by the customer (or principal user when the developers and users are the same)
Acceptance may range from review or acknowledgment of the VV&T actvities durning system
deveiopment 1o detmted aoceptancs testing by the customer poos o farmal aceeprance (VV&T Acrany

FIPS FUB {01

FORMAL ACCEPTANCE. A customer representative should foriaily sign off on a form indicating inat
testing has been completed and that the system s accepted. (VV&T Product)

2.5 Operations and Maintenance Phase

DESCRIPTION: This phase involves the actual use of the software and monitoring of its operation
to ensure that it succeeds in solving the user’'s problem. Most often, some need for modifying the software
arises during this phase The maintenance process involves determining the cause for each modification
which could be an error made in the original development or previous maintenance, a change in the
surrounding environment, the recognition of a new or evolving requirement, or the desire for a design
modification to improve performance, usability, etc. Once the cause is determined, the software (code and
documentation) is “redeveloped” from that point. For example, redevelopment due to a change 1n
requirements would result in modifications to the requirements specification, the design, the code, and user
and operation manuals Problem reporting, change requests, and other change control mechanisms are used
to facibtate the systematic correction and evolution of the software. In addition, performance measurcment
and evaluation activities are performed to ensure that the system continues 1o meet performance
requirements in the context of a changing system environment.

DEVELOPMENT PRODUCTS:

* Problem Reports: These are formal statements of observed problems. Their analyses may result in
software change requests. (Development Product)

* Change Requests: These are formal requests for specific modifications to the software. These could be
generated due to an error (i.e, problem report) or a modificaon of the requirements or design.
{Development Product)

* Revision to Inimal Development Products: As a result of change requests, any one or all of the products
of the mitiation and development phases may require revision. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* SOFTWARE EVALUATION: Continuous monitoring and evaluation to assess the operation of the
software and to ensure continued satisfaction of user requirements occurs throughout the operation and
maintenance of the soirware. (VV&T Activity)

* CHANGE REQUESTS: Formal requests by VV&T personnel for specific changes to the software must
be submitted to those responsible for making the revisions. (VV&T Product)

* REGRESSION TESTING: Test cases which a program has previously executed correctly in order to
detect errors created during software modification are rerun and compared. (VV&T Activity)

* SOFTWARE MODIFICATION EVALUATION: Requested modifications to the system are
evaluated in the same manner that the original software development was evaluated. If the requirements or
design specifications are modified, the VV&T activities appropriate to those phases should be performed.
Whean the modifications are completed, they must be reviewed and tested to ensure that they not only fulfill
the modification request, but also have not adversely affected any other part of the system. (VV&T
Activity)

3. SELECTION AND COMBINATION OF TECHNIQUES

Software VV&T detects errors and validates that the product is correct, complete, and conststent with
respect to 1ts requirements. However, no single VV&T technique can guarantee correct, error-free software.
A combination of carefully-applied techniques can provide confidence in the adequacy of the software.
Three tvpes of analysis (static, dynamic, formal) are available and each provides the VV&T analyst with
different types of specific information about the solution being examined.

| Siati analysis detects errors through the examination of the product It focuses on the form and
structiure of the solution, but not the functional or computational aspects. It is also the technique used to
exawnne all document stems at ali phases of developmen:

W
o

~IPS PUS 10!

2. Dynamic analysis is the process of dzterrining the validity of a program &nd of detecting errors by
studying the program's response to a set of input data. It addresses the functional, structural, and
computational aspects.

3. Formal analysis uses rigorous mathematical techniques to analyze the aigorithms or properties of a
solution. It can provide a strong statement regarding certain properties of a solution inciuding correctness,
but is limited by the difficulty of application and lack of automated support.

These three types of analysis should be used in conjunction with one another to provide a powerful
VV&T technology.

VV&T Test Data & Assertions \ \

Analyst
4 Need for Need for
Additional Additiona!

Testing Analysis
Criteria J —J
B _No T o Analysis
Specification A'S‘:"scis = > lzzn?mfc = — AFor'rnal p—— Satistactorily
> Yy rrors alysis rrors nalysis Completed
Errors Errors Errors
Modify L J

Figure 3.1 Genera! VV'&T integration strategy

The integration strategy shown in figure 3.1 is simple. First, static analysis techniques are applied to
analyze the form of the specification. These techniques are straightforward and usually the least expensive
to apply. Applicable to all levels of specification, they identify flaws that could prevent application of
dynamic and formal techniques. However, dynamic analysis methods are needed to focus on the functional
meaning of the solution and to detect errors in their specification. These may be manually applied to the
requirements and design specifications. The code may undergo dynamic testing by executing test data on 1t
Dynamic analysis techniques, when applied properly, are effective, comprehensive, and within the resource
constraints of nearly all projects. For further assurances, formal analysis techniques may be used. these are
usually quite expensive because they require highly trained people and sophisticated support

The analysis techniques discussed sbove apply to different phases of the lifecycle. In figures 3.5
through 3.7, three levels of recommended combinations of VV&T techniques are presented. A VV&T
approach appropriate to the software requirements and resources of the project should be used All
recommendations are cumulative. For example, the comprehensive set of techniques includes the basic set
NBS Special Publications 500-75 and 500.93 contain information on specific techniques and 1ools that can be
used to support lifecycie VV&T

3.1 Requirements Definition and Analysis

During the requirements phase, static analysis focuses on checking adherence to specification
conventions, consistency. completeness, and language syntax. Dynamic analysis focuses upon information
flows, functional interrelationships, and performance requirements. Manual methods such as inspections,
peer reviews. and walkthroughs are effective in accomplishing both types of analysis if rigorously
performed I the constructs of the requirements specification scheme are clearly defined and capable of
being represented in a computer processable form. then automated tools may be used to perform both the
static end dvnamic znalyses Several such specification methods with supporung tools are available

10

Fi=3 =18 101

Functionatl Traces 1o be Examinad
S for Correctness of Intent

VVET Tes! Scenarios)
Analyst ;

Requirements Spectfication Static INo Errots Found =™ Dvnamic Analysis

Analysis Analysis Completed

\

Consistency

Detected Errors Detected Errors
Modify J

Figure 3.2 Integrated approach to requirements ¥YV&T

3.2 Design

As with the requirements, the representation schemes used to specify the design determine the specific
analysis techniques which should be employed. Design specification schemes generally provide mechanisms
for specifying algorithms and their inputs and outputs in terms of modules. Inconsistencies in specifying the
flow of data objects through the modules can be detected by static analfysis techniques. Certain errors made
dunng the composition of a design can be detected, such as the inconsistencies between the inputs and
outputs spectfied for a high level module and the cumulative inputs and outputs of the submodules.

Dynamic analysis of a design 1s accomplished by some form of design simulation. This may be a manual
walkthrough or an automated sitmulation using a model of the design. Manua! walkthroughs, when
rigorously performed and guided by documented test scenarios, are an effective technique for analyzing a
software design For larger software designs and highly critical systems or components, an automated
simulation may be appropnate. This requires the construction and execution of a solution model with the
test scenarios. To be credible the model must be validated as a faithful representation of the solution,
although the higher the required degree of mode! fidelity, the higher the cost of simulation. This cost
generally increases with the compiexity of the model.

Formal analysis techniques may be manually applied to a design specification if the specification is
sufficiently formal and exact. This involves tracing paths through the design specification and formulating a
composite function for each. This procedure is more feasible at higher ievels of a hierarchical design
specification. Less detail is present and the resulting algorithm paths are relatively short and few in number
Thus, the evolved functions remain concise and manageable. The purpose of deriving these composite
functions for a given level of design is to compare them to the functions of the previous level. This process
ensures that the design continues to specify the same functional solution as is hierarchically elabqrated.

