
Comparing Operating Systems Using Robustness Benchmarks

Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, Ted Marz
Carnegie Mellon University

Pittsburgh, Pennsylvania

Abstract
When creating mission-critical distributed systems using
off-the-shelf components, it is important to assess the de-
pendability of not only the hardware, but the software as
well. This paper proposes a way to test operating system
dependability. The concept of response regions is presented
as a way to visualize erroneous system behavior and gain
insight into failure mechanisms. A 5-point“CRASH” scale
is defined for grading the severity of robustness vulnerabili-
ties encountered. Test results from five operating systems
are analyzed for robustness vulnerabilities, and exhibit a
range of dependability. Robustness benchmarking com-
parisons of this type may provide important information to
both users and designers of off-the-shelf software for de-
pendable systems.

1. Introduction

Two forces are combining to promote increased use of
Commercial Off-The-Shelf (COTS) software components
in mission-critical distributed systems. First, inexpensive
standardized computers are assuming mission-critical roles
in an increasing number of embedded application areas as
they displace custom-designed electromechanical, digital,
and analog components. Second, a need for cost reduction
is pushing designers to use inexpensive, general-purpose
COTS software rather than custom-designed software for
mission-critical systems.

Most general-purpose applications seem to have little
demand for graceful and robust error recovery. In fact, it is
common for personal computer software to crash or “hang”,
requiring task restarts and even machine reboots. While
users may want more dependable general-purpose software,
they have not yet created a marketplace in which vendors
are compelled to provide it.

On the other hand, it is possible that widely deployed
COTS software has fewer bugs overall than custom
software due to corrective actions in response to bug reports
from the field. But, it seems likely that when a bug is
encountered the failure response is less graceful than in

software specifically designed to be dependable. A
significant challenge is to be able to use COTS software in
order to reduce cost while still maintaining system
dependability.

1.1. Is off-the-shelf software dependable?

An important issue when using COTS software is
whether its reliability and failure responses will be adequate
for a mission-critical application. One way to approach this
area is to focus on the operating system (OS), which is the
foundation upon which application software rests. Because
they serve a general-purpose and widely employed function,
OSs are obvious candidates for off-the-shelf component
acquisition. Furthermore, because of the widely installed
base and varied workloads of many OSs, it seems reasonable
to expect that they should have evolved to be fairly robust.
In particular, they have been subjected to a large amount of
ad-hoc testing by application developers who have both the
interest and technical expertise to submit bug reports. So,
one reason to look at OSs is that they may well represent a
fairly optimistic case of what one can expect in terms of
robust COTS software.

The work presented here employs a portable robustness
benchmarking methodology to assess the dependability of
COTS OSs. The focus is onrobustness gaps,which are
situations in which the OS fails to properly detect or contain
an exceptional condition. Because real-world application
software is seldom, if ever, bug-free, the emphasis here is
upon testing the robustness of an OS when application code
provides invalid inputs to it.

1.2. Portability permits comparisons

Comparisons are most readily performed when the
benchmark being used has a portable, high-level fault
injection mechanism. In order to attain this goal, it is
important to avoid use of special-purpose hardware or
platform-dependent software.

Previous work in Software-Implemented Fault Injection
(SWIFI) reduced or eliminated the need for special-purpose
hardware in order to perform fault injection (e.g.,FIAT [1],

PREPRINT

"...Robustness Benchmarks" 1 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

and FERRARI [2]). Unfortunately, these approaches were
still platform-specific, and thus did not provide an easy way
to compare the relative robustness of different systems.

The work presented in this paper achieves portability
among platforms. It does so by using the naturally provided
entry point into the system software — operating system
calls — rather than injecting faults into arbitrarily accessible
locations in the system. While this approach may be less
general than arbitrary fault injection, it has the advantage
of portability. Moreover, it exercises the same mechanism
for introducing exceptional inputs that real application
software uses — the OS call interface.

1.3. Overview

The remaining sections in this paper describe the
implementation and results of a set of portable robustness
benchmarks. Section 2 discusses the approach to portable
robustness benchmarks. Section 3 defines the five-point
CRASH robustness gap severity scale. Section 4 presents
the experimental results for five OSs: Mach, HP-UX, QNX,
LynxOS, and Stratus FTX. Section 5 introduces the concept
of response regions as a way to describe and visualize
robustness gaps.

