
May 3, 1997

Middleware Enabled Fault Management for Commercial Operating Systems

Charlotte Rekiere

Advisor: Daniel P. Siewiorek

Master’s Report

Abstract: Commercial computer systems have escaped fault-tolerant design requirements

typically reserved for mission critical systems. As computer systems become an integral

part of daily activities people are beginning to depend on and expect fault-free behavior.

The implementation of a fault-management middleware layer to an existing operating sys-

tem can prove to be an effective way to quickly and effectively add fault-management fea-

tures to commercial computer systems.

This paper evaluates and defines a taxonomy of the implementations of four fault-manage-

ment middleware layers in three commercial off-the-shelf Operating Systems: pSOS

(embedded OS), Mach 3.0 (micro-kernel) and HP-UX (monolithic kernel).

The middleware development process for HP-UX is described and analyzed for perfor-

mance and system overhead. Adding assertions shows the ease of implementing fault-

management features to the HP-UX middleware. As a demonstration, assertions are used

to protect an application from incorrect kernel behavior exposed in the unmodified opera-

tions system through running Robustness Benchmarks [Dingman96].

May 3, 1997 2

1.0 Introduction

Typically, the expectation and motivation for developing fault management techniques has

focused on highly-specialized mission-critical systems. Commercial systems have

escaped similar scrutiny and usually do not provide any type of fault management in the

general computing environment. Computer systems have become an integral part of daily

activities and people are beginning to depend on and expect fault-free behavior. One

method to provide fault management policies on commercial systems is the implementa-

tion of a middleware layer with the necessary visibility and control for adding fault man-

agement techniques. A middleware layer can be described simply as software placed

between two existing systems to facilitate their communication and interoperability.

[Lee95].

This paper evaluates the implementation of four system call monitor middleware layers in

three commercial off-the-shelf Operating Systems. Specifically, pSOS (embedded OS),

Mach 3.0 (micro-kernel) and HP-UX (monolithic kernel). The middleware layers evalu-

ated reside between the operating system and an application. The evaluation has produced

a taxonomy of the architectural aspects that facilitate implementation of a fault manage-

ment middleware layer.

The HPLR (HP Library Replace) middleware development process is described and ana-

lyzed for performance overhead. An assertion policy is evaluated on HP-UX with the

execution of Robustness Benchmarks [Dingman96]. It is expected that the results of this

work will provide a framework for understanding how middleware fault-management

techniques can be applied within current operating system architectures. The attributes

that are important to maximize the performance and capabilities of the mechanism defined

can be applied to the development of future architectures.

2.0 Taxonomy

System calls provide the interface between a process and the operating system. Requests

for operating system service can be made at many levels. At the lowest level, a system call

May 3, 1997 3

is made directly. Higher-level requests, satisfied by a command interpreter or systems pro-

grams, are translated into a sequence of system calls [Silbershatz95]. A mechanism for

monitoring system call requests can be developed when the method defined to service a

system call for a particular operating system is understood. A log of system calls gener-

ated can be used to debug application or operating system behavior, analyze system per-

formance and trend analysis. Three operating systems with monitoring mechanisms were

evaluated to develop a taxonomy of operating systems features that facilitate system call

monitoring: Mach 3.0 [Rashid89], a micro-kernel based operating system, pSOS

[Integrated95], an embedded operating system and HP-UX [HPa95], a monolithic operat-

ing system.

The taxonomy begins with Figure 1 which defines a simple control flow model of a sys-

tem call request in a generic operating system. Control switches from the application to

the kernel when the system call is executed. This switch is defined by the enter path of

Figure 1. After the system call is completed, control returns to the application as defined

by the exit path of Figure 1. A middleware layer is added in Figure 2 that provides the sys-

tem call monitor function. The figure shows the enter and exit paths both passing through

the middleware layer. Depending on the operating system, the middleware layer may be

restricted to only an exit or enter path. If the middleware is restricted to the exit path then

checking arguments prior to entering the kernel would not be possible.

Kernel Application1

2

syscallenter

exit

FIGURE 1. Generic Operating System Model

May 3, 1997 4

How the middleware layer is implemented for a specific operating system depends on the

mechanism defined to switch control between an application and the kernel. The next set

of figures will show three operating systems and four mechanisms to enable system call

monitoring following the model established in Figures 1 and 2. A summary and compari-

son of the attributes of each middleware implementation is provided in Table 1.

 The control flow of the pSOS operating system is represented in Figure 3. pSOS handles

system calls through a single software interrupt. When the system is booting an entry in

the interrupt vector table is set to point to the location within the kernel to execute the sys-

tem call requested by an application. To execute a system call, the user application exe-

cutes an interrupt instruction, and the processor jumps to the location specified in the

interrupt vector table [Integrated95].

Kernel Application
1

2
Middleware

3 4

syscallenter

exit

FIGURE 2. Generic Operating System model with Middleware

Application
1

2

Interrupt
Vector
Table

Kernel
pSOS

syscallenter

exit

FIGURE 3. pSOS Operating System model

May 3, 1997 5

A middleware layer is added by mapping the entry in the interrupt vector table during the

boot sequence to point to a routine in the middleware. This change forces all the system

calls made by the user application to pass through the middleware prior to entering the

kernel. Once control is passed to the kernel the system call is executed and the kernel

returns control to the application as shown by the exit path of Figure 4.

Figure 5 shows the control flow of the Mach 3.0 microkernel. In microkernel operating

systems, system services are divided between a user-level server, which provides much of

the visible operating system interface, and a supervisor-level microkernel that implements

low-level resource management. The microkernel provides enough low-level support so

that various servers can be implemented to run on top of it [Russinovich94]. The server

implemented for the system call monitor evaluation is UNIX 4.3 (UX) [Bach86]. In Mach

3.0, the microkernel provides an Inter-Process Communication (IPC) mechanism, virtual

memory management, low level device drivers, and task/thread scheduling. UX imple-

ments all UNIX 4.3 system calls, signals, the UNIX File System, and UNIX process man-

agement.

Application1

Kernel

pSOS
syscall

Middleware

3

2
enter

exit

Interrupt
Vector
Table

FIGURE 4. pSOS Operating System model with Middleware

May 3, 1997 6

When a system call trap is made, Mach switches control into a special UX portion of the

application address space called the emulation library. This library takes the system call

parameters and number, and packages a Mach IPC message which is sent to UX. In UX,

threads wait for incoming requests and after decoding the message, call the appropriate

function. After the request has been serviced, UX packages a reply message and sends it to

the application. The emulation library unpackages the reply parameters from the message

and control is returned to the instruction following the trap [Russinovich94].

