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Abstract
Creating robust software requires not only careful

specification and implementation, but also quantitative
measurement. This paper describes Ballista exception
handling testing of the High Level Architecture Run-
Time Infrastructure (HLA RTI).  The RTI is a standard
distributed simulation system intended to provide com-
pletely robust exception handling, yet implementations
have normalized robustness failure rates as high as
10%.  Non-robust testing responses include exception
handler crashes, segmentation violations, "unknown"
exceptions, and task hangs.  Other issues include differ-
ent robustness failure modes across ports to two operat-
ing systems, and mandatory client machine rebooting
after a particular RTI failure.  Testing the RTI led to
scalable extensions of the Ballista architecture for han-
dling exception-based error reporting models, testing
object-oriented software structures (including call-
backs, pass by reference, and constructors), and oper-
ating in a state-rich, distributed system environment.
These results demonstrate that robustness testing can
provide useful feedback to high-quality software devel-
opment processes, and can be applied to domains well
beyond the previous work on testing operating systems.

1.  Introduction

Robustness in software is becoming essential as crit-
ical computer systems increasingly pervade our daily
lives.  It is not uncommon (and although annoying, usu-
ally not catastrophic) for desktop computing applica-
tions to crash on occasion.  However, as more and more
software applications become essential to the everyday
functioning of our society, we are entering an era in
which software crashes are becoming unacceptable in
an increasing number of application areas.

Careful specification and implementation are
required to create robust software (i.e., software that
responds gracefully to overload and exception condi-
tions [11]).  In particular, it is thought by some that
exception handling is a significant source of operational
software failures [3].  However, cost, time, and staffing
constraints often limit software testing to the important
area of functional correctness, while leaving few
resources to determine a software system’s robustness
in the face of exceptional conditions.

The Ballista software robustness testing service pro-
vides a way for software modules to be automatically
tested and characterized for robustness failures caused
by exception handling failures.  This service provides a
direct, repeatable, quantitative method to evaluate a
software system’s robustness.  Ballista works by per-
forming tests on the software based on traditional
“black box” testing techniques (i.e., behavioral rather
than structural testing) to measure a system’s responses
when encountering exceptional parameter values (over-
load/stress testing is planned as future work).  Previ-
ously the focus of Ballista was on testing the robustness
of several implementations of the POSIX [12] operat-
ing system C language Application Programming Inter-
face (API), and found a variety of robustness failures
that included repeatable, complete system crashes that
could be caused by a single line of source code [15].

This paper explores whether the Ballista testing
approach works on an application area that is signifi-
cantly different than an operating system API, testing
the hypothesis that Ballista is a general-purpose testing
approach that is scalable across multiple domains.  The
new application area selected for testing is the Depart-
ment of Defense’s High Level Architecture Run-Time
Infrastructure (HLA RTI).  The RTI  is a general-pur-
pose simulation backplane system used for distributed
military simulations, and is specifically designed for
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robust exception handling.  The RTI was chosen as the
next step in the development of Ballista because it not
only has a significantly different implementation style
than a C-language operating system API, but also
because it has been intentionally designed to be very
robust, and should ideally have no robustness failures.
HLA has been designed to be part of a DoD-wide effort
to establish a common technical framework to facilitate
the interoperability and reuse of all types of models and
simulations, and represents the highest priority effort
within the DoD modeling and simulation community
[4].  Because RTI applications are envisioned to consist
of large numbers of software modules integrated from
many different vendors, robust operation is a key con-
cern.

Testing the RTI involved stretching the Ballista
architecture to address exception-based error reporting
models, test object-oriented software structures (includ-
ing callbacks), incorporate necessary state-setting
“scaffolding” code, and operate in a state-rich distrib-
uted system environment.  Yet, this expansion of capa-
bilities was accomplished with minimal changes to the
base Ballista architecture.

Beyond demonstrating that the Ballista approach
applies to more than one domain, the results of RTI test-
ing themselves yield insights into the types of problems
that can occur even with an application designed to be
highly robust.  Testing the RTI revealed a significant
number of  unhandled exception conditions, unintended
exceptions, and processes that can be made to “hang” in
the RTI.  Additionally, problems were revealed in pro-
viding equivalent exception handling support when the
RTI was ported to multiple platforms, potentially
undermining attempts to design robust, portable appli-
cation programs.