2. Portable benchmarks

The robustness testing methodology used has its origins
in the work of Dingmanet al. [3], which performed
repeatable robustness testing on a special-purpose, fault
tolerant aerospace computer. In this methodology,
operating system calls were made with various
combinations of valid and invalid parameters. The resultant
stress on the OS revealed erroneous system responses,
including the ability to crash the entire system from within
user code.

This previous generation of robustness testing was
accomplished on a single system, and established the
viability of invalid value parameter testing as a way of
uncovering OS robustness gaps. The work presented here
extends that methodology to a set of portable robustness
benchmarks with metrics available to compare the
performance of different OSs.

2.1. Test case generation

The focus of the robustness testing presented here is on
use of operating system calls rather than user code. In order
to generate an exemplary workload, the most-used software
tools on a graduate student’s Unix workstation were
instrumented to count the dynamic frequency of operating
system service calls. The tools commonly used on that
workstation were exercised, including the EMACS Text

Editor, GNU C Compiler, GNU Debugger, Bitmap
X-Window image editor, and XV graphics file viewer. The
intent of the study was to create a reasonable workload for
testing purposes, rather than a comprehensive set of
execution frequency data. The results of the study were that
read(), write(), open(), close(), fstat(), stat(), and select()
were the system calls most frequently executed, and were
thus chosen as the area of concentration for the robustness
benchmarks. [4]

Each of the system calls selected for testing takes a set
of parameter values. These calls can be exercised by
selecting combinations of valid and invalid parameter
values for each test case. Table 1 shows the input
parameters required by each OS function tested. In the
portable robustness benchmarks, each parameter is tested
with several input values (Table 2). The parameter values
in Table 2 were chosen in order to exercise both plausible
bugs (e.g.,mismatch between file handle access request and
file access permissions) as well as exercise memory
protection mechanisms that might not be properly handled
(e.g., accessing a memory location beyond allocated
memory to trigger a page fault and corresponding protection
violation). The current values were chosen using intuition.
As time goes on experience will be used to build a larger
“library” of test case values for each parameter type.

Each block in Table 2 indicates a set of test cases for each
particular parameter type. All combinations of parameter
values are tested for each function, giving to up to several
hundred test cases. For example, read() is tested with all
combinations of: 7 different file handle test cases, 9 different
memory buffers, and 8 different lengths, for a total of 7x9x8
= 504 test cases. For read(), the first test case would be have
the value: {FILE HANDLE=handle for an existing file that
has been opened and then closed; BUFFER=buffer address

SYSTEM CALL # CASES PARAMETERS

read 504
FILE HANDLE
BUFFER
LENGTH

write 504
FILE HANDLE
BUFFER
LENGTH

open 495
FILE NAME
FILE ACCESS FLAG
FILE PERMIT MODE

close 7 FILE HANDLE

stat 81
FILE NAME
BUFFER

fstat 63
FILE HANDLE
BUFFER

Table 1. Parameters and number of combinations for a
total of 2059 system call tests.

PREPRINT

"...Robustness Benchmarks" 2 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

with 16 bytes allocated; LENGTH=read length of 1 byte}.
Testing the combinations of values is automatic. The total
of 2059 test cases for all functions takes less than an hour to
run, and is dominated by a conservative time-out value for
detecting task “hangs” that could be fine-tuned if execution
speed were to become an issue.

2.2. Benchmark structure

A benchmark system consists of two computers running
three processes (Figure 1). Neither specialized hardware
nor modifications to the OS are required for operation. The
Test Computer runs the OS being tested, a Benchmark
process, and a Starter process. The Monitor Computer runs
a Watchdog process in order to oversee operation of the Test
Computer.

The Starter task opens two socket communications
channels with the Watchdog (one for its own use, and one
for the Benchmark task to communicate results directly to
the Watchdog), and sends periodic “I’m Alive” health check

messages to the Watchdog task. Once the sockets are
functioning, the Starter starts the separate Benchmark
process. After the Benchmark is running, the Starter’s only
job is to continue sending health checks, and follow any
re-start instructions from the Watchdog. The Starter task is
used in order to conveniently re-start the Benchmark task
after it crashes. Additionally, loss of communication with
the Starter task indirectly informs the Watchdog task of any
Test Computer system crash.