The middleware layer implemented for Mach 3.0 introduces the concept of a sentry mech-

anism. The central idea behind the sentry concept is that operating system entry and exit

points provide sufficient visibility and control to support the majority of standard fault

detection and tolerance techniques. These points, called sentry points, allow the encapsu-

lation of operating system services such as system calls, page faults, interrupts, etc.

[Russinovich94]. This encapsulation of a system call is represented in Figure 6. The same

path as in a standard system call is followed until the UX thread receives a system call

request message. At that time, the thread checks to see if a monitoring policy is enabled

for the requesting process for that system call. If any are enabled, their entry sentries are

executed. The entry sentry passes control to UX to execute the system call and control

returns to the application through the execution of an exit sentry. The sentry mechanism

middleware layer was used successfully to implement monitoring. Sentries also proved to

Mach 3.0

Application
1

2

4

Emulation
Library 5

Micro-KernelUX syscall

3

enter

exit

FIGURE 5. Mach Operating System Model

May 3, 1997 7

be an extremely flexible and powerful mechanism upon which fault detection, recording,

replay and management techniques can be built.

Figure 7 represents the control flow for the execution of system calls in HP-UX. HP-UX is

categorized as a monolithic kernel in which all system service and low-level control is

contained in the kernel. All system calls are funneled through a single entry point in the

system space, which is identified by space register 7 (sr7) [HPb95]. As with most Unix

kernels, the system call code is contained in libc.a or libc.sl depending if archived or

shared libraries were linked to an application.

Middleware

Mach 3.0
Application1

2

Emulation
Library

Micro-Kernel syscall

entry sentry

4

3
5

UX
enter

exit
exit sentry

3a

3b

FIGURE 6. Mach Operating System Model with Middleware

May 3, 1997 8

The ar Unix command allows for code objects to be added or removed from archive

libraries. To enable middleware for a system call, a custom libc.a containing objects with

middleware functions is linked with the application. This method is called HP Library

Replace (HPLR). The control flow for HPLR is shown in Figure 8. Details of how code

objects are linked to the application are provided in section 3.0. Archive versus shared

libraries on HP-UX are discussed in the Appendix.

The last method investigated to build the taxonomy is represented in Figure 9. HP-UX is

built with Kernel Instrumentation (KI) capabilities that are not enabled unless specifically

Application1

Kernel
HP-UX

2

sr7

enter

exit

syscall

FIGURE 7. HP-UX Operating System model

Middleware

Application
1

Kernel
HP-UX

syscall

2

sr7

enter

exit

FIGURE 8. HP-UX Operating System model with Middleware (HPLR)

May 3, 1997 9

requested by a user program. A shareware program called trace1.6 was developed by

Kartik Subbarao <Kartik_Subbarao@hp.com> which enables KI for the purpose of moni-

toring system and kernel calls. The trace program is available at the HP-UX Porting and

Archive Centre (http://HP-UX.cae.wisc.edu).

KI resides within the kernel and is enabled with code from a custom library provided with

the trace program. The trace program was developed to provide a similar functionality to

the PTRACE_SYSCALL function of ptrace available on other UNIX systems

[Subbarao96]. When KI is enabled, data structures defined in the system are updated with

the argument information and made available for the trace program to capture. A majority

of the work done by the trace program is formatting the data output.

2.1 Middleware Attributes

Table 1 is a summary of the main features of each monitoring policy evaluated for the tax-

onomy. Each attribute is defined in the list following the table. All the middleware imple-

mentations provide the capability to monitor system calls. Table 2 is a summary of the

fault management capabilities beyond system call monitoring available in the middleware

evaluated.

Application
1

Kernel

HP-UX

syscall

2

sr7

enter

exit

Middleware
Kernel

Instrumentation

1a 1b

FIGURE 9. HP-UX Operating System model with Middleware (KI)

May 3, 1997 10

Application (Transparent, Dependent): Middleware is application transparent if the appli-

cation is totally unaware of the fault management being performed on its behalf. The

application requires no modification to use the monitoring policy. The middleware is

application dependent if the application participates actively in the monitoring policy. The

HPLR implementation narrowly fits in this category because of the requirement of linking

application object code to a custom libc.a to enable the middleware.

Middleware Enable (Kernel Boot, User Program, Library Link): This attribute describes

how middleware is enabled for an application program. Kernel Boot: requires a system

boot sequence to enable the policy or requires modification to kernel source code beyond

what is commercially distributed. User Program: a separate user program must be exe-

cuted to enable the middleware for an application or process and in some cases execute the

application program. Library Link: custom middleware enabled libraries must be linked to

the application program.

System Call Visibility (Enter, Exit): Enter visibility is achieved if the middleware has con-

trol between the application system call request and kernel execution. This is important for

TABLE 1. System Call Monitor Middleware Attributes Summary

Attribute pSOS
Mach3.0
 sentry HPLR

HP
Trace

Application

(T-Transparent, D-Dependent)

T T D T

Middleware Enable

(K-Kernel Boot, U-User Program, L-Library Link)

K U L U

System Call Visibility

(E-Enter, X-Exit)

E E,X E,X X

Log System Call

(N-Name, A-Arguments, R-Return Value, E-Error Codes)

N N,A,R N,A,R,E N,A,R,E

Libraries Required

(S-Standard, C-Custom)

S S,C S,C S,C

Attach to running process

(Y-Yes, N-No)

N Y N Y

May 3, 1997 11

providing assertion policies and fault management as described in Section 3.5. Exit visi-

bility is achieved if the middleware has control between the kernel return from system call

and the application. This allows kernel return values and error codes from the kernel (if

available) to be monitored.

Log System Call (Name, Arguments, Return Value, Error Codes): This attribute

describes which monitored values the middleware logs.

Unique Libraries Required: The middleware requires access to unique libraries to execute

monitoring specific system calls. The sentry activation mechanism in Mach 3.0 includes

several system calls that have been added to UX, (un)guardserv, (un)guardproc, libarg,

sentryon, sentryoff, ftexecve [Russinovich94]. This is also the case when the middleware

requires access to non-monitored system calls for writing the log to non-volatile storage.

HPLR requires a custom middleware enabled libc.a along with a custom logging function

to write the monitored data to disk. HP Trace requires a KI library provided with the trace

program.

Attach to Running Process: The middleware monitoring can be dynamically attached to a

currently running process.

Roll-back visibility: The middleware has visibility and access to buffers and data needed

to create a log that can be used for roll-back recovery of the application. As an application

executes, information that would not automatically be recreated in a repeat run, such as

inputs from the user, must be saved in stable storage. When a failure occurs, this informa-

tion can be used to re-execute the failed run, bringing the application up to the state that

existed just before the failure [Russinovich94].