In the remainder of this paper, Section 2 discusses
how Ballista works and what extensions were required
to address the needs of RTI testing. Section 3 presents
the experimental methodology.  Section 4 presents the
testing results, and Section 5 provides conclusions and
a discussion of future work.

2.  Extending Ballista for RTI testing

Ballista testing works by bombarding a software
module with combinations of exceptional and accept-
able input values. The reaction of the system is mea-
sured for either catastrophic failure (generally
involving a machine reboot), a task “hang” (detected by
a timer), or a task “abort” (detected by observing that a
process terminates abnormally). The current implemen-
tation of Ballista draws upon lists of heuristic test val-
ues for each data type in a function call parameter list,

and executes combinations of these values for testing
purposes.  In each test case, the function call under test
is called a single time to determine whether it is robust
when called with a particular set of parameter values.

2.1.  Prior work

The Ballista testing framework is based on several
generations of previous work in both the software test-
ing and fault-tolerance communities.  The Crashme
program and the University of Wisconsin Fuzz project
are both prior examples of automated robustness test-
ing.  Crashme works by writing random data values to
memory and then attempts to execute them as code by
spawning a large number of concurrent processes [2].
The Fuzz project injects random noise (or “fuzz”) into
specific elements of an OS interface [16].  Both meth-
ods find robustness problems in operating systems,
although they are not specifically designed for a high
degree of repeatability, and Crashme in particular is not
generally applicable for testing software other than
operating systems.

Approaches to robustness testing in the fault toler-
ance community are usually based on fault injection
techniques, and include Fiat, FTAPE, and Ferrari.  The
Fiat system modifies the binary image of a process in
memory [1].  Ferrari, on the other hand, uses software
traps to simulate specific hardware level faults, such as
errors in data or address lines [13].  FTAPE uses hard-
ware-dependent device drivers to inject faults into a
system running with a random load generator [21].
These approaches have produced useful results, but
were not intended to provide a scalable, portable quan-
tification of robustness for software modules.

There are several commercial tools such as Purify
[20], Insure++ [19], and BoundsChecker [18] that test
for robustness problems by instrumenting software and
monitoring execution.  They work by detecting excep-
tions that arise during development testing of the soft-
ware.  However, they are not able to find robustness
failures in situations that are not tested.  Additionally,
they require access to source code, which is not neces-
sarily available.  In contrast, Ballista testing works by
sending selected exceptional and acceptable input com-
binations directly into already-compiled software mod-
ules at the module testing level.  Thus, Ballista is
different from (and potentially complementary to)
instrumentation-based robustness improvement tools.

The Ballista approach has been used to compare the
robustness of off-the-shelf operating system robustness
by automatically testing each of 15 different implemen-
tations of the POSIX[12] operating system application
programming interface (API). The results demonstrated
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that there is significant opportunity for increasing
robustness within current operating systems [22].
Questions left unanswered from the operating system
studies were whether other APIs might be better suited
to robust implementations, and whether the Ballista
approach would work well in other application
domains.  This paper describes progress in answering
those questions.

2.2.  General Ballista robustness testing

Ballista actively seeks out robustness failures by
generating combinational tests of valid and invalid
parameter values for system calls and functions.  Rather
than base testing on the behavioral specification of the
function, Ballista instead uses only data type informa-
tion to generate test cases.  Because in many APIs there
are fewer distinct data types than functions, this
approach tends to scale test development costs sub-lin-
early with the number of functions to be tested.  Addi-
tionally, an inheritance approach permits reusing test
cases from one application area to another.

As an example of Ballista operation, Figure 1 shows
the actual test values used to test the RTI function
rtiAmb.subscribeObjectClassAtributes ,
which takes parameters specifying an RTI::-
ObjectClassHandle
(which is type-defined to be
an RTI::ULong ), an
RTI::AttributeHan-
dleSet , and an
RTI::Boolean .  The fact
that this particular RTI func-
tion takes three parameters
of three different data types
leads Ballista to draw test
values from three separate
test objects, each estab-
lished for one of the three
data types.  For complete
testing, all combinations of
test values are used, in this
case yielding 25 ULongs *
14 AttributeHandleSets * 12
Booleans = 4200 tests for
this function (statistical
sampling of combinations
can be used for very large
test sets, and has been found
to be reasonably accurate in
finding failure rates com-
pared to exhaustive testing).