The Benchmark task contains a number of tests to be
performed on a list of system calls as discussed in the
previous section. Each test consists of a selected OS call
and a set of parameters passed to that call. Upon completion
of each test, the resultant OS error (or success) code is
communicated to the Watchdog task for logging. The
Benchmark task can be restarted to resume testing anywhere
in the test list in order to recover from a task or system crash.

The Watchdog process tracks the status of the processes
executing on the Test Computer and logs all test results to

PARAMETER # VALUES

FILE
HANDLE

7

VALID FILE, CLOSED
VALID, OPEN FOR READ
VALID, OPEN FOR R/W
DELETED FILE
ALTERED FILE HANDLE
NULL
-1

BUFFER 9

START OF 16 BYTE BUFFER
START OF 4KB BUFFER
START OF 64KB BUFFER
32KB IN TO 64KB BUFFER
LAST IN 16 BYTE BUFFER
4KB BEYOND 4KB BUFFER
NULL
4K BUFFER FREE()�d

AFTER MALLOC()ing
-1

LENGTH 8

1
16
VIRTUAL MEM. PAGE SIZE
4 * VM PAGE SIZE
16 * VM PAGE SIZE
16 * VM PAGE SIZE + 1
0
-1

FILE
PERMIT
MODE

5

WRITE ONLY
READ ONLY
READ WRITE
READ WRITE EXECUTE
EXECUTE

PARAMETER # VALUES

TIMEOUT
VALUE

3
0
VALID TIMEOUT
-1

FILE NAME 9

VALID, NON-EXISTENT
INVALID � WHITE SPACE
INVALID � LEADING SPACE
VALID, CLOSED FILE
VALID, OPEN FOR READ
VALID, OPEN FOR R/W
VALID SYNTAX FOR

NON-EXISTENT DIR.
INVALID, NON-ASCII CHAR
NAME > 255 CHARACTERS

FILE
ACCESS

FLAG
11

O_RDONLY
O_RDONLY|O_CREAT
O_WRONLY
O_WRONLY|O_CREAT
O_RDWR
O_RDWR|O_CREAT
O_RDWR | O_CREAT |

O_TRUNC
O_RDONLY | O_WRONLY
O_TRUNC
O_CREAT
O_EXCL

R/W/E FILE
DESCRPT

3
NULL
VALID DESCRIPTOR
-1

Table 2. Parameters and values used for exhaustive testing.

PREPRINT

"...Robustness Benchmarks" 3 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

a file. When a benchmark task fails, the Watchdog
determines whether the task is active (and thus hung), or if
the task aborted. If the Benchmark task has aborted, a
message is sent to the Starter to restart it. If the Starter task
has also hung or aborted, the Test Computer is declared to
have suffered a system crash.

In the function calls tested, the return value is checked
by the Benchmark task to determine if it indicated the
occurrence of an error condition. If so, the error number
variable (errno) is queried to gain additional information.
For example, a read() call returns the number of bytes read,
zero if the end-of-file marker is reached, or -1 if an error
occurred. If read() call returns -1, theerrno variable is
queried to provide the error code.

3. A robustness gap severity scale

Applying the robustness benchmarks to several
machines resulted in a substantial number of failures during
execution. A failure was defined to be an incorrect
error/success return code, abnormal termination, or loss of
program control (i.e., a “hung” system). Each failure
revealed a robustness gap, in that the system failed to
respond correctly to a set of inputs.

While one might be tempted to analyze the exact root
cause of each failure in terms of a software defect in the OS,
it was decided to take a more pragmatic view. In particular,
it is uncommon for the user of an off-the-shelf OS to have
access to the OS source code. So, identifying the root cause
of a gap is of little practical interest for most users (as

opposed to OS developers, who presumably have access to
debugging tools and detailed implementation information).

Therefore the robustness benchmark results are reported
in terms of theeffect of the robustness gaps on the userrather
than the actual OS design defects contributing to any
particular robustness gap(s). It is possible that this approach
may emphasize the effects of a single design defect that is
widely manifested, such as a single failure to handle a
NULL pointer that is encountered in a large number of test
cases. However, it can be argued that the scope of the effect
of any defect is what is important to a user in any given
software release, not how simple it is for the vendor to fix
it.

