
1

Ballista Design and
Methodology

October 1997

Philip Koopman
Institute for Complex Engineered Systems

Carnegie Mellon University
Hamershlag Hall D-202
Pittsburgh, PA 15213
koopman@cmu.edu

(412) 268-5225

2

Ballista Design and Methodology
October 1997

Philip Koopman
Institute for Complex Engineered Systems
Carnegie Mellon University
Hamershlag Hall D-202
Pittsburgh, PA 15213
koopman@cmu.edu
(412) 268-5225

Abstract
This report serves as initial documentation of the design and methodology to be employed by Ballista,

an automatic robustness testing and hardening tool for Commercial Off-The-Shelf software components.
The Ballista architecture includes the following major components:

• Automatic testing of software modules determines whether they behave robustly in the face of
exceptional inputs.

• Characterization of response regions (behavior when presented exceptional input values) is performed
over the parameter input space. Initial heuristics for this characterization are presented here.

• Software wrapper routines are created to deflect any exceptional inputs that would, if uncaught,
produce a “crash” or “hang” of the application software component.

• A World Wide Web interface to users.

Introduction
Ballista is a project to automatically test commercial off-the-shelf (COTS) software for and harden

against robustness "bugs" (e.g., "hangs" and "crashes"). In particular, the emphasis is on proper detection
and handling of exceptional conditions so that their occurrence does not compromise the integrity of
system operation. Ballista is a three-year program started in October, 1996. This report serves as an
explanation of the preliminary design of the Ballista architecture at a point one year into the project.

Ballista will harden software components by exercising software modules with combinations of valid
and invalid inputs, then generating "wrapper" shells to filter dangerous inputs out before they reach the
encased software module. Ballista works solely at the module interface level; neither access to nor
modification of source code is required by our underlying approach. Additionally, functional specifications
are not required. Figure 1 shows a conceptual picture of the operation of Ballista.

3

Figure 1. Ballista creates a software wrapper that filters out exceptional inputs from COTS software modules.

Ballista Architecture
The Ballista architecture will, when completed, be able to harden software components submitted to a

World Wide Web site. In order to accomplish this, Ballista incorporates the following major components,
depicted in detail in Figure 2.

• Automatic testing of software modules determines whether they behave robustly in the face of
exceptional inputs.

• Characterization of response regions (behavior when presented exceptional input values) is performed
over the parameter input space. Initial heuristics for this characterization are presented here.

• Software wrapper routines are created to deflect any exceptional inputs that would, if uncaught,
produce a “crash” or “hang” of the application software component.

• A World Wide Web interface to users.

The following subsections detail the function of the various architectural components of Figure 2. The
module under test in Figure 2 indicates that a single software module having a parameter-list interface is
hardened by Ballista.

Robustness Testing
Robustness testing is automatically accomplished with software that generates test cases for the module

under test Ballista uses an object-oriented approach centered on the data types contained in the module
interface parameter list. The data type definitions are pre-defined data type information that provides
base test cases, information about how to conduct random tests, and templates for use in assertion
generation. Ballista comes pre-seeded with a variety of data type definitions in the form of an inheritance
hierarchy (e.g., “file pointer” inherits from data type “int” and “pointer to buffer area” inherits from
“generic pointer”). Thus, information from the interface declaration is provided in terms of defined data
types.

Base test cases consist of a set of manually-defined heuristics for testing a particular data type (the
heuristics are accumulated over the inheritance hierarchy for that data type). For example, NULL is a
value that heuristically is tested for all pointer values. These base test cases serve to find single-point
discontinuities in the module response space in an efficient and effective manner.

A random test capability is available to provide a randomly-distributed coverage of the module
response space. It generates test cases in a pseudo-random manner (and thus is repeatable by resetting the
pseudo-random generator seed), and provides starting points for the pattern recognizer to begin building
response regions.

4

PATTERN
RECOGNIZER/

HYPOTHESIZER

BUG REPORTS
&

TEST CASES

TESTING
SCENARIOS
REQUIRED?