The formal analysis of a design specification can be improved by using automated symbolic execution
tools. Such tools can be expensive to create and operate; in return, however, they offer greater speed and
capacity for manipulating detailed specifications. Thus, the functional effects of all levels of a design
specification can be determined

FIFs PUB 0N

VVaT \ DI

Analyst Test Functional and Information About
Pertormance Numerical Properties,
Behavior Complexity, and Correctness
No
- Errors NO Errors
Design Spec;hcatnon¢ Static. Found »| Functional Founc —o| Formal — Analysis
Analysis Simulation Analysts

VConmslency

Detected Errors Detected Errors Detected Errors

Modity

Figure 3.3 Integrared approach to design V&7

3.3 Programming and Testing

Static analysis techniques and 100ls are used to ensure the proper form of programmng products, for
example, code and documentation. This can be accomplished by checking adherence to coding and
documentation conventions, tnterface and type checking. etc. The checking can be done by manual
techniques and automated tools. Inspections and code auditors fit into these categories, respectively.
Dynamic analysis techniques are employed to study the funcuonal and computational correctness of the
code. Initially. such manual techniques as walkthroughs can be used as an effective forerunner to testing.
Testing is accomplished by running the code on the test data sets which were developed during the
requirements and design phases and completed during the programmiung and testing phase. The correctness
of the test executions is determined more definittvely when the expected results are specified. Tesung for
adherence to assertions i1s aiso highly advisable. These assertions, are products of the design activity and
provide additional information regarding expected behavior of the software.

If software 1s being developed in an environment other than the production environment, testing Is
more problematic. Here the production environment can be simulated or taken into account informally. In
any case, the vahdity of the test results depends upon the fidelity of the simulation or informal judgments. If
there 15 a significant difference in the two environments, there will be an eventual need for some additional
testing in the actual production environment. The balance between simulation testing and actual production
environment lesting must be determined for each individual project, based partially upon how available and
expensive the production environment 1s

Whenever assurances of correctness over and above those provided by dvnamic analysis are required,
formal analysis follows testing. Svmbolic evaluation and forma! proof techniques can be effective 1n
achieving high levels of confidence. An integrated VV&T approach is shown in figure 3.4.

vvaT \ Test Cases/Data * N -
Analyst Ditferences Intormation About
Between Actual & Numerica! Properties,
Expected Outputs Complexity & Correctness
No l NO l
"'“'_]Errors Errors
Code | Static JFound | Dynamic Found | Formal Analysis
f *1 Analysis ™ Analysis ™1 Analysis [+ Completed
1
_/Consmency
Modily - Detected Errore Detected o JDetectec Errors

Figure 33 fonvein o oroacd sl T A

F1P3 PUB 10t

3.4 Installadion

During the installation phase, testing is done to verify earlier test results, to test special cases, and to
determine whether or not to accept the system. In the first case, samples of earlier tests from any phase and
technique are selected and rerun. This gives added assurance that the tests were accurate when first used
and that their results were not negated at a later stage of development. If earlier testing required simulation,
then some special tests may be run to verify those results in the actual production environment. Situations
unigue to the operating environment are examined at this stage. Formal acceptance testing 1s performed, to
the extent required by the project. Such testing may include functional tests and tral use of the user
documentation or training,

3.5 Operations and Maintenance

During operations and maintenance, any problems within the system, additions and enhancements to 1t,
or modifications due to environmental changes involve the use of techniques appropriaie to the
development phases that are affected.

3.6 Recommended Techniques

The methodology of validation, verification, and testing (VV&T) throughout the lifecycle of computer
software requires the integration of development activities with VV&T activities. The VV&T requirements
are tailored specifically to a project, and its requirements, constraints, and resources. Methodologies may
range from simple for small projects to very complex for large, and/or highly critical projects. Disciplined
application of 8 VV&T methodology developed from careful selection and combination of VV&T
technigues can help ensure the production of high quality software. All recommendations are cumulative;
for example, the comprehensive set of techniques assume the inclusion of the basic set

Phase Technigue
Requirements Review

Design Inspection
Code Inspection

Test Coverage
Unit: 100% statement
Integration: 100% module call
Systemn: 95% module call
100% of major logic paths

Installation Acceptance Testing:
Insure continued vahdity of system test

Operations and maintenance For affected code:

lnspection

Test Coverage:
1009 statement
100% module

Figure .5 Recommended techmiques for lifecycie VV& [(hasic approachs

toa

1.5 PUB 101

hote

Phase Technique
Requirements Inspection
Design Interface Analysis

Data Flow Analysis

Code Assertions

Standards Audit

Interface Analvsis

Data Fiow Analysis

Explicit Trace-back of Code to Requirements

Installation Acceptance Testing

Operations and maintenance For affected code:

Reapply techniques used during development

Figure 3.6 Recommended technigues for V¥'& T (comprehensive approach)

Phase Technique
Reguirements Automated Consistency Analysis
Design Automated Consistency Analysis

Automated Simulation
Proof of Critical Sections

Code Symbolic Evaluation
Proof of Critical Sections or Properties

Installation Acceptance Testing:
System Certification

| Operations and maintenance Re-do proofs that cover affected areas: retest

Figure 3.7 Recommended techniques for VV&T for crincal software

All recommendations are cumulative. for example. the comprehensive set of 1echniques assume the snclusion of the basic set

Fifs 21,8101

SUPPORTING ICST DOCUMENTS

* MBS Special Pubiication 500-56 “Validation, Verification, and Tasting for the Individual Programmer.”
M. Branstad, J. Cherniavsky, and W. Adrion, 1980.

* NBS Special Pubiication 500-75 **Validation, Verification, and Testing of Computer Software,” W
Adrion, M. Branstad, and J. Cherniavsky, 198].

* NBS Special Publication 500-87 *Management Guide to Software Documentatior,” A. Neumann, |982

* NBS Special Publication 500-88 “*Software Development Tools,” R. Houghton, Jr., 1982

* NBS Special Pubhication 500-93 “Software Validation, Verification, and Testing Technique and Tool
Reference Guide,” P Powell, Editor, 1982.

* NBS Special Publication 50098 “Planming for Software Vahdation, Verification, and Testing,” P
Powell Editor, 1982

** FIPS 38 “Gudelines for Documentation of Computer Programs and Automated Data Systems,” 1976,

** FIPS 64 “Guidehnes for Documentation of Computer Programs and Automated Data Systems for the
Inttiation Phase,” 1979.

NOTES:

{. Subsequent NBS documents will include guidance on acceptance testing and matntenance.
2 NBS documents may be ordered from:

* Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402
(202) 783-3238

** National Technical Information Service
5285 Port Royal Road
Springfield. VA 22161
{703) 487-4650

REFERENCES

{CAIN]| Caine. S. H: Gordon, E. K. PDL: A tool for software design. Proceedings of the National
Computer Conference; 1975,

ISAMM| SAMM (Systematic Activity Modeling Method) Primer. BCS 10167; 1978 Octaber.

[TEIC] Teichroew. D.; Hershey, E PSA/PSL: A computer-aided techmque for structured documentation
of information processing svstems (EEE Transactions on Software Engineering, Vol. SE-3- Na 1, 1977

IFS PUB 104

GLOSSARY

ACCEPTANCE TESTING: formal testing conducted to determine whether a software system satisfies 11s
acceptance criteria and to enable the customer to determine whether 1o accept the system.

ASSERTION: a logical expression specifving a program state that must exist or a set of conditions that
program variables must satisfy at 8 particular point during program execution.

CERTIFICATION: acceptance of software by an authorized agent usually after the software has been
validated by the agent, or after its vahdity has been demonsirated to the agent.

COMPLETENESS: the property that all necessary parts of the entity i question are included.
Completeness of a product s often used to express the fact that all requirements have been met by the
product.

CONSISTENCY: the property of logical coherency among consittuent parts. Consistency may also be
expressed as adherence to a given set of rules,

CORRECTNESS: the extent to which software 15 free from design and coding defects, i.e., fault free. It is
also the extent to which software meets its specified requirements and user objectives.

DATA FLOW ANALYSIS: a graphical analysis technique 1o trace behavior of program vanables as they
are imtialized, modified, or referenced while the program executes

DEBUGGING: the process of correcting syntactic and logical errors detected during coding. With the
primary goal of obtaining an executing piece of code, debugging shares certain techniques and strategies

with testing but differs in its usual ad hoc application and local scope.

DYNAMIC ANALYSIS: involves execution or simulation of a development phase product. It detects
errors by analyzing the response of a product to sets of input data.

EVOLUTION CHECKING: testing to ensure the completeness and consistency of a software product at
different levels of specification, where one product 1s a refinement or elaboration of another.

FORMAL ANALYSIS: use of rigorous mathematical techniques to analyze the algorithms of a solution
The algorithms may be analyzed for numenrical properties, efficiency. and/or correctness.