3.1.CRASHscale categories

Once a user-centric view is taken, it is possible to group
robustness test failures according to the severity of the effect
on an end-use system. To this end, the results presented here
are given according to the 5-pointCRASHscale:

C - Catastrophic (OS crashes/multiple tasks affected)
R - Restart (task/process hangs, requiring restart)
A - Abort (task/process aborts,e.g.,segmentation

violation)
S - Silent (no error code returned when one should be)
H - Hindering (incorrect error code returned)
TheCatastrophic class of failure occurs when a failure

is not contained within a single task. In other words, this
level of failure means that a call to an OS function has
caused other tasks, or even the system itself, to crash or
hang. A Catastrophic failure typically requires a hardware
reset of the entire system, but may possibly be limited to a
warm restart of the OS. This class of failure is detected by
the robustness benchmarks when both the Benchmark and
Starter tasks become unresponsive to messages from the
Watchdog task.

The Restart class of failure occurs when a single task
hangs, resulting in the need to kill and restart that task to
return to normal execution. This class of failure is detected
by the robustness benchmarks when the Benchmark task
fails to respond to messages after a timeout interval, but is
still listed by the OS as an active task.

The Abort class of failure occurs when a single task
experiences an abnormal termination. A typical abnormal
termination is caused by a segmentation violation, in which
the task attempts to access memory to which it does not have
access permissions (for example, by dereferencing a null
pointer). Note that if an error takes place during an OS call
and the exception is handled appropriately by the OS before
control returns to user code, it is not user-visible, and thus
is not considered an Abort failure. An Abort failure only
takes place if the user’s task is aborted rather than having
an error code returned to it, which would greatly complicate

NETWORK

BENCHMARK

PROCESS

OPERATING
SYSTEM
UNDER
TEST

STARTER

PROCESS

TEST COMPUTER

WATCHDOG

PROCESS

MONITOR COMPUTER

Figure 1. The robustness benchmarks consist of three
tasks plus the operating system being tested,
run using two computers.

PREPRINT

"...Robustness Benchmarks" 4 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

having the user code react appropriately to the error
condition. This class of failure is detected by the robustness
benchmarks when the Benchmark task aborts.

The Silent class of failure occurs when invalid
parameters are submitted to an OS call, but neither an error
return code nor other task failure is generated. For example,
a call to open a file with a NULL filename might return a
success flag, instead of an error flag. This type of failure is
detected by locating successes in the testing log when error
return codes should have been generated.

The Hindering class is so named because the OS is
hindering correct diagnosis of a problem by providing an
incorrect error code. For example, an invalid memory
access code returned when the only erroneous input is an
invalid file handle value would be a hindering-class failure.
A Hindering-class failure could potentially cause incorrect
recovery action to be taken by the program, confounding
efforts to provide dependable service. In the case of
multiple invalid parameters, it is acceptable for any one of
a number of error codes to be returned; the Hindering failure
class is reserved for instances in which the error code lies
entirely outside the set of reasonable values. This type of
failure is detected by locating an incorrect return code in the
testing log.

3.2. Interpretation of severity

The actual severity of each class on the 5-point scale
depends on the application area. In a typical workstation
environment, the C-R-A-S-H ordering represents
decreasing order of severity in terms of operational impact
(i.e.,Catastrophic is the most severe, and Hindering the least
severe).

However, relative severity could vary depending on
one’s point of view. For example, software developers
might perceive Silent failures as a particular concern
because they indicate that an opportunity for software bug
detection has been missed. A missed software bug may lead
to an indirect error manifestation that is more difficult to
track down, or may leave a latent bug to crop up after the
software is fielded.

For fault-tolerant systems, the Restart, Silent, and some
Catastrophic failures may be of the most concern. This is
because fault-tolerant systems are typically constructed
with a fail-fast assumption. But, a Restart failure or hanging
types of Catastrophic failure would create an undetected
failure that persists for a period of time, rather than a fast,
overt system failure. Silent failures imply that software is
operating incorrectly with no indication of failure
whatsoever. Therefore, it is possible that a fault-tolerant OS
or system designer would be most interested in correcting
these types of failures.