A robustness failure is defined within the context of
Ballista to be a test case which, when executed, pro-
duces a non-robust reaction such as a “hang”, a core
dump, or generation of an illegal/undefined exception
within the software being tested.  In general, this corre-
sponds to an implicit functional specification for all
software modules being tested of “doesn’t crash the
computer, doesn’t hang, and doesn’t abnormally termi-
nate.”  This very general functional specification is the
key to minimizing the need for per-function test devel-
opment effort, because all functions are considered to
have a single identical functional specification -- the
actual computation performed by any particular func-
tion is ignored for robustness testing purposes.

2.3.  Enhancements for RTI testing

The previously tested POSIX operating systems rep-
resent only a small fraction of the types and variations
of COTS software that could potentially benefit from
robustness testing.  So, a big question in the past has
been whether a testing methodology initially developed
using an example application of operating system test-
ing would actually work in a different domain.  Testing
the RTI with Ballista did in fact require extensions to
incorporate exception-based error reporting models,

Figure 1.  A Ballista example RTI test case for a function that allows
the federate to subscribe to a set of object attributes.
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testing object-oriented software structures (including
callbacks, passing objects by reference, class data
types, private class member data, and constructors),
addition of test scaffolding code, and operating with a
state-rich, distributed software framework.

 In previous Ballista testing, any call which resulted
in a signal being thrown was considered a robustness
failure by the test harness.  However, the RTI throws an
RTI-defined exception rather than using the POSIX
strategy of return codes.  This was readily accommo-
dated by including user-defined exception handling
code in the general Ballista testing harness.  Thus, any
user-defined exception was considered a “pass” except
for the “unknown” RTI exception, which indicated an
internal RTI exception handling software defect.

Because the RTI is a distributed system, a certain
amount of setup code must be executed to set the dis-
tributed system state before a test can be executed.
While in the operating system testing all such “scaffold-
ing” was incorporated into constructors and destructors
for each test value instance (such as creating a file for a
read or write operation), in the RTI there were some
function-specific operations required to create reason-
able test starting points.  While at first it seemed that
distinct scaffolding would be required to test each and
every RTI function, it turned out that we were able to
group the RTI functions into 10 equivalence classes,
with each class able to share the same test scaffolding
code.  This was incorporated into Ballista by inserting
optional user-configurable setup and shutdown code to
be applied before and after each test case, enabling
clean set up and shutdown of the RTI environment for
each specific test performed.  Thus, while scaffolding
code was required for testing the RTI, the amount of
code and development effort was relatively small.

The RTI specification requires that some RTI func-
tion calls be able to support a defined callback function.
In a typical RTI simulation execution, there are many
other simulation processes which need to communicate
and share data with each other.  Testing the RTI showed
that the Ballista framework is flexible enough to sup-
port the RTI callbacks with essentially no changes.

 In addition, the RTI contains object oriented fea-
tures such as passing by reference, user-defined class
data types, constructors, and private class member data.
In general these were handled in relatively simple ways
requiring little or no change to the test harness. Perhaps
the most difficult situation that arose was how to test a
function that took a pass-by-reference parameter of a
class rather than an actual object.  This problem was
resolved by creating a pointer to the class as the data
type, and modifying Ballista slightly to accommodate
the syntax for pointers in its test definition language.  In

general, all the problems that had previously seemed to
be large obstacles by the development team and exter-
nal reviewers alike compared to testing operating sys-
tems were resolved with similarly trivial adjustments to
the testing system.

3.  Experimental methodology

The current Ballista implementation uses a portable
testing client that is downloaded and run on a devel-
oper’s machine along with the module under test.  The
client connects to the Ballista testing server at Carnegie
Mellon that directs the client’s testing of the module
under test.  This service allows software modules to be
automatically and rapidly tested and characterized for
robustness failures, and was particularly useful for test-
ing RTI robustness on multiple platforms.  Testing the
RTI on Digital Unix and SunOS only required recom-
piling the small Ballista client on each target machine,
avoiding the need to port the server-side software.