FUNCTIONAL TESTING. application of test data dernived from the specified funchonal requirements
without regard to the final program structure

INSPECTION: a manual analysis technique which examines the program (requirements, design, or code) in
a very formal and disciplined manner to discover errors.

INTEGRATION TESTING: orderly progression of testing in which software elements, hardware
slements, or both, are combined and tested. until all intermodule communication links have been integrated

INTEGRITY CHECKING: testing tc verify the soundness of a software product at each phase of
development.

INTERFACE ANALYSIS checking that intermodule communication links are performed correctly

LIFECYCLE. see SOFTWARE LIFECYCLE

FIFPS PUB (G

CROOF OF CORRECTNESS: e of techmguss of mathematiczl logic to infer that a relation between
program vanables assumed true at program entry implies that another relation between program variables
holds at program exn

REGRESSION TESTING Rerunning test cases which a program has previously executed correctly to
detect errars created during software correction o1 modification activities.

SIMULATION: use of an executable mode! to represent the behavior of an object. During testing, the
camputational hardware, the external environment. and even code segments may be simulated.

SOFTWARE: computer programs, procedures, rules, and possibly associated documentation and data
pertaimng to the operation of a computer system

SOFTWARE LIFECYCLE: period of ume beginning when a software product s conceived and ending
when the product is no longer available for use i he software hfecycle 1s typically broken into phases, such
as, requirements, destgn programming and 1esting, tnstallation, and operation and mamtenance.

STANDARDS AUDIT check to ensure that applicable standards are used properly.

STATEMENT TESTING. 2 test method sansfving the criterion that each statement in a program be
executed at least once during program testing

STATIC ANALYSIS direct analysis of the form and structure of a product without executing the product.
It may be applied to the requirements. design, or code

SYMBOLIC EXECUTION or EVALUATION: an analysis technigue deriving a symbolic expression for
each program path

SYSTEM TEST: process of testing an integrated hardware and software system to verify that the system
meets s specified requirements.

TESTING examiming the behavior of a program by executing the program on sample data sets

UNIT TEST: testing of a module for typographic. syntactic, and logical errors, for correct implementation
of uts design, and for satisfaction of tts requirements

VALIDATION: determination of the correctness of the final program or software produced from a
development project with respect to the user needs and requirements

VERIFICATION: the demonstration of consistency, completeness. and correctness of the software at each
stage and between each stage of the development lifecvcle

VV&T: vahdation, verification, and testing: used as an entity 1o define a procedure of review. analysiws, and

testing throughout the software lifecycle 1o discover errors, determine functionalny, and ensure the
production of quality software

WALKTHROUGH a manual analvas techmigue 1in which the module author describec the moedule’s
struciure and loow 1o an audience of colleagues

NOTE Most of the defintione above and many more terms common (0 VV&T and software practices
appear m

ADRION W RO BRANSTAD, M A CHERNIAVSKY. | O Vahdaton, venficanon, and csting of
computer software Nath Bur Stand (U Sy Spee Publ 50078

FIP5 PUB 1C!

IEEE Computer Society, Technical Commitiee on Software Engineering. Glossary of sofiware engineering

terminology (Draft-lEEE Project 729). The Insutute of Electrical and Electronics Engineers, Inc., 345 East
47th St New York, NY 10017

FIs0 M08 101

APi"uNDIX A
PLANNING FOR VALIDATION, VERIFICATION, AND TESTING

A validation, verification, and testing plan is 8 document, or group of documents, specifying a project’s
VV&T requirements and the procedures needed 10 achieve them. An outline of the plan may be general and
brief, or detailed as shown in figure A.1. Because the general planning drives the VV&T planning. in turn
providing feedback to the overall development, the general project planning and the VV&T planming are
closely integrated. Once the general background, goals, and requirements are clearly understood, the
VV&T planning begins The following four-step approach is usefu] in developing a project’s VV&T plan:

(1) identify the VV&T requirements

(2} determine the constraints on the VV&T activities

(3) select VV&T techniques

{4) nemze results of the first three steps in a written VV&T document.

Some factors to consider during VV&T plaaning are the following:

* VV&T requirements are based on project needs and constraints.

* The VV&T techniques and tools that can be used are dependent upon and must be consistent with
the project’s development approach

* The details of the VV&T plan, e.g., time and resource requirements, must be coordmated with the
overall schedule and budgets.

* Planning activities take place during the requirements phase, with attention paid to activities that
require long lead time or must begin early in the project, such as personnel training or the initiation of
tool acquisition

* Revisions and refinements of the plan may occur during the design phase.

* A small project may have a brief plan; however, as the size. complexity, and critical nature of the
project increase, so will the complexity and formality of its VV&T plan and the effort required to
develop 1t.

The outhne 1 figure A.l indicates the contents of a VV&T plan. The project’s background and
requirements, as well as the information from the first three steps of the four-step approach are included.
Section | contains the general project background and information on the proposed solution. Section 2
specifies the VV&T requirements, measuremen! criternia, and constraints. Section 3 states the VV&T
procedures to be applied during development in general and by phase Supporting information for the
selections made in Section 4 is detailed in Appendix B of the plan. Further information on planning a
VV&T methodology may be found in NBS Special Publication 500-98, Plannmg for software validation,
verification, and testing.

£205 PiJB W

I. Background and Introduction -|

Establishes the context for the VV&T document ls brief and introductory in nature.

Focuses on those aspects of the problem and/or solution which influence the VV&T needs
and approach.

A. Statement of probiem
B. Proposed solution
C. References/relatec documents

II. VV&T Requirements and Measurement Criteria

Presents the VV&T r=quirements in one of several formats: the total VV&T requirements,
with all worksheets and phase imformation; a summary of requirements information,
statement of project level information, with phase data present=d later.
A VV&T requirements and their importance
1. Functional
2. Performance
3. Rehability -
4. Other
B. Measurement! cniteria for each requirement
1. General
2. Product specific
3. Phase specific
C. References/related documents

IIl. Phase by Phase VV&T Plans

First, describes VV&T approach by phases, products, major reviews and checkpoints,
and practices common to all phases. Then, presents the specific activities to be carned
out phase by phase.
A. Project background and summary information
1. Project phases and products
2. Major reviews (both management and technical)
B. Requirements phase VV&T activities
1. VV&T activities
2. VV&T techniques and tools selected
a. Reviews
b Methods of analysis

3 Required support tools, sutomated & other
4 Roles and cesponsibilities
5. Schedules
6. Budgets
7. Personnel
Design phase

Programming and testing phase

Instaliation phase

Operations and maintenance phase

(C-F contain items 1-7, as indicated in B, as needed)

Mmoo

Appendix A Project and Environmental Considerations
A Techmcal issues
B Project constramts
C. Computing resources

Appendix B Technique and Tool Selection Information
A, Candidate hst of lechmgues and tools
B Ratiwonale for selection of techmagues and ool |

apmre AL a0 pva, o Vi 4

FIPS PUB .-

APPENDIX B
EXAMPLE APPLICATIONS OF VALIDATION, VERIFICATION,
AND TESTING TECHNOLOGY

This appendix presents examples in which the concepts of software development, software VV&T, and
VV&T planning are Wlustratsd The purpose 15 10 show how these concepts may be applied 1n & vanety of
situations

Two examples are presented, which use an automobile insurance transaction processing procedure as
the system being developed. These examples llustrate adaptation of both the basic and the comprehensive
VV&T approaches (o specific projects. These examples cover only the development phases, with the design
phase subdivided into a preliminary design and a detailed design. The VV&T techniques for these examples
differ shightly from the recommended VV&T approaches of figures 3.5 and 3.6. These differences iliustrate
that a VV&T methodology may be tailored to fir the goals and constramnts of a specific software project

B.1 Overview of Examples

Example 2 builds upon Example 1. The tools introduced in Example 2 are 1o be used in addition to the
techmques described in the first example. Figure B.1.1 presents an overview of the different VV&T tools
and techniques which are used n the examples

Software Development

Example
#1) . (#2)
Basic Comprehensive
Techmques

Supporting Graphical Requirements

Technology Representation

Static Analysis Walkthroughs Interface Checker
Reviews Dataflow Analyzer

Standards Checker
inspection
* Dynamic Analysis Functional Testing Assertion Generation

