
Robustness Testing of a
Distributed Simulation Backplane

Kimberly M. Fernsler
IBM, Austin TX

kimfern@austin.ibm.com - (512) 733-5283

Philip Koopman
Carnegie Mellon University

koopman@cmu.edu - (412) 268-5225

http://www.ices.cmu.edu/koopman

,QVWLWXWH
IRU�&RPSOH[
(QJLQHHUHG
6\VWHPV

&Electrical Computer
ENGINEERING

Abstract
◆ This research is built upon and extends the Ballista project.

• High level testing done using the API to perform fault injection
– Send exceptional values into a system through the API

– Requires no modification to code -- only linkable object files needed

• Each test is a specific function call with a specific set of parameters

– Combinations of valid and invalid parameters tried in turn

◆ Yes, Ballista can be extended and it turned out to be easy!

◆ Applied Ballista to a general-purpose distributed system software
used for military simulations
• Specifically engineered for robustness

• They weren’t perfect -- but usually they weren’t too bad either

• Ballista found the weak spots that they should concentrate on (a
“profiling” tool for robustness!)

◆ Porting exception handling code seems to be a problem

Overview: Testing the RTI

A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.

◆ System Robustness
• Motivation

• Ballista Automatic Robustness Testing Tool

◆ Enhancements for RTI Testing
• Results of Ballista testing on 4 versions

of HLA RTI (86 functions)

• Data analysis of results (77,000 tests)

• Comparison to Operating Systems

• Segmentation faults vs. RTI
Internal Error exception

◆ Issues and Future Direction
• Extending Ballista to other application areas

• Creating a general-purpose, scalable testing framework

◆ Current Application: High-Level Architecture
Run-Time Infrastructure (HLA RTI)

Why do we care?

◆ Dozens of vendors, hundreds of users…can’t afford a system crash

System Robustness
◆ Graceful behavior in the presence of exceptional conditions

• Unexpected operating conditions

• Activation of latent design defects

◆ Robustness definition also includes operation in overloads
• Not in current research, but is set as an eventual goal

• We conjecture overload robustness also hinges on exception handling

◆ Our research goal: improved system robustness

Background and Related Work

◆ Predecessors include:
• FIAT

• Crashme

• FAUST

• Fuzz

• FERRARI

• FTAPE

• CMU-Crashme

◆ Previous Ballista Work: Testing POSIX Operating Systems

◆ Questions left unanswered:
• Ballista worked on OS testing – would it work at all elsewhere?

• How painful would it be to test Object-Oriented, C++ code with
callbacks?

• Are non-OS APIs/architectures be better suited to robust implementations?

◆ Ballista gets its roots from both the Software Testing and Fault-
Injection communities.

RTI - Some Terms

◆ HLA: a general-purpose architecture for
creating distributed simulations

◆ RTI: the RTI software is the actual
implementation of services to coordinate
operations and data exchange during a
runtime execution

◆ Federation: a set of simulations and supporting RTI that are used together
to form a larger model or simulation

◆ Federate: a member of a federation; one simulation

• Could represent one platform, like a cockpit simulator

• Could represent an aggregate, like an entire national simulation of air
traffic flow

◆ Federation Execution: a session of a federation executing together

Ballista Scalable Test Generation

BOOL_ZERO
BOOL_ONE
BOOL_TWO
BOOL_THREE
BOOL_FOUR
BOOL_FIVE
BOOL_SIX
BOOL_SEVEN
BOOL_EIGHT
BOOL_NINE
BOOL_TEN
BOOL_NEG_ONE

AHS_VALID
AHS_NO_CREATE
AHS_CREATE_ONE
AHS_CREATE_ALOT
AHS_CREATE_NEG
AHS_DELETE
AHS_MEMB_EMPTY

INT_SAMPLE
INT_ZERO
INT_ONE
INT_TWO
INT_FOUR
INT_15
...
INT_129
INT_255
INT_257
INT_2POW31
INT2POW31_1
INT_NEG_ONE

rtiAmb.subscribeObjectClassAttributes(
ObjectClassHandle theClass,

AttributeHandleSet& theAttributes,
Boolean active)