3.1.  Interfacing to the RTI for testing 

The HLA is a general-purpose architecture designed
to provide a common technical framework to facilitate
the reuse and interoperability of all types of software
models and simulations.  A simulation or set of simula-
tions developed for one purpose can be applied to a dif-
ferent application under the HLA concept of the
federation: a composable set of interacting simulations.
While the HLA is the architecture, the RTI software is
the actual implementation of federate services to coor-

Figure 2. The HLA services are performed
via communication between the 2 RTI pro-
cesses, RtiExec and FedExec, and the feder-
ates (simulation programs). 
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dinate operations and data exchange during a runtime
execution. 

RTI is a distributed system (Figure 2) that includes
two global processes, the RTI Executive (RtiExec) and
the Federation Executive (FedExec).  The RtiExec’s
primary purpose is to manage the creation and destruc-
tion of federation executions.  A FedExec is created for
each federation to manage the joining and resigning of
federates and perform distribution of reliable updates,
interactions, and all RTI internal control messages.  The
Library (libRTI) implements the HLA API used by C++
programs, and is linked into each federate, with each
federate potentially executing on a separate hardware
platform.

3.2.  RTI testing approach

A typical RTI function performs some type of data
management operation involving either an object, own-
ership of that object, distribution of an object, a declara-
tion, time management, or management of the
federation itself.  These function calls typically use
complex structures as parameters, making testing the
RTI functions more complex than simple operating sys-
tem calls.  Testing the RTI function calls involves creat-
ing a very simple application composed of a federation
containing only one federate that is linked, along with
the RTI libraries, to the Ballista testing client.  But, set-
ting up even this relatively simple system required cre-
ating a federation, creating a federate, having the
federate join the federation, and so on.  In fact, for
every test run on every RTI function call, it was neces-
sary to go through the following nine steps:
1. Ensure that the RTI server (RtiExec) was running
2. Create a federation: registers task with the RtiExec

and starts up the FedExec process
3. Join the federation (testing task is a federate)
4. Perform “scaffolding” setup functions
5. Test the actual function
6. Free any memory allocated by the setup functions
7. Resign from the joined federation
8. Destroy federation to de-register from the RtiExec
9. Shut down the RtiExec if last test or error occurred

3.3.   Evaluating test results

Ballista tests robustness under exceptional condi-
tions, and is not concerned with whether the result of a
function is “correct” (except insofar as the result should
be a graceful response to an exceptional situation).

As part of the adaptations for testing the RTI, the
previously used “CRASH” scale [15] had to be modi-
fied to account for the fact that the RTI API uses excep-

tions instead of error return codes, and that the RTI has
an internal exception handler that attempts to catch
hardware-generated signals and perform a “clean” shut-
down rather than a raw core dump.  The results for RTI
testing fall into the following categories, loosely ranked
from best to worst in terms of robustness:
• Pass - The function call executed and returned nor-

mally, with no indication of error.
• Pass with Exception - A valid, HLA-defined excep-

tion was thrown, indicating a gracefully caught and
handled exceptional condition.

• RTI Internal Error  - RTI encountered an error con-
dition that was not supposed to be possible.  RTI did,
however, manage to free memory and resign from the
federation cleanly. This is the result of a successfully
caught hardware memory protection violation, but is
not robust per the HLA specification.

• Unknown Exception - An unknown exception was
thrown and caught internally to the RTI by a catch-all
condition (as opposed to a hardware signal).  It
behaved similarly to the RTI Internal error, but was
software-created instead of hardware-triggered.

• Abort  - An error occurred that was not caught and the
code exited immediately (a “core dump”).  No mem-
ory cleanup, resigning or destroying of the federation
took place, requiring a manual restart of the entire
federation to resume operation.  

• Restart  - The function call did not return after an
ample period of time (a “hang”).

• Catastrophic - The system was left in a state requir-
ing rebooting the operating system to resume testing.  
Based on the above categories, a robustness failure

was defined for RTI to be any result to executing a test
case other than a “Pass” or “Pass with Exception.”

4.  Testing results

Testing was performed on three different RTI ver-
sions:
• Version 1.0.3 (an early version) for Digital Unix 4.0

on an Alphastation 21164
• Version 1.3.5 (current version) for Digital Unix 4.0 on

an Alphastation 21164
• Version 1.3.5 (current version) for SunOS 5.6 on a

Sparc Ultra-30 
Overall a total of 77,338 data points was collected.