TABLE 2. Advanced Fault Management Middleware Attributes

pSOS
Mach 3.0

sentry HPLR HP trace

Roll-back Visibility (Y-Yes, N-No) Y Y Y N

Roll-back Recovery (Y-Yes, N-No) N Y N N

Assertion Policy (Y-Yes, N-No) N Y Y N

Kernel Call Monitor (Y-Yes, N-No) N N N Y

May 3, 1997 12

Roll-back Recovery: This feature requires middleware designed with roll-back visibility.

Recovery of an application execution is possible when processes periodically save their

states on stable storage during failure-free operation. If a failure occurs, the processes will

use the information on stable storage to restore a global consistent state and restart execu-

tion from that state, instead of restarting the computation from the beginning

[Elnozahy93].

Assertion Policy: Middleware has implemented assertions to protect the kernel from sys-

tem calls that would have caused the system to hang or crash. The middleware can recog-

nize a fault condition and return an error to the application rather than passing the

malformed system call to the kernel.

Kernel Call Monitor: Kernel calls are operations executed in a kernel during application

execution that are not requested directly by an application. In contrast, system calls are

operations executed in the kernel at the direct request of an application. A kernel call

monitor is capable of tracing kernel operations.

3.0 HP Library Replace (HPLR) Middleware Implementation

The development platform for the HPLR implementation is an HPPA RISC processor

HP9000 series 750 workstation running the HP-UX 10.10 operating system. HP-UX is

based on the UNIX System V Release 4 operating system[HPa95]. HPLR middleware is

designed with two main objectives. First, to generate a log file of monitored system calls,

arguments, return values and error codes. Second, to provide sufficient visibility for the

implementation of assertions and roll-back recovery fault management features. The

application and operating system features involved in executing a system call that are

modifiable must be understood to achieve these objectives.

Three areas were considered for implementation of the middleware: kernel source, appli-

cation binary, and the system library. The system library was selected and is reflected in

the name of the method we chose, HP Library Replace (HPLR). Modifying kernel source

was not an option because the kernel source is not available in the commercial distribution

May 3, 1997 13

of HP-UX. Hard coding middleware into the application binary was not desired because

it would result in a machine dependent solution. The HPLR implementation creates a

middleware-enabled application by linking a custom library to an application. This is sim-

ilar to hard coding middleware into an application binary but with the added benefit of

machine independence. Machine independence is achieved because the binary is built at

the link level rather than at the machine code level. The following four sections provide an

overview of system library and linking on HP-UX, a detailed description of the middle-

ware layer implementation, an overview of system call execution on HP-UX and an analy-

sis of HPLR’s impact on system performance.

3.1 Archive libraries and the linker

System call code is located in the system library libc. libc is available in two forms on

HP-UX, archive or shared. The archive format of libc is called libc.a and the shared format

is called libc.sl. A description of the differences between shared and archive libraries is

provided in the Appendix. System libraries contain object files generated by compilers and

assemblers. The Archive library format was selected for HPLR because the commands

available to modify libc.a allow for individual object files to be replaced. This is con-

trasted to libc.sl which requires the entire library to be rebuilt to add or replace object files.

System call code is linked to an application to create an application executable during the

link-edit phase of compilation. The compilation phases of HP-UX are shown in Figure 10.

The compiler (cc) produces an object file (main.o) from the application source (main.c).

An object file contains definitions of code and data in a format the linker uses to build the

application executable (a.out). The definitions can be local, global or external.

May 3, 1997 14

A local definition of a routine or data indicates that it is accessible only within the object

file in which it is defined. Global definitions contain the code for a named function, data or

procedure. An external reference is the request for a local or global definition of a func-

tion, data or procedure in a program [HPc95]. System call code in libc.a is a global defini-

tion that an application requests with an external reference. Status information for the

local, global and external definitions contained in object files is maintained by a symbol

table in libc.a. Each object file can contain multiple definitions of any or all types. Object

file contents is determined by the source code it was created from. In libc.a, a system call

has one or two object files containing the definitions required to execute the system call.

Figure 11 shows an example of the symbol information for writecall.o, t_write.o and

write.o. Writecall is a C program that executes a single write system call. Object files

t_write.o and write.o contain the definitions to execute the write system call. The first

column of the symbol table is the address of each symbol or reference. The second column

denotes the symbol type. The last column shows the symbol name.

application
source

(main.c)
cc

object file
(main.o) ld

application
executable

(a.out)
link-edit phaselanguage compile phase

FIGURE 10. HP-UX Compiler Phases

May 3, 1997 15

A representation of how the linker matches external references and global definitions dur-

ing the link-edit phase is shown for standard archive libraries in Figure 12. The write-

call.o object file contains an external reference to write . The linker matches this external

reference to the global definition of write in t_write.o. The three symbols contained in

t_write.o are: _write , _write_sys , and write . The write and _write symbols

are different names representing the same function to support compiler external reference

naming conventions. The _write_sys symbol is an external reference that the linker

matches to the global definition in write.o.

[writecall.o]:
0000000003 T main
0000000000 U write

/usr/lib/libc.a[t_write.o]:
0000000003 T _write
0000000000 U _write_sys
0000000003 TS write

/usr/lib/libc.a[write.o]:
0000000003 T _write_sys

 T indicates a global definition
 U indicates an external reference
 d indicates a local definition of data
 S secondary reference

Symbol Types:Object file symbols:

FIGURE 11. Symbols defined for dwrite.o, t_write.o, write.o

May 3, 1997 16

The _write_sys global definition contains code to enter the kernel and execute the

actual system call. The symbol table in libc.a provides the necessary information for the

linker to generate an executable output file. The linker generates the writecall binary exe-

cutable file by matching external references to global definitions. When an application is

linked to archive libraries, all code referenced by the application program is copied into

the binary executable.

3.2 Creation of Middleware-Enabled libc.a

The middleware-enabled libc.a is created by replacing the global definition of system calls

with middleware-enabled global definitions. This is accomplished for archive libraries

with the ar command. The middleware enabled objects must have identical global defini-

tion names to the ones replaced so the linker will match them to the correct external refer-

ences. When an application is linked with the custom libc.a, the middleware becomes part

writecall.o writecall

global definition

external reference

 call to write

 write defined

/usr/lib/libc.a

linker (ld)
 call to write

 write defined

match external reference
to definition in libc; copy
that portion of libc into
a.out

key

t_write.o

write.o

 call to _write_sys

 _write_sys defined

 call to _write_sys

 _write_sys defined

FIGURE 12. Matching external reference for write system call using standard libc.a

May 3, 1997 17

of the executable for the application. The application unknowingly enables the middleware

by making an external reference to the middleware-enabled system call. Figure 13 shows

an executable created with the modified libc.a for the write call.