Test Coverage Assertion Checking
Analysis

“Formal Analysis)

Figure B.1.1 Overview of examples

The software development subphases for each example are:

o Requirements,

o Preliminary design,

o Detalled design. and

o Programming (includes testing)

Each of the examples wili be presented showing for each phase:

o Inputs to the phase,

o Outputs fram the phase,

o Supporting technology used tn the phase, and
¢ Actiaities which comprise the phase

SPS PUB 10T

Most acuvities will contain:

o VV&T purpose for the activity,

o VV&T technique(s) used by the activity, and
o Example(s)

Tables B.1 and B.2 provide a summary of the development and VV&T techmgues and activities for the
basic and comprehensive activities. These tables present a synopsis of the exampies

Tabie B.1 Exemple | Summary software development using basic VVA&T techmigues
Subphases } Regquirement: . Preliminary design Detailed design Programmung
‘: t L
*Informal prose i *Detailed requirements *Preliminary design *Detailed design
' requirements specification document document
IMPUIT -Revised prose *\VVE&T plan o *VVAT plan
description *Test cases 1 *Test cases
| : -Revised graphical .
} ! GR representation 1 ‘
! | sVV&T plan 3
*Detasted requirements ‘ *Prehminary design *Detailed design eSvstem software
specification document documeni = Test resuhs
*VVA&T plan ' -Further refined GR s Addibonai test
*Imitial test cases | system representation cases
i ~-Detailed user mput-
OoUTPUT output specification
! -Basic COTIFOI flow ‘
design .
f -Basic svstem infor :
i mation specification
! sAdditional 1est cases
*Formal requirements *Reviews eReviews *Cross reference
reviews *A graphical! requirements ~Database management : *Compiler:
SUPPORTING *A graphical requirements | representation method system (DBMS! | *Database manage
TECHNOLOGY representation method *Design-based functional *Design-based func i ment svsiem
*Requirements-based testing nonal testing *Operating svstem
functional testing *Reviews
. *Tesl coverage
4‘ analyzer
sInihal requirements T *Refinement of graphical *Detailed dalabase T *Code development
Coreviews representation design *Moduie testing
' *Requirements analysts ! *Specify informauon sDetailed module sFunction testing
*VVET plannming l design design *Test coverage
*lmitial test case I +Design program archiec *Tesi case genera analvsic
! generation “ ture & allocate require ton *Traceback
ACTIVITIES | *Interaction with ‘ ments *Design review
! customer ‘ *Design basic control flow *Design mspection

*Sign-off by cusiomer

*Test case generation
*Preliminary design
review

*Tracebhac

*Tracebach

The applicauon area used 1w the examples is representalive of a large number of Government and
commercial systems. Transaction processing systems are perhaps the most common of all commercial
systems Many banking, billing, payroll. inventory, and insurance applicauions are in this category Thus. the
four examples focus on this area.

The transaction processing system 1 set in the context of an auto insurance apphcation. In order 1o
limit the size of the presentations some simphfications have beern: made (i the appitcalion aree. An eaperian

FIPS PLD (0!

the aito insurance field will surely detect omissions and simplifications in details of the system as described
The reader 1s encouraged, however, to not focus on the application area, but rather on the VV&T principles
applied The details provided enable presentation of specific instances of the apphcation of VV&T
techniques.

The Auto Insurance Management System (AIMS) described in the examples supports all the major
activines of such a company: accounts payable (claims processing), accounts receivable (premium
processing), management reports, and database management. AIMS must 1ssue chent premium due nouces,
checks to repair shops (or clients), recommend policies that should be cancelled, monitor the company’s
day-to.day financial health, and so forth Further details of the svstem's requirements are included in the
first example

R.2 EXAMPLE 1: Software Development Using Basic VV&T Techniques

[n this examnple the details of the AIMS are presented in addition to the actual manual VV&T practices
which are applied within each of the four phases of the software development lifecycle

B.2.1 Requirements Subphase Activity Descriptions
B21.1 [nital Requirements Review

The informal prose requirements for the AIMS 1s given in figure B.2.1. Appropriate management and
technical personnel from the software development group review these requirements for completeness,
consistency, and correctness and prepare a list of questions addressing particular aspects of the
requirements. This list 1s then supplied to the customer and a Requirements Review meeting 1s scheduked
and held with customer and user. e.g., clerks, agents. During the meeting the questions are discussed (0
establish a more specific and unambiguous set of requiremeants.

VV&T Purpose. To produce 2 requirements specification providing the foundation from which more
formal requirements specification, VV&T planning. and test planning will be accomplished.

VV&T Techmque: The review itself is the VV&T technique used 1in this activity. Some of the
questions addressed during the review could be:

o Shouldn’t 2 claims record contain some kind of indication as to the nature of the claim? For

example: if 1t 1s due to an accident, who was at fault?

o How is the “"reasonableness” of a claim amount determined?

o How does one know what claim numbers are vahid for which agents?

o When 1s the premium rate computed? How is it computed”

o Shouldn’t the acceptance criteria include provisions for testing more than just the funcuonal

capabilities?

AIMS Hequiremenlts

A system called the Auto lkuurance Monogement System (AIMS) s 1o be
developed which will provide an oulomated set of automoblle insuwance support
capabilities inlegrated 1tvough the uie of a common dotobase. The basic
capabilities to be provided Inchsde: accounts payable, occounts recelvable,
manogemen! repa | generation, ond database manoge ment.,

System nformation. nformalion confained in the dalabose Inchudes client
records, claims records ond the payoui aoccount. There Is one client record for
eoch pohcy hokber and contolns

policy number

novne and oddress of the client)

ogent nsimber

policy effective dote and expiration date}

nane, birth date, sex, maorital siatu, driving record al eoch driver;
vehicle information - make, modet, style, yeas|

o insurarce coverage - camprehensive, medical, collislon and
dedhxctable, premium rate classification, bolance due, date due,
credited amount {e.9., from prepald prembum), number of cloims
made on this policy and 1otol omount pold out.

c o o0

>

=}

There is one claims record lor eoch claim ond contabns:

claim number and date ol claimy

assoclaled arcldent report numbery

deiver's nomej

payee {e.q., repair shop), nome and oddress)

ageni rumber ond policy number of client making claim,

o 0 o 0 ¢

There 13 one payout occomnt record in the database ond contains

o o Comn babonc ey

o date and time of the last change to the occount balancey

o minimun alowed botance, dote and 1ime of last minimum change)
o maxiiwan allowed balance, date and time of last maxirmun change
o tolal year-1o-dote claims and premibom Jotal;

Accounity Payabler The accomts payable function processes claima transociions
and [ssses payment checks 10 the poyee which will g)ther be the repair shop or
the client. The tronsactions are input 10 the AIMS system from a file ‘containing
the days claims. Haoving been Input, o claims transoction is validated by
checking the consistency of the client Intormatian confained in the transaction
with 1hat contamed in the client record, by verllying that the claim number is
valid tor this ogent, and by checking the “reasonableness® of the amount, Once
validated, the new claims record ls entered into the dotabase, the amount of the
chaimn is withdeawn lram the payout account and the check It issued (ie,,
printed). When the claims withdiowal I3 mode from the payout account the
occomnt balance is updated ond then compared fo the minimun allowable
bolonce. H the new balance s less, then a notice Is issved (for managemant)
Indic atiry) the situation. The dale and vime of last change to the account
bokww e is also updoted as well os the year -to-date cloims total.