This number depends on several factors: 1) the number
of functions to be tested, 2) the number of parameters in
each function, 3) the data types of the arguments, and 4)
sampling for functions with very large test sets.  The
RTI developers made significant changes between ver-
sions 1.0.3 and 1.3.5, including adding functions and
changing the arguments of existing functions.  
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4.1.  Normalized failure rates

Table 1 reports directly measured robustness failure
rates.  In order to avoid problems stemming from differ-
ent numbers of functions and test cases, a normalized
failure rate metric is reported in the last column of
Table 1.  This failure rate is the arithmetic mean of indi-
vidual failure rates for each function across all func-
tions tested for a particular RTI/OS combination [15].

In the absence of a particular workload, and given
our experience that weighted failure rates vary dramati-
cally depending on the workload (but were in some
cases as high as 29% for the POSIX API), it is inappro-
priate for us to simply take an arbitrary application
operating profile and use it here.  However, as a simple
common-sense check on these results, functions with

high robustness failure rates do in fact include com-
monly used features such as registering an object, pub-
lishing data, subscribing to data, and determining
attribute ownership.

It is common in software reliability work to use an
operational profile for weighting the severity of various
problems encountered according to the expected execu-
tion frequency of functions (e.g., [17]).  Unfortunately,
for the RTI, and indeed many general-purpose APIs,
this type of profiling data is highly dependent which
federation program(s) are running.  While we did not
have access to realistic RTI programs because that envi-
ronment itself is still new, data on previous operating
system testing showed that operational profile weight-
ings still resulted in significant (10% or more) weighted
robustness failure rates [14].  Additionally there is the

Table 1: Directly measured robustness failure rates.
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Figure 3. RTI 1.0.3 experienced failures of types RTI Internal Error and Unknown exceptions.
Functions marked with “*” all took an RTI::AttributeHandleSet class as a parameter and all had fail-
ure rates greater than 20%.

P
er

-F
un

ct
io

n 
F

ai
lu

re
 R

at
e

RT I::A ttribu teHand leS et->se tU n ion
RT I::A ttribu teH and leSet->rem oveS etIn te raction

RT I::A ttr ibu teHand leS et->se tIn te raction

rtiA m b .pub lishO b jec tC lass

rtiA m b.subscribeO b jectC lassA ttribu te

cou t <<  RTI::A ttribu teH and leSet

*

*

***

*



ISSRE ‘99 7 Fernsler & Koopman

issue that an operational profile for a normally running
program is not necessarily applicable to exceptional sit-
uations (which are, by definition, abnormal). Thus we
do not give detailed weighted failure rate results here,
because to do so would risk inviting unwarranted, gen-
eralized conclusions by readers drawn from what would
be very specific data. 

4.2.  RTI 1.0.3 for Digital Unix

The types of robustness failures that were detected in
RTI version 1.0.3 were RTI Internal Error and
Unknown exceptions.  Some of the RTI service func-
tions have the ability to throw the exception “RTIin-
ternalError:Caught unknown exception .”
However, in speaking with one of the developers, we
learned that this is not supposed to ever occur.  A more
specific exception should have been thrown instead,
rather than making the “RTIinternalError” exception
serve as a “catch all” condition or default handler.  This
type of failure accounted for a 1.4% normalized failure
rate, while the Unknown exceptions accounted for a
5.0% normalized failure rate.

As can be seen from Figure 3, the three functions
RTI::AttributeHandleSet->setUnion ,
RTI::AttributeHandleSet->removeSet-
Intersection , and RTI::AttributeHan-
dleSet->setIntersection  responded the least
robustly to our tests.  All three of these functions took
as their sole parameter an RTI::AttributeHan-
dleSet  class, and all three failed on exactly the same
input parameters.  In fact, all but one RTI 1.0.3 function

we tested that had a failure rate of more than 20% took
an RTI::AttributeHandleSet  class as a param-
eter (labeled with “*” in Figure 3).  The lower failure
rates of the two functions with a “*” at 20% were due to
masking by a successful second exceptional parameter
check before the RTI::AttributeHandleSet
parameter was touched by the function.

An additional problem discovered while testing was
the RTI client process crashing through an RTI service
function call.  This would occur randomly and the
direct cause was never determined.  While running a
simulation, the following error would occur “RTIin-
ternalError: Invalid mutex object in
RTIlocker::RTIlocker 14001 ” for any RTI
service function call made.  Once in this error state it
was impossible to run a federation execution until the
machine was rebooted.  This error is particularly nasty
because it not only forces the user to quit the currently
running federation execution without performing any
memory clean up or shutdown code, but also requires
rebooting the machine before any other RTI function
can be executed. This particular problem was not
encountered in the two RTI 1.3.5 versions.

