
Abstract
Lack of data quantifying the performance cost of imple-

menting good exception handling often causes developers
to skimp on exception handling based on its overestimated
perceived cost. In an effort to remedy this problem we pro-
vide performance data on the cost of building good excep-
tion handling into software. We use the Safe Fast IO
library as a basis for this study. SFIO improves robustness
by a factor of 3 to 10 over STDIO without sacrificing per-
formance. We were able to improve the robustness of the
critical SFIO functions by another factor of 5, thus quanti-
fying and reducing robustness failure rates by a factor of up
to 70 from standard I/O functions, with an average perfor-
mance penalty of 1% as measured by the original SFIO
benchmark scheme. Future processor architecture im-
provements will further improve checking speed, essen-
tially eliminating performance as an obstacle to improving
software robustness.

1. Introduction

Recent advances in the ability to measure software ro-
bustness have revealed that it is common for software to be
non-robust when presented with exceptional parameter val-
ues. For example, both Unix and Windows operating sys-
tems and their C libraries tend to have significant
robustness failure rates, with C library functions often be-
ing less graceful at handling exceptions than system calls
[8][15].

Anecdotal data collected by robustness testing seems to
suggest that systems incapable of gracefully handling ex-
ceptional conditions (including exceptions caused by soft-
ware defects in application programs calling other software
packages) tend to be somewhat less reliable at a system
level, and much less reliable at the task level[15]. While the
evidence does not prove causality, in many cases overall
system failures tended to be caused by modules with poor
overall exception handing characteristics [15][7].

Despite a general need for better exception handling and
the existence of tools to identify exception handling short-

comings, few projects pay anything other than passing at-
tention to this aspect of the system. Some developers sim-
ply lack exposure to the need and methods for exception
handling [12]. Others eschew it because of perceived per-
formance problems and development difficulty. Neither of
these need be the case. As Maxion points out in [12], even a
small amount of effort applied to raising the awareness of
the importance of solid exception handling can result in sig-
nificant improvements. Additionally, there are now sev-
eral research and commercial tools to help developers
detect potential robustness weaknesses [10][6][3]. But, be-
yond the issue of finding and correcting robustness prob-
lems, we believe that in general developers greatly
overestimate the performance penalty of making software
highly robust and use this as a reason to avoid robustness
improvement.

An example of a software package developed with
safety and robustness as a goal, without compromise to per-
formance, is the safe, fast, I/O library (SFIO) developed by
David Korn and K.-Phong Vo at AT&T research [9]. The
functions included in SFIO implement the functionality of
the standard C I/O libraries found in STDIO. This library
adds a large amount of error checking ability (as well as
other functionality) to the standard IO libraries, and man-
ages to do so without adversely affecting performance.

While the authors of SFIO were able to demonstrate that
it was a high performance library, at the time it was devel-
oped there was no method for quantifying robustness.
They could make a case that the library was safer due to
their design decisions, but there was no method available to
quantify how much they had improved over STDIO. Fur-
thermore, discussions with the developers of SFIO revealed
that even they were concerned about the performance im-
pact of increasing the amount of exception checking done
by their code.

We saw the existence of SFIO as an opportunity to gain
an initial understanding of how robust an Application Pro-
graming Interface (API) implementation might be made us-
ing good design techniques but no metrics for feedback,
and what the actual performance penalty might be for fur-
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ther improving robustness beyond the point judged practi-
cal by SFIO developers. First, we used the Ballista tool to
measure the robustness of SFIO to exceptional parameter
values at the API level. This allowed us to quantify SFIO
robustness and find that it was significantly more robust
than STDIO, but still had room for improvement. Then we
found some common types of robustness vulnerabilities in
SFIO and hardened against them, further improving robust-
ness. At first the improved SFIO did in fact have some per-
formance problems; however, these were largely remedied
by optimizing for the common case and the result proved to
be significantly more robust than the original SFIO with
only a slight performance penalty.

The remainder of this paper describes our efforts
to identify and fix general robustness failures within
the SFIO system and quantify the performance im-
pact of the additional code added to harden the sys-
tem against those failures. Additionally, we discuss
the types of robustness failures that are still expen-
sive to check for, and how near-term processor ar-
chitecture enhancements for general purpose
computing will also reduce the cost of improving ro-
bustness.

2. Robustness testing of SFIO

We used the Ballista testing suite to measure the
robustness of the 36 functions in the SFIO API. This
allowed us to objectively evaluate the SFIO library
in terms of exception handling robustness. To test
SFIO we used existing data types for POSIX tests
and created two custom Ballista test types capable of
generating tests cases for the SFIO types Sfio_t and
Void_t. These types fit directly into the Ballista data
type framework, and inherited much of their func-
tionality from the generic pointer type. This made
implementation a simple exercise, requiring only a
few hours to implement the types, and to test the
types themselves within the Ballista framework to
ensure that they themselves were robust.