The main difference between Figure 12 and Figure 13 is the addition of spy_t_write.o and

log.o object files. spy_t_write.o and log.o were added to libc.a using the ar command

and contain the middleware functions to perform monitoring. Adding spy_t_write.o to

libc.a causes a duplicate definition for write in libc.a. The symbol table maintains a date

for the named definitions and by default the linker selects the most recent entry. The mid-

dleware-enabled object files for system calls were given unique names of the form

writecall.o

 call to write

 write defined

/usr/lib/libc.a

linker (ld)

match external ref-
erence to definition
in libc; copy that
portion of libc into
a.out

 call to log

 call to _write_sys

 log defined

 _write_sys defined

spy_t_write.o

log.o

write.o

writecall

 call to write

 write defined

 call to log

 call to _write_sys

 log defined

 _write_sys defined

global definition

external reference

key

middleware enabled global definition

FIGURE 13. Matching external reference for write system call using middleware enabled libc.a

May 3, 1997 18

spy_t_syscall.o to prevent writing over the original default definitions contained in libc.a.

The log.o object code defines the log function used by all middleware-enabled system

calls to create the log file. Object files added to monitor system calls for the benchmarks

discussed in Section 3.4 are listed in the Appendix.

Each monitored system call must have the global definition for the system call replaced

with a middleware-enabled version. The middleware monitoring code for the write sys-

tem call is shown in Figure 14. Line 18 is where the actual system call is made by calling

_write_sys. Lines 19 through 22 obtain the kernel error code if applicable. Lines 24

through 42 collect the monitored data. The monitored data is logged at line 43 and line 44

returns control from the middleware to the application. The format of the log file and

examples are provided in the Appendix.

The HPLR middleware is invoked when the application executes a system call. The loca-

tion of the middleware in the execution process provides sufficient visibility for the imple-

mentation of assertions and roll-back recovery fault management features. The code in

Figure 14 could be easily enhanced for assertions by checking argument parameters and

returning error to the application rather than making the actual system call. The HPLR

middleware executes in user space and therefore has access to user input data buffers.

[Russinovich94] defines two data sets necessary to perform roll-back recovery: user inputs

and events leading to data request from users. Capturing events leading to the request for

user data can be accomplished through enabling HPLR middleware for system calls that

generate user data requests.

May 3, 1997 19

FIGURE 14. Global definition code for the write system call (spy_t_write.c)

3.3 HP-UX System Call Execution

When the HPLR middleware is enabled, two symbols must be available in libc.a. One that

matches the external reference made by an application that contains the middleware log-

ging code. The second to execute the actual system call. Without unique symbols to distin-

guish the middleware from the actual system call in the modified libc.a, the middleware

1. /*
2. * spy_t_write.c
3. * Replaces:_write, write (libc.a[t_write.o])
4. */

5. #include <syscall.h>
6. #include <stdio.h>
7. #include <sys/unistd.h>
8. #include "log.h"
9. #include "errno.h"

10. int write(int fildes, int *buf, unsigned int nbyte)
11. {
12. agent_record record;
13. int argtype[MAXARG];
14. int arglen[MAXARG];
15. char *args[MAXARG];
16. int i;

17. /* actual write system call with parameters passed in from the application*/
18. record.retval = _write_sys(fildes,buf,nbyte);

19. if(record.retval == -1)
20. record.err = errno;
21. else
22. record.err = 0;

23. /* fill record and call log */

24. record.sysnum = SYS_WRITE;
25. record.ent_ex = 0;
26. record.pid = _getpid_sys();
27. record.nargs = 3;
28. record.totarglen = sizeof(int) + sizeof(int) + sizeof(int);

29. argtype[0] = INT;
30. argtype[1] = PTRINT;
31. argtype[2] = INT;

32. arglen[0] = sizeof(int);
33. arglen[1] = sizeof(int);
34. arglen[2] = sizeof(int);

35. for(i=0;i<record.nargs;i++)
36. {
37. if(!(args[i] = (char *)malloc(arglen[i])))
38. exit(-1);
39. }

40. memcpy(args[0],&fildes,arglen[0]);
41. memcpy(args[1],&buf,arglen[1]);
42. memcpy(args[2],&nbyte,arglen[2]);

43. log(record,argtype,arglen,args);

44. return(record.retval);

May 3, 1997 20

would loop infinitely with no way to execute the system call. Approximately 40% of the

system calls in libc.a already have a separate symbol and code for the actual system call.

In the cases where a separate symbol was not available one was created. Following the

convention in libc.a, the actual system call symbols are of the form _syscall_sys.

Code for an actual system call is dependent on the target operating system’s mechanism

for entering system space, executing the call and returning control to the application. All

system calls on HP-UX are funneled through a single entry point in the system space,

which is identified by space register 7 (%sr7). An example of the assembly code used to

enter the system space for HP-UX is shown in Figure 15.

System space is a portion of the virtual memory space in HP-UX where the kernel exe-

cutes system calls and performs low-level system services. Virtual addressing on PA-RISC

is based on spaces. A virtual address is composed of a space identifier stored in the space

register for that space and an offset within the space. A system call is made on HP-UX by

executing a BLE (branch and link external) instruction to enter the system space and load-

ing the unique system call number into general register 22. A list of the system call num-

; _exit_sys call
call .EQU 1 ;System call number

.CODE

.EXPORT _exit_sys, ENTRY

.PROC

.CALLINFO
_exit_sys .ENTER

LDIL L'0xc0000004,%r1
BLE R'0xC0000004(%sr7,%r1) ;Enter System Space
LDI call,%r22
.LEAVE
.PROCEND

FIGURE 15. Assembly code to enter system space and execute the exit system call

May 3, 1997 21

bers as well as the location of the system call entry point is in the standard include

file: /usr/include/sys/syscall.h.

3.4 Performance and Benchmarks

A set of benchmarks were run to verify the HPLR middleware implementation. Bench-

marks were used for verification rather than an application program to ensure a repeatable

test environment. Unlike an application, a benchmark executes a finite number of system

calls in a consistent order. Table 3 provides a breakdown of the type and frequency of each

system call used by the benchmarks selected. The benchmarks include the BYTE maga-

zine benchmarks (dwrite, dread, fcalla, fcalle, fibo, float, iofile, loop, pipes, scall, sieve,

bytesort), Usenet (iocall) and Dhrystone (dryr, drynr) benchmarks. The benchmarks were

compiled by Rick Richardson of PC Research Inc. and are available in a file called misc-

bench.tar.gz (http://src.doc.ic.ac.uk/public/public/packages/unix-c/benchmarks/). System

call and Benchmark descriptions are provided in the Appendix.