TEST CASE
GENERATOR

RANDOM
TEST

CAPABILITY

DATA TYPE
DEFINITIONS

BASE
TEST CASES

(HEURISTICS)

USER
CODE

WEB
INTERFACE

INTERFACE
DECLARATION

TESTER
RESULT

MONITOR

WRAPPER
CREATION

MODULE
UNDER
TEST

ASSERTION
TEMPLATES

Ballista Architecture
October, 1997

7EB�)NTERFACE

2OBUSTNESS�4ESTING

2ESPONSE�2EGION�#HARACTERIZATION

7RAPPER�'ENERATION

Figure 2. The Ballista architecture includes robustness testing, response region characterization, wrapper
generation, and a World Wide Web interface.

The test case generator has two modes of operation. In open-loop mode it selects both base test cases
and a number of random test cases to test the module and report any robustness bugs found. In closed-
loop mode it interacts with the pattern recognizer to map response regions.

The tester is a test harness that executes the module under test with a particular test case. In
particular, the tester initializes any required data structures, executes the module under test, and then
erases any remaining data structures after the test.

Response Region Characterization
For each test case that the module under test executes, it either terminates gracefully or generates a

Catastrophic, Restart, or Abort failure (defined in [Koopman97]). The result monitor tracks the status of
the module under test and the computer system executing that module with a watchdog timer and task
status queries looking for crashes or hangs. Results with other than graceful behavior can be reported as
bugs, and are fed to the pattern recognizer.

The pattern recognizer/hypothesizer builds a map of the response regions (defined in [Koopman97])
of the module under test. It does so by using random and heuristic base test cases as a starting point to
provided seeded response values. It then builds upon these values by “growing” regions of valid,

5

Catastrophic, Restart, and Abort behaviors across the entire n-dimensional input parameter space.
Because it is in general impractical to test all values of inputs for any particular module, the pattern
recognizer uses statistical techniques to generate approximate response region maps. There is a tradeoff
between execution time and confidence level in the accuracy of the response regions.

In general it is not possible to guarantee 100% accuracy. However, the use of heuristic base cases
significantly reduces the likelihood of missing single-point discontinuities in the response space by
exploiting knowledge about common programming bugs and how they interact with hardware protection
mechanisms.

In order to keep the scope of this generation of Ballista technology tractable, the response region
characterization only considers “static” robustness gaps (i.e., it tests only inputs for a single function call,
and does not attempt to find faults in finite state machines or persistent variable values than may exist
within the module under test).

Wrapper Generation
Once a module has been tested and response regions have been characterized, a protective wrapper is

synthesized to protect the module. The protection will be done with multi-dimensional assertions, which
are executable statements that verify a parameter value is within acceptable ranges. Part of the data type
definitions include assertion templates, which are templates that contain information about how to build
assertions for a particular data type.

The wrapper creation function combines information about response regions with the assertion
templates for each data type used by the module under test. It collapses tests into efficient range-check
style assertions (as opposed to an exhaustive process that has a separate test for every possible input value,
which would obviously be to large or too slow to be useful). The wrapper creation function produces C
source code that compiled with or linked to the module under test to produce a hardened resultant module.
In other words, if the wrapper is called instead of the original module under test, the result will be more
robust in the face of exceptional input parameter values.

Web Interface
While the underlying Ballista technology does not require a web-based interface, the World Wide Web

is being used as the deployment vehicle for the current project. A high-level Web interface permits the
user to enter COTS component user code and a list of input parameter data types. If any supporting code
is required to set up a test scenario, the user provides that as well. (Ballista need not have access to
module-under-test source code; in fact it does not have such access in the operating system test
application. However, this access greatly simplifies compilation and execution and so is used as an
expedient for the current project).

Part of the information entered with the user code is information about the data types that form the
interface to the module (e.g., the first parameter might be a 32-bit integer while the second parameter
might be a pointer). This information is used to drive testing and hardening via the data type definition
information within Ballista.