Our testing showed that while the robustness of
SFIO is far greater than STDIO (Figure 1), SFIO still
suffers from a fair number of robustness failures in
critical IO function such as write and read. Analysis
of the testing data showed that there were three
broad causes for many of the SFIO robustness fail-
ures. Specifically these were:

• Failure to ensure a file was valid

• Failure to ensure file modes and
permissions were appropriate to the
intended operation

• Failure to check buffers and data structures for
size and accessibility

These problems were not a case of defective checking
code in the software itself, but rather a lack of attempting to
check for these types of exceptions.

Once identified, these potential causes of failures were
addressed in a generic fashion across the eight most impor-
tant IO functions in which they occurred: sfopen, sfwrite,
sfread, sfclose, sffileno, sfseek, sfputc, and sfgetc (the “s”
prefix indicates a “safe” version of the corresponding
STDIO library call). For every function we were able to re-
use the parameter validation code for each specific failure
mode, thus reducing the cost of developing such checks to
being linear with the number of parameter types, rather than

the number of functions hardened
using our techniques. For this
first version of what we will call
Robust SFIO functions, only or-
dinary attention was paid to per-
formance – the emphasis was
instead placed on reducing ro-
bustness failure rates. Figure 2
shows that the percent of Abort
failures (i.e., percent of test cases
resulting in an abnormal task ter-
mination instead of an error code)
were significantly reduced for the
Robust SFIO software version.

While validating file parame-
ters was fairly straightforward,
validating the buffers and data
structures was more difficult.
Because the POSIX standard
gives no assurance that a task’s
state will be valid after a memory
access fault, we validated mem-
ory prior to the function execu-
tion by striding(read then write)
through the memory structure
with a stride size of the memory
page size for the architecture the
code was executed on. This al-
lowed us to catch exceptions dur-
ing a validation stage before
modifying the system state, elim-
inating issues of performing roll-
backs or otherwise dealing with
partial completion of functions in
the event of an exception.

We used the mechanisms de-
scribed in [11] to set up and per-
form signal handling on a per call
basis. While this is more time

consuming than setting up global handlers, it does ensure
that the exact state of the program at the time of the signal is
known. This reduces the complexity of the signal handlers,

2

0 50 100
cl
ea

re
rrfc

lo
sefd

op
en

fe
offe

rr
orffl

us
hfg

et
cfil

en
ofo

pe
nfp

ut
cfp

ut
sfre

adfs
ca

nffs
ee

k
fte

llfw
rit

ese
tb

ufsp
rin

tf
ss

ca
nftm

pf
ileun

ge
tc

%Abort Failures

SFIO

STDIO

Figure 1. Robustness failure rates

for SFIO, STDIO compared for 20

functions with direct functional

equivalence, as measured on the

Linux test system. SFIO failure

rates on Digital Unix were lower

for some SFIO functions and are

addressed later in section 2



and makes the recovery from such exceptions
easier to design and code.

Figure 2 shows the Abort failure rates for
the 8 modified functions, both before and af-
ter treatment. The failures that remain in the
modified functions represent cases where the
data values passed into the functions have
been corrupted in a manner that is difficult to
check with data structure bounds checking,
pointer checking, or other similar techniques.
Overall the unmodified SFIO library had an
average normalized Abort failure rate of
5.61%, based on uniformly weighting the
per-function failure rates of 186389 test cases
across 36 functions tested. The underlying
operating system can sometimes affect ro-
bustness[4], and our testing showed that the
normalized failure rates for SFIO running on
Digital Unix were 2.86% for the 8 functions of interest.
The Robust SFIO library had an average failure rate of
0.44% across the 8 modified functions.

While even the Robust SFIO library does not achieve
perfect robustness failure prevention, it is significantly
better than both STDIO and the original SFIO. Addi-
tionally, it is possible that Robust SFIO could be improved
even further by employing techniques for detecting invalid
memory structures (e.g., using techniques from
[17][1][18]). However, many of these techniques have a
hefty performance penalty without their proposed architec-
tural support to identify “bad data” situations. Thus, further
robustness improvements will become practical only when
they are supported by future generations of microprocessor
hardware.