Accounts Receivable: The accounts receivable function issues policy nolices wx}
processes prem]um payments. Policy nolices ore isssed by a balch progran
which runs once per day. The program reods all client records ond checky each
record to delermine H a premiun doe natice or o cancellanion (i.e., past el
notice should be issed ond il so, prints ihe appropriate notice. When a prertiuim
payment Is received a 1ronsaction 13 entered into a lile which is processed daiiy
by the AIMS to updute clieni ¢ecords with the premiom poyment. The
Information inchsded In the tronsociion includes the policy number, chent’s
name, ogen! number, due date ond ormount paid. Once received, the tronsac hion
Is volidated by verilying thal the irput data is consisient with thal in the chend
record ond that the amount paid s subficient. The client record is then credited
with the poyment gnd the amount is deposited in the payoul account. The payout
account balance, year-1o-date premium fotol, ond dale and tirne ol losl chonge
1o the accoun! balarxe are updated when the deposit is made. Nate that the
maximum ollowable bolonce is nor aulomaticolly checked. Thiy s o rawwul
func 1ion per for med by monagemeni

N ment R 3¢ Four manngement reports are produced: cluims ceport,
new clients report, clienl profile report ond client concellation report. The
clalms report |s prodiced on o monthiy basls ond gives the fotol nurber ol
clolms and the total amount paid in cluims for a given month. 11 also perloriny o
trend analysls based on lotals fram prioe months, - The new clients report s
produced on @ monthly basis ond lists new chienis and their coveroge for o given
month. The clients are grouped by oyent which cllows masogeinent to view the
sales progress of each agent. A compony-wide soles trend analysis » abo
produced. The client prafile report provides occident stolistics based on diver's
oge, sex, marital slatus, etc. This report s produced semi-aawwally. The client
canceliation report tists the clients which were cancelted during a given month
ond the reason for the cancellation.

Dalabase Managements {database tanogement aclivilies provide for «hent and
payoul account management cupabitities. Client tecords are enleced, guernied,
rmodified and concelled (i.e., mode inociive but not deleled). A log of ull chent
Yransoc tons is also stored in the darobase (or possibly on 1ape). Payoul occmmit
functions inchude query, modilicaiion ot the bolonce timils, external deposity auld
external withdiowals. Externol depoits and withdrowaols ore muxke: from/to other
company fincnciol resources whenever the orcomt bolance excreds e
allowable limits. A tog of ail deposits ond withdrawals (inchuding prenuums ond
claims) !s kept on the dalobase.

Acceptance Criterlar The acceptonce criterla for the AMS is the successtal
execution of a sef of acceptance testy. An execution is successfol 1F it correctly
performs the desired function within the required execution time. The occep
tonce tesis are specilled by on wwkpendeny 1eam and reviewed by monugenent,
user and deveicpment personnel.

Figure B.2.1 Informal prose requirerments

FIPS PUB 101

41712 Requirements Analysis

The requirements analysis involves translation of the informal prose requirements into a formal
reprasentation. This results in idenufying other aspects of the requirements needing clarification or further
definition. For this example, the graphical representation (GR) scheme used is » modification of the
Systematic Activity Modeling Method [SAMM].

VV&T Purpose: To identifv inadequately specified requirements such as incomplete, ambiguous, or
otherwise unclear requirements statements.

VV&T Technique: Formal reviews are used to achieve the above purpose on this project. Problem
issues 1dentified duning the requirements analysis are documented and distributed to the customer and a
second Requirements Review is scheduled. This review agam involves dialogue between the customer and
the developers; it centers on the formal requirements statement and the identified issues. The result is 2
revised set of requirements in both formal and informal forms and a graphical representation (GR). Specific
activities performed within this review are.

« Vertfication that all requirements have been correctly represented using the formal scheme,

o ldentification of the problems encountered during the restatement elaboration of the requirements,

and

o Daiscussion and resolution of the problems.

Example:

The formal representation for the basic system and the accounts pavable function are shown in figure
B.2.2. The graphical representation is interpreted as follows:

Master input files are at the top of the diagram.
Master output files are at the nght of the diagram,

The upper half of figure B.2.2 is the root which contains five modules, A-E The data flow within
the root and to and from master files are labeled according to their source. If the data are internal to
the root, 1ts identifier 1s preceded by the module letter.

The lower half of figure B.2.2 is an expansion of module A from the root. The lower left corner of
each box contains the parent, i.e., A in the root. The lower right corner of each box 1s the letter
designator for each module, i.e, A-E. Data created by the accounts payable activity labeled
according to source, e.g., data B |, a validated claims transaction, is created by module B, validate
claims transaction, and used by modules C-E. Data B.2, invalid claims transaction notice, 1s created
by B and put on master file 7, user/client notices

Some of the problems which could be identified are:
o What does the system do with an invalid claims transactton? Solution: Output a notice to the user
identfying the errors.
o The involved driver’s record in the client’s record needs 10 be updated to reflect a new claim due 1o
an accident. There does not appear 10 be enough information n the chent record for this. Solution:
Add the necessary information to the claims transaction.

FIPS P4 0L

ACTIVITY-DATA FLOW DIAGRAM

Root
title RENMEREEN
Auto Insurence Management System (AIMS) ~
(. 1
DATA ID DATA DESCRIPTION APCCOW“S 67
1 AIMS Data Base a»ableA &
2 Claims Transaction Fie
2 Premium Payment Transaction File Aecounts
4 Client Transaction Receivable 78
5 Payout Accoun! Transaction B
4] Ciaim Paymen: Check
7 User/Crent Notices Maintamn
8 Updatec AIMS Data Base AIMS T8
Q Management Reports Database l
(o AIMS Account Iniormation ¢ C
£ AIMS Account Transactions E Generate
Management 9
Reports
y
Company-Wige
General
Ledger
ACTIVITY-DATA FLOW DIAGRAM A A
title 1 1.2 Z 1
Accounts Payable e 1 j
DATA ID CATA DESCRIPTION Read
1 AIMS Database RC‘L:emc —t A 11
ecor
Z Claims Transactior Fre
A1 Chent Record A A
B Valigated Claims Transaction Vahdate 82 7
B2 invaihd Claims Transaclion Notce Claims -
o Claims Record Transachon | |1
D Claims Payment Check A B gyl iB
D.2 Updated Payout Accoun! Store 1 g
Dz tnsutficrent Funds Notce Claims
D¢ Ciaims Transactior Log Recora
E1' Upcateg Chent Recorc A C ¥
£2 Canceliation Notice lssue 28 0% 772—.-'6 €
5U -
E2 Rate Increase Notice Checx HtC3 -
o Payee b "T &
A D vy
E 1] &
Store Eo=e{ 7
Clien | 3 mmm————i
Record
L L E -/

Figure B 2.2 Requiremenis graphical represcnialion

B.213 VV&T Planmng

Y V&T planning s one aspect of the overall plannmg process. 1as accomplished tn parallel with other
planming activities and the requirements identification activity

VV&T Purpose To choose VVAT pracuces which can be implemented to suil the project needs The
objectives are

o Identify the goals of the AIMS project’s VV&T activities,

0 Select supportng VV& T techmgques and tools and

o Deveiop plans for cach phase’s VV&T actvities (Fians include tashs, ¢g o acauinng or devetopiag

tooh sohedules responsidiines, and resoprces

FIPS PUB 101

8.2 1.4 Inital Test Case Generalion

The AIMS requirements will be analyzed and test cases will be designed to test the functional
-apabilities of the svstem. These test cases will also form the basic set of acceptance tests.

VV&T Purpose: To design test cases which, when used to test the AIMS software, will maximize the
possibility of revealing the presence of errors in the software.

VV&T Technique: Requirements-based functional testing is applied to generate this initial set of test
cases.

Example:

In the accounts payable function a claims transaction 15 vahidated by checking (among other things)
that the claim number 1s valid for the given agent Each agent has a specified range in which claim
numbers associated with claims issued by that agent must fall Assuming an agent was assigned claim
numbers in the range 801000 to 801999, test cases which are generated to test accounts payabie
should incinde claim nurnbers as follows

Test data class Test claim nuimber Expected output comment
Non-extremal 801500 None valid
Non-extremal 801317 None valid

Extremal 801000 None upper bound
Extremal 801999 None lower bound
Extremal 800999 Invahd claim number . lower bound-!
Extremal 802000 Invalid claim number upper bound + |
Special 80100A Invalid claim number

Special 301007 Invahd claim number

Specia! 80150 Invalid claim number

Special -01500 Invalid claim number

Special 80L S00 Invahd claim number

£.2.2 Preliminary Design Subphase Activity Descriptions

B 2.2 1 Refinemen: of Graphical Representation

»

The GR diagrams developed during requirements analysis will be decomposed 1o reflect the
requirements for the system in more detail.

VV&T Purpose: The completeness and consistency of the (GR description of the requirements and
preliminary design should be ensured.

VV&T Technique: A review of the resulting diagrams will be performed to venfy:

o identification of all basic activities necessary to perform a particular function,

o identification of all inputs and outputs required by each activity, and

o consisiency and completeness of the data flows.