Response Region Heuristics
The current test literature suggests that software bugs typically have relatively simple (e.g.,

[Beizer95], pp. 159-160). However, we found at least one response region space that seemed to have
complex structure as reported in [Koopman97]. In order to understand whether this poses a general
problem, we have explored other response regions. Our conclusion is that there seem to be many
functions with complex response regions, and that more than a simplistic single-variable approach is

6

called for in a significant number of cases. For example, Figure 3 shows a response region generated for
the function “fgets” on a Sparcstation.

Figure 3. The fgets() function on a Sparcstation displays non-trivial structure in response regions. Circles
represent Abort failures, while dots represent non-failure cases. The data are for various combinations of file
pointer, buffer area, and buffer size parameters, with axis values indicating which test number is used, not the actual
test value.

Given the potential complexity of response regions with respect to multi-dimensional data, we plan to
evaluate the ability of heuristics in defining contiguous response regions. The importance of heuristics
becomes even more important when large response areas are explored that are too large in size to be
exhaustively tested. In cases where the search space is intractable, sampling and pattern recognition
strategies will be applied as necessary.

Initial Response Region Heuristics
Below are the initial response region heuristics to be explored in the second year of the Ballista project.

Combinations of these heuristics will probably be necessary to achieve both efficiency and accuracy.

• Single-dimensional response. In some cases a single value of data on a single parameter will
produce a uniform response value. In Figure 3 this is represented by, for example, rows having all
dots or all circles for a particular file pointer value.

• 1.5-dimensional response. This case appears as horizontal or vertical “lines” of responses in Figure
3 that do not span the entire graph; for example the circles in a horizontal row for file pointer test

7

case 1. In this case one parameter is fixed to a set value, and a second parameter is varied over a
limited range of values.

• 2-dimensional response. This case appears as rectangular areas on the response region graph, and
may potentially encompass multiple single- and 1.5- dimensional areas. In 2-dimensional response a
subset of values for two input parameters encapsulate a response region.

• n-dimensional response. This is simply a generalization of 2-dimensional response. However, it
may be computationally intractable and therefore not used in most cases.

• Response region convex hull. A set of randomly generated response tests of the same value may be
encompassed using a convex hull algorithm. This can create a polygonal response region if that is
deemed more accurate than a rectilinear response region.

• Response region growing. An initial “seed” value is obtained by randomly selecting a set of input
parameters to test. Whatever response value is obtained is “grown” into a region by successively
testing adjacent points in the response points in a pattern to encompass an homogenous response
space. This heuristic may be used in conjunction with dimensional response determination by, for
example, using a computer graphics algorithm to locate the periphery of a rectangle given a single
point inside the rectangle. Note that both faulty and fault-free response regions can be grown in this
manner.

• Confidence assessment. A response region may be created without necessarily having sampled all
the interior points to be assured of homogeneity (in general, testing each point in the input space for
response characteristics will be prohibitively expensive in terms of execution time). Therefore
random or patterned points within a candidate response region may be tested to build confidence that
the interior points are in fact homogeneous.

• Discontinuity searches. The fact that not every point in a response space can be tested means that,
like any search strategy, response region determination will be vulnerable to missing single-point
discontinuities in the response space. This will be overcome to a degree by using hand-selected base
test cases to look for commonly occurring discontinuities. For example, NULL pointer values will be
tested, as will MAXINT for integer values.

Future Plans
In the second year of the project we plan to develop automated error response region consolidation

software in order to permit efficient screening of input parameters for potentially dangerous inputs (i.e.,
inputs that will crash the module to be hardened). We will also select a demonstration application
composed of many modules.

In the third year we plan to make the Ballista hardening service publicly available on this web site. The
effectiveness of Ballista will be quantified by comparing the system-level robustness of the selected
demonstration application both with and without module hardening.

References
[Beizer95] Beizer, B., Black-Box Testing, John Wiley & Sons, New York, 1995.

[Koopman97] Koopman, P., Sung, J., Dingman, C. & Siewiorek, D., “Comparing Operating Systems
using Robustness Benchmarks,” Symposium on Reliable Distributed Systems , October 1997.

Acknowledgement:
This research was sponsored by DARPA contract DABT63-96-C-0064 (the Ballista project).