May 3, 1997 22

Table 3 is separated into groups based on call frequency, diversity and the ratio of diversity

to frequency (RDF). Call frequency is the total number of calls for a given benchmark.

Call diversity is a count of the number of unique call types for a given benchmark. Most

UNIX benchmarks are designed to focus on CPU performance rather than operating sys-

tem or user program performance. The groupings were established to determine which

benchmarks most closely represent a typical user program to use for performance analysis

of HPLR. System call diversity and frequency data for typical user programs from

[Dingman96] is shown in Table 4.

TABLE 3. Count of System Calls made by Benchmarks

System
Call

brk 1 1

close 2 2 2 1

creat 1 1 1

execve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

exit 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1

fork 1

getpid 25000

ioctl 1 1 1 1 1 1

lseek 256 1000 2002

open 1 1 1 1

pipe 1

read 256 1025 500 4004

times 4 4

unlink 1 1

write 1 2 2 2 12 256 1024 631 1001

diversity

(d)

2 2 2 2 4 4 6 6 4 6 6 7 9 9 3

frequency

(f)

2 2 2 2 4 5 10 10 15 262 516 2056 2138 7013 25002

RDF [ratio: d/f] 1 1 1 1 1 .80 .60 .60 .267 .023 .012 .0034 .0042 .0013 .0001

Benchmark

a b a b

Group 1 Group 2

May 3, 1997 23

The order of magnitudes of RDF and frequency data in Table 4 were used to split Table 3

into Groups 1 and 2. Table 4 frequency data includes order of magnitudes 102 and 103 and

RDF data includes order of magnitudes 10-2 and 10-3. The benchmarks in Group 2 of

Table 3 have a similar range of magnitudes for RDF and frequency as Table 4. Table 4

contains two distinct groups based on the order of magnitudes of RDF and frequency

between gdb and xv in the table. Using the RDF value for xv as the dividing line, the split

of Table 4 was applied to Group 2 of Table 3 to form sub-groups 2a and 2b. Benchmarks

with an RDF higher then 0.0028 comprise Group 2a and benchmarks with an RDF lower

then .0028 comprise Group 2b.

Figures 16 and 17 represent the execution times for Group 2a and 2b benchmarks with

various degrees of buffered logging. The libc.a execution time is the benchmark run with

standard archive libraries and no middleware enabled. The no log data value is the execu-

tion time with middleware enabled and no logging enabled. The middleware enabled

without logging adds overhead from assigning argument values to local variables within

the middleware. Execution times for various buffer sizes that require writes to disk are

shown. When a buffer is full it writes the values to disk and proceeds to fill and write data

to disk until the benchmark finishes execution. The buf=all data value is the execution

time when the middleware and logging are enabled and all the logged data is written only

to main memory. The entry log execution time is measured when the benchmark is run and

the middleware is configured to write each log entry to disk immediately after each system

call execution. A log entry contains a system call, arguments and return value. An example

log file is shown in the Appendix. The parameter log execution time is the worst case log-

ging in which the main data structure and each argument are written to disk immediately

TABLE 4. Typical Application Diversity to Frequency Ratios [Dingman96]

emacs gcc gdb xv bitmap

diversity (d) 23 20 23 26 18

frequency (f) 851 434 927 9140 13027

ratio (d/f) .0270 .0461 .0248 .0028 .0014

May 3, 1997 24

when they are available to the middleware. In summary, when logging is enabled to write

to main memory only, there is a 1.5 times overhead compared to libc.a and writing to disk

adds a 5 to 10 times overhead compared to libc.a.

FIGURE 17. Group 2b benchmarks execution times

FIGURE 16. Group 2a benchmarks execution times

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

dw rite: dread: pipes: iofile:

Benchmark

T
im

e
(s

ec
)

libc.a

no log

buf=all

buf=4096

buf=2048

buf=1024

buf=512

buf=256

buf=128

entry log

parameter log

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

iocall: scall:

Benchmark

T
im

e
(s

ec
)

libc.a

no log

buf=all

buf=4096

buf=2048

buf=1024

buf=512

buf=256

buf=128

entry log

parameter log

May 3, 1997 25

Figures 18 and 19 show the execution time with logging enabled to libc.a execution time

ratio for selected buffer sizes. The ratio gives a representation of the overhead created by

the logging of system calls. As the buffer sizes increase the overhead decreases and the

ratio approaches one.

FIGURE 18. Group 2a benchmark execution time ratio: logging enabled to libc.a

0

1

2

3

4

5

6

7

8

9

10

buf =128 buf = 512 buf = all no log

Buffer Size

R
at

io
 (

lo
g

on
/li

bc
.a

)

dw rite

dread

pipes

iofile

May 3, 1997 26

The magnitude of the overhead is directly related to the number of log entries. Each log

entry represents the execution of one system call. Overhead for system call monitoring can

be attributed to storing arguments locally, passing arguments to the logging function and

writing the logged data to memory. While overhead is high when writing logs to the disk,

main-memory-only logging is effective. If the system call logging was expanded to

include a Roll-back recovery mechanism every system call executed by an application

would not be required to be logged1
. Memory logging of system calls in an application is

less than 0.07% per call on average.

1. The research done in [Russinovich94] describes a roll-back recovery mechanism that logs only user input
and events leading to user input. This reduces the number of system calls and arguments logged com-
pared to the system call monitor mechanism. The roll-back recovery mechanism was run with 9% total
overhead.

FIGURE 19. Group 2b benchmark execution time ratio: logging enabled to libc.a

0

20

40

60

80

100

120

140

buf =128 buf = 512 buf = all no log

Buffer Size

R
at

io
 (

lo
g

on
/li

bc
.a

)

iocall

scall

May 3, 1997 27

Table 5 lists data logging rates to main memory for Group 2a and 2b benchmarks. The

data logging rate varies by a factor of ten as a function of benchmark from 200 KByte/sec.

to 1.4 MByte/sec.

3.5 HPLR Implementation Summary

The HPLR system call monitor mechanism has been shown to be an effective fault-man-

agement middleware layer for HP-UX and accomplishes the first goal for HPLR stated in

Section 3.0. The second goal, to provide sufficient visibility for the implementation of

assertions and roll-back recovery, is achieved based on the location of the middleware in

the execution process. [Russinovich94] defines two data sets necessary to perform roll-

back recovery: user inputs, and events leading to data request from users. User inputs are

visible to HPLR when the application makes a system call request and passes control to

HPLR. Capturing events leading to data request from users can be done by enabling the

system call monitor. Verifying argument parameters with assertions is possible when

HPLR is passed control from the application. If an invalid argument is found, HPLR can

return an error to the application rather than executing the system call. Section 4.0 dis-

cusses the implementation of assertions in HPLR middleware.