Example.

Within the accounts payatle function there 1s no indication as to the action to be taken when a claim
transaction 1s processed for a claim which has been previously entered This error would be
discovered duning the review of the GR activity for the accounts payable function

45.2.220 Specify Information Design

The prehmimnary design of the mformation consists of a detarled user input/output specification and a
deseription of the basic content and structure of the dists used by the system The detaded vser put-outpa
specificabion essentially amournis fo prepanng @ user’s manual for the system The formais ueed jo oput

Clatres and prenaum pasment toansacbons dte Jefined as well as the outpat responses The printed report

R,

#1953 PUB 101

formats for the management reports are also defined. Specification of the basic data structures and content
will consist of identification of variables and records needed by the system, and the relatonships among
them.

VV&T Purpose: The VV&T purpose in this activity is twofold. First, the detailed user specifications
need to be shown 10 be usable and that they satisfy the needs of the user. Second, the system data structures
and content need to be verified and shown to be complete (i.e., that which is required to perform all system
functions) and correct (i.e., the data types and relationships are consistent with the functions which need to
be performed).

VV&T Technique:

o A formal session will be held with the customer to review the detailed user input/output
specifications. This session will be preceded by informal dialogue between the user community and the
developers to assist 1n the deveiopment of the specifications. Once satisfied, the customer will formally
sign off on the specification

o Formal inspections of the sysiem data structures and content will be performed

Example:

Discovered by the customer participating in the formal review of the detailed input/output spec was
that a client i1s not always the owner of the car. so that lien-holder information needs to be included
in the client record.

B.2.2.3 Design Program Architecture & Allocate Requirements

The program architecture design gives a complete high-level description of the software. It refines and
groups functions defining software components and interfaces.

VV&T Purpose: Requirements are cross-referenced by the design to ensure that all the requirements
have been addressed.

VV&T Technique: Requirement trace-back.

Example:

A complete set of cross-references 1s defined and maintained. These show the evolution from the
prose requirements to the requirements represented by the GR and finally to the components
identified in the design.

B.2.24 Design Basic Control Flow

The GR represents the data flow within a system but only shows control flow in an implicit way The
system’s control flow, therefore. needs tc be explicitly designed. The activities wdentified in the GR need to
be mapped into modules The control flow between modules must also be described using an nformal
design language. This defines the program architecture. The hierarchical structure of the modules
comprising the system are developed.

VV&T Purpose: To produce a correct and understandabie description of the basic controi flow of the
system.

VV&T Technique: Ar inspection of the control low design will be performed to verify

o consistency with the GR representation,

o correctness of the high-level logic, and

o quality of the modularization, i.e., are the functional boundaries natural”

B225 Test Case Generation

VV&T Purpose: To generate lest data that will exercise and test each function, and also to
demonstrate that the code 1s consistent with the design
VV&T Techmque: Design-based functional testing

28

FIPS PUB 10!

tixaraple:

Test cases for a funcion adding the amount of the premium payment to the payout account would
include: a negative (or zero) amount, an amoun! which 1s greater than zero but less than that which
would leave the balance larger than the maximum allowed, and one which would leave the balance
greater than the maximum allowed.

B.226 Pretimnary Design Review

At the completion of the preliminary design activity, a formal review 1s held. This review involves
management and technical staff representing the developer and the customer/user and covers all aspects of
the design and results of VV&T activities Management of customer/user and developer sign off of
acceptance is required

B.2.3 Detailed Design Subphase Activity Doscriptions
B 231 Detaled Database Design

The format and structure of the data to be stored in the system database is designed This includes
describing data which are logically related in the form of records, as well as the relationships existing
between records The logical structure of the database will be described using a graphical database design
representation Record descriptions will be specified in a data definition language Examples are shown in
figures B.23and B2 4

In figure B2 3. ovals represent record access (key) fields, boxes represent records, *'{:M" means that
for each client record there are potentially many (1 or more) claims records.

Policy-Num Driver-Name

Chent
Record
1M o
Cilaim-Num
Ciaims y ‘
Record

Figure B.2.3 Sampie database schema showing clieni-claims relanion

YV&T Purpose. The database design must be vertfied for consistency with the prelsminary design In
addition, the database structure will be verified to ensure that 1t ts correct and is reasonable with respect to
potential storage consumption and access time.

VV&T Technigue: An inspection of the database design 1s performed to ensure that the above VV&T
purpose is met

Example

During the inspection of the database design an erron is found in the claims record (fig. 8.2.4) where
POLICY.NUM 1 dentified as the key field whereas the schema diagram (fig B.2.3) indicates

CLAIM-NUM The solution 1s to change the key field in the clains record descripuon to CLAIM.
NUM

REel
-

Firs PUB 102

PIC
PIC
PIC

PIC
PIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC
P1C

record name ts CLAIMS
location mode is calc 1n CALC-KEY using POLICY-NUM
01 CLAIM-NUM
0! DATE-OF-CLAIM
01 ACC-REP-NWM
01 DRIVER
02 LAST
02 FIRST
02 MIDDLE-INTL
01 PAYEE
02 NAME
02 ADDRESS
03 STREET
0y CIN
D3 STATF
03 ZIP
0! POLICY-NUM
01 AGENT

D D B ph Dt

(6)
(6)
(%)

(15)
(15)

Figure B.2.4 Sampie CLAIMS record description

B.2.3.2 Detailed Module Design

Detailed module design includes, for each module, a description of the function performed and
descriptions of input and output data, as well as a high-level description of how the function 1 to be done

{1.e.. the algorithm used).

VV&T Purpose: To show that (1) all of the system’s functional capabiliies are addressed by one or

more modules, and (2) each module addresses one or more system functions

among and interfaces between all modules are dentified and verified.

VV&T technique:

o lInspections of the system modules include (1) manual checking of the module interfaces 1o ensure
that al] modules are used and that their inputs and outputs are consistent, and (2} informal verification

of the correctness of the algorithms used.

o Requirements tracing 1s accomplished by identifying each module with the lowest level GR acuvity

{from the prehminary design} in which the module s contained

Example:

A module which updates the date and ume of the last access to the payout account record has the
premium pavment transaction as one of its inputs. However, manual interface checking detects an
inconsistency whereby the premium payment transaction is not supplied. As it turns out, the
transaction 1s not used within the module and 1s deleted as an tnput.

2233 Test Case Generation

This involves refining and adding 1o test data
previously developed

VV&T Purpose. Test cases are developed to exercise and (est the mternal

structures and functions of modules
VVET Techmgue
o Branch testing
o Path jesung

Moreover, relationships

FIPS PUB 10!

foample:

The modu'z which validates a claim number checks for six error conditions Associated w:h these
conditions are three actions. Test data are developed to exercise all combinations of error conditions
and resulting actions, i.e., all branches and all paths through the modules.

8.2.3.4 Design Review (DR}

After the detailed design 1s completed, a formal review is held. Primarily involving project
management and technical personnel, this review covers all aspects of the design (including the tes: cases)
Sign off by management indicating their acceptance of the design is required.

B.2.4 Programming Subphase Activity Descriptions
824! Code Developmen:

The detailed design of a given component provides the information needed to write the code for that
component 1n the host programming language, e.g., COBOL. Once written, the code is entered intc the
computer and all compilation errors are removed.

VV&T Purpose: VV&T of the compiled code is performed to:

o Verify the consistency of the code with the detailed design.

o ldentify errors, and

o Ensure adherence to programming standards.

VV&T Techmque: Inspection of each system module.

Example:

During an inspection of “issue policy notices” module the section of code responsible for ssuing a
premium due notice 1s found to be in error. The error 1s that the premium due notice s panted
without having the appropriate data moved into the printer buffer. A sample portion of the
mspection checkhst used 1s shown below in figure B.2.5. This particular error is discovered using
question two under ‘“'data reference.”

DATA DECLARATION

Are all variables declared?

Are the correct attributes assigned”

Are vanables properly mnitialized”?

Are vanable naming conventions followed?

Is the proper explanatory comment included for each variabie?

v

DATA REFERENCE

Are there any unreferenced vanables?

Are there any references to unassigned vanables”

Are subscripts within range?