RTI::Ulong
TEST OBJECT

RTI::AttributeHandleSet
TEST OBJECT

RTI::Boolean
TEST OBJECT

rtiAmb.subscribeObjectClassAttributes(
INT_2POW31, AHS_NO_CREATE, BOOL_ZERO)TEST CASE

API

TEST
VALUES

TESTING
OBJECTS

RTI Testing Approach
For every test run, the following steps

were performed:

1. Ensure that the RTI server (RtiExec) is
running

2. Create a federation:
Registers task with the RtiExec and
starts up FedExec process

3. Join the federation:
Testing task is a federate

4. Perform “scaffolding” setup functions
5. Test the actual function
6. Free any memory allocated by the setup

functions
7. Resign from the joined federation
8. Destroy the federation:

De-register from the RtiExec
9. Shut down the RtiExec if last test or

error occurred

Federate

libRTI

Federate

libRTI

RTIExec FedExec

Inter-Process Communication

...
RTI Components

RTI Provided

Federate Provided

Enhancing Ballista for RTI - Obstacles
◆ Exception based error reporting models

• Previous Ballista testing - any call which resulted in a signal being thrown
was considered a robustness failure

• The RTI throws an RTI-defined exception (rather than using the POSIX
strategy of return codes).

◆ RTI is a distributed system
• Certain amount of setup code must be executed to set the state before a test
• In the OS testing all such “scaffolding” was incorporated into constructors

and destructors for each test value instance
– e.g., creating a file for a read or write operation

• In the RTI there were some function-specific operations required to create
reasonable test starting points

• Distinct scaffolding required to test each and every RTI function?

◆ Testing object-oriented software structures
• Callbacks, passing objects by reference, class data types, and constructors

Enhancing Ballista for RTI - Solutions
◆ In general, the solutions turned out to be simpler than anticipated:

• Exception based error reporting models:
– Included user-defined exception handling code in the general Ballista testing

harness.

– Any user-defined, “thrown” exception was considered a “pass”…
… except for the “unknown” RTI exception, which indicated an internal RTI
exception handling software defect.

• User-configurable test scaffolding code:
– Used for clean setup and shutdown of the RTI environment

– Only 10 different scaffolding code variants sufficed for 86 functions

– Amount of code and development effort was relatively small

• Object-oriented software structures:
– Ballista framework is flexible enough to support callbacks, passing objects by

reference, class data types, and constructors – with only minor syntax changes

Evaluating Test Results
◆ The results for RTI testing fall into the following categories, loosely

ranked from best to worst in terms of robustness:

Pass
Function call executed and returned normally, no
indication of error

Valid, HLA-defined exception was thrown, indicating a
gracefully caught and handled exceptional condition

RTI encountered a supposedly impossible error
condition, RTI managed to free memory and resign from
the federation cleanly

Unknown exception was thrown & caught internally to
the RTI by a catch-all condition (as opposed to a
hardware signal)

Error occurred that was not caught, code exited
immediately (“core dump”), no memory cleanup,
required manual restart of federation

The function call did not return after an ample period of
time (a “hang”)

System was left in a state requiring rebooting the
operating system to resume testing

Pass with
Exception

Unknown
Exception

RTI Internal
Error

exception

Abort

Restart

Catastrophic

Robustness Failures of RTI 1.0.3

100%

50%

0%P
er

 F
u

n
ct

io
n

 F
ai

lu
re

 R
at

e

RTI Functions

Digital
Unix

◆ Testing was performed on 4 different versions of the RTI
• RTI 1.0.3 for Digital Unix 4.0 RTI 1.3.5 for Digital Unix 4.0

• RTI 1.3.5 for SunOS 5.6 RTI 1.3 NG for SunOS 5.6

◆ Over 77,000 data points collected
• RTI developers’ goal was ZERO Aborts and ZERO RTI Internal Errors.

Restart
Abort
Unknown exception
RTI Internal Error exception

RTI 1.3.5 Failures - Different Platforms
100%

100%

50%

50%

0%

0%

P
er

 F
u

n
ct

io
n

 F
ai

lu
re

 R
at

e

RTI Functions

SunOS

Digital
Unix

Restart
Abort
Unknown exception
RTI Internal Error exception

HW Signal vs. RTI Internal Error
◆ Robustness failure rates from both RTI 1.3.5 versions are

essentially the same

◆ BUT, different manifestations of robustness failures:
• SunOS port - any unanticipated signal apparently leaked through and was

seen as a segmentation fault
– Code immediately aborts – no graceful shutdown

– Could significantly disrupt the currently running federation execution
– Other federates will not be informed properly that one federate has left

– What will happen to the data that federate was sharing?