3. Performance Results

Once the evaluation of SFIO had been completed and
several key functions had been hardened, we measured the
performance of the original and hardened versions and
compared them to each other, and to STDIO. To measure
the performance of the robust SFIO functions, we used the
benchmarks (Table 1) as described by the authors of the

original SFIO [9]. The results presented are the averages
from 10 benchmark runs and are presented in figure 3 (exe-
cution time variance across runs was minimal). Each run
consisted of a single complete execution of each bench-
mark. The benchmarks were run on two diverse architec-
tures with different development ideologies and goals. The
first test system had 333 MHz dual Pentium II processors,
128 MB RAM, and executed Redhat Linux version 6, with
kernel 2.2.12smp and Gnu STDIO library version 2.1.2-11.
The second system was an AlphaServer 4000 with two 600
MHz 21164 processors and 1GB of physical RAM, running
Digital Unix 4.0D and libc version 425.

Table 1 describes the operations performed by each
benchmark, with a block size of 8K. Benchmarks with a
757 suffix appended to the name used a block size of 757
bytes. The reason for the different transfer sizes is due to
the difference in how the machines are configured. We
chose sizes that were large enough to ensure the data was
not being cached in main memory, and thus would have to
be re-read from disk between each run. The Linux platform
had to run smaller benchmarks than the AlphaServer to
keep execution times reasonable.

The goal of using two different testing platforms was not
to directly compare performance of the hardware in ques-
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Figure 2. Abort Failure Rate for Select SFIO Functions under Linux

Linux Alpha
Copyrw Copies file with a succession of reads and writes 1000MB 2000MB
Getc Reads file one byte at a time 250MB 2000MB
Putc Writesfile one byte at a time 250MB 2000MB
Read Reads file 1000MB 2000MB
Revrd Reads file in reverse block order 1000MB 2000MB
Seekrw reads random blocks, writes to position 0 1000MB 2000MB
Write Writes 1000MB 2000MB

Benchmark Name Description
File Size

Table 1. Benchmark Descriptions



tions, but to present platforms whose OS developers have
divergent philosophies and goals. Digital Unix is a propri-
etary operating system developed to provide maximum
throughput, and is optimized for a small number of archi-
tecturally similar, advanced processors with fast IO hard-
ware. Linux is an open source OS that runs on a very wide
range of hardware platforms, from Intel x86 based
workstations to the IBM System/390 mainframes. One side
effect of targeting such a wide range of architectures for
Linux is that some performance enhancements can’t be in-
cluded in the code base due to problems with cross platform
compatibility. Further, it can be argued that Linux is most
commonly used as a workstation OS and as such is opti-
mized more for latency and less for raw throughput.
Finally, commodity PC hardware is extremely cost sensi-
tive and tends to sacrifice significant bandwidth potential to
keep costs down. We hope that by satisfactorily showing
that the cost of achieving a high degree of I/O robustness is
low on these diverse systems, it is likely that similar tech-
niques will work on other systems whose design points fall
between these two extremes.

The block IO benchmarks perform IO on large files -
1000 MB on the Linux platform and 2000 MB on the
AlphaServer. Byte IO benchmarks use a 256 MB file and
2000 MB on the Linux and Alpha systems respectively.
The seek benchmarks performed 125,000(Linux) or
250,000(Alpha) seek + read + write operations, totaling
1000 MB or 2000 MB respectively. These are in some
cases a few orders of magnitude greater than the original
SFIO benchmarks published in 1990 because original sizes
completed too quickly for accurate measurement.

In order to avoid large penalties for exception context
initialization and checking each time through a tight IO
loop, we applied a variation of optimistic incremental spe-
cialization [13]. We cached the most recent set of checks,
and tested to see if the current data set was recently vali-
dated for a call that was non-destructive to its value. In
such a case, we allowed program execution to bypass the
exceptional condition checks.

Table 2 gives complete user and system level perfor-
mance data for the original SFIO and the final robust SFIO
with incremental specialization . Total process time is bro-
ken down into the user and system components as mea-
sured by libc function call time().

4. Analysis

It should be no surprise that the performance data clearly
show that the common operations selected for additional
hardening are IO bound. This is typical in a modern
super-scalar machine where the CPU can be IO bound even
on simple memory requests. Although there is much work
being done to improve this [5], it seems unlikely that the IO
speed will catch up to the speed of the processing unit in the
near to mid-term future. Thus, hardening of IO functions
can be accomplished basically for free on latency-based
computational tasks.