Are there off-by-one errors in subscript computations”?

B -

Figure B.2.5 Sample portton of code tnspection checklisi

o A cross-referencer is used to produce cross-reference lists of all identifiers used by a program This
itst 1s included with the source code listings for module inspectinns.

txample:

A careful examination of the cross-reference iisting of module ISSUE.-CHECK 1n ACCOUNTS.
PAYABLE during the code inspechion mdicated that two venables, PAYOUT ACCOUNT BAL
and PAYOUT-ACCT-BAL, were referenced The error wvas that PAYOUT - ACCQUNT BAL,
showid have heen coded "PAYQUT ACCT BAL

R

ey
)

N

UB 10i

~

5

8242 Medule Testing

An incremental, bottom-up testing strategy is used to test the AIMS modules. This involves
individually testing the lowest level modules; then combining and testing those modules with the higher
level modules which call them. The process continues until all modules are combined into the complete
system. Test drivers are written to control the testing of the individual modules. The test data used s that
created by design-based functional testing which were generated from analyses of the functional. structural
and interface specifications of the individual modules during detaiied design

VV&T Purpose: To reveal errors present in the individual modules.

VV&T Technique: A test coverage analyzer is used to supplement module testing. Each module to be
tested is instrumented to coliect execution frequency counts and then executed. The execution counts for
each statement are then listed with the corresponding statement by a post-execution routine. Untested or
poorly tested portions of the module can be identifed and additional test cases can be generated to test
thase specific segments

Example:

ACCOUNTS-PAYABLE processes claims transactions read from a file which contains a given day’s
claims. The module contains a check to verify that each record 1s indeed a claims transaction and, if
not, invokes an error handling routine which logs the error. Use of a test coverage analyzer showed
that this particular situation did not arise during testing of the module using the tests created during
detailed design. As a result, those tests are supplemented with invahd claims transactions and the
module retested. This. in turn, results in an error being revealed whereby the error handler responds
with an tncorrect output response.

B.24.3 Function Testing

Function testing of AIMS uses the test cases developed from requirements-based functional testing
during preliminary design to test the functional capabilities of the AIMS software.

VV&T Purpose: To reveal errors where the software fails to perform a function as specified in the
requirements.

Function testing 1s supplemented with the use of a file comparator. Associated with each of the
requirements-based functional test cases is the expected output. This ts stored on a file in the exact forma!
expected to be produced. When the AIMS software is tested. the resulting output 1s stored on a separate
file. A file comparator is used to detect automatically any discrepancies which may have occurred

Example:

In preparing the test cases for the New Chents report, a form is used which formats the expected
output data in accordance with the specification. Each report corresponding 1o a given test case Is
then stored on a file in the order in which the tests are 1o be executed. Tesung 1s then performed and
the actual output 15 compared to the expected output using a file comparator. The results show the
presence of two errors, 2 format error and a data output error. The format error 1< a misalignment
caused by incorrect spacing between output fields. The data output error is a missing agent same
which is to be printed with the agent number

B.3 EXAMPLE 2: Software Development Using a Comprehensive VV&T Approach

The comprehensive VV&T includes those technigues contained 1n the basic approach described earlier
as well as those described 1n this section The additional tools and the apphcable lifecvele phase are shown
below

o Preliminary Design

- Assertion generation
o Detailed Design

- Assertion generation

FIPS PUUB 10)

o Code

Interface checker

Dats flow analyzer
AsSertion processor
Standards analyzer
Requirements trace-back

Table B.2 Exampie 2.

<

Summary software development

using & comprehensive VV&T approach

|

Subphases ! Reguirements l Preluminary design Detailed design i Programming
— ! :
iMPUT ?’(Nn additions to ‘ s(No additional inputs) *Prelimimary design *Detaiied design
} basic approach) | document including document mcluding
! assertions assertions
- N
R [
OUTPLT is(No addivons to *Preliminary design *Detatled design »(No additional outputs)
. basic approach) document mcluding docuiment including
© assertions sbout the additiona} assertions
1 design
SUPPORTING i*(No adduions to | *Assertion generation * Assertion generation eInterface checker

TECHNOLOGY baswc approach)

*Data flow analyzer
* Assertion processor
»Standards analyzer
*Requirements traceback

ACTIVITIES {*(No additions to
basic approach)

*Design basic control
fiow

*Detailed module
design

*Code development
*Moduie testing

B.3.1

Requirements Subphase Activity Description

{No additions to basic approach.)

B.3.2 Preliminary Design Subphase Activity Description

VV&T Techmque:

Assertion generation is used to specify the desired functional properties of the

individual modules This s done by including in the module specifications input and, to the extent possible,

output assertions

Lxample:

Policy numbers are stored in the database in blocks of arrays where each block contains & fixed
number (n) of policy numbers (policy-num) and the address (policy-addr) of their associated client
records. Policy numbers are stored in the policy-num array in ascending order. A procedure, find-
policy, ts called to search the policy-num array for a supplied policy number and return the address
of its chent record. If the supplied policy number is not found an address of zero is returned. The
input and output assertions which capture the functional properues of find-policy are given below.

by /*assert input pohicy-num (1)< = num< = policy-num (m) */ and

2) /*assert tnput forall v in 1..n-1:policy-num (iy< = policy-num (i+ {) */

3} /*assert output (exists sn tin 1..n - num = policy-num (1)) */ or

4) /*assert output (add =0 and forall i in |...n:num

L)

policy-num (i)) */

BIPS #1317

8.3.3 Detailed Design Subphase Activity Description

YV&T Technique: Assertions are generated to include algorithmic detail in addition to input and
output spacifications of the functional properties of the individual modules.

Exaraple:

The example in the previous section describes the find-policy procedure and specifies the input and
output assertions associated with it. Shown in figure B.3.1 is the PDL for find-policy which is
implemented using a binary search algorithm.

The input and output assertions capture the functional properties of the procedure independent of the
algorithm used to implement the search. Assertions !, 2 and 3, however, capture conditions which
are very dependent upon the algorithm. Assertion | is always correct whenever num is in the
policy.num array. [f num is not in the array, assertion ! 1s violated the last time through the loop

{when high = low). This is an acceptable result, however, in that num should be s vahd policy
aumber.

SRS PUB 10

Find-policy:

IERPESHN s - xar nx .

/* searches sorted global array policy-num for
num (input argument) and, if

found, returns the associated policy-addr tn
addr (output argument) If

not found a zero is returned 1n addr */

/* assert imput policy-num (1)< = numC =
policy-num (n) */

/* assert input forall i in 1...n-}: policy-nur
(1)< = policy-nur (i1+1) */

set addr to 0
set low to |

set hngh_l_g n

do until high¢ low or num = policy-num (i)
(1) 7% assert l¢ = lowc = high< = n and policy-nue
(low)< = num<¢=

policy-num (high) */

set m to (low + high) /2

i__l: num:-pohcymum (1)

set high to m-

else 1f num) policy-num (i)

set Tow to m+i

else goto successful

enddo

/* unsuccessful */

(2) /* assert high = tow-1 and policy-nur (high)<
num¢< policy-num (low) */

’* assert output addr : O and forall i 1n
J. n: num = policy-nun {1) */

return

/*successful®/

set addr to policy-num (1)
(3) /* assert l¢ = lowe = mc = highe = n and nur -
po\xcy~Eﬁm (m) */ o

/® assert output exists t in .. .n: num -
policy-num (1) */ -

return

end find-policy:

Figure B.3.1 Detailed PDL with ASSERTIONS

B.3.4 Programming Subphase Activity Descriptions

B.3.41 Code Development

The code development activities described in earlier sections are supplemented in a full tool set
environment with an interface checker, data flow analyzer. and standards analyzer. These tools can be
separate bur are often included as capahilines provided bv a single tool. Thev are all static analysis
techmques and are therefore applied prior to software testing. The output resulting from each of the
capabilities 1+ inclouded with rthe mateniei {or the formal code inspectians.

14

T PUB O

VV&T Techniques:
o Interface checking 1s used to check the consistency of the interfaces between modules.