4.0 Assertions and Robust Benchmarks

Robust Benchmarks stress a system by invoking system calls containing both valid and

invalid parameter values. How the operating system handles those parameters is observed.

TABLE 5. Data Logging rates to main memory for Group 2a and 2b benchmarks

Benchmark MByte/sec

dwrite 0.20

dread 0.39

pipes 1.03

iofile 0.82

iocall 0.97

scall 1.42

May 3, 1997 28

It is expected that the incorrect system calls are representative of one form of errors made

by application designers or corrupted data [Dingman95]. The suite of Robust Bench-

marks applied to Mach 3.0 in [Dingman96] was ported and run on HP-UX. The suite tests

the read, write, open, close, stat, fstat, and select calls. These

calls were selected because they were the most frequent functions in traces of user ses-

sions1 [Dingman96]. The robust test involving the select call is used to show assertions

in HPLR because it resulted in fails on HP-UX.

A six-level classification system scale was defined in [Dingman96] to analyze the results

of running robust benchmarks. Table 6 describes the six-levels of the classification system

and results for the 405 cases tested.

Table 7 shows the combinations of arguments tested for the select call. A total of 405

tests are generated by building a select call with argument combinations of each type.

Table 8 represents the Class 2 failure mode argument combinations. The fails are consid-

ered in Class 2 because the select call exhibits the correct behavior even though some

arguments are invalid and should have resulted in a return error message.

1. System calls were monitored for multiple user sessions running the following applications: emacs (a text
editor), gcc (the gnu compiler), gdb (the gnu debugger), bitmap (X-windows bitmap editor), xv (graphics
file viewer). The robust benchmarks focused on the most frequent system calls. [Dingman96].

TABLE 6. Robust Benchmarks six-level classification system [Dingman96]

Class Description
select call
test results

0 No fault (correct execution) or proper error code 378

1 Error indicated, but not the correct error code 0

2 Reports success, when error should have been reported 27

3 Process exits gracefully, with proper error code returned 0

4 Process “Hangs” or halts execution without exiting 0

5 Execution causes the system to halt or fail 0

Total select call tests 405

May 3, 1997 29

select enables synchronous I/O multiplexing for files and has parameters: nfds, read-

fds, writefds, exceptfds, timeout. nfds is the number of file descriptors to select for I/O.

readfds, writefds and exceptfds are bitmasks containing bits from 0 to nfds-1. The bit-

masks represent the status of the files as read, write or exception. timeout specifies a max-

imum interval to wait for file selection to complete. The Robustness Benchmark test is

built from the list of values in Table 6. Each value is passed as an argument to select

until all the possible combinations of parameters have been used resulting in 405 test

cases.

When timeout is NULL, as it is for all the cases in Table 8, select is defined to wait for a

signal. The 27 fail cases were classified as Class 2 failures because the select call waits

even though other arguments are invalid. Class 2 fails are considered silent errors because

the call may or may not cause a failure when select gets a signal. In cases where timeout

and nfds are non-NULL, invalid parameters are correctly caught by the operating system

and return correct error codes.

TABLE 7. Robust Benchmark Test Argument Combinations for the select call.

Number of file
descriptors
(nfds)

Read file
descriptors
(readfds)

Write file
descriptors
(writefds)

Except file
descriptors
(exceptfds)

Maximum interval to
wait for selection
(timeout)

0 NULL NULL NULL NULL pointer

5 Valid pointer Valid pointer Valid pointer Valid pointer

255 Bad pointer Bad pointer Bad pointer -1 (bad pointer)

15000

-1

TABLE 8. Select Class 2 Fail Argument Combinations

nfds readfds writefds exceptfds timeout Class 2 fail count

NULL ALL 3 ALL 3 ALL 3 NULL 27

May 3, 1997 30

Monitoring middleware was generated for the select call using the HPLR method

described in Section 3.0. An assertion policy was added to the middleware to detect the

invalid arguments. Code to perform the assertion is shown in Figure 20.

FIGURE 20. Assertion code for select Class 2 failure

The assertion checks if nfds and timeout are NULL and returns error to the application.

Since this case is always invalid (nfds must be greater than 1 because the bit mask is built

from 0 to nfds -1). The bit mask parameters are irrelevant to check for this assertion

because the operating system correctly returns error for invalid readfds, writefds, and

execptfds if nfds is not NULL.

5.0 Summary

A taxonomy has been defined representing system call monitor fault management middle-

ware layers for three commercial off-the-shelf operating systems and four middleware

implementations: pSOS (embedded OS), Mach 3.0 (micro-kernel), and HP-UX (mono-

lithic kernel). The features of each implementation were compared and described. The tax-

onomy provides a framework for understanding how fault-management middleware can

be applied to commercial operating systems.

The HPLR middleware implementation on HP-UX was described in detail. Benchmarks

run on the HPLR method showed the overhead and performance impact of system call

monitoring with various logging configurations. Logging to main memory rather than

any of the main memory/disk logging combinations added the smallest percentage over-

head per system call logged.

 if ((nfds == NULL) && (timeout == NULL))
 {
 errno = 22; /* error number for invalid argument */
 return(-1);
 }

May 3, 1997 31

Robust Benchmarks [Dingman96] were run on HP-UX and results for the select call

were described. Assertions were added to the HPLR middleware for select to avoid

incorrect kernel behavior. The HPLR method proved to be an effective fault-management

layer without requiring modification to kernel or application source code. The implemen-

tation of fault-management middleware by replacing system call object code in an archive

format system library was introduced. This method can be applied to any UNIX-type

operating system that provides the capability to modify or replace individual objects in

system libraries.

Appendix May 3, 1997 32

Appendix

This appendix contains a discussion of archive vs. shared libraries in HP-UX, a

description of the HPLR system call monitor log file, a list of the HPLR custom libc.a

object files generated for the benchmarks described in Section 3.2, descriptions of the calls

listed in Table 3, descriptions of the benchmarks from Section 3.2, and a glossary of terms.

Archive vs. Shared libraries in HP-UX

HP-UX supports two kinds of libraries: archive and shared. Like an archive library, a

shared library contains object code. However, when linking an object file with a shared

library, ld does not copy object code from the library into the binary executable file

(a.out) file; instead, the linker notes in the a.out file that the code calls a routine in the

shared library. An a.out file that calls routines in a shared library is known as an incom-

plete executable[HPa95].