In particular, although file I/O operations are state rich
and require much error checking and handling, the latency
added for increasing the ability of the functions to handle
exceptions and behave in a robust manner is mostly hidden
by the latency of the overall operations. Block file opera-

4

Elapsed Time

File sizes 2x-8x larger for the axp (ALPHA) system

0

500

1000

1500

2000

2500

3000

w
rit

e_
be

nc
h

w
rit

e7
57

_b
en

ch

re
ad

_b
en

ch

re
ad

75
7_

be
nc

h

re
vr

d_
be

nc
h

re
vr

d7
57

_b
en

ch

co
py

rw
_b

en
ch

se
ek

rw
_b

en
ch

pu
tc

_b
en

ch

ge
tc

_b
en

ch

T
im

e
in

s
e
c

x86-STDIO

x86-Original SFIO

x86-Robust SFIO

axp-STDIO

axp-Original SFIO

axp-Robust SFIO

Figure 3. Benchmark Execution Time in Seconds - Programs from [9]



tions suffer an execution time penalty of only a few percent
compared with the less robust implementations.

Though the elapsed time for the benchmarks to run to
completion tell part of the story, it isn’t enough to simply
look at this data. Elapsed time hides the intricacies of what
is going on inside the OS and hardware that can be critical
to the performance of a system. After all, the time spent
during IO wait can be used to perform other useful work in
a multi-tasking system.

Figure 4 shows the total time spent performing compu-
tation (i.e., usr+sys time but not IO wait time) of the hard-
ened SFIO is in some cases less than that of STDIO, and
except for the 757 block size and copy benchmarks is
within 2% of STDIO on Linux. Both SFIO implementa-
tions used much less actual processing time than did
STDIO on the AlphaServer platform (except seekrw,
copyrw, revrd757 and read757) though the elapsed time
tended to be close to or slower than STDIO. This seems to
indicate that the Digital Unix STDIO libraries perform a
fair amount of processing to optimize the disk transfers, and
is born out by the fact that the benchmarks spend less time
in IO wait when using the STDIO libraries. From this one
can infer that disk transfer scheduling optimizations con-
sume far more CPU cycles than increased robustness
checks.

The processing time penalty paid by robust SFIO com-
pared to original SFIO consists largely of occasional excep-
tion handling context setup and parameter checks. In
addition to this penalty, there is a mandatory penalty that
represents the check to determine if the validation must be
done. However, we expect the processing cost for such
checks to diminish significantly in the near future.

Of the penalties incurred, the penalty for determining if
validation should occur is likely to be almost completely
negated by improved hardware branch prediction that will

be available in new processors soon, though fragmenting
block size with a branch can still affect performance[16].
Actually achieving this requires creating a compiler that
can structure exception-checking code sequences in a way
that will help the CPU predict that exceptions will not oc-
cur.

Processors that use a trace cache[16], such as the Intel
Pentium 4 processor, will lessen the cost of additional
checks by allowing the unit to fetch past branches that may
otherwise throttle fetch bandwidth. While more advanced
checking and caching techniques might degrade perfor-
mance in ways the trace cache can not help (such as multi
branch direction traces), we anticipate techniques to solve
such problems will be incorporated in processors in the
near future. These include such techniques as completion
time multiple branch prediction [14] and block caches [2].
In general it seems reasonable to expect that exception
checking branches, which are easily predictable as taking
the non-exceptional code path, will become increasingly
efficient as processors incorporate more predictive execu-
tion capabilities.

Thus, robust SFIO libraries can achieve dramatically re-
duced robustness vulnerabilities compared to STDIO and
even original SFIO implementations. For latency-bound
applications the performance impact of providing extra ro-
bustness is minimal. For throughput bound applications
there can be a moderate increase in CPU time used to per-
form extra checking for some routines, but this can be mini-
mized by caching check results. Furthermore, it is likely
that as CPUs increase their use of concurrency and branch
prediction that any speed penalties for performing excep-
tion checking will decrease dramatically over time.
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5. Conclusions

We used the Ballista robustness testing tool to find ro-
bustness problems in the Safe/Fast I/O library (SFIO), and
found that we were able to improve the robustness of the
code by an average factor of 5.9 across the treated func-
tions, despite the fact that SFIO already improves robust-
ness over STDIO robustness by an order of magnitude. The
achieved robustness level was approximately 0% to 2% ro-
bustness failure rates, compared to 0% to 79% failure rates
for STDIO. We have found that the remaining failures gen-
erally involve incorrect or corrupt data within otherwise
valid data structures, but speculate that such failures might
be dealt better with during interface design.

Contrary to commonly held opinion, very robust soft-
ware need not come at the price of reduced performance.
The data show that the performance penalty for providing
thorough exception handling and error handling tends to be
low in terms of elapsed time, and similarly small in terms of
processing overhead. Robust SFIO was only ~0%-15%
(avg. of 2%) slower than ordinary SFIO, while providing
better robustness. Furthermore, near-term architectural im-
provements in processors will tend to reduce the costs of
providing robust exception handling by exploiting the fact
that exception checks can be readily predicted and executed
concurrently with mainstream computations.
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