The Silent class of failure presents an interpretation
problem. In an ideally robust system, access to even one
byte past the end of a data structure would generate a
hardware exception, which would be converted by the OS
into an error code. However, the reality of modern
hardware is that access protection is typically provided on
virtual memory page boundaries, and generally does not
detect overruns beyond data structure boundaries if the
resultant addresses are still within the valid data address
space. Even though such an access is an erroroneous
condition, it would be unreasonable to claim that failure to
detect it must be caused by a defect in the operating system.
Thus, only accesses to addresses 0 and -1 are considered
when counting Silent failures. Similarly, in cases such as
write() with a zero length parameter, invalid input
parameters may be legitimately ignored if tested before
other parameter values; these cases were left out when
counting Silent failures.

4. Experimental data

Table 3 summarizes the robustness benchmark data
collected for the Mach [5], HP-UX, QNX [6], LynxOS, and
the FTX OS used on Stratus high-availability computers.
The open() function was not testable under QNX due to lack
of compiler support for a particular variable argument C
function call form that was required by the test methodology
used.

4.1. Results

Of the five OSs tested (Table 3), all except FTX had
restart failures. While none of the data presented include
Catastrophic failures, such failures have been observed
previously. In particular, [3] reports a single Catastrophic
failure for a special-purpose computer. Furthermore, 92
instances of Catastrophic failures were observed in a version
of the Mach OS previous to the version reported here [4].
(The data presented in Table 3 are for the most recent
full-production OS versions available on the test computers
at the time of testing).

Two particular results illustrate the types of problems
that this testing brings to light. In the case of QNX, the large
number of abort failures is indicative of a product testing
approach that had not previously placed emphasis on
handling exceptional conditions, but rather looked upon
such problems as bugs in the application code [7] (which is
true from a certain point of view). In the case of FTX a
careful emphasis on testing both normal and exceptional
conditions seems to have resulted in substantially more
robust software. However, the presence of Silent failures
indicates that even the best current approaches to improving
software robustness do not guarantee perfect results (in fact,

PREPRINT

"...Robustness Benchmarks" 5 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

if Silent errors are of primary concern, then QNX performs
better than FTX.)

4.2. On comparing OS robustness

It is tempting, and traditional, to propose some sort of
weighted sum scheme in order to create a single benchmark
number. However, this is not done because different
consumers of the data may have significantly different
needs as discussed above. Instead, results are reported as a
6-element vector as in Table 3.

The rationale for reporting the vector according to the
CRASH categories is that it is hoped, over time, OS vendors
will improve their products so that they have zero defects at
the higher levels of the scale. Thus, as time goes on there
may be a comparison at the highest level of non-zero
failures. For example, with current technology it seems
useful to compare the number of Restart failures as an
important indicator of comparative robustness. In time, one
can hope that most OS vendors will eliminate Restart
failures. Thus, the next generation of comparisons might be
done at the level of reducing Abort failures.

There is certainly room for controversy in comparing the
number of observed failures rather than root cause bugs
according to benchmark results. For example, it may well
be that given the combinatorial nature of the testing
performed, a single software bug accounts for a large
number of failures. However, there are three responses to
this that seem compelling to users of COTS software:

� These results take the point of view of a user who wants
to evaluate the robustness of an OS before selecting it
for use, not an OS developer. It is of little relevance to
a user why the operating system is "broken." However,
it is (arguably) of much more importance to know how
many opportunities there are to encounter an OS
robustness gap. Thus, robustness gaps are counted in
terms of opportunities to elicit failure, not number of
root causes of failure.

� Even if OS source code is available, it may be difficult
to find root causes (the next section presents response
regions as a way to potentially gain insight, but this is
far from a definit ive technique). Thus, it is
impracticable to grade results according to root causes
without significant vendor cooperation, and certainly
cannot be automated for wide distribution.

� If a single OS defect is responsible for a large number
of robustness gaps, then the next release of the OS should
(if the defect is fixed) have a markedly better robustness
rating in return for minimal effort on the part of the
vendor. Thus, this approach does not permanently
penalize a vendor for having a defect that happens to
generate a large number of problems.