– What are the consequent effects on the rest of the distributed simulation?

• Digital Unix port - unanticipated signal was caught and converted to an
RTI Internal Error

– This allows recovery and cleanup; code is not aborted

◆ Illustrates possible problems in porting robust applications across
platforms with different exception handling support.

Same Platform, Different Design Teams

100%

50%

0%

P
er

 F
u

n
ct

io
n

 F
ai

lu
re

 R
at

e

RTI Functions

100%

50%

0%

RTI 1.3 NG

RTI 1.3.5
SunOS

SunOS

XX

Restart
Abort
Unknown exception
RTI Internal Error exception

Some Interesting Robustness Failures
◆ Client process randomly crashing through an RTI 1.0.3 service function

call, requiring machine reboot to continue testing

◆ RTI 1.3.5 Digital Unix port - one test Aborted after producing:
“Exception system exiting dues [sic] to multiple internal errors:

exception dispatch or unwind stuck in infinite loop
exception dispatch or unwind stuck in infinite loop”.

◆ RTI 1.3.5 SunOS port – one Abort failure resulted in a “zombie” federate
each time it occurred

◆ RTI 1.3.5 SunOS port – one Abort terminated after displaying:
“Run-time exception error; current exception: RTI internal error

Unexpected exception thrown.”

• Appears to indicate an incomplete implementation of an RTI Internal Error

Normalized Failure Rates
◆ Directly measured robustness failure rates:

• RTI 1.0.3 for Digital Unix: 6.41%

• RTI 1.3.5 for Digital Unix: 10.20%

• RTI 1.3.5 for SunOS: 10.05%

• RTI 1.3 NG for SunOS: 8.44%

• Computed by:
– Determining the proportion of robustness failures across tests for each

function within each system being tested

– Producing a uniformly weighted average across all the functions

◆ Operational Profiling
• Test with a specific simulation program running

• Weightings would be used to reflect the dynamic frequency of calling
each function to give an exposure metric that is potentially more accurate

• Common-sense check on these results shows that functions with high
robustness failure rates do in fact include commonly used features

Comparison to OS Results
Comparing Ballista Robustness Results of

RTI with Typical Operating Systems

0% 5% 10% 15% 20% 25%

Typical Operating Systems

RTI 1.0.3 for Digital Unix

RTI 1.3.5 for Digital Unix

RTI 1.3.5 for Sun OS

RTI 1.3NG for SunOS

Robustness Failure rates

◆ RTI is more robust than POSIX operating systems
• RTI robustness = 6.4%- 10.2%
• POSIX OS robustness = 10.0%- 22.7%

◆ This was expected – RTI was designed specifically to be robust
• Fewer Catastrophic and Restart Failures as well

◆ Newer software version does not necessarily indicate increased
robustness (as seen with OS results)

Future Work
◆ Working to make Ballista part of the standard verification suite

for RTI development

◆ Explore issues of concurrent testing to find potentially more subtle
bugs related to timing and resource sharing

◆ Pattern analysis software for better test selection & result analysis

◆ Generalized testing now available as WWW testing service
• http://www.ices.cmu.edu/ballista

Conclusions
◆ Ballista robustness testing approach

• Scalable, portable, reproducible
• Demonstrated to find exception handling problems in software specifically written to

be highly robust

◆ Testing the RTI led to scalable extensions of the Ballista
architecture
• Exception-based error reporting models
• Object-oriented software structures (callbacks, pass by reference, constructors)
• Operating in a state-rich, distributed system environment

- All were easily integrated into the existing Ballista framework!

◆ As expected, RTI is much more robust than POSIX
operating systems. BUT several weak spots found:
• Non-robust testing responses included exception handling errors, hardware

segmentation violations, "unknown" exceptions, and task hangs.
• Difficulties in providing comparable exception handling coverage across platforms
• Results illustrate common robustness failures that programmers can overlook