Example:

An error 15 detected between the module which reads client records for premium payment
processing and the “find-pohcy”™ module. It 1s an inconsistency in the type of the arguments for the
policy numbers. “Find-policy™ 1s being called with a policy number of type character where 1t should
be type integer

o Darta flow analysis 1s used 10 1dentify variable referencesdefinition anomahes.
Example:

When data flow analysis 1s performed on the module which updates the pavout account with a
premium payment. a reference 1o an unimnahzed vanable s noted The variable should contain the
current date and time and s used to update the date and ume of the last change 1o the pavout
account. A call to the routme which updates the time and date should be made prior to the reference

o Standards’ analyzers are used to ensure adherence to program coding and documentation standards.
One of the primary capabilities provided by most commonly available standards’ analyzers s the
notification of the use of nonstandard language features.

Example:

One of the requirements for the AIMS software is that 1t be portable. To assist in the development of
portable code, a COBOL standards’ analyzer s used. All places where a standards’ violation occurs
1s either changed or justified Even trivial nonstandard features such as the use of the abbrevianon
“"DISP” for “DISPLAY" are detected In addition. a variety of undesirable standard language
constructs such as the "ALTER™ statement and "NEXT SENTENCE" clause are detected with the
tool

o Requirements trace-back. via code to design and design to code is used to verify that the code
adheres to. and satisfies. the requirements as specified by the design Both missing code and extraneous
code may be discovered

Example.

One of the requirements for the client record for each policy holder 1 to contamn the number of
claims made on this policy During a trace of the design 1o the code. 11 1s found that no code exists to
keep track of the number of ciaims However, code is discovered that keeps irack of the number of
changes to the coverage

B 342 Module Testing

The module esting activities described i earlier secuons are supplemented with a dynamic assertions
processor This processor 15 generally included as part of a broader dynamic analysis (ool including, for
example, statement execution counts

VVET Techmigue Assertions processor A dvnamic assertions processor transiates assertions,
usuaiiv specified as part of the source program. into source language statements which check the vahdity of
the ascertion during program exccution Generaliy, when an asseruion s violated. an informauve message s
outpul

Example

Frgure B 22 shows a porton of a FORTRAN implementation of the find-policy routine from figure
HYl Al shown 1k an example of an assernon violaion message which was printed when the
sesertier o I LS o the program was violated (e falser duning nrogram eaccubon Subsequent
analssis of The probiem mdicated that the error was an meorrect codmg of ine D from the PDL

where HciH Shaootd b been setto M- not M-

A T 8 T L TR R T e cxmmi.imon. AR —— T P e Ce—— e = ‘1

14
15
16
17
18
16

20
21
22
23
24

100 TINUE
c* ASSERT(1 LE.LOW AN LOW.LE HIGH AND HIGH LE.N
c* AND POLNUM(LOW) LF il AND NUM LE. POLNIM(HIGH))

M- (LOW + HIGH)/2
IF (NUM LT. POLNUM(M)) THEN
HIGH - M < |
ELSE IF (NUM .GT. POLNUM(M)) THEN
LOW = M + |
ELSE
GO TO 200
ENDIF
IF(HIGK LE LOW AND NUM ME POLNUM({M)) 00 TO 100

***+ ASSERTION VIOLATION AT LINE 14 OF SUBROUTINE FNDPOL

CURRENT EXECUTION COUNT - 2
LOW = 1, HIGH = 65 N = 64, NV = 22707
POLNUMCLOW) = 16747, POLNUM(HIGH) = 36757

Figure B.3.2 Find-poiicy subroutine ang corresponding assertion violgtion message

i85 GOVERNMENT PRINTING OFFICE" 19B4-703-040/A1754

1S PUS 0!

N8S TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH —The Journal of Research of the
Nauona! Bureau of Standards reports NBS research and deveiop-
ment in those disciphines of the physicat und engineering sciences in
which the Bureau s active. These nclude physics, chemistry.
engineering, mathematics, and computer sciences Papers cover a
broad range of subjecis. with major emphasis on measuremen!
methodology #nd the basic lechnolagy underlying standardizathion
Also inciuded from Ume to time are survey arucles on 1opics
closely related 10 the Burcau's technical and scienufic programs
As a1 special service 10 subscribers each tssue contains compleic
cations 10 all recent Burcau pubhications in both NBS and non-
NBS media Issued six Limes a year Annual subscription domestic
$18. forcrgn $22 SO Single copy. §5 90 domestic, $6 ¥ foreign

NONPERIODICALS

Moacgraphs—Muajor coniributions 1o the technical biterature on
vanous subjects related to the Bureau's screntific and technical ac-
tvities

Handbooks — Recommended codes of engineering and indusirial
practice (including safety codes) developed sn cooperation with in-
terested indusinies prolessional organizanions. and regulaton
bodies

Special Publicatioms—Include proceedings of conferences spon-
sored by NBS. NBS unnual reports and olher special publications
appropriate 1o this grouping such as wall chans, pocket cards, and
bibhographies

Applied Mathematics Series— Mathemistical tables manuais. and
studies ol spectal interest 1o physicists, engineers. chemists
bologists, mathemanicians, computer programmers, and others
engaged ia screntific and technical work

National Standard Reference Data Series— Provides quantitanve
data on ihe physical ynd chemscal properties of materials, com-
pled from the world s literature and critically evalualed
Developed under o worldwide program coordinaied by NBS under
the authority of the Nauconal Standard Dats Act {Puhbc Law
90-19¢6)

NOTE The prncipal pubhcation outet for the foregoing data s
the fournal of Physical und Chenmical Reference Data (JPCRD)
pubiished quarteris for NBS by the American Chemical Society
{ACS) and the American Instbiiute of Physics (A1Pj Subscriptions
reprints. and supplements available trom ACS 1155 Sixteenth St

NW O Washingion OC 20056

Building Sciznct Serles—Disseminsies technical 1~ formation
developed at the Bureau on building materals. components
systems, and whole structures The series presents research results,
1esi methods, and performance criteria related to the structural and
cnvironmental lunctions and the durability and safety charac
tenrstics of building elements and systems

Technical Notes—Studies or reports which are compiete in them-
setves but restrictive an their treatment of a subgect Anatogous to
monographs bul not so comprehensive i scope or definitive 1n
treatment of the subject area Often serve as a vehicle for final
reports of work performed st NBS under the sponsorship of other
government agencies

Volustary Prodwt Siesdards—Deveioped under procedures
pubhished by the Department of Commerce in Part 10, Title 15, of
the Code of Federal Repulations The standards establish
nationally recogmzed requirements for products, and provide al!
concerned interests with a basis for common understanding of the
characterisucs of the products NBS administers this program as a
supplement 1o the acinines of the private sector standardizing
orgdnIzatiung

Consumer information Series—Pracuica! information. based on
NBS rescarch and experience, covering arcas of ynterest Lo the con
sumer btasily undersiandable language and sllustrabons provide
useful background knowiedge for shopping 10 today's tech
nological markeiplace

Order the above NBS publications jrom Supermiendeni o/ Docu-
ments Government Printing Office. Washmngion. DC 2040.
Ovrder the followiag ABS publications—FIPS and NBSIR i—from
the Natronal Technical information Service Springfield VA 22167

Federa! Informsation Processing Standards Publicatioms (FIPS
PUB—Publicohons sn this series collecuvely consutute the
Federsl Information Processing Standards Register. The Register
serves as the official source of tnformation 1n the Federal Govern-
ment regarding stundards issued by NBS purcuant (o the Federal
Property and Administrative Services Act of 1949 as amended.
Pubhic Law R9.306 (79 Stat 1127}, 4nd av impiemenied by Ex-
ecubive Order 117171 FR 1231< duted Mus 11 1973 and Part o
of Tate 18 CFR (Code of Federal Reguiations)

NBS interagency Reports (NBSIR i— A special series of intenm or
final reports on work performed by NBS ior outside sponsors
(bath gavernmen: and pon-governments tn general imtial dis
tribution 1 hundled by the sponsor pubhc distribution 15 by the
National Yechnicu! Informuiion Service | Spongfield. YA 2216
i paper copy 0r microfiche form

3. GEDARTMENT OF COMMERCE
National Technizal informatian Sarvice
POSTAGE AND FEES PAID

5285 Port Royal Rnad
Sprinifald, Virginia 22161 U.5. DEPARTMENT OF COMMERNCE
com-21

——— ¢ _renam

OFFICIAL BUSINESS 3rd Class Sulk Rate