C R A S H

M
a
c
h

2
.6

F
T

X
L
y
n

x
O

S
2

.4
H

P
-U

X
1
0

.0
Q

N
X

4
.2

2

Table 3. Robustness Benchmark experiment results:
Mach 2.6 on DEC 5000/100; HP-UX 10.10 on HP
9000/series 750; QNX 4.22 on Pentium Pro;
LynxOS 2.4 on Pentium; FTX on Stratus.

PREPRINT

"...Robustness Benchmarks" 6 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

It seems reasonable, within the limits of the number of
functions tested and the test cases performed, to compare
operating systems in terms of the total number of robustness
gaps observed. At a higher level there is a binary
comparison made (e.g., an operating system that has no
Catastrophic robustness gaps is considered more robust than
one that has one or more Catastrophic robustness gaps). At
a more detailed level, a large difference in the number of
robustness gaps in a particular class may well indicate that
user code could experience a substantially different level of
dependability with respect to ideal OS exception handling.
It is recommended at this point that only large differences
in number of gaps found be considered significant when
comparing operating systems

5. Response regions

Whenever there are a number of robustness gaps found
with a particular system call, it is reasonable to ask whether
there is a pattern to the way the system responds to input
stimuli. In many cases a set of contiguous input data values
can tend to cause the same fault to produce multiple
failures.[8] In the past, the value ranges for which failures
occur have been
represented by error
crystals.[9]

The experimental
results presented here,
along with the
CRASH severity
scale, lead to an
extension of the error
crystal concept to
form response
regions. A response
region is a range of
input values for which
the same class of
robustness gap or
other failure response
prevails.

When a system call
is invoked, it produces
both a return value
and, if unsuccessful,
an error code. For the
purposes of this
discussion, this pair of
values is termed the
response of the system
call . Graphical ly
representing the
responses of the

fstat() RESPONSE REGIONS
FOR QNX 4.22

START OF 16 BYTE BUFFER
START OF 4KB BUFFER

START OF 64KB BUFFER
32KB IN TO 64KB BUFFER
LAST IN 16 BYTE BUFFER

4KB BEYOND 4KB BUFFER
NULL

4K FREE()'d AFTER MALLOC()ing
-1

C
LO

S
E

D
,V

A
LI

D
F

IL
E

O
P

E
N

, V
A

LI
D

F
O

R
R

E
A

D
O

P
E

N
, V

A
LI

D
R

/W
H

A
N

D
LE

T
O

D
E

LE
T

E
D

F
IL

E
A

LT
E

R
E

D
F

IL
E

H
A

N
D

LE
N

U
LL

-1

LEGEND:

BORT ROBUSTNESS BUG

CORRECT RESPONSE

A

FILE HANDLE

B
U

F
F

E
R

Figure 2. Response regions for fstat() system call on QNX
4.22. Abort robustness gaps occur in three
different File Handle cases.

write() RESPONSE REGIONS
FOR QNX 4.22

NULL FILE HANDLE

FILE HANDLES WITH NO FAILURES:
- VALID, FILE CLOSED
- DELETED FILE
- ALTERED FILE HANDLE
- -1

LEGEND:

ESTART ROBUSTNESS BUG

ILENT ROBUSTNESS BUG

CORRECT RESPONSE

R

S

FILE HANDLE

BUFFER

LENGTH

VALID OPEN FOR READ

VALID OPEN FOR R/W

Figure 3. Response regions for write() system call on QNX 4.22. Both Restart and Silent
robustness gaps occur in three different File Handle cases.

PREPRINT

"...Robustness Benchmarks" 7 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

system to a range ofn input parameters leads to a map of
response regions inn-dimensional space. The concept of a
response region is an extension of the error crystal concept
in that it illustrates not only the presence of a robustness gap,
but also the severity of the response for each response
region.

Figure 2 shows response regions for the fstat() system
call under QNX 4.22. While source code to QNX was not
available for inspection, one could speculate that Restart
gaps are encountered for NULL and -1 file buffer pointers
when accessing a valid and open file (the NULL file handle
corresponds tostdin). An example that shows multiple
response categories on the same response map is the
3-dimensional response for write() under QNX (Figure 3).
In Figure 3, some NULL and -1 buffer pointer inputs
produce Restart responses, while several other values and
value combinations produce Silent responses. Note that in
both Figures 2 and 3, a “correct” response includes both any
case where the system call returns an appropriate error code,
as well as an the return of an appropriate success flag, and
does not judge whether the execution of the function call is
in any other sense “correct.”