When an incomplete executable begins execution, the HP-UX dynamic loader looks at the

a.out file to see what libraries the a.out file needs during execution. The dynamic loader at

run time loads and maps any required shared libraries into the process’s address space. A

program calls shared library routines indirectly through a linkage table. The dynamic

loader fills the linkage table with the addresses of the routines as the routines are called.

Shared libraries are built with position independent code (PIC). PIC makes sharing possi-

ble because it contains no absolute virtual addresses; only PC relative addressing is used.

This allows PIC to be placed anywhere in a process’s address space without addresses

having to be relocated [HPa95]. Table 1 provides a comparison of archive vs. shared

library attributes for HP-UX.

Archive libraries were selected for the HPLR middleware rather than shared libraries

because of the mechanisms provided to modify the libraries in HP-UX. Unlike the ar

command used to create archive libraries, the ld command used to create shared libraries

does not provide a mechanism to modify single objects within a library. The entire library

must be re-built when a single object is changed. Since neither the source code nor PIC

Appendix May 3, 1997 33

objects for libc are available it is not possible to rebuild the entire libc.sl. If this research

was taken further it would be reasonable to pursue opportunities with the dynamic linker

and shared libraries. An immediate advantage would be enabling HPLR to be application

transparent for a binary executable created with shared libraries which is the default com-

piler configuration on HP-UX.

HPLR Log File Overview

The log files generated with the HPLR method are binary files. This design was leveraged

from the log file format used in [Russinovich94] for Mach 3.0 system call monitor. Using

a binary file format minimizes the data size and therefore minimizes overhead. Tools were

developed to interpret the binary log file. Figure 1 shows the system calls monitored for

the dwrite benchmark in text format. The redundant write calls were removed to decrease

the size of the log shown.

TABLE 1. Comparison of Archive and Shared Libraries [HPa95]

Comparing Archive Shared

file name suffix Suffix is .a Suffix is .sl or .number representing a
particular version of the library.

object code Made from relocatable object
code

Made from position-independent
object code, created by compiling with
the +z or +Z compiler option. Can also
be created in assembly language.

creation Combine object files with the ar
command

Combine PIC object files with the ld
command.

address binding Addresses of library subrou-
tines and data are resolved at
link time

Addresses of library subroutines are
bound at run time. Addresses of data in
a.out are bound at link time; addresses
of data in shared libraries are bound at
run time.

a.out files Contains all library routines or
data (external references) refer-
enced in the program. An a.out
file that does not use shared
libraries is known as a complete
executable

Does not contain library routines;
instead, contains a linkage table that is
filled in with the addresses of routines
and shared library data. An a.out that
uses shared libraries is known as an
incomplete executable, and is almost
always much smaller than a complete
executable.

run time Each program has its own copy
of archive library routines

Shared library routines are shared
among all processes that use the
library.

Appendix May 3, 1997 34

The first number is the process identifier (PID) for the benchmark when it was executed.

Next the system call and arguments are list. The last value to the right of the equal sign is

the return value. If the return value is -1 (indicating error) then the error value and descrip-

tion is listed as shown in Figure 2.

The log file in Figure 2 was generated by modifying the dwrite.c benchmark to reference

an invalid file descriptor as the first parameter of the write call.

HPLR Custom libc.a object files

Table 2 lists the original and added object files to create the custom libc.a for the bench-

marks discussed in Section 3.4. The default object code for the system call in libc.a is

 10069: creat(4020d1c8 , 640) = 3
 10069: close(3) = 0
 10069: open(4020d1f8 , 1) = 3
 10069: write(3 , 0X4020D228 , 512) = 512

254 write lines deleted

 10069: write(3 , 0X402101F8 , 512) = 512
 10069: close(3) = 0
 10069: exit(0) = 0

FIGURE 1. HPLR log file for dwrite benchmark.

 10328: creat(4020d1a8 , 640) = 3
 10328: close(3) = 0
 10328: open(4020d1d8 , 1) = 3
 10328: write(44 , 0X4020D208 , 512) = -1 EBADF 9 -> Bad file number

 # 254 write lines deleted

 10328: write(44 , 0X402101D8 , 512) = -1 EBADF 9 -> Bad file number
 10328: close(3) = 0
 10328: exit(0) = 0

FIGURE 2. HPLR log file for dwrite benchmark with force errors

Appendix May 3, 1997 35

listed in column two. For some calls multiple object files represents separate code for the

system call referenced and the actual system call execution code as described in Section

3.3. Column three lists the middleware enabled objects created for each system call. If the

default code did not provide a separate definition for the actual system call then an addi-

tional object file was added. The global definition names are the same as the symbol

stored in the symbol table in libc.a.

TABLE 2. libc.a and middleware-enabled libc.a symbols and object code

System Call default object code middleware object code
global
definitions

brk _brk.o

brk.o

spy_t_brk.o _brk

__brk

brk

spy_brk.o _brk_sys

close t_close.o spy_t_close.o _close

close

close.o _close_sys

creat t_creat.o spy_t_creat.o _creat

creat

creat.o _creat_sys

execve t_execve.o spy_t_execve.o _execve

execve

execve.o spy_execve.o _execve_sys

exit exit.o

strrchr.o

_exit.o

spy_t_exit.o ___exit

_atexit

atexit

exit

exit

_exit.o

spy_exit.o _exit_sys

fork t_fork.o spy_t_fork.o _fork

fork

fork.o _fork_sys

getpid getpid.o spy_t_getpid.o _getpid

getpid

spy_getpid.o _getpid_sys

ioctl t_ioctl.o spy_t_ioctl.o _ioctl

ioctl

Appendix May 3, 1997 36

System Call Descriptions

brk: used to change dynamically the amount of space allocated for the calling pro-
cess’s data segment.

close: close a file descriptor

creat: create a new file or rewrite an existing one

exit: terminate a process

fork: Creates a new process. The new process (the child process) is an exact copy
of the calling process (the parent process).

a. log is the function defined to write the monitored data to a file. Unlike the other
definitions in this table, log is not a system call.

ioctl.o _ioctl_sys

lseek lseek.o spy_t_lseek.o _lseek

lseek

spy_lseek.o _lseek_sys

loga log.o log

open t_open.o spy_t_open.o _open

open

open.o _open_sys

pipe t_pipe.o spy_t_pipe.o _pipe

pipe

pipe.o _pipe_sys

read t_read.o spy_t_read.o _read

read

read.o _read_sys

times times.o spy_t_times.o _times

times

spy_times.o _times_sys

unlink unlink.o spy_t_unlink.o _unlink

unlink

spy_unlink.o _unlink_sys

write t_write.o spy_t_write.o _write

write

write.o _write_sys

TABLE 2. libc.a and middleware-enabled libc.a symbols and object code

System Call default object code middleware object code
global
definitions

Appendix May 3, 1997 37

getpid: Return process ID.

ioctl: Control device

lseek: move read/write file pointer; seek

open: open file for reading or writing

pipe: creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[0] and fildes[1]. fildes[0] is opened for reading and fildes[1] is opened
for writing.

read: reads a specified number of bytes from a file and placed into a specified
buffer.

select: synchronous I/O multiplexing. Examines the file descriptors specified by the
bit masks readfds, writefds, and exceptfds.

times: Get process and child process times. Fills a time accounting structure defined
in sys/times.h.

unlink: Remove directory entry; delete file.

write: writes a specified number of bytes of data from a buffer to a specified file.