4.3.  RTI 1.3.5 for Digital Unix and SunOS

The types of robustness failures detected in the two
RTI 1.3.5 versions were quite different in manifesta-
tion, but similar in profile (Figures 4 and 5).  For the
robustness failures that were detected in the Digital
Unix port, RTI Internal Errors accounted for a 2.6%
normalized robustness failure rate, Unknown excep-

Figure 4. In addition to RTI Internal Error and Unknown exceptions, RTI 1.3.5 for Digital Unix also
had one function that experienced multiple restarts, and one function trigger the “stuck in infinite
loop” error message.
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tions accounted for a 6.5% normalized robustness fail-
ure rate,  Restarts produced a 1.1% normalized
robustness failure rate, and one test (counted as an
Abort), produced an exception system infinite loop fail-
ure which died after printed out the following message:

“Exception system exiting dues [sic]
to multiple internal errors:

exception dispatch or unwind stuck
in infinite loop

exception dispatch or unwind stuck
in infinite loop”.

In comparison, the robustness failures seen in RTI
1.3.5 for SunOS did not include RTI Internal Errors or
Unknown exceptions.  Instead, two different reactions
to exceptional inputs were seen.  The first was a seg-
mentation fault that would cause the federate process to
exit immediately without properly resigning from and
destroying the federation and cleaning up memory.
This would result in a “zombie” federate registered
with the federation executive.  The presence of such
zombies caused the subsequently joining federate (the
next automatic test case in our situation) to hang in the
rtiAmb.joinFederationExecution  service.
To remedy this it was necessary to manually resign
from the federation by killing the FedExec and RtiExec
processes.  The other reaction to an exceptional input
that was observed in the SunOS testing was similar to
that segmentation fault, except instead of printing out
“Segmentation fault” the following message would be
displayed followed by execution termination: 

“Run-time exception error; current
exception: RTI internal error Unex-
pected exception thrown.”

which appears to indicate an incomplete implementa-
tion of an RTI Internal Error.  Both of these errors were
considered to be Aborts, and accounted 8.9 percentage
points of the normalized robustness failure rate.  Restart
failures accounted for a 1.1 percentage points. 

4.3.1.  Segmentations faults vs. RTI Internal Error
Exception.  Comparing the two RTI 1.3.5 graphs
shows that the robustness failure rates are essentially
the same.  However, in the SunOS port, unanticipated
signals leak through and are seen as segmentation faults
instead of being caught as RTI Internal Errors.  The RTI
Internal Error seen in the Digital Unix version allows
recovery and cleanup, unlike a raw segmentation fault,
which aborts the code.  The SunOS version’s inability
to catch and handle segmentation faults could signifi-
cantly disrupt the currently running federation execu-
tion by failing to inform federates that a task has
dropped out.  This example serves to illustrate possible
problems in porting robust applications across plat-
forms with different exception handling support.

4.3.2.  Restart failures.  In both implementations, the
Restart failures all occurred for the single-parameter
function: rtiAmb.requestFederationSave .
On both Digital Unix and SunOS, 50 of 52 tests hung.
As an experiment, we let the rtiAmb.request-
FederationSave  function run for 8 hours, but it
remained hung.  It is interesting to note that both the
two-parameter rtiAmb.requestFederation-
Save  function of RTI 1.3.5 and the
rtiAmb.requestFederationSave  function in
RTI version 1.0.3 did not have any Restarts, although

Figure 5. The RTI 1.3.5 for SunOS obtained Abort failures in the form of segmentation faults
instead of RTI Internal Errors or Unknown exceptions.
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there were significant changes in this function from
version 1.0.3 to version 1.3.5.

4.4.  Comparison to operating system results

The results obtained from RTI testing are much more
robust than those we obtained testing POSIX operating
systems (OSs), which typically had a robustness failure
rate between 10.0% to 22.7% [14], compared to the RTI
implementations which got between 6.4% and 10.2%.
Several of the OSs had catastrophic errors occur, which
are failures that occur when the entire OS becomes cor-
rupted or the machine crashes or reboots.  In addition,
almost every OS of the 15 tested encountered several
functions that had Restart failures, whereas only one
function in RTI 1.3.5 had Restart failures.  We antici-
pated the results of Ballista testing of the RTI would
have a lower failure rate than previous testing of operat-
ing systems primarily because the RTI, as well as the
HLA, were specifically designed for robust operation.