There are at least two uses for response regions.
Software maintainers may gain insight necessary for
correcting OS defects by examining response region maps.
For example, response to illegal buffer pointer values in
QNX could be investigated based on the information in
Figures 2 and 3.

A second use for response regions is to provide data for
encapsulating OS service calls to shield user programs from
incorrect responses. For example, under QNX the fstat()
routine could be called from user code through a wrapper
routine that first tests for NULL and -1 values in the buffer
pointer, then calls the OS version of fstat(). Such a wrapper
could return the correct error code instead of hanging when
incorrect buffer pointers are used, thus providing a fix for
the user until a future OS release corrects the root problem.

6. Conclusions

A set of portable robustness benchmarks has been
developed that exercise several OS calls with combinations
of valid and invalid input parameters. Results of
experiments on five different operating systems suggest that
significant failures in ability to gracefully and correctly
handle exceptional conditions are commonplace. This is
despite the fact that the operating systems tested are
considered to be mature, and some are currently being used
in safety- and mission-critical systems.

We are developing a portable robustness testing suite that
will empower users of off-the-shelf software to test their OS
of choice for vulnerabilities. Additionally, the 5-point
CRASHscale provides the ability to compare different OSs

at a high level, and may encourage competition among
vendors to improve the robustness of their products. While
the results presented here are not comprehensive in
coverage of OS functions, they are of sufficient scope to
demonstrate significant shortcomings in terms of failure
prevention and handling.

It is important to point out that this work does not
encompass all possible failure modes of an operating
system, such as failures that arise only under particular
timing conditions. However, it is a first step toward
building repeatable, portable tools for comparing the
robustness of offerings from different vendors.

7. Acknowledgments

This research was sponsored by: DARPA contract
DABT63-96-C-0064 (Ballista project), ONR contract
N00014-96-1-0202, and USDOT under Cooperative
Agreement Number DTFH61-94-X-00001 as part of the
National Automated Highway System Consortium.

8. References

1. Segall, Z.,et al., “FIAT - Fault Injection Based Automated
Testing Environment,” inProc. of the Eighteenth Intl. Symposium
on Fault Tolerant Computing, June 1988, pp. 102-107.

2. Kanawati, G.A., N.A. Kanawati, and J.A. Abraham,
“FERRARI: a tool for the validation of system dependability
properties.”1992 IEEE Workshop on Fault-Tolerant Parallel and
Distributed Systems. Amherst, MA, USA, July 1992

3. Dingman, C.P., J. Marshall, D.P. Siewiorek, “Measuring
Robustness of a Fault Tolerant Aerospace System,”Proc.
Twenty-fifth Intl. Symposium on Fault Tolerant Computing, June
1995, pp. 522-527.

4. Dingman, C.P.,Portable Robustness Benchmarks, Ph.D.
Thesis, Electrical and Computer Engineering Department,
Carnegie Mellon University, Pittsburgh, PA. May 1997.

5. Rashid, R., R. Baron, A. Forin, D. Golub, M. Jones, D. Julin,
D. Orr, and R. Sanzi, “Mach: A Foundation for Open Systems”,
Proc. Second Workshop Workstation Operating Systems,
September 1989.

6. QNX Operating System: system architecture guide, QNX
Corporation, http://www.qnx.com/docs/qnx/sysarch/index.html,
December 2, 1996.

7. Koopman, P.J., personal communications with QNX support
staff, December 4-10 1996.

8. Bishop, P.G. “The Variation of Software Survival Time for
Different Operational Input Profiles.”23rd International
Symposium on Fault-Tolerant Computing, pp. 98-107, 22-24 June
1993, Toulouse, France.

9. Finelli, G.B. “Results of Software Error-Data Experiments.”
AIAA/AHS/ASEE Aircraft Design, Systems and Operations
Conference. pp. 1-5. American Institute of Aeronautics and
Astronautics, Washington, D.C. 7-9 September 1988.

PREPRINT

"...Robustness Benchmarks" 8 Koopman, Sung, Dingman,
SRDS97 DRAFT - August 10, 1997 Siewiorek & Marz