Benchmark Descriptions

bytesort: sorts a 1000 entry buffer of random numbers.

dread: Reads 512 byte chunks of data from random byte offset locations in
a_large_file (created by dwrite) and deletes the file when complete.

drynr/dryr: Contains statements of a high-level programming language (C) in a distribu-
tion considered representative:

assignments 53%
control statements 32%
procedure, function calls 15%

100 statements are dynamically executed. The program is balanced with
respect to the three aspects:

-statement type

-operand type (for simple data types)

-operand access (global, local, parameter, or constant)

The combination of these three aspects is balanced only approximately. The
program does not compute anything meaningful, but it is syntactically and
semantically correct. drynr = no registers used, dryr = registers used. The

Appendix May 3, 1997 38

program results in a drystone number that can be used to rank computer sys-
tem performance.

dwrite: Creates a_large_file containing 256 512byte blocks.

fcalla/fcalle:Fcalla assigns a register 50000 times. Fcalle empties a register 50000 times.

fibo: Calculates the fibonacci number. fibonacci is a recursion test.

float: Performs 14 floating point operations 10,000 times

iocall: Tests the speed of Unix system call interface and speed of CPU doing com-
mon Unix io system calls. Benchmark is designed to cause only system
buffer activity not any physical activity.

iofile: Creates files of random sizes for random reading and writing.

loop: For loop 1,000,000 times doing nothing

pipes: Creates two file descriptors, one for reading and one for writing and creates
two processes with fork , one to write to the file and the other to read.

scall: Executes the getpid system call 25000 times.

sieve: Sets an array of flags to true if the array index is a prime number and false if
the array index is not a prime number. The array is size 8191 and iterates 10
times.

Glossary

archive library:A library containing object code for subroutines and data that can be used
by programs. Archive libraries are created with the ar command and contain
one or more object modules. By convention, archive library file names end
with .a.[HPa95]

assertions: A fault-tolerant mechanism used to guard an application from incorrect ker-
nel behavior. This is done through checking arguments known to cause incor-
rect kernel behavior and returning a reasonable error message to the
application and by-passing the kernel.

BLE: Branch and link external is an instruction for the PARISC family of proces-
sors to make interspace procedure calls. It places the offset of the return point
in general register 31 and copies the space ID into space register 0. The
return point is the location four bytes beyond the address of the instruction
which executes after the branch. [HP94]

libc.a: archive library containing object code for system calls, standard C library
routines and standard input/output routines that can be linked to a user pro-
gram.[HPa95]

Appendix May 3, 1997 39

global definitions: a definition of a procedure, function, or data item that can be accessed
by code in another object file. [HPa95]

external references: a reference to a symbol defined outside an object file. [HPa95]

object file: a file containing machine language instructions and data in a form that the
linker can use to create an executable program. [HPa95]

symbol name: The name by which a procedure, function, or data item is referred to in an
object module. [HPa95]

symbol table: A table, found in object and archive files, which lists the symbols (proce-
dures or data) defined and referenced in the file. Status and offset information
for all symbols is maintained in the symbol table. [HPa95]

local definition: A definition of a routine or data that is accessible only within the object
file in which it is defined. [HPa95]

shared library: A library, created by the ld command, which contains one or more PIC
object modules. Shared library file names end with .sl [HPa95]

dynamic linking: The process of linking an object module with a running program and
loading the module into the program’s address space.

dynamic loader: Code that attaches a shared library to a program. [HPa95]

ar: create and maintain portable archives and libraries.

Linker (ld): takes one or more object files or libraries as input and combines them to pro-
duce a single executable file.

Virtual Memory: abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.

References May 3, 1997 40

References

[Bach86] M.J. Bach, “The Design of the Unix Operating System”, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

[Dingman95] C. P. Dingman, J. Marshall, D. P. Siewiorek, “Measuring Robustness of
a Fault Tolerant Aerospace System,” Proc. of the Twenty-fifth Int’l Sym-
posium on Fault Tolerant Computing, June 1995, pp. 522-527.

[Dingman96] C. P. Dingman, “Robustness Benchmarking”, CMU Ph.D. Thesis,
August 1996.

[Elnozahy93] E. N. Elnozahy, “Manetho: Fault Tolerance in Distributed Systems
Using Rollback-Recovery and Process Replication”, Rice Technical
Report, Rice COMP TR93-212, October 1993.

[HP94] Hewlett-Packard Company, “PA-RISC 1.1 Architecture and Instruction
Set Reference Manual”, Third Edition, February 1994. URL: http://
hpcc997.external.hp.com:80/nsa/pa1.1/html/acd-1.html

[HPa95] Hewlett-Packard Company, “HP-UX Reference”, HP LaserROM HP-
UX Release 10.0, June1995

[HPb95] Hewlett-Packard Company, “HP-UX Memory Management White
Paper”, HP LaserROM HP-UX Release 10.0, June1995

[HPc95] Hewlett-Packard Company, “Programming on HP-UX”, HP Part No.
B2355-90652, Hewlett Packard Company, January1995

[Integrated95] Integrated Systems Inc., “pSOS System / 386 Release 2.0 Manual”,
March 1995

[Lee95] R.E. Lee, “Middleware on the HP3000”, Interact, August 1995,

[Rashid89] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin, D. Orr and
R. Sanzi, “Mach: a Foundation for Open Systems”, Proc. 2nd Work-
shop Workstation Operating Syst., Sept. 27-29, 1989.

[Russinovich94] M.E. Russinovich “Application-Transparent Fault Management”, CMU
Ph.D. Thesis, August 1994.

[Silberschatz94] A. Silberschatz, P.B. Galvin, “Operating System Concepts”, Fourth
Edition, Addison-Wesley Publishing Company, New York, 1994.

References May 3, 1997 41