We have seen from our previous results of Ballista
testing that a newer software version does not necessar-
ily indicate increased robustness.  The same holds true
for the RTI as illustrated by the two Digital Unix ver-
sions’ overall robustness ratings (Figure 6).  Although
many of the RTI 1.3.5 failures may be due to the fact
that the RTI specification changed significantly in
going to the newer version, it is still interesting to note
that based on the normalized robustness failure rates,
the newer RTI version, 1.3.5, actually is shown to be
less robust.  This is not inconsistent with trends seen
previously in operating system robustness test results
for both major and minor upgrades.

5.  Conclusions & future directions

This paper provides the results of Ballista robustness
testing of the High Level Architecture Run-Time Infra-

structure (HLA RTI), a general-purpose distributed
simulation backplane which was specifically designed
for robust exception handling.  Testing the RTI required
significant extensions of Ballista capabilities that were
thought by some to be improbable to accomplish with-
out a complete architectural change, including handling
exception-based error reporting models, testing object-
oriented software structures (including callbacks),
incorporating necessary state-setting “scaffolding” code
in a scalable manner, and operating in a state-rich dis-
tributed system environment.  Moreover, these exten-
sions were accommodated through small, natural
evolutions of the basic Ballista architecture.  This bodes
well for extending Ballista to still other application
areas according to the project goal of creating a gen-
eral-purpose, scalable testing framework.

Robustness testing was performed on three different
versions of the RTI, with a total of 77,338 data points
collected.  With a 6.4% to 10.2% normalized robustness
failure rate, RTI appears to be significantly more robust

than off-the-shelf POSIX operating systems,
which had 10% to 22.7% normalized failure
rates.  As with operating system testing results,
certain types of functions were robustness
“bottlenecks,” having significantly higher fail-
ure rates than most other functions.  Thus,
these testing results should aid in deciding how
to allocate developer resources to improve
robustness.

The particular robustness problems
observed in three version/platform RTI pairs
were internal exception handling errors (actu-
ally, a semi-gracefully caught segmentation
violation) ranging from a 1.4% to a 2.6% nor-
malized failure rate, unknown exceptions (an

exception handling software defect) with 5.0% to 6.5%
normalized failure rates, and segmentation faults
(exceptions that evaded the exception handlers) found
only on the SunOS port, accounting for an 8.9% nor-
malized failure rate.  Additionally, the Digital Unix port
of RTI 1.3.5 suffered “multiple internal errors” on one
particular function that required killing the testing task.
Finally, the Digital Unix port of RTI 1.0.3 could fail in a
way that required rebooting the system to correct.  All
problems except for the RTI 1.0.3 reboot issue and the
one “multiple internal errors” result were readily repro-
ducible and were automatically reduced to simple “bug
report” programs by the Ballista server.  The code from
these bug reports has been added to the RTI developers’
regression test suite.

These results indicate that it can be a difficult task to
create “bullet-proof” code, even when that is a specifi-
cally stated development goal.  Additionally, the prob-

Figure 6. Overall comparison of failure rates of three
implementations of the RTI to operating systems (OS
failure rates ranged from 10.0% to 22.7%).
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lem with the SunOS port not catching segmentation
faults indicates that it can be difficult to provide compa-
rable exception handling capabilities for the same API
across multiple platforms.  One piece of good news,
however, is that (except for the SunOS problem just
mentioned), we did not find significant differences in
exception handling coverage across platforms.  This
suggests, but certainly does not prove, that underlying
variations in operating system robustness might not
percolate up through well-written exception handling
facilities to cause exception handling differences across
platforms.  If that were to happen, it would further com-
plicate the task of writing portable, robust applications.

In the future, we are working to make Ballista part of
the standard verification suite for RTI development.
Additionally, we plan to explore issues of concurrent
testing to find potentially more subtle bugs related to
timing and resource sharing.  However, even with a rel-
atively straightforward static, single-thread execution
model, Ballista testing has been demonstrated to find
exception handling problems in software specifically
written to be highly robust.
